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Abstract 25 
 26 
The demographic history of a population is important for conservation and evolution, but this 27 
history is unknown for many populations. Methods that use genomic data have been developed 28 
to infer demography, but they can be challenging to implement and interpret, particularly for 29 
large populations. Thus, understanding if and when genetic estimates of demography correspond 30 
to true population history is important for assessing the performance of these genetic methods. 31 
Here, we used double-digest restriction-site associated DNA (ddRAD) sequencing data from 32 
archived collections of larval summer flounder (Paralichthys dentatus, n = 279) from three 33 
cohorts (1994-1995, 1997-1998 & 2008-2009) along the U.S. East coast to examine how 34 
contemporary effective population size and genetic diversity responded to changes in abundance 35 
in a natural population. Despite little to no detectable change in genetic diversity, coalescent-36 
based demographic modeling from site frequency spectra revealed that summer flounder 37 
effective population size declined dramatically in the early 1980s. The timing and direction of 38 
change corresponded well with the observed decline in spawning stock census abundance in the 39 
late 1980s from independent fish surveys. Census abundance subsequently recovered and 40 
achieved the pre-bottleneck size. Effective population size also grew following the bottleneck. 41 
Our results for summer flounder demonstrate that genetic sampling and site frequency spectra 42 
can be useful for detecting population dynamics, even in species with large effective sizes.  43 
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Introduction   44 

Effective population size (Ne) quantifies genetic drift in a population, making it one of the 45 

most important parameters in conservation and evolutionary biology (Charlesworth, 2009). As 46 

Ne declines, the rate of genetic drift increases, decreasing the amount of standing genetic 47 

variation in a population and reducing the effectiveness of selection, all of which can limit a 48 

population’s evolutionary potential (Kelly et al., 2013; Lai et al., 2019; Messer & Petrov, 2013). 49 

Especially in today’s changing world, Ne is an important predictor of the repertoire of responses 50 

available within a population to overcome novel environmental challenges. As a result, 51 

determining whether and when Ne changes over time and how changes in Ne correspond to the 52 

demographic history of the population remain key priorities in the fields of conservation and 53 

evolutionary biology (Díez-del-Molino et al., 2018). 54 

Since it is challenging to collect enough demographic information to estimate Ne directly, 55 

a rich area of research has focused on the development and evaluation of indirect genetic 56 

estimators of Ne (Luikart et al., 2010). Currently, the most common methods to estimate Ne 57 

include the linkage disequilibrium and temporal methods (Hill, 1981; Jorde & Ryman, 1995; 58 

Krimbas & Tsakas, 1971; Waples et al., 2014). Linkage disequilibrium methods work relatively 59 

well for populations with small effective population sizes (Ne < 1,000) if enough individuals are 60 

sampled, but once effective size becomes large (>1,000), robust estimates of Ne are challenging 61 

to obtain and difficult to interpret (Marandel et al., 2019). With large populations, the genetic 62 

diversity metrics (i.e., inbreeding, heterozygosity, linkage, and allelic diversity) that are often 63 

used to infer population size differ little across a large range of population sizes, resulting in 64 

lower precision for larger Ne estimates (Palstra & Ruzzante, 2008). This has made the estimation 65 

of Ne and the detection of changes in Ne particularly difficult for large marine populations, which 66 
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often have a million or more individuals (Hare et al., 2011). To improve Ne estimates when 67 

employing these methods, suggestions have been made to use exceptionally large numbers of 68 

individuals (e.g., 1% of all individuals in a population) and many loci (Marandel et al., 2019; 69 

Waples et al., 2018; Waples & Do, 2010). Methods that employ the site frequency spectrum 70 

(SFS) of a single population—or the joint (or multi-sample) SFS for two (or more) populations— 71 

have shown promise for detecting changes in Ne over time (Adams & Hudson, 2004; Excoffier et 72 

al., 2013; Gutenkunst et al., 2009; Nunziata et al., 2017; Nunziata & Weisrock, 2018; Patton et 73 

al., 2019). Power to detect changes can be particularly high if archived specimens are available 74 

to sample a population through time (Nunziata et al., 2017; Nunziata & Weisrock, 2018; 75 

Ramakrishnan et al., 2005). 76 

Methods that utilize the SFS have become increasingly popular due to the creation of 77 

tractable computational frameworks for estimating the SFS for arbitrary demographic histories 78 

(Excoffier et al., 2013; Gutenkunst et al., 2009) and the ease of generating sequencing data for 79 

many individuals at thousands of loci. The SFS is a count summary of the number of derived or 80 

minor alleles in each of the sampled populations and is particularly useful when all loci are 81 

biallelic. The distribution of alleles in the SFS, which is related to the rate at which lineages 82 

merge, or coalesce, is indicative of the evolutionary history of the population(s) under 83 

consideration, including changes in population size and migration events. In general, an excess 84 

of rare alleles in the SFS indicates rapid population expansion (Keinan & Clark, 2012), while a 85 

deficit of rare alleles may indicate a recent population bottleneck because rare variants are lost 86 

disproportionately quickly due to genetic drift (Maruyama & Fuerst, 1985). During a population 87 

bottleneck, faster than expected rates of coalescence will result in fewer rare variants. On the 88 

other hand, growing population sizes and slower coalescence rates produce larger numbers of 89 
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rare variants (Gattepaille et al., 2013). In theory, multiple demographic scenarios can result in the 90 

same SFS (Myers et al., 2008), so distinguishing among similar scenarios can be challenging. 91 

However, modeling of biologically realistic demographic scenarios suggests that underlying 92 

demography can often be identified from the SFS, especially when enough individuals have been 93 

sampled (Bhaskar & Song, 2014). SFS-based methods have been successfully applied to a 94 

number of real datasets to understand past changes in population size (Harris et al., 2016; Keinan 95 

& Clark, 2012; McCoy et al., 2014; Nunziata et al., 2017; Sovic et al., 2019), and these methods 96 

may be particularly good for understanding changes on contemporary timescales up to 30 97 

generations ago (Nunziata et al., 2017; Nunziata & Weisrock, 2018; Patton et al., 2019). 98 

Effective population size can be estimated over long or short time scales, with each 99 

having its own utility for practical management and conservation goals (Hare et al., 2011). 100 

Estimates of effective population size in deep time (hundreds to thousands of years) are useful 101 

for placing modern populations within a historical context (Harris et al., 2016; Huff et al., 2010; 102 

Roman & Palumbi, 2003), but contemporary effective population size estimates are more 103 

relevant for predicting persistence and for guiding management decisions (Luikart et al., 2010).  104 

Populations with well-known demography are critical for assessing the robustness of 105 

contemporary effective population size estimates because they provide a direct comparison 106 

between population estimates using genetic data and those using more traditional sampling 107 

techniques (McCoy et al., 2014; Nunziata et al., 2017). Harvested and managed fishes represent 108 

some of the most well studied natural populations, and with a wealth of data over time, provide 109 

key opportunities for understanding how historical demographic processes influence genetic 110 

variation and effective population size on a contemporary time scale. Theory suggests that 111 

intensive harvest can induce a genetic bottleneck, and fishing is expected to reduce genetic 112 
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diversity (Hauser et al., 2002; Hutchinson et al., 2003; Pinsky & Palumbi, 2014; Therkildsen et 113 

al., 2019). Yet, how the timing and magnitude of genetic declines and recovery correspond to 114 

demographic bottlenecks and recovery remains largely unexplored in harvested populations 115 

(Kuparinen et al., 2016). The large population sizes of many fishery species make estimation of 116 

Ne challenging using linkage disequilibrium or genetic diversity methods, but such species 117 

provide an opportunity to test if SFS-based methods might be particularly well-suited for large 118 

populations. In addition, while the genetic theory for demographic inference is relatively clear, 119 

natural populations rarely match all assumptions of theoretical methods. Therefore, opportunities 120 

that allow for comparing known population demography against estimates of contemporary 121 

effective population size over time provide a promising avenue for testing the utility of genetic 122 

monitoring in wild populations (Schwartz et al., 2007).  123 

Of the 450+ managed U.S. marine fish stocks and stock complexes, 45 were rebuilt to 124 

their targeted abundance levels between 2000 and 2018 and another 43 still required rebuilding 125 

at the end of 2018 (NOAA Fisheries, 2019). One such recovered stock was summer flounder 126 

(Paralichthys dentatus), an ecologically and economically important species in the Mid-Atlantic 127 

region of the U.S. East coast. Terceiro (2001) suggested that summer flounder biomass was low 128 

in the 1960s before doubling in size between 1967-1974. Peak commercial landings then 129 

occurred in 1979, followed shortly thereafter by an estimated 77% decline in spawning stock 130 

biomass from approximately 53 million pounds in 1982 to 12 million pounds in 1989 (Terceiro, 131 

2001). Since then, a strong focus on management for rebuilding helped spawning stock biomass 132 

increase again to a high of 110 million pounds in 2003 (an estimated 800% increase from 1989) 133 

before tapering off and declining slightly in the present (Terceiro, 2016). Starting in 1989 and 134 

1985, the Rutgers University Marine Field Station and the NOAA Beaufort Laboratory, 135 



	

	 7 

respectively, have collected larval summer flounder on a weekly basis as the larvae ingress into 136 

estuaries that serve as nurseries. These collections represent an unprecedented opportunity to 137 

uncover how genetic diversity and effective population size changed in response to dramatic 138 

changes in census population size in an exploited but demographically recovered marine 139 

population. 140 

Here, we used double-digest restriction-site associated DNA (ddRAD) sequencing data 141 

from archived collections of larval summer flounder (n = 279) from three serially sampled larval 142 

cohorts (1994-1995, 1997-1998 & 2008-2009) along the U.S. East coast to empirically estimate 143 

effective population size and genetic diversity just after a population decline and during a 144 

recovery period following the reduction of intense fishing pressure. Understanding how Ne and 145 

genetic diversity respond to a population bottleneck and subsequent recovery can allow insight 146 

into whether summer flounder may be genetically limited in their response to future 147 

perturbations. Using summer flounder as a case study, we ask: 1) How does a severe 148 

demographic decline and recovery empirically affect genetic diversity and contemporary 149 

effective population size over time in a harvested population?, and 2) To what extent do 150 

contemporary genetic estimates of demographic history match known changes in census 151 

population sizes in a natural population? 152 

 153 

Methods:  154 

Abundance estimates at peak spawning from fisheries data 155 

 Standardized fisheries trawl surveys have been conducted since 1963 in the waters off the 156 

northeastern U.S. (Azarovitz, 1981). These data are incorporated into stock assessment models to 157 

calculate spawning stock biomass, abundance at age, the proportion of mature fish in each age 158 
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class, mortality due to fishing and natural causes, and other demographic parameters. Using data 159 

from the 2016 summer flounder stock assessment (Terceiro, 2016), we calculated total 160 

abundance of breeding adults at peak spawning (Nps,t) for each year from 1982-2015 using 161 

𝑁!",$ = ∑ 𝑁%,$𝑒&!'!,#(
%)* , where p = 10/12 was the fraction of the year that had passed when 162 

peak spawning occurred (around November 1 for summer flounder), Za,t was total mortality 163 

(natural mortality + fishing mortality) for age class a in year t, Na,t was the number of sexually 164 

mature breeding adults in a given age class at the beginning of the year, and A was the oldest age 165 

class. 166 

 167 

Larval collections 168 

 Larval summer flounder have been collected at the Rutgers University Marine Field 169 

Station (RUMFS, Little Egg Inlet, New Jersey) on a weekly basis since 1989, with fish 170 

assemblages from this sampling site being representative of much of the New Jersey (NJ) 171 

coastline (Able et al., 2011, 2017). Summer flounder larvae ingress into shallow bays and 172 

estuaries, with the peak occurring between October-December and continuing through April in 173 

New Jersey (Able et al., 1990; Keefe & Able, 1993). Based on this timing, we defined a larval 174 

collection cohort year as beginning in the fall (October-December) and extending into the winter 175 

(January-March) months. We sampled three larval cohort years to examine how contemporary Ne 176 

had changed over time: Fall 1994-Winter 1995 (1994 cohort), Fall 1997-Winter 1998 (1997 177 

cohort) and Fall 2008-Winter 2009 (2008 cohort). Each sampled larval cohort represented a 178 

snapshot of the adult summer flounder that contributed alleles to the next generation. These years 179 

were selected as time periods when summer flounder population size was low, growing, and 180 

high, respectively (Figure 1). 181 
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 Larvae sampled from RUMFS were pooled with additional larvae captured at the NOAA 182 

Beaufort (North Carolina) Laboratory from the corresponding larval cohort year (Table 1). These 183 

North Carolina (NC) larvae were initially sampled for another project, but because the summer 184 

flounder population is effectively panmictic due to high dispersal (Hoey & Pinsky, 2018) and 185 

larvae disperse across Cape Hatteras, NC frequently (Hoey et al., 2020), we concluded that 186 

including NC larvae to increase our sample size was appropriate for investigations of Ne and 187 

genetic diversity. 188 

 189 

DNA extraction, library preparation & sequencing 190 

For all larval summer flounder samples, the posterior portion of the body was used for 191 

DNA extraction using DNeasy 96 Blood & Tissue Kits (QIAGEN; Hilden, Germany) and 192 

manufacturer’s recommended protocols. Individuals were randomly distributed amongst 96-well 193 

plates for extractions. DNA extracts were visualized on 2% agarose gels to assess quality and 194 

were subsequently quantified using PicoGreen (Thermo Fisher Scientific, Waltham, MA) and a 195 

SpectraMax M3 Microplate Reader (Molecular Devices; Sunnyvale, CA).  196 

Summer flounder ddRAD libraries were prepared according to a protocol adapted from 197 

Peterson et al. (2012) and described in detail in Hoey & Pinsky (2018). Briefly, successful 198 

extracts were digested in 50μl reactions using PstI and EcoRI restriction enzymes for four hours 199 

at 37 ºC. Digested samples were cleaned with AMPure beads (Beckman Coulter; Brea, CA) to 200 

remove small DNA fragments less than 100 base pairs (bp) in size and any remaining proteins, 201 

including restriction enzymes. Cleaned digestions were then ligated to P1 and P2 adapters. The 202 

P1 adapter contained individual barcodes. Ligated samples were pooled and cleaned before being 203 

size selected to a mean size of 273 ± 27 bp using a Blue Pippin or Pippin Prep (Sage Science; 204 
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Beverly, MA), and then amplified using PCR read 1 and read 2 primers specifically designed to 205 

only amplify DNA with both P1 and P2 adapters. Read 2 PCR primers contained one of 12 206 

Illumina indices so that pools could be distinguished from one another. PCR products were 207 

cleaned and Qubit Fluorometric Quantitation (Thermo Fisher Scientific; Waltham, MA) was 208 

used to quantify the final concentration of each pool.  209 

Library preparation for larvae sampled from the 1994 and 1997 cohorts (historical) was 210 

performed in laboratory facilities in separate buildings (Marine and Coastal Sciences Building & 211 

Waksman Institute, Rutgers University) from those in which larvae from the 2008 cohort 212 

(modern) were processed (Environmental and Natural Resources Building, Rutgers University). 213 

Care was taken to not bring equipment, reagents or clothing between the laboratories in order to 214 

limit contamination of our historical samples by modern fish DNA. For samples collected in 215 

1998 and prior (historical), we randomly introduced at least one blank control for every 24 216 

individuals during the extraction and digestion steps and then carried these blank controls 217 

through to sequencing. In addition, unique P1 adapters were utilized for historical samples 218 

during the ligation step. These precautions provided an additional level of confidence that cross-219 

contamination between historical and modern samples did not occur. 220 

Laboratory work was completed between 2015 and 2018. Pools of 24-48 individuals 221 

comprised three DNA libraries that were sent to the Princeton Genomics Core Facility 222 

(Princeton, NJ) for 140 to 150 bp single-end sequencing on two-lane runs using the Illumina 223 

HiSeq 2500 platform. In all, 331 larval summer flounder were sequenced for this study. 224 

 225 

Bioinformatics & genotyping 226 
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To distinguish between pooled libraries, sequenced reads were demultiplexed by Illumina 227 

index using a Python script adapted from FASTX Barcode Splitter (Gordon, 2011). Sequenced 228 

reads were further demultiplexed by barcode and cleaned using process_radtags in STACKS 229 

v.1.29 (Catchen et al., 2013). Sequences were then run through dDocent v.2.6.1 (Puritz et al., 230 

2014), an analysis pipeline for ddRADseq data that is described next. First, all reads were 231 

cropped to 140 bp (the lowest common read length among sequencing runs) and trimmed for 232 

quality using Trim Galore! (Krueger, 2015). BWA (Li, 2013) was used to map individual larval 233 

quality-trimmed reads to a de novo single-end ddRADseq reference assembly built from a 234 

sequencing run containing 351 larval individuals with 150bp read lengths (299 of which were 235 

used in this study, plus 52 sequenced for a separate study that were captured between 1990-1993 236 

and 2010-2012 from NJ and NC). Reference assembly was performed with Rainbow (Chong et 237 

al., 2012) using alleles with a minimum within-individual coverage level of 4 and a minimum 238 

occurrence in 15 individuals. Reference sequences with >90% similarity were clustered together 239 

using CD-HIT (Fu et al., 2012; Li & Godzik, 2006). Following read mapping, single nucleotide 240 

polymorphisms (SNPs) were identified across all 331 larval individuals from the three cohorts of 241 

interest using FreeBayes (Garrison & Marth, 2012). 242 

We retained variant SNPs that were successfully genotyped in at least 50% of individuals 243 

with a minimum quality score of 30. We did not employ a minor allele frequency nor a minor 244 

allele count filter. Individuals with > 50% missing data were discarded (~14% of all individuals). 245 

Data were then restricted to variants occurring in 95% of remaining individuals with a minimum 246 

mean depth of 20. Further filtering was conducted using the default settings of the 247 

dDocent_filters script distributed with dDocent. This script filtered variants based on criteria 248 

related to site depth, quality vs. depth, mapping quality, strand representation, and allelic balance 249 
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at heterozygous individuals. Indels were removed, and only the first SNP at each contig was 250 

retained in order to help ensure an unlinked dataset. These filtering steps resulted in 3,905 loci 251 

across 284 larvae. To further reduce potential contamination that may have occurred during 252 

larval sampling, storage, or DNA library preparation, we calculated the proportion of 253 

heterozygous loci within individuals and removed five fish whose individual heterozygosity was 254 

three standard deviations above the mean (Petrou et al., 2019). We then identified loci not in 255 

Hardy-Weinberg proportions (HWP; p < 0.001) using the pegas v. 0.13 package (Paradis, 2010) 256 

in R. These additional filters resulted in 3,749 loci across 279 larvae for downstream analyses, 257 

unless otherwise noted. 258 

 259 

Genetic diversity, single-sample Ne, and selection 260 

 Nucleotide diversity (π) across 140 bp windows was calculated using vcftools v.0.1.17 261 

(Danecek et al., 2011) and all available SNPs on a contig for each larval cohort. For within-262 

cohort estimates of π, 95% confidence intervals were calculated by bootstrapping 1,000 times 263 

across individuals using the boot v.1.3-24 (Canty & Ripley, 2019) package in R (R Core Team, 264 

2017). Observed and expected heterozygosity per locus and FIS were calculated using the 265 

basic.stats function in the hierfstat v.0.04-22 (Goudet, 2005) package in R.  266 

 Single-sample estimates of Ne were generated for each sampled larval cohort using the 267 

linkage disequilibrium method (Waples & Do, 2010) with random mating implemented in 268 

NeEstimator v.2.1 (Do et al., 2014). All other options were set to the default. We report point 269 

estimates resulting from the removal of singleton alleles and confidence intervals from 270 

jackknifing across individuals (Jones et al., 2016). 271 

 SNP genotypes were screened for temporal outliers among the three larval cohort years 272 
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using BayeScan v.2.1 (Foll & Gaggiotti, 2008). BayeScan uses the difference in allele 273 

frequencies between samples across space or time to estimate the posterior probability of loci 274 

being under selection. 275 

 276 

Demographic modeling 277 

 We fit demographic models of recent population size changes using a simulation-based 278 

approach and the SFS in fastsimcoal2 v.2.6 (Excoffier et al., 2013, 2021). In addition to the 279 

filtering steps mentioned above, we removed all loci with missing data, resulting in 1,068 loci 280 

across 279 summer flounder individuals. We then summarized these loci across our three larval 281 

cohorts as the observed minor allele (folded) multiSFS in Arlequin v.3.5.2.2 (Excoffier & 282 

Lischer, 2010). Using fastsimcoal2, we fit parameters for seven demographic models with serial 283 

sampling to our observed SFS and estimated the likelihood of our data under each model. 284 

Monomorphic sites and mutation rate were ignored during parameter estimation by using the --285 

removeZeroSFS option. Our seven simple models were chosen to represent the range of likely 286 

scenarios that underlie the evolutionary history of summer flounder (Figure 2), including Model 287 

1) a constant population size through time, Model 2) a bottleneck and then an instantaneous 288 

change in population size, Model 3) a bottleneck and then an exponential change in population 289 

size, Model 4) exponential change in population size followed by a bottleneck and then an 290 

instantaneous change in population size, Model 5) two bottlenecks with instantaneous changes in 291 

population size, Model 6) exponential change in population size before and after the bottleneck, 292 

and Model 7) exponential change in ancestral population size prior to reaching carrying capacity. 293 

 Parameters estimated from the models included modern Ne at the time of sampling in 294 

2008 (NPOP08), Ne during the bottleneck (NBOT), Ne just prior to the bottleneck (NPREBOT), 295 
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the duration and ending times of the bottleneck (TLEN and TBOT, respectively), and the ending 296 

time of the ancestral change in population size (TCAR; Figure 2). For Models 4, 6, and 7, we 297 

also estimated Ne (NANC) after the Last Glacial Maximum (Clark et al., 2009). Parameters for 298 

the two-bottleneck model (Model 5) were the same as for the single bottleneck models but were 299 

differentiated between the first and second bottlenecks. 300 

We determined female generation length by calculating the average age of females 301 

weighted by the number of eggs produced in each age class. Male generation length was 302 

calculated assuming that each age class contributed equally to reproduction. Calculations were 303 

based off of estimated abundance and the proportion of mature fish in each age class from 304 

Terceiro (2016), age-length relationships from Penttila et al. (1989) and length-fecundity curves 305 

from Morse (1981). Average generation length of females and males from 1982-2008 was 306 

calculated to be 2.01 years (Figure S1).  307 

Initial values for the maximum likelihood search procedure for population size (NANC, 308 

NPREBOT, NBOT, and NPOP08) were log-uniformly distributed from 100 to 100,000 haploid 309 

units; for bottleneck duration (TLEN) were uniformly distributed from 1 to 5 generations; for the 310 

end of the bottleneck (TBOT) were uniformly distributed from 1 to 12 generations; and for the 311 

end of the ancestral change in population size (TCAR) was log-uniformly distributed from 1 to 312 

5,000 generations. While the lower limit on initial values served as a bound on the search space, 313 

the upper limit did not bound the search space. A total of 100,000 simulations were performed to 314 

estimate the SFS with a maximum of 40 loops (ECM cycles) for each demographic scenario. For 315 

each model, 50 replicate runs with different initial values were performed as single threaded 316 

processes on the Amarel Linux computing cluster (Rutgers University), and the overall 317 

maximum likelihood (ML) was retained. The relative likelihood was compared across models 318 



	

	 15 

and the best fitting demographic model was selected using Akaike’s Information Criterion 319 

(Akaike, 1974) after converting the log10-likelihoods reported by fastsimcoal2 to ln-likelihoods.  320 

We also performed two sensitivity analyses to understand how model specifications 321 

impacted our demographic results. First, we expanded the range for TBOT to 1-30 generations 322 

and TLEN to 1-15 to test the sensitivity of our results to the initial value ranges. Based on the 323 

ML from 50 replicate runs, our parameter estimates did not differ and we did not pursue this 324 

sensitivity test further. Following recommendations from fastsimcoal2 to fix one parameter when 325 

ignoring monomorphic sites, we also performed a second sensitivity analysis by fixing TLEN at 326 

three generations.  327 

Confidence intervals for parameters in the best-supported model were obtained through 328 

non-parametric bootstrapping. Loci from the observed dataset of 1,068 loci across 279 larvae 329 

were resampled to generate 100 bootstrapped SFS using Arlequin (Excoffier & Lischer, 2010). 330 

For each bootstrapped SFS, 30 replicate runs were performed to identify the ML parameter set. 331 

The ML parameter estimates for the best-fit model on the observed dataset were used as the 332 

starting values for each run in order to efficiently estimate confidence intervals (--initValues). 333 

Monomorphic sites were also ignored when estimating parameters for each run (--334 

removeZeroSFS). The set of MLs from the 100 bootstrapped SFS were used to determine 95% 335 

confidence intervals for each parameter. 336 

In addition, we performed two sets of simulations to determine the power within our 337 

dataset for distinguishing among the seven demographic hypotheses. First, we simulated 10 338 

pseudo-observed SFS for each model with fastsimcoal2 by using the previously obtained ML 339 

parameter estimates of each model. We then fit each of the seven models to each of the 70 340 

pseudo-observed datasets using the initial starting points and run specifications as previously 341 
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described. Ten replicate runs with different initial values were performed for each model fit to a 342 

pseudo-observed dataset. The run with the ML was retained, and AIC was used to determine the 343 

best-fit model for each pseudo-observed dataset. We then compared the best-fit model to the 344 

known generating model to produce a confusion matrix. Second, to help disentangle the effects 345 

of temporal sampling from unequal sampling over time, we assessed the power for inferring the 346 

correct demographic model when equal numbers of individuals were sampled across cohorts. We 347 

simulated 50 pseudo-observed datasets for the best-fit model when 1,068 loci and 80 diploids in 348 

each cohort were sampled. We then fit our seven demographic models to each of the 50 pseudo-349 

observed datasets. Ten replicate runs with different initial values were performed for each model 350 

fit to a pseudo-observed dataset, and the best-fit model for each pseudo-observed dataset was 351 

selected using AIC.  352 

 353 

Results 354 

Genotyping results 355 

 The number of quality-filtered reads per individual was 576,441 ± 626,768 (mean ± SD). 356 

Mapping to our reference assembly resulted in an average coverage of 25x per individual. 357 

Variant calling across individuals identified 314,570 putative SNPs, and of these, 3,905 loci with 358 

an average read depth of 61x across 284 larvae passed initial filtering. 359 

 360 

Genetic diversity, single-sample Ne, and selection 361 

 Nucleotide diversity (p) across 140 bp windows was lowest in the 2008 larval cohort (p = 362 

0.00378; 95% CI: 0.00367 - 0.00390) and highest in the 1997 larval cohort (p = 0.00469; 95% 363 

CI: 0.00455 - 0.00483) (Table 1). Observed heterozygosity for each larval cohort ranged from 364 
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0.0651 – 0.0669 and expected heterozygosity ranged from 0.0688 – 0.0698 (Table 1). Wright’s 365 

inbreeding coefficient (FIS) for each cohort varied from 0.0415 – 0.0581 and declined slightly 366 

over time (Table 1), suggesting that inbreeding was highest in the 1994 cohort when summer 367 

flounder abundance was reduced. Estimates of Ne with 95% confidence intervals from 368 

NeEstimator were 1,168 (365 – infinite individuals) for the 1994 larval cohort, infinite (8,377 – 369 

infinite) for the 1997 cohort and 56,672 (5,786 – infinite) individuals for the 2008 cohort. No 370 

temporal outlier SNPs were detected using BayeScan. Therefore, no SNPs were removed prior to 371 

demographic modeling. 372 

 373 

Demographic modeling 374 

Demographic modeling from serial sampled larval summer flounder strongly supported 375 

exponential growth of the ancestral population, followed by a bottleneck, followed by additional 376 

rapid exponential growth (Model 6) as the best-fitting model (Tables S1 & S2). The second-best 377 

model (Model 4) had a ΔAIC of 13 and the third-best model (Model 7) had a ΔAIC of 22. While 378 

the top three models demonstrate clear support for ancient growth up until roughly 10 379 

generations ago, a model containing a subsequent bottleneck followed by an increase in 380 

population size was strongly preferred (Tables S1 & S2). Together, these results suggest that 381 

historical fishing had a noticeable genetic effect in summer flounder. 382 

The best-fit demographic model estimated that the ancestral population grew quite slowly 383 

(exponential increase of 0.00034 per generation) to 32,209 (95% CI: 9,671-57,485) diploid 384 

individuals prior to the bottleneck (Table 2 & Figure S2; NPREBOT). The bottleneck lasted two 385 

(95% CI: 1-4) generations (Table 2; TLEN) and the end of the bottleneck occurred 12 (95% CI: 386 

8-15) generations prior to 2008 (Table 2; TBOT). When translated into years, the bottleneck 387 
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occurred from approximately 1980-1984, which aligns well with the low mature spawner census 388 

sizes from 1988-1994 (Figure 1). Ne during the bottleneck was 910 (95% CI: 154-1,963) 389 

individuals (Table 2 & Figure S2; NBOT). The population then grew rapidly (exponential 390 

increase of 0.20 per generation) before reaching a Ne of 10,212 (95% CI: 5,859-37,013) 391 

individuals after the bottleneck (Table 2 & Figure S2; NPOP08). The NBOT/NPREBOT ratio 392 

was 0.028, suggesting a substantial decline (95% CI: 0.0105-0.0566) and the NPOP08/NBOT 393 

ratio was 11.2 (95% CI: 5.27-143), suggesting that the summer flounder population achieved a 394 

certain degree of recovery after substantial growth following the bottleneck. The degree to which 395 

summer flounder recovered to the pre-bottleneck effective level can be summarized as 396 

NPOP08/NPREBOT. This ratio was 0.317 (95% CI: 0.150-2.95), suggesting some uncertainty in 397 

the degree to which summer flounder recovered to the pre-bottleneck size by 2008.  398 

Overall, the best-fit model suggests that summer flounder Ne had been slowly increasing 399 

before declining sharply in the early 1980s (Figure 3). The demographic modeling suggested a 400 

rapid exponential increase in effective population size after the bottleneck, leading to a 401 

noticeable recovery in population size. When TLEN was fixed at three generations (or six years) 402 

based on summer flounder abundance over time, all parameter estimates were similar to those 403 

produced when TLEN was estimated (Table 2). 404 

 Simulations revealed high power within the dataset for accurately selecting Model 6 405 

(90% probability of selecting Model 6 when it was the true model; Figures S3 & S4). Model 6 406 

was never mis-identified as Model 4 and occasionally (10% of simulated datasets) mis-identified 407 

as Model 7 (Figure 2). While the ancestral population size changed exponentially in all three of 408 

these models, a bottleneck did not occur following this change in Model 7, whereas a bottleneck 409 

did occur in both Models 4 and 6. The only difference between Models 4 and 6 is that Model 4 410 
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had an instantaneous change after the bottleneck, while Model 6 had an exponential change. 411 

There was a high chance of incorrectly selecting Models 6 or 7 (40% probability each) when the 412 

true model was Model 4. In contrast, there was a high probability of correctly selecting Model 7 413 

when the true model was Model 7 (80% of simulated Model 7 datasets; Figures S3 & S4). 414 

However, there was a low probability of falsely selecting Model 6 when the true model was 415 

Model 7 (20%; Figures S3 & S4), suggesting that we can be quite certain of two things: 1) that 416 

summer flounder experienced exponential growth of the ancestral population, and 2) that this 417 

growth was most likely followed by a bottleneck, followed by additional increase in population 418 

size, regardless of whether this increase occurred instantaneously (Model 4) or exponentially 419 

(Model 6). Additionally, simulations with equal sample sizes across cohorts suggest high power 420 

for accurately selecting Model 6 (88% probability of selecting Model 6 when it was the true 421 

model; Figure S5). There was a low probability of incorrectly selecting Models 4 and 7 when the 422 

true model was Model 6 (4% and 8%, respectively). This series of simulations provide clear 423 

evidence that our temporal sampling scheme resulted in strong inferential power to recover the 424 

underlying demographic history. 425 

 To further evaluate model fit with temporal sampling, we compared the observed minor 426 

allele SFS for each larval cohort with the expected minor allele SFS averaged across 100 SFSs 427 

generated using the ML parameters of the three best-fitting models. The observed SFSs most 428 

closely matched with the SFSs expected under Model 6 with exponential growth before and after 429 

the bottleneck (Figure S6). However, none of our models could fully explain the relatively high 430 

prevalence of alleles with minor allele count 1 in the 1997 larval cohort, but Model 6 came 431 

closest to doing so. In addition, none of our models were able to explain both the relatively high 432 

prevalence of minor allele counts 2-3 in the 1997 and 2008 larval cohorts, nor the relative rarity 433 
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of alleles with minor allele counts 4-7 or 7 in the 1997 and 2008 larval cohorts, respectively. In 434 

addition, the expected averaged SFSs based on the ML parameters for Model 6 illustrate that the 435 

prevalence of rare alleles differed over time, further suggesting that our ability to temporally 436 

sample larvae aided in recovering the contemporary demographic history of summer flounder 437 

(Figure S7). While differences in the SFS among larval cohorts became less apparent if equal 438 

numbers of individuals were sampled in each cohort, small differences were still apparent. In 439 

particular, a small but clear pattern of relatively more rare alleles in the earlier cohorts provided 440 

additional support that temporal sampling aided in the inference of demographic history (Figure 441 

S8). 442 

 443 

Discussion 444 

 Effective population size is an important indicator of evolutionary potential, particularly 445 

for understanding how species respond to and recover from exploitation. We utilized archived 446 

larval summer flounder specimens from periods of low, increasing, and high spawning stock 447 

biomass to estimate genetic diversity and to test if SNP data were useful for detecting changes in 448 

summer flounder demography. A small decline in genetic diversity was observed between 1997 449 

to 2008, but in general, stable levels of genetic diversity suggested that summer flounder 450 

population size has remained relatively large over time. The single-sample NeEstimator results 451 

indicated that Ne could not be accurately estimated from linkage-disequilibrium patterns and that 452 

the signal could not be distinguished from sampling variance. However, coalescent-based 453 

demographic modeling using the joint site frequency spectrum revealed a substantial decline and 454 

subsequent recovery in summer flounder effective population size, consistent with population 455 

dynamics recorded by stock assessments of this species (Terceiro, 2001). The timing of the 456 



	

	 21 

decline in effective population size was also congruent with the timing of the lowest estimates of 457 

spawning stock biomass from fisheries datasets, with a difference of only a few generations. Our 458 

results in summer flounder suggest that coalescent-based demographic modeling and SNP-based 459 

SFS data from only a few hundred archived specimens can be a useful strategy for detecting 460 

changes in the magnitude and timing of contemporary Ne. 461 

 A growing number of studies have employed coalescent-based demographic modeling 462 

and the SFS to estimate Ne on contemporary time scales (Patton et al., 2019; Sovic et al., 2019), 463 

but only a subset have benefited from independent estimates of demography (McCoy et al., 464 

2014; Nunziata et al., 2017). Similar to studies in other organisms that combined coalescent-465 

based demographic modeling and independent estimates of demography (McCoy et al., 2014; 466 

Nunziata et al., 2017), we also detected changes in effective population size that corresponded 467 

well with known changes in the census population size of summer flounder. Much like Nunziata 468 

et al. (2017), we used serial sampling and SFS-based demographic modeling to demonstrate that 469 

very recent demographic events (~10 generations ago) are detectable. However, our study 470 

extends these results to species with a large effective size and more complex historical 471 

demography. In particular, the NBOT/NPREBOT ratio indicated a sharp drop in Ne roughly ten 472 

generations ago following a long period of ancestral growth. In line with the recovery of census 473 

abundance, we also found clear evidence for effective population growth and recovery following 474 

the bottleneck. Our simulations revealed that distinguishing among Models 4 and 6 could be 475 

difficult in some cases, but these models were qualitatively similar and were the top two models 476 

during model selection. The only difference between Models 4 and 6 was an instantaneous 477 

change in population size following the bottleneck versus an exponential one, respectively. Prior 478 

research also suggests that SFS-based methods are well-suited to detect recent changes in 479 
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population size (Nunziata et al., 2017; Nunziata & Weisrock, 2018; Patton et al., 2019), though 480 

additional studies will be helpful for assessing the generality of this result. 481 

Whether or not Ne recovers in line with census abundances is an important question given 482 

the influence of Ne on inbreeding, genetic diversity, evolutionary potential, and other 483 

considerations (Kuparinen et al., 2016). An empirical study using a limited number of markers 484 

and a theoretical study investigating the consequences of fishing on Ne have reported that genetic 485 

diversity and Ne can recover following heavy exploitation at the temporal scale of decades 486 

(Hutchinson et al., 2003; Kuparinen et al., 2016). Gene flow, population growth, and evolution 487 

were proposed as the dominant mechanisms behind these increases. While our study 488 

demonstrates that summer flounder effective population size achieved substantial recovery, there 489 

remains considerable uncertainty in the exact magnitude. This could be because not enough time 490 

has passed for recovery to be fully reflected in the SFS and/or because higher sample sizes are 491 

needed for very recent events. In general, parameters for recent demographic events are more 492 

challenging to estimate than for ancient events (Adams & Hudson, 2004; Robinson et al., 2014). 493 

This is because the timing and intensity of historical events strongly influence the shape of the 494 

SFS, particularly the distribution of rare alleles that are important for demographic inference. For 495 

example, Gattepaille et al. (2013) found that the SFS tends to remain deficient in rare alleles long 496 

after a bottleneck strength of 80%, but with a strength of 95%, the deficit of rare alleles quickly 497 

turns into an excess for the very rarest variants, even when the bottleneck is young. These results 498 

suggest that signatures of historical demographic events can persist in the SFS, which could 499 

obscure signatures of more recent events. In particular, scenarios involving a population 500 

bottleneck followed by expansion can be challenging to detect from the SFS (Adams & Hudson, 501 

2004; Nunziata et al., 2017; Robinson et al., 2014), though our temporal sampling design 502 
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revealed high power to detect such a decline and recovery. Rare alleles can be indicative of 503 

population expansion, but they are also quickly lost during a population bottleneck (Maruyama 504 

& Fuerst, 1985). The relative rarity of alleles with a minor allele count of 1 in the 2008 cohort 505 

might be partially reflective of the slow rate at which rare alleles are regenerated through 506 

mutation or the challenge of detecting rare alleles using a genotyping-by-sequencing approach 507 

(e.g., RADseq). Sampling more individuals or additional cohorts from more recent years could 508 

result in more precise estimates of Ne change after the bottleneck (Keinan & Clark, 2012; 509 

Robinson et al., 2014), but theory has demonstrated diminishing returns on the accuracy of SFS-510 

based inferences as sample size increases for a given number of SNPs (Terhorst & Song, 2015). 511 

Rather, increasing the number of SNPs may be more important for improving the precision 512 

around estimates of recent demographic change. For example, Nunziata & Weisrock (2018) 513 

found that the coalescent-based method required many SNPs (25,000-50,000) for accurate 514 

inference. However, the coalescent method required substantially fewer individuals (on the order 515 

of 20) than methods based on linkage disequilibrium that would require about 1% of the census 516 

population (Marandel et al., 2019; Nunziata & Weisrock, 2018). In summer flounder, 1% of the 517 

census population would be nearly 200,000 samples. Even though we identified a recent 518 

population bottleneck and expansion based on our summer flounder SFS, additional simulation-519 

based studies will be useful for more clearly delineating the power to detect demographic 520 

fluctuations that have occurred only a few generations in the past with SFS-based or other 521 

methods based on linkage disequilibrium, runs of homozygosity or identity by descent 522 

(Gattepaille et al., 2013). 523 

Although our results highlight the promise of genetic data for detecting changes in 524 

population size, characteristics of the population of interest or violation of model assumptions 525 
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can impact the SFS and subsequent inferences. For example, we utilized summer flounder from 526 

different sampling locations to increase our sample size in the more recent cohorts in order to 527 

increase our power for detecting a recent population size change. However, using fish from 528 

different locations may contribute to slight population differentiation, which could artificially 529 

increase the number of rare alleles in the SFS and influence down-stream demographic 530 

inferences (Städler et al., 2009). This effect would appear in the most recent cohorts, though our 531 

observations instead suggested a slight deficit of singletons in the 2008 cohort. Summer flounder 532 

have also been found to have high rates of dispersal across their species range and no evidence 533 

for subpopulations with divergent allele frequencies that could be the source of migrants with 534 

different allele frequencies has been found (Hoey & Pinsky, 2018). We also did not detect any 535 

intra-cohort population structure in these data. Still, the possibility of subtle, undetected 536 

population structure exists. Similarly, we also tested for but did not find any temporal outliers, 537 

yet small increases in allele frequencies due to ecological or evolutionary processes over time 538 

could potentially influence our estimates of Ne. 539 

An additional point of consideration is that the fastsimcoal2 program is based off of the 540 

Kingman (1982) coalescent, which assumes discrete generations and small reproductive variance 541 

under the Wright-Fisher model (Fisher, 1930; Wright, 1931). However, many species violate 542 

these assumptions and alternative models might better reflect biological reality. For example, 543 

many marine species, including summer flounder, are characterized by overlapping generations 544 

and large variance in reproductive success. Overlapping generations result in slower rates of 545 

coalescence, though time rescaling can approximate the Kingman coalescent (Kaj et al., 2001). 546 

Overlapping generations in combination with population size changes also lead to an increase in 547 

the neutral substitution rate, which could potentially affect the SFS (Balloux & Lehmann, 2012). 548 
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A recent computationally efficient framework that allows for overlapping generations (Kamm et 549 

al., 2017) might hold promise for improving SFS-based demographic estimates for species that 550 

violate assumptions of the Wright-Fisher model. Violating the assumption of small variance in 551 

reproductive success leads to star-shaped genealogies, and the resulting SFS has an excess of 552 

rare and common variants when compared to the expected number under the Kingman 553 

coalescent (Eldon & Wakeley, 2006; Tellier & Lemaire, 2014). Under the Kingman coalescent, 554 

an excess of rare variants is often interpreted as a population expansion, but this interpretation 555 

can become muddled for species with strong sweepstakes reproduction. Multiple merger 556 

coalescent models can incorporate variance in offspring number by allowing more than two 557 

lineages to coalesce, resulting in a genealogy that is not a binary tree (Tellier & Lemaire, 2014). 558 

Even though aspects of summer flounder biology depart from traditional Wright-Fisher 559 

assumptions, our reported estimates of Ne are probably not strongly biased because many 560 

summer flounder individuals do not survive into the next generation.  561 

Additionally, errors in estimating the SFS can influence downstream demographic 562 

inferences, though temporal samples can increase the statistical power for detecting past 563 

demographic events (Ramakrishnan et al., 2005). We took advantage of archived specimens for 564 

improved inferences of historical summer flounder population size changes, but this also 565 

introduced differences in sample sizes over time. In particular, we had more limited ability to 566 

detect rare alleles in the early cohorts. Though fastsimcoal2 accounts for sample size when 567 

simulating the SFS and calculating likelihoods (Excoffier et al., 2013), increasing the number of 568 

individuals from the earliest cohort would likely have helped to improve the precision of our 569 

inferences (Keinan & Clark, 2012; Robinson et al., 2014). This is a common problem since the 570 

availability of archived samples for non-model organisms is often limited. For RADseq data, 571 



	

	 26 

bioinformatic choices often reflect a tradeoff between data quality and quantity (Matz, 2018; 572 

Shafer et al., 2017). Bioinformatic pipelines employing de novo approaches may result in a high 573 

number of singletons and make demographic inference difficult (Shafer et al., 2017). Very rare 574 

alleles may also result from sequencing or bioinformatic errors (Johnson & Slatkin, 2008), 575 

potentially overrepresenting rare variants in the SFS and influencing demographic conclusions. 576 

In addition, aligning RADseq data to a reference genome can lead to more consistent 577 

demographic estimates (Shafer et al., 2017), but a genome is not yet available for summer 578 

flounder. Null alleles can also bias population genomic statistics and affect the distribution of 579 

alleles in the SFS (Arnold et al., 2013; Gautier et al., 2013). Null alleles in RADseq occur when 580 

a mutation in a restriction enzyme recognition sequence results in an unrecognized cut site, 581 

causing the RAD tag to not be sequenced. This can either result in missing data or heterozygous 582 

individuals being falsely identified as homozygotes due to allelic dropout. In order to minimize 583 

the number of null alleles without distorting the SFS, Matz (2018) suggests applying a 584 

bioinformatics filter requiring that variants be present in a high proportion of individuals, similar 585 

to the proportion of missing data filter that we applied. Another study showed that rare variants 586 

were common when loci with no missing data were present in the SFS, but that the SFS was 587 

characterized by a greater number of variants with intermediate frequencies when loci with 588 

missing data due to null alleles were included (Arnold et al., 2013). As a result, Arnold et al. 589 

(2013) suggest limiting loci to only those with complete data, but this strategy may inadvertently 590 

favor loci that have experienced recent positive selection or strong purifying selection. In 591 

addition, Gautier et al. (2013) report that null alleles tend to affect DNA sequences containing 592 

ancestral alleles, which are often at high frequency themselves, thus artificially inflating the 593 

minor allele frequency and making rare alleles appear more common in the SFS than they 594 
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actually are. Although null alleles can lead to biases, they can be challenging to identify and 595 

attempts to remove them may also have unintended consequences. For estimating summer 596 

flounder demography, we removed variants missing in a high proportion of individuals, removed 597 

loci with missing data and combined this with tests for temporal outliers to detect loci that may 598 

have undergone recent selection. Evidence also suggests that populations with very large 599 

effective sizes (Ne > 105) are more likely to be affected by null alleles (Gautier et al., 2013). Even 600 

though our SNP dataset may have contained null alleles due to the slightly elevated FIS, 601 

particularly for the 1994 cohort, we estimated the 2008 summer flounder effective population 602 

size to be between 5,859 – 37,013 individuals, suggesting that null alleles may not be strongly 603 

influencing our conclusions in summer flounder.  604 

While it is clear that Ne recovered after the bottleneck, our analysis was unable to 605 

determine if recovery to the pre-bottleneck effective size was achieved, in spite of census 606 

population size achieving the corresponding level of recovery. If present, differences in effective 607 

vs. census recovery from historically intense fishing pressure could result from a combination of 608 

anthropogenic and biological factors. First, harvest reduces the number of adults contributing to 609 

the next generation and results in lower Ne (Kuparinen et al., 2016; Therkildsen et al., 2019). 610 

Even though summer flounder are currently (post-1990) fished less intensely than in the past, 611 

management choices may bias reproductive success in a way that has kept Ne low. For example, 612 

female summer flounder grow faster (King et al., 2001) and mature at a larger size than males 613 

(Morse, 1981). Summer flounder harvest is regulated by a minimum length limit, resulting in a 614 

higher probability of catching a female at a given age (Morson et al., 2015). The increased 615 

fishing mortality for females may have skewed the sex ratio and kept Ne from recovering as fast 616 

as census size. In addition, we used a constant generation length of two years over time for 617 
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demographic modeling, which may influence estimates of bottleneck timing and length. Summer 618 

flounder generation length can be challenging to estimate due to serial spawning and a limited 619 

understanding of how age influences egg production and hatching success rate. Recovery of the 620 

summer flounder fishery was also accompanied by an increased proportion of older, larger 621 

individuals in the population (Bell et al., 2014; Terceiro, 2016). These older, larger individuals 622 

likely contributed disproportionately to the next generation, leading to a higher generation length 623 

as the fishery recovered. Older and larger fish could have also resulted in increased variance in 624 

reproductive success among individuals, reducing the ratio of Ne to census size and preventing Ne 625 

from recovering as much as census size (Barneche et al., 2018; Kuparinen et al., 2016). 626 

Most estimates of Ne in marine species are one or more orders of magnitude smaller than 627 

census size, though particularly small ratios of Ne to census sizes have been called into question 628 

(Hauser & Carvalho, 2008; Hoarau et al., 2005; Waples, 2016; Waples et al., 2018). Using our 629 

point estimates of Ne obtained from demographic modeling with their associated uncertainty and 630 

the maximum number of adult breeders (Nc) in the equivalent year, we estimated the Ne/Nc ratio 631 

with the corresponding 95% CIs for summer flounder to be 2.49 x 10-5 (4.22 x 10-6 – 5.37 x 10-5) 632 

and 1.79 x 10-4 (1.03 x 10-4 – 6.49 x 10-4) in 1984 (end of the bottleneck) and 2008, respectively. 633 

The Ne/Nc ratio for 1980 (prior to the bottleneck) could not be calculated because the fisheries 634 

dataset that we used to estimate abundance begins in 1982. Keeping in mind all of the challenges 635 

associated with estimating Ne and Nc, these ratios suggest the convergence of Ne and Nc over 636 

time, despite the overall increase in census size as the fishery recovered over this timeframe. In 637 

general, our estimates of contemporary Ne were relatively large over time, even after the 638 

population declined. These large sizes likely contributed to the temporally stable genetic 639 

diversity that we observed among larval cohorts. Although estimates of genetic diversity prior to 640 
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the bottleneck were unavailable, our estimates during and after the bottleneck suggest that 641 

genetic diversity has not increased. In general, genetic diversity can increase in a population 642 

through gene flow or through novel mutations. Summer flounder are unlikely to have benefited 643 

from gene flow, however, because they are essentially panmictic across their species range 644 

(Hoey & Pinsky, 2018). In addition, accumulating novel mutations is a slow process that is 645 

unlikely to have had much impact to date (Charlesworth, 2009). Continued monitoring of 646 

summer flounder would be useful to understand if effective population size continues to track 647 

changes in census size, especially since the population continues to be exploited. 648 

 649 

Conclusions 650 

The availability of both demographic data and archived specimens over time is relatively 651 

rare and provided an opportunity to compare genetic estimates of demography with known 652 

population history in an important fishery species, summer flounder. Temporal samples 653 

corresponding to different points in the population history of summer flounder likely aided in the 654 

inference of demography over time. Thus, SNP data and coalescent-based demographic 655 

modeling were useful for detecting changes in the magnitude and timing of contemporary 656 

population dynamics in summer flounder. Fisheries species are some of the most well-studied 657 

wild populations and include a wide diversity of life history strategies and population histories. 658 

When coupled with long-term collections and molecular methods, these datasets provide 659 

valuable opportunities to test genetic and evolutionary theory and illustrate the value of 660 

combining existing datasets. For summer flounder in particular, we detected a substantial decline 661 

in effective population size followed by growth and recovery of Ne. Genetic methods can provide 662 

useful and independent approaches for estimating population dynamics in species of concern, 663 
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even for large marine populations. 664 
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Table 1. Genetic diversity statistics calculated for summer flounder cohorts. Included are the 993 
number of fish from each cohort (Total) and from each ingress location within a cohort (New 994 
Jersey = NJ or North Carolina = NC), the average observed heterozygosity per locus (Hetobs), 995 
expected heterozygosity (Hetexp), Wright’s inbreeding coefficient (FIS) and nucleotide diversity 996 
(π) with bootstrapped 95% confidence intervals. 997 
Cohort & Capture 

Location 
# of 
fish Hetobs Hetexp FIS π π  

95% CI 
 

1994-1995: Total 
Little Egg Inlet, NJ 
Beaufort, NC 

 

26 
26 
0 

 

0.0654 
 

0.0694 
 

0.0581 
 

0.00457 
 

0.00429-0.00457 

 

1997-1998: Total 
Little Egg Inlet, NJ 
Beaufort, NC 

 

103 
85 
18 

 

0.0651 
 

 

0.0688 
 

 

0.0543 
 

 

0.00469 
 

 

0.00455-0.00483 
 

 

2008-2009: Total 
Little Egg Inlet, NJ 
Beaufort, NC 

 

150 
138 
12 

 

0.0669 
 

0.0698 
 

0.0415 
 

0.00378 
 

0.00367-0.00390 

  998 
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Table 2. Maximum-likelihood (ML) demographic parameter estimates and 95% confidence 999 
intervals (CIs) for summer flounder under the best-fitting demographic model (Model 6: 1000 
exponential growth in the ancestral population followed by a bottleneck and then rapid 1001 
exponential growth in population size). The results from an alternative analysis that fixed TLEN 1002 
at 3 generations is also presented. Compare to Figure 2 for interpretation of the parameters. 1003 

Parameter ML 
Estimate 

95% Lower 
CI 

95% 
Upper 
CI 

ML Fixed 
TLEN Unit 

NANC 1052 355 1903 581 Diploid 
individuals 

NPREBOT 32209 9671 57485 22972 Diploid 
individuals 

NBOT 910 154 1963 387 Diploid 
individuals 

NPOP08 10212 5859 37013 10171 Diploid 
individuals 

TLEN 2 1 4 3 
Length of 
bottleneck in 
generations 

TBOT 12 8 15 11 

Number of 
generations 
after 
bottleneck 

 1004 
  1005 
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  1006 
Figure 1. Abundance estimates of total population size and number of mature spawners at peak 1007 
spawning time from the summer flounder stock assessment (Terceiro, 2016).  1008 
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 1009 
 1010 
Figure 2. Demographic models with serial sampling for summer flounder: Model 1) constant 1011 
population size, Model 2) a bottleneck and then an instantaneous change in population size, 1012 
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Model 3) a bottleneck and then exponential growth or decline (depicted here as growth), Model 1013 
4) exponential change in population size (depicted here as growth) before a bottleneck followed 1014 
by an instantaneous change in population size, Model 5) two bottlenecks with instantaneous 1015 
changes in population size, Model 6) exponential change in population size before and after the 1016 
bottleneck (depicted here as growth), and Model 7) exponential change in ancestral population 1017 
size prior to reaching carrying capacity. For the demographic scenarios with instantaneous 1018 
change in population size, pre- and post-bottleneck sizes could be greater or less than population 1019 
size during the bottleneck.  1020 
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 1021 
Figure 3. Line plot of estimated effective population size over a) contemporary and b) deeper 1022 
time from the maximum likelihood demographic model: positive exponential growth before and 1023 
after a bottleneck (Model 6; black line). The 100 gray lines in each plot illustrate scenarios used 1024 
to estimate the 95% confidence intervals for each parameter. Summer flounder generation time 1025 
was estimated to be two years and Ne estimates have been converted to diploid units. 1026 


