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Abstract

The demographic history of a population is important for conservation and evolution, but this
history is unknown for many populations. Methods that use genomic data have been developed
to infer demography, but they can be challenging to implement and interpret, particularly for
large populations. Thus, understanding if and when genetic estimates of demography correspond
to true population history is important for assessing the performance of these genetic methods.
Here, we used double-digest restriction-site associated DNA (ddRAD) sequencing data from
archived collections of larval summer flounder (Paralichthys dentatus, n = 279) from three
cohorts (1994-1995, 1997-1998 & 2008-2009) along the U.S. East coast to examine how
contemporary effective population size and genetic diversity responded to changes in abundance
in a natural population. Despite little to no detectable change in genetic diversity, coalescent-
based demographic modeling from site frequency spectra revealed that summer flounder
effective population size declined dramatically in the early 1980s. The timing and direction of
change corresponded well with the observed decline in spawning stock census abundance in the
late 1980s from independent fish surveys. Census abundance subsequently recovered and
achieved the pre-bottleneck size. Effective population size also grew following the bottleneck.
Our results for summer flounder demonstrate that genetic sampling and site frequency spectra
can be useful for detecting population dynamics, even in species with large effective sizes.
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Introduction

Effective population size (N.) quantifies genetic drift in a population, making it one of the
most important parameters in conservation and evolutionary biology (Charlesworth, 2009). As
N.declines, the rate of genetic drift increases, decreasing the amount of standing genetic
variation in a population and reducing the effectiveness of selection, all of which can limit a
population’s evolutionary potential (Kelly et al., 2013; Lai et al., 2019; Messer & Petrov, 2013).
Especially in today’s changing world, N.is an important predictor of the repertoire of responses
available within a population to overcome novel environmental challenges. As a result,
determining whether and when N. changes over time and how changes in N, correspond to the
demographic history of the population remain key priorities in the fields of conservation and
evolutionary biology (Diez-del-Molino et al., 2018).

Since it is challenging to collect enough demographic information to estimate N. directly,
a rich area of research has focused on the development and evaluation of indirect genetic
estimators of N, (Luikart et al., 2010). Currently, the most common methods to estimate N
include the linkage disequilibrium and temporal methods (Hill, 1981; Jorde & Ryman, 1995;
Krimbas & Tsakas, 1971; Waples et al., 2014). Linkage disequilibrium methods work relatively
well for populations with small effective population sizes (N. < 1,000) if enough individuals are
sampled, but once effective size becomes large (>1,000), robust estimates of N. are challenging
to obtain and difficult to interpret (Marandel et al., 2019). With large populations, the genetic
diversity metrics (i.e., inbreeding, heterozygosity, linkage, and allelic diversity) that are often
used to infer population size differ little across a large range of population sizes, resulting in
lower precision for larger N. estimates (Palstra & Ruzzante, 2008). This has made the estimation

of N.and the detection of changes in N. particularly difficult for large marine populations, which
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often have a million or more individuals (Hare et al., 2011). To improve N estimates when
employing these methods, suggestions have been made to use exceptionally large numbers of
individuals (e.g., 1% of all individuals in a population) and many loci (Marandel et al., 2019;
Waples et al., 2018; Waples & Do, 2010). Methods that employ the site frequency spectrum
(SFS) of a single population—or the joint (or multi-sample) SFS for two (or more) populations—
have shown promise for detecting changes in N, over time (Adams & Hudson, 2004; Excoffier et
al., 2013; Gutenkunst et al., 2009; Nunziata et al., 2017; Nunziata & Weisrock, 2018; Patton et
al., 2019). Power to detect changes can be particularly high if archived specimens are available
to sample a population through time (Nunziata et al., 2017; Nunziata & Weisrock, 2018;
Ramakrishnan et al., 2005).

Methods that utilize the SFS have become increasingly popular due to the creation of
tractable computational frameworks for estimating the SFS for arbitrary demographic histories
(Excoffier et al., 2013; Gutenkunst et al., 2009) and the ease of generating sequencing data for
many individuals at thousands of loci. The SFS is a count summary of the number of derived or
minor alleles in each of the sampled populations and is particularly useful when all loci are
biallelic. The distribution of alleles in the SFS, which is related to the rate at which lineages
merge, or coalesce, is indicative of the evolutionary history of the population(s) under
consideration, including changes in population size and migration events. In general, an excess
of rare alleles in the SFS indicates rapid population expansion (Keinan & Clark, 2012), while a
deficit of rare alleles may indicate a recent population bottleneck because rare variants are lost
disproportionately quickly due to genetic drift (Maruyama & Fuerst, 1985). During a population
bottleneck, faster than expected rates of coalescence will result in fewer rare variants. On the

other hand, growing population sizes and slower coalescence rates produce larger numbers of
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rare variants (Gattepaille et al., 2013). In theory, multiple demographic scenarios can result in the
same SFS (Myers et al., 2008), so distinguishing among similar scenarios can be challenging.
However, modeling of biologically realistic demographic scenarios suggests that underlying
demography can often be identified from the SFS, especially when enough individuals have been
sampled (Bhaskar & Song, 2014). SFS-based methods have been successfully applied to a
number of real datasets to understand past changes in population size (Harris et al., 2016; Keinan
& Clark, 2012; McCoy et al., 2014; Nunziata et al., 2017; Sovic et al., 2019), and these methods
may be particularly good for understanding changes on contemporary timescales up to 30
generations ago (Nunziata et al., 2017; Nunziata & Weisrock, 2018; Patton et al., 2019).
Effective population size can be estimated over long or short time scales, with each
having its own utility for practical management and conservation goals (Hare et al., 2011).
Estimates of effective population size in deep time (hundreds to thousands of years) are useful
for placing modern populations within a historical context (Harris et al., 2016; Huff et al., 2010;
Roman & Palumbi, 2003), but contemporary effective population size estimates are more
relevant for predicting persistence and for guiding management decisions (Luikart et al., 2010).
Populations with well-known demography are critical for assessing the robustness of
contemporary effective population size estimates because they provide a direct comparison
between population estimates using genetic data and those using more traditional sampling
techniques (McCoy et al., 2014; Nunziata et al., 2017). Harvested and managed fishes represent
some of the most well studied natural populations, and with a wealth of data over time, provide
key opportunities for understanding how historical demographic processes influence genetic
variation and effective population size on a contemporary time scale. Theory suggests that

intensive harvest can induce a genetic bottleneck, and fishing is expected to reduce genetic
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diversity (Hauser et al., 2002; Hutchinson et al., 2003; Pinsky & Palumbi, 2014; Therkildsen et
al., 2019). Yet, how the timing and magnitude of genetic declines and recovery correspond to
demographic bottlenecks and recovery remains largely unexplored in harvested populations
(Kuparinen et al., 2016). The large population sizes of many fishery species make estimation of
N. challenging using linkage disequilibrium or genetic diversity methods, but such species
provide an opportunity to test if SFS-based methods might be particularly well-suited for large
populations. In addition, while the genetic theory for demographic inference is relatively clear,
natural populations rarely match all assumptions of theoretical methods. Therefore, opportunities
that allow for comparing known population demography against estimates of contemporary
effective population size over time provide a promising avenue for testing the utility of genetic
monitoring in wild populations (Schwartz et al., 2007).

Of the 450+ managed U.S. marine fish stocks and stock complexes, 45 were rebuilt to
their targeted abundance levels between 2000 and 2018 and another 43 still required rebuilding
at the end of 2018 (NOAA Fisheries, 2019). One such recovered stock was summer flounder
(Paralichthys dentatus), an ecologically and economically important species in the Mid-Atlantic
region of the U.S. East coast. Terceiro (2001) suggested that summer flounder biomass was low
in the 1960s before doubling in size between 1967-1974. Peak commercial landings then
occurred in 1979, followed shortly thereafter by an estimated 77% decline in spawning stock
biomass from approximately 53 million pounds in 1982 to 12 million pounds in 1989 (Terceiro,
2001). Since then, a strong focus on management for rebuilding helped spawning stock biomass
increase again to a high of 110 million pounds in 2003 (an estimated 800% increase from 1989)
before tapering off and declining slightly in the present (Terceiro, 2016). Starting in 1989 and

1985, the Rutgers University Marine Field Station and the NOAA Beaufort Laboratory,
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respectively, have collected larval summer flounder on a weekly basis as the larvae ingress into
estuaries that serve as nurseries. These collections represent an unprecedented opportunity to
uncover how genetic diversity and effective population size changed in response to dramatic
changes in census population size in an exploited but demographically recovered marine
population.

Here, we used double-digest restriction-site associated DNA (ddRAD) sequencing data
from archived collections of larval summer flounder (n = 279) from three serially sampled larval
cohorts (1994-1995, 1997-1998 & 2008-2009) along the U.S. East coast to empirically estimate
effective population size and genetic diversity just after a population decline and during a
recovery period following the reduction of intense fishing pressure. Understanding how N and
genetic diversity respond to a population bottleneck and subsequent recovery can allow insight
into whether summer flounder may be genetically limited in their response to future
perturbations. Using summer flounder as a case study, we ask: 1) How does a severe
demographic decline and recovery empirically affect genetic diversity and contemporary
effective population size over time in a harvested population?, and 2) To what extent do
contemporary genetic estimates of demographic history match known changes in census

population sizes in a natural population?

Methods:
Abundance estimates at peak spawning from fisheries data

Standardized fisheries trawl surveys have been conducted since 1963 in the waters off the
northeastern U.S. (Azarovitz, 1981). These data are incorporated into stock assessment models to

calculate spawning stock biomass, abundance at age, the proportion of mature fish in each age
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class, mortality due to fishing and natural causes, and other demographic parameters. Using data
from the 2016 summer flounder stock assessment (Terceiro, 2016), we calculated total
abundance of breeding adults at peak spawning (N,s,) for each year from 1982-2015 using

Npse = YA _o Nyce PZat, where p = 10/12 was the fraction of the year that had passed when
peak spawning occurred (around November 1 for summer flounder), Z,; was total mortality
(natural mortality + fishing mortality) for age class a in year ¢, N, was the number of sexually
mature breeding adults in a given age class at the beginning of the year, and 4 was the oldest age

class.

Larval collections

Larval summer flounder have been collected at the Rutgers University Marine Field
Station (RUMFS, Little Egg Inlet, New Jersey) on a weekly basis since 1989, with fish
assemblages from this sampling site being representative of much of the New Jersey (NJ)
coastline (Able et al., 2011, 2017). Summer flounder larvae ingress into shallow bays and
estuaries, with the peak occurring between October-December and continuing through April in
New Jersey (Able et al., 1990; Keefe & Able, 1993). Based on this timing, we defined a larval
collection cohort year as beginning in the fall (October-December) and extending into the winter
(January-March) months. We sampled three larval cohort years to examine how contemporary N
had changed over time: Fall 1994-Winter 1995 (1994 cohort), Fall 1997-Winter 1998 (1997
cohort) and Fall 2008-Winter 2009 (2008 cohort). Each sampled larval cohort represented a
snapshot of the adult summer flounder that contributed alleles to the next generation. These years
were selected as time periods when summer flounder population size was low, growing, and

high, respectively (Figure 1).
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Larvae sampled from RUMFS were pooled with additional larvae captured at the NOAA
Beaufort (North Carolina) Laboratory from the corresponding larval cohort year (Table 1). These
North Carolina (NC) larvae were initially sampled for another project, but because the summer
flounder population is effectively panmictic due to high dispersal (Hoey & Pinsky, 2018) and
larvae disperse across Cape Hatteras, NC frequently (Hoey et al., 2020), we concluded that
including NC larvae to increase our sample size was appropriate for investigations of N. and

genetic diversity.

DNA extraction, library preparation & sequencing

For all larval summer flounder samples, the posterior portion of the body was used for
DNA extraction using DNeasy 96 Blood & Tissue Kits (QIAGEN; Hilden, Germany) and
manufacturer’s recommended protocols. Individuals were randomly distributed amongst 96-well
plates for extractions. DNA extracts were visualized on 2% agarose gels to assess quality and
were subsequently quantified using PicoGreen (Thermo Fisher Scientific, Waltham, MA) and a
SpectraMax M3 Microplate Reader (Molecular Devices; Sunnyvale, CA).

Summer flounder ddRAD libraries were prepared according to a protocol adapted from
Peterson et al. (2012) and described in detail in Hoey & Pinsky (2018). Briefly, successful
extracts were digested in 50ul reactions using Pstl and EcoRI restriction enzymes for four hours
at 37 °C. Digested samples were cleaned with AMPure beads (Beckman Coulter; Brea, CA) to
remove small DNA fragments less than 100 base pairs (bp) in size and any remaining proteins,
including restriction enzymes. Cleaned digestions were then ligated to P1 and P2 adapters. The
P1 adapter contained individual barcodes. Ligated samples were pooled and cleaned before being

size selected to a mean size of 273 = 27 bp using a Blue Pippin or Pippin Prep (Sage Science;
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Beverly, MA), and then amplified using PCR read 1 and read 2 primers specifically designed to
only amplify DNA with both P1 and P2 adapters. Read 2 PCR primers contained one of 12
[llumina indices so that pools could be distinguished from one another. PCR products were
cleaned and Qubit Fluorometric Quantitation (Thermo Fisher Scientific; Waltham, MA) was
used to quantify the final concentration of each pool.

Library preparation for larvae sampled from the 1994 and 1997 cohorts (historical) was
performed in laboratory facilities in separate buildings (Marine and Coastal Sciences Building &
Waksman Institute, Rutgers University) from those in which larvae from the 2008 cohort
(modern) were processed (Environmental and Natural Resources Building, Rutgers University).
Care was taken to not bring equipment, reagents or clothing between the laboratories in order to
limit contamination of our historical samples by modern fish DNA. For samples collected in
1998 and prior (historical), we randomly introduced at least one blank control for every 24
individuals during the extraction and digestion steps and then carried these blank controls
through to sequencing. In addition, unique P1 adapters were utilized for historical samples
during the ligation step. These precautions provided an additional level of confidence that cross-
contamination between historical and modern samples did not occur.

Laboratory work was completed between 2015 and 2018. Pools of 24-48 individuals
comprised three DNA libraries that were sent to the Princeton Genomics Core Facility
(Princeton, NJ) for 140 to 150 bp single-end sequencing on two-lane runs using the Illumina

HiSeq 2500 platform. In all, 331 larval summer flounder were sequenced for this study.

Bioinformatics & genotyping

10



227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

To distinguish between pooled libraries, sequenced reads were demultiplexed by Illumina
index using a Python script adapted from FASTX Barcode Splitter (Gordon, 2011). Sequenced
reads were further demultiplexed by barcode and cleaned using process_radtags in STACKS
v.1.29 (Catchen et al., 2013). Sequences were then run through dDocent v.2.6.1 (Puritz et al.,
2014), an analysis pipeline for ddRADseq data that is described next. First, all reads were
cropped to 140 bp (the lowest common read length among sequencing runs) and trimmed for
quality using Trim Galore! (Krueger, 2015). BWA (Li, 2013) was used to map individual larval
quality-trimmed reads to a de novo single-end ddRADseq reference assembly built from a
sequencing run containing 351 larval individuals with 150bp read lengths (299 of which were
used in this study, plus 52 sequenced for a separate study that were captured between 1990-1993
and 2010-2012 from NJ and NC). Reference assembly was performed with Rainbow (Chong et
al., 2012) using alleles with a minimum within-individual coverage level of 4 and a minimum
occurrence in 15 individuals. Reference sequences with >90% similarity were clustered together
using CD-HIT (Fu et al., 2012; Li & Godzik, 2006). Following read mapping, single nucleotide
polymorphisms (SNPs) were identified across all 331 larval individuals from the three cohorts of
interest using FreeBayes (Garrison & Marth, 2012).

We retained variant SNPs that were successfully genotyped in at least 50% of individuals
with a minimum quality score of 30. We did not employ a minor allele frequency nor a minor
allele count filter. Individuals with > 50% missing data were discarded (~14% of all individuals).
Data were then restricted to variants occurring in 95% of remaining individuals with a minimum
mean depth of 20. Further filtering was conducted using the default settings of the
dDocent filters script distributed with dDocent. This script filtered variants based on criteria

related to site depth, quality vs. depth, mapping quality, strand representation, and allelic balance
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at heterozygous individuals. Indels were removed, and only the first SNP at each contig was
retained in order to help ensure an unlinked dataset. These filtering steps resulted in 3,905 loci
across 284 larvae. To further reduce potential contamination that may have occurred during
larval sampling, storage, or DNA library preparation, we calculated the proportion of
heterozygous loci within individuals and removed five fish whose individual heterozygosity was
three standard deviations above the mean (Petrou et al., 2019). We then identified loci not in
Hardy-Weinberg proportions (HWP; p < 0.001) using the pegas v. 0.13 package (Paradis, 2010)
in R. These additional filters resulted in 3,749 loci across 279 larvae for downstream analyses,

unless otherwise noted.

Genetic diversity, single-sample Ne, and selection

Nucleotide diversity (w) across 140 bp windows was calculated using vcftools v.0.1.17
(Danecek et al., 2011) and all available SNPs on a contig for each larval cohort. For within-
cohort estimates of w, 95% confidence intervals were calculated by bootstrapping 1,000 times
across individuals using the boot v.1.3-24 (Canty & Ripley, 2019) package in R (R Core Team,
2017). Observed and expected heterozygosity per locus and Fis were calculated using the
basic.stats function in the hierfstat v.0.04-22 (Goudet, 2005) package in R.

Single-sample estimates of N. were generated for each sampled larval cohort using the
linkage disequilibrium method (Waples & Do, 2010) with random mating implemented in
NeEstimator v.2.1 (Do et al., 2014). All other options were set to the default. We report point
estimates resulting from the removal of singleton alleles and confidence intervals from
jackknifing across individuals (Jones et al., 2016).

SNP genotypes were screened for temporal outliers among the three larval cohort years

12
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using BayeScan v.2.1 (Foll & Gaggiotti, 2008). BayeScan uses the difference in allele
frequencies between samples across space or time to estimate the posterior probability of loci

being under selection.

Demographic modeling

We fit demographic models of recent population size changes using a simulation-based
approach and the SFS in fastsimcoal2 v.2.6 (Excoffier et al., 2013, 2021). In addition to the
filtering steps mentioned above, we removed all loci with missing data, resulting in 1,068 loci
across 279 summer flounder individuals. We then summarized these loci across our three larval
cohorts as the observed minor allele (folded) multiSFS in Arlequin v.3.5.2.2 (Excoffier &
Lischer, 2010). Using fastsimcoal2, we fit parameters for seven demographic models with serial
sampling to our observed SFS and estimated the likelihood of our data under each model.
Monomorphic sites and mutation rate were ignored during parameter estimation by using the --
removeZeroSFS option. Our seven simple models were chosen to represent the range of likely
scenarios that underlie the evolutionary history of summer flounder (Figure 2), including Model
1) a constant population size through time, Model 2) a bottleneck and then an instantaneous
change in population size, Model 3) a bottleneck and then an exponential change in population
size, Model 4) exponential change in population size followed by a bottleneck and then an
instantaneous change in population size, Model 5) two bottlenecks with instantaneous changes in
population size, Model 6) exponential change in population size before and after the bottleneck,
and Model 7) exponential change in ancestral population size prior to reaching carrying capacity.

Parameters estimated from the models included modern Ne at the time of sampling in

2008 (NPOPO08), N, during the bottleneck (NBOT), N, just prior to the bottleneck (NPREBOT),

13
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the duration and ending times of the bottleneck (TLEN and TBOT, respectively), and the ending
time of the ancestral change in population size (TCAR; Figure 2). For Models 4, 6, and 7, we
also estimated N. (NANC) after the Last Glacial Maximum (Clark et al., 2009). Parameters for
the two-bottleneck model (Model 5) were the same as for the single bottleneck models but were
differentiated between the first and second bottlenecks.

We determined female generation length by calculating the average age of females
weighted by the number of eggs produced in each age class. Male generation length was
calculated assuming that each age class contributed equally to reproduction. Calculations were
based off of estimated abundance and the proportion of mature fish in each age class from
Terceiro (2016), age-length relationships from Penttila et al. (1989) and length-fecundity curves
from Morse (1981). Average generation length of females and males from 1982-2008 was
calculated to be 2.01 years (Figure S1).

Initial values for the maximum likelihood search procedure for population size (NANC,
NPREBOT, NBOT, and NPOPO0S8) were log-uniformly distributed from 100 to 100,000 haploid
units; for bottleneck duration (TLEN) were uniformly distributed from 1 to 5 generations; for the
end of the bottleneck (TBOT) were uniformly distributed from 1 to 12 generations; and for the
end of the ancestral change in population size (TCAR) was log-uniformly distributed from 1 to
5,000 generations. While the lower limit on initial values served as a bound on the search space,
the upper limit did not bound the search space. A total of 100,000 simulations were performed to
estimate the SFS with a maximum of 40 loops (ECM cycles) for each demographic scenario. For
each model, 50 replicate runs with different initial values were performed as single threaded
processes on the Amarel Linux computing cluster (Rutgers University), and the overall

maximum likelihood (ML) was retained. The relative likelihood was compared across models
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and the best fitting demographic model was selected using Akaike’s Information Criterion

(Akaike, 1974) after converting the logio-likelihoods reported by fastsimcoal? to In-likelihoods.

We also performed two sensitivity analyses to understand how model specifications
impacted our demographic results. First, we expanded the range for TBOT to 1-30 generations
and TLEN to 1-15 to test the sensitivity of our results to the initial value ranges. Based on the

ML from 50 replicate runs, our parameter estimates did not differ and we did not pursue this

sensitivity test further. Following recommendations from fastsimcoal2 to fix one parameter when

ignoring monomorphic sites, we also performed a second sensitivity analysis by fixing TLEN at

three generations.

Confidence intervals for parameters in the best-supported model were obtained through
non-parametric bootstrapping. Loci from the observed dataset of 1,068 loci across 279 larvae
were resampled to generate 100 bootstrapped SFS using Arlequin (Excoffier & Lischer, 2010).
For each bootstrapped SFS, 30 replicate runs were performed to identify the ML parameter set.
The ML parameter estimates for the best-fit model on the observed dataset were used as the
starting values for each run in order to efficiently estimate confidence intervals (--initValues).
Monomorphic sites were also ignored when estimating parameters for each run (--
removeZeroSFS). The set of MLs from the 100 bootstrapped SFS were used to determine 95%
confidence intervals for each parameter.

In addition, we performed two sets of simulations to determine the power within our
dataset for distinguishing among the seven demographic hypotheses. First, we simulated 10
pseudo-observed SFS for each model with fastsimcoal2 by using the previously obtained ML
parameter estimates of each model. We then fit each of the seven models to each of the 70

pseudo-observed datasets using the initial starting points and run specifications as previously
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described. Ten replicate runs with different initial values were performed for each model fit to a
pseudo-observed dataset. The run with the ML was retained, and AIC was used to determine the
best-fit model for each pseudo-observed dataset. We then compared the best-fit model to the
known generating model to produce a confusion matrix. Second, to help disentangle the effects
of temporal sampling from unequal sampling over time, we assessed the power for inferring the
correct demographic model when equal numbers of individuals were sampled across cohorts. We
simulated 50 pseudo-observed datasets for the best-fit model when 1,068 loci and 80 diploids in
each cohort were sampled. We then fit our seven demographic models to each of the 50 pseudo-
observed datasets. Ten replicate runs with different initial values were performed for each model
fit to a pseudo-observed dataset, and the best-fit model for each pseudo-observed dataset was

selected using AIC.

Results
Genotyping results

The number of quality-filtered reads per individual was 576,441 + 626,768 (mean + SD).
Mapping to our reference assembly resulted in an average coverage of 25x per individual.
Variant calling across individuals identified 314,570 putative SNPs, and of these, 3,905 loci with

an average read depth of 61x across 284 larvae passed initial filtering.

Genetic diversity, single-sample Ne, and selection
Nucleotide diversity (m) across 140 bp windows was lowest in the 2008 larval cohort (1t =
0.00378; 95% CI: 0.00367 - 0.00390) and highest in the 1997 larval cohort (1t = 0.00469; 95%

CI: 0.00455 - 0.00483) (Table 1). Observed heterozygosity for each larval cohort ranged from
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0.0651 — 0.0669 and expected heterozygosity ranged from 0.0688 — 0.0698 (Table 1). Wright’s
inbreeding coefficient (Fis) for each cohort varied from 0.0415 — 0.0581 and declined slightly
over time (Table 1), suggesting that inbreeding was highest in the 1994 cohort when summer
flounder abundance was reduced. Estimates of N. with 95% confidence intervals from
NeEstimator were 1,168 (365 — infinite individuals) for the 1994 larval cohort, infinite (8,377 —
infinite) for the 1997 cohort and 56,672 (5,786 — infinite) individuals for the 2008 cohort. No
temporal outlier SNPs were detected using BayeScan. Therefore, no SNPs were removed prior to

demographic modeling.

Demographic modeling

Demographic modeling from serial sampled larval summer flounder strongly supported
exponential growth of the ancestral population, followed by a bottleneck, followed by additional
rapid exponential growth (Model 6) as the best-fitting model (Tables S1 & S2). The second-best
model (Model 4) had a AAIC of 13 and the third-best model (Model 7) had a AAIC of 22. While
the top three models demonstrate clear support for ancient growth up until roughly 10
generations ago, a model containing a subsequent bottleneck followed by an increase in
population size was strongly preferred (Tables S1 & S2). Together, these results suggest that
historical fishing had a noticeable genetic effect in summer flounder.

The best-fit demographic model estimated that the ancestral population grew quite slowly
(exponential increase of 0.00034 per generation) to 32,209 (95% CI: 9,671-57,485) diploid
individuals prior to the bottleneck (Table 2 & Figure S2; NPREBOT). The bottleneck lasted two
(95% CI: 1-4) generations (Table 2; TLEN) and the end of the bottleneck occurred 12 (95% CI:

8-15) generations prior to 2008 (Table 2; TBOT). When translated into years, the bottleneck
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occurred from approximately 1980-1984, which aligns well with the low mature spawner census
sizes from 1988-1994 (Figure 1). N. during the bottleneck was 910 (95% CI: 154-1,963)
individuals (Table 2 & Figure S2; NBOT). The population then grew rapidly (exponential
increase of 0.20 per generation) before reaching a N, of 10,212 (95% CI: 5,859-37,013)
individuals after the bottleneck (Table 2 & Figure S2; NPOP08). The NBOT/NPREBOT ratio
was 0.028, suggesting a substantial decline (95% CI: 0.0105-0.0566) and the NPOPOS/NBOT
ratio was 11.2 (95% CI: 5.27-143), suggesting that the summer flounder population achieved a
certain degree of recovery after substantial growth following the bottleneck. The degree to which
summer flounder recovered to the pre-bottleneck effective level can be summarized as
NPOPO8/NPREBOT. This ratio was 0.317 (95% CI: 0.150-2.95), suggesting some uncertainty in
the degree to which summer flounder recovered to the pre-bottleneck size by 2008.

Overall, the best-fit model suggests that summer flounder N. had been slowly increasing
before declining sharply in the early 1980s (Figure 3). The demographic modeling suggested a
rapid exponential increase in effective population size after the bottleneck, leading to a
noticeable recovery in population size. When TLEN was fixed at three generations (or six years)
based on summer flounder abundance over time, all parameter estimates were similar to those
produced when TLEN was estimated (Table 2).

Simulations revealed high power within the dataset for accurately selecting Model 6
(90% probability of selecting Model 6 when it was the true model; Figures S3 & S4). Model 6
was never mis-identified as Model 4 and occasionally (10% of simulated datasets) mis-identified
as Model 7 (Figure 2). While the ancestral population size changed exponentially in all three of
these models, a bottleneck did not occur following this change in Model 7, whereas a bottleneck

did occur in both Models 4 and 6. The only difference between Models 4 and 6 is that Model 4
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had an instantaneous change after the bottleneck, while Model 6 had an exponential change.
There was a high chance of incorrectly selecting Models 6 or 7 (40% probability each) when the
true model was Model 4. In contrast, there was a high probability of correctly selecting Model 7
when the true model was Model 7 (80% of simulated Model 7 datasets; Figures S3 & S4).
However, there was a low probability of falsely selecting Model 6 when the true model was
Model 7 (20%; Figures S3 & S4), suggesting that we can be quite certain of two things: 1) that
summer flounder experienced exponential growth of the ancestral population, and 2) that this
growth was most likely followed by a bottleneck, followed by additional increase in population
size, regardless of whether this increase occurred instantaneously (Model 4) or exponentially
(Model 6). Additionally, simulations with equal sample sizes across cohorts suggest high power
for accurately selecting Model 6 (88% probability of selecting Model 6 when it was the true
model; Figure S5). There was a low probability of incorrectly selecting Models 4 and 7 when the
true model was Model 6 (4% and 8%, respectively). This series of simulations provide clear
evidence that our temporal sampling scheme resulted in strong inferential power to recover the
underlying demographic history.

To further evaluate model fit with temporal sampling, we compared the observed minor
allele SFS for each larval cohort with the expected minor allele SFS averaged across 100 SFSs
generated using the ML parameters of the three best-fitting models. The observed SFSs most
closely matched with the SFSs expected under Model 6 with exponential growth before and after
the bottleneck (Figure S6). However, none of our models could fully explain the relatively high
prevalence of alleles with minor allele count 1 in the 1997 larval cohort, but Model 6 came
closest to doing so. In addition, none of our models were able to explain both the relatively high

prevalence of minor allele counts 2-3 in the 1997 and 2008 larval cohorts, nor the relative rarity
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of alleles with minor allele counts 4-7 or 7 in the 1997 and 2008 larval cohorts, respectively. In
addition, the expected averaged SFSs based on the ML parameters for Model 6 illustrate that the
prevalence of rare alleles differed over time, further suggesting that our ability to temporally
sample larvae aided in recovering the contemporary demographic history of summer flounder
(Figure S7). While differences in the SFS among larval cohorts became less apparent if equal
numbers of individuals were sampled in each cohort, small differences were still apparent. In
particular, a small but clear pattern of relatively more rare alleles in the earlier cohorts provided
additional support that temporal sampling aided in the inference of demographic history (Figure

S8).

Discussion

Effective population size is an important indicator of evolutionary potential, particularly
for understanding how species respond to and recover from exploitation. We utilized archived
larval summer flounder specimens from periods of low, increasing, and high spawning stock
biomass to estimate genetic diversity and to test if SNP data were useful for detecting changes in
summer flounder demography. A small decline in genetic diversity was observed between 1997
to 2008, but in general, stable levels of genetic diversity suggested that summer flounder
population size has remained relatively large over time. The single-sample NeEstimator results
indicated that N. could not be accurately estimated from linkage-disequilibrium patterns and that
the signal could not be distinguished from sampling variance. However, coalescent-based
demographic modeling using the joint site frequency spectrum revealed a substantial decline and
subsequent recovery in summer flounder effective population size, consistent with population

dynamics recorded by stock assessments of this species (Terceiro, 2001). The timing of the
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decline in effective population size was also congruent with the timing of the lowest estimates of
spawning stock biomass from fisheries datasets, with a difference of only a few generations. Our
results in summer flounder suggest that coalescent-based demographic modeling and SNP-based
SFS data from only a few hundred archived specimens can be a useful strategy for detecting
changes in the magnitude and timing of contemporary Ne.

A growing number of studies have employed coalescent-based demographic modeling
and the SFS to estimate N. on contemporary time scales (Patton et al., 2019; Sovic et al., 2019),
but only a subset have benefited from independent estimates of demography (McCoy et al.,
2014; Nunziata et al., 2017). Similar to studies in other organisms that combined coalescent-
based demographic modeling and independent estimates of demography (McCoy et al., 2014;
Nunziata et al., 2017), we also detected changes in effective population size that corresponded
well with known changes in the census population size of summer flounder. Much like Nunziata
et al. (2017), we used serial sampling and SFS-based demographic modeling to demonstrate that
very recent demographic events (~10 generations ago) are detectable. However, our study
extends these results to species with a large effective size and more complex historical
demography. In particular, the NBOT/NPREBOT ratio indicated a sharp drop in Nec roughly ten
generations ago following a long period of ancestral growth. In line with the recovery of census
abundance, we also found clear evidence for effective population growth and recovery following
the bottleneck. Our simulations revealed that distinguishing among Models 4 and 6 could be
difficult in some cases, but these models were qualitatively similar and were the top two models
during model selection. The only difference between Models 4 and 6 was an instantaneous
change in population size following the bottleneck versus an exponential one, respectively. Prior

research also suggests that SFS-based methods are well-suited to detect recent changes in
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population size (Nunziata et al., 2017; Nunziata & Weisrock, 2018; Patton et al., 2019), though
additional studies will be helpful for assessing the generality of this result.

Whether or not N recovers in line with census abundances is an important question given
the influence of Ne on inbreeding, genetic diversity, evolutionary potential, and other
considerations (Kuparinen et al., 2016). An empirical study using a limited number of markers
and a theoretical study investigating the consequences of fishing on N. have reported that genetic
diversity and N, can recover following heavy exploitation at the temporal scale of decades
(Hutchinson et al., 2003; Kuparinen et al., 2016). Gene flow, population growth, and evolution
were proposed as the dominant mechanisms behind these increases. While our study
demonstrates that summer flounder effective population size achieved substantial recovery, there
remains considerable uncertainty in the exact magnitude. This could be because not enough time
has passed for recovery to be fully reflected in the SFS and/or because higher sample sizes are
needed for very recent events. In general, parameters for recent demographic events are more
challenging to estimate than for ancient events (Adams & Hudson, 2004; Robinson et al., 2014).
This is because the timing and intensity of historical events strongly influence the shape of the
SFS, particularly the distribution of rare alleles that are important for demographic inference. For
example, Gattepaille et al. (2013) found that the SFS tends to remain deficient in rare alleles long
after a bottleneck strength of 80%, but with a strength of 95%, the deficit of rare alleles quickly
turns into an excess for the very rarest variants, even when the bottleneck is young. These results
suggest that signatures of historical demographic events can persist in the SFS, which could
obscure signatures of more recent events. In particular, scenarios involving a population
bottleneck followed by expansion can be challenging to detect from the SFS (Adams & Hudson,

2004; Nunziata et al., 2017; Robinson et al., 2014), though our temporal sampling design
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revealed high power to detect such a decline and recovery. Rare alleles can be indicative of
population expansion, but they are also quickly lost during a population bottleneck (Maruyama
& Fuerst, 1985). The relative rarity of alleles with a minor allele count of 1 in the 2008 cohort
might be partially reflective of the slow rate at which rare alleles are regenerated through
mutation or the challenge of detecting rare alleles using a genotyping-by-sequencing approach
(e.g., RADseq). Sampling more individuals or additional cohorts from more recent years could
result in more precise estimates of N. change after the bottleneck (Keinan & Clark, 2012;
Robinson et al., 2014), but theory has demonstrated diminishing returns on the accuracy of SFS-
based inferences as sample size increases for a given number of SNPs (Terhorst & Song, 2015).
Rather, increasing the number of SNPs may be more important for improving the precision
around estimates of recent demographic change. For example, Nunziata & Weisrock (2018)
found that the coalescent-based method required many SNPs (25,000-50,000) for accurate
inference. However, the coalescent method required substantially fewer individuals (on the order
of 20) than methods based on linkage disequilibrium that would require about 1% of the census
population (Marandel et al., 2019; Nunziata & Weisrock, 2018). In summer flounder, 1% of the
census population would be nearly 200,000 samples. Even though we identified a recent
population bottleneck and expansion based on our summer flounder SFS, additional simulation-
based studies will be useful for more clearly delineating the power to detect demographic
fluctuations that have occurred only a few generations in the past with SFS-based or other
methods based on linkage disequilibrium, runs of homozygosity or identity by descent
(Gattepaille et al., 2013).

Although our results highlight the promise of genetic data for detecting changes in

population size, characteristics of the population of interest or violation of model assumptions
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can impact the SFS and subsequent inferences. For example, we utilized summer flounder from
different sampling locations to increase our sample size in the more recent cohorts in order to
increase our power for detecting a recent population size change. However, using fish from
different locations may contribute to slight population differentiation, which could artificially
increase the number of rare alleles in the SFS and influence down-stream demographic
inferences (Stddler et al., 2009). This effect would appear in the most recent cohorts, though our
observations instead suggested a slight deficit of singletons in the 2008 cohort. Summer flounder
have also been found to have high rates of dispersal across their species range and no evidence
for subpopulations with divergent allele frequencies that could be the source of migrants with
different allele frequencies has been found (Hoey & Pinsky, 2018). We also did not detect any
intra-cohort population structure in these data. Still, the possibility of subtle, undetected
population structure exists. Similarly, we also tested for but did not find any temporal outliers,
yet small increases in allele frequencies due to ecological or evolutionary processes over time
could potentially influence our estimates of N..

An additional point of consideration is that the fastsimcoal2 program is based off of the
Kingman (1982) coalescent, which assumes discrete generations and small reproductive variance
under the Wright-Fisher model (Fisher, 1930; Wright, 1931). However, many species violate
these assumptions and alternative models might better reflect biological reality. For example,
many marine species, including summer flounder, are characterized by overlapping generations
and large variance in reproductive success. Overlapping generations result in slower rates of
coalescence, though time rescaling can approximate the Kingman coalescent (Kaj et al., 2001).
Overlapping generations in combination with population size changes also lead to an increase in

the neutral substitution rate, which could potentially affect the SFS (Balloux & Lehmann, 2012).
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A recent computationally efficient framework that allows for overlapping generations (Kamm et
al., 2017) might hold promise for improving SFS-based demographic estimates for species that
violate assumptions of the Wright-Fisher model. Violating the assumption of small variance in
reproductive success leads to star-shaped genealogies, and the resulting SFS has an excess of
rare and common variants when compared to the expected number under the Kingman
coalescent (Eldon & Wakeley, 2006; Tellier & Lemaire, 2014). Under the Kingman coalescent,
an excess of rare variants is often interpreted as a population expansion, but this interpretation
can become muddled for species with strong sweepstakes reproduction. Multiple merger
coalescent models can incorporate variance in offspring number by allowing more than two
lineages to coalesce, resulting in a genealogy that is not a binary tree (Tellier & Lemaire, 2014).
Even though aspects of summer flounder biology depart from traditional Wright-Fisher
assumptions, our reported estimates of N. are probably not strongly biased because many
summer flounder individuals do not survive into the next generation.

Additionally, errors in estimating the SFS can influence downstream demographic
inferences, though temporal samples can increase the statistical power for detecting past
demographic events (Ramakrishnan et al., 2005). We took advantage of archived specimens for
improved inferences of historical summer flounder population size changes, but this also
introduced differences in sample sizes over time. In particular, we had more limited ability to
detect rare alleles in the early cohorts. Though fastsimcoal2? accounts for sample size when
simulating the SFS and calculating likelihoods (Excoffier et al., 2013), increasing the number of
individuals from the earliest cohort would likely have helped to improve the precision of our
inferences (Keinan & Clark, 2012; Robinson et al., 2014). This is a common problem since the

availability of archived samples for non-model organisms is often limited. For RADseq data,
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bioinformatic choices often reflect a tradeoff between data quality and quantity (Matz, 2018;
Shafer et al., 2017). Bioinformatic pipelines employing de novo approaches may result in a high
number of singletons and make demographic inference difficult (Shafer et al., 2017). Very rare
alleles may also result from sequencing or bioinformatic errors (Johnson & Slatkin, 2008),
potentially overrepresenting rare variants in the SFS and influencing demographic conclusions.
In addition, aligning RADseq data to a reference genome can lead to more consistent
demographic estimates (Shafer et al., 2017), but a genome is not yet available for summer
flounder. Null alleles can also bias population genomic statistics and affect the distribution of
alleles in the SFS (Arnold et al., 2013; Gautier et al., 2013). Null alleles in RADseq occur when
a mutation in a restriction enzyme recognition sequence results in an unrecognized cut site,
causing the RAD tag to not be sequenced. This can either result in missing data or heterozygous
individuals being falsely identified as homozygotes due to allelic dropout. In order to minimize
the number of null alleles without distorting the SFS, Matz (2018) suggests applying a
bioinformatics filter requiring that variants be present in a high proportion of individuals, similar
to the proportion of missing data filter that we applied. Another study showed that rare variants
were common when loci with no missing data were present in the SFS, but that the SFS was
characterized by a greater number of variants with intermediate frequencies when loci with
missing data due to null alleles were included (Arnold et al., 2013). As a result, Arnold et al.
(2013) suggest limiting loci to only those with complete data, but this strategy may inadvertently
favor loci that have experienced recent positive selection or strong purifying selection. In
addition, Gautier et al. (2013) report that null alleles tend to affect DNA sequences containing
ancestral alleles, which are often at high frequency themselves, thus artificially inflating the

minor allele frequency and making rare alleles appear more common in the SFS than they
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actually are. Although null alleles can lead to biases, they can be challenging to identify and
attempts to remove them may also have unintended consequences. For estimating summer
flounder demography, we removed variants missing in a high proportion of individuals, removed
loci with missing data and combined this with tests for temporal outliers to detect loci that may
have undergone recent selection. Evidence also suggests that populations with very large
effective sizes (N, > 10°) are more likely to be affected by null alleles (Gautier et al., 2013). Even
though our SNP dataset may have contained null alleles due to the slightly elevated Fis,
particularly for the 1994 cohort, we estimated the 2008 summer flounder effective population
size to be between 5,859 — 37,013 individuals, suggesting that null alleles may not be strongly
influencing our conclusions in summer flounder.

While it is clear that N. recovered after the bottleneck, our analysis was unable to
determine if recovery to the pre-bottleneck effective size was achieved, in spite of census
population size achieving the corresponding level of recovery. If present, differences in effective
vs. census recovery from historically intense fishing pressure could result from a combination of
anthropogenic and biological factors. First, harvest reduces the number of adults contributing to
the next generation and results in lower N. (Kuparinen et al., 2016; Therkildsen et al., 2019).
Even though summer flounder are currently (post-1990) fished less intensely than in the past,
management choices may bias reproductive success in a way that has kept N. low. For example,
female summer flounder grow faster (King et al., 2001) and mature at a larger size than males
(Morse, 1981). Summer flounder harvest is regulated by a minimum length limit, resulting in a
higher probability of catching a female at a given age (Morson et al., 2015). The increased
fishing mortality for females may have skewed the sex ratio and kept N. from recovering as fast

as census size. In addition, we used a constant generation length of two years over time for
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demographic modeling, which may influence estimates of bottleneck timing and length. Summer
flounder generation length can be challenging to estimate due to serial spawning and a limited
understanding of how age influences egg production and hatching success rate. Recovery of the
summer flounder fishery was also accompanied by an increased proportion of older, larger
individuals in the population (Bell et al., 2014; Terceiro, 2016). These older, larger individuals
likely contributed disproportionately to the next generation, leading to a higher generation length
as the fishery recovered. Older and larger fish could have also resulted in increased variance in
reproductive success among individuals, reducing the ratio of N to census size and preventing N.
from recovering as much as census size (Barneche et al., 2018; Kuparinen et al., 2016).

Most estimates of Ne in marine species are one or more orders of magnitude smaller than
census size, though particularly small ratios of N to census sizes have been called into question
(Hauser & Carvalho, 2008; Hoarau et al., 2005; Waples, 2016; Waples et al., 2018). Using our
point estimates of N, obtained from demographic modeling with their associated uncertainty and
the maximum number of adult breeders (V¢) in the equivalent year, we estimated the No/N. ratio
with the corresponding 95% CIs for summer flounder to be 2.49 x 107 (4.22 x 106 - 5.37 x 107)
and 1.79 x 10 (1.03 x 10 — 6.49 x 10*) in 1984 (end of the bottleneck) and 2008, respectively.
The Ne/N. ratio for 1980 (prior to the bottleneck) could not be calculated because the fisheries
dataset that we used to estimate abundance begins in 1982. Keeping in mind all of the challenges
associated with estimating N. and N, these ratios suggest the convergence of N. and N over
time, despite the overall increase in census size as the fishery recovered over this timeframe. In
general, our estimates of contemporary N, were relatively large over time, even after the
population declined. These large sizes likely contributed to the temporally stable genetic

diversity that we observed among larval cohorts. Although estimates of genetic diversity prior to
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the bottleneck were unavailable, our estimates during and after the bottleneck suggest that
genetic diversity has not increased. In general, genetic diversity can increase in a population
through gene flow or through novel mutations. Summer flounder are unlikely to have benefited
from gene flow, however, because they are essentially panmictic across their species range
(Hoey & Pinsky, 2018). In addition, accumulating novel mutations is a slow process that is
unlikely to have had much impact to date (Charlesworth, 2009). Continued monitoring of
summer flounder would be useful to understand if effective population size continues to track

changes in census size, especially since the population continues to be exploited.

Conclusions

The availability of both demographic data and archived specimens over time is relatively
rare and provided an opportunity to compare genetic estimates of demography with known
population history in an important fishery species, summer flounder. Temporal samples
corresponding to different points in the population history of summer flounder likely aided in the
inference of demography over time. Thus, SNP data and coalescent-based demographic
modeling were useful for detecting changes in the magnitude and timing of contemporary
population dynamics in summer flounder. Fisheries species are some of the most well-studied
wild populations and include a wide diversity of life history strategies and population histories.
When coupled with long-term collections and molecular methods, these datasets provide
valuable opportunities to test genetic and evolutionary theory and illustrate the value of
combining existing datasets. For summer flounder in particular, we detected a substantial decline
in effective population size followed by growth and recovery of Ne. Genetic methods can provide

useful and independent approaches for estimating population dynamics in species of concern,
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even for large marine populations.
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Table 1. Genetic diversity statistics calculated for summer flounder cohorts. Included are the
number of fish from each cohort (Total) and from each ingress location within a cohort (New
Jersey = NJ or North Carolina = NC), the average observed heterozygosity per locus (Hetobs),
expected heterozygosity (Hetexp), Wright’s inbreeding coefficient (Fis) and nucleotide diversity
() with bootstrapped 95% confidence intervals.

Cohort & Capture # of T
Location fish ctors  Hete Fis & 95% CI
1994-1995: Total 26 0.0654 0.0694 0.0581 0.00457 0.00429-0.00457
Little Egg Inlet, NJ 26
Beaufort, NC 0
1997-1998: Total 103 0.0651 0.0688 0.0543  0.00469 0.00455-0.00483
Little Egg Inlet, NJ 85
Beaufort, NC 18
2008-2009: Total 150  0.0669 0.0698 0.0415 0.00378 0.00367-0.00390
Little Egg Inlet, NJ 138
Beaufort, NC 12
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999  Table 2. Maximum-likelihood (ML) demographic parameter estimates and 95% confidence
1000 intervals (ClIs) for summer flounder under the best-fitting demographic model (Model 6:
1001  exponential growth in the ancestral population followed by a bottleneck and then rapid
1002  exponential growth in population size). The results from an alternative analysis that fixed TLEN
1003 at 3 generations is also presented. Compare to Figure 2 for interpretation of the parameters.
95%

Parameter ML 95% Lower Unper ML Fixed Unit
Estimate CI 12:1} TLEN
NANC 1052 355 1903 581 Diploid
individuals
NPREBOT = 32209 9671 57485 22972 Diploid
individuals
NBOT 910 154 1963 387 Diploid
individuals
NPOP0S 10212 5859 37013 10171 Diploid
individuals
Length of
TLEN 2 1 4 3 bottleneck in
generations
Number of
TBOT 12 8 15 11 generations
after
bottleneck
1004
1005
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Figure 1. Abundance estimates of total population size and number of mature spawners at peak

spawning time from the summer flounder stock assessment (Terceiro, 2016).
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Figure 2. Demographic models with serial sampling for summer flounder: Model 1) constant
population size, Model 2) a bottleneck and then an instantaneous change in population size,
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Model 3) a bottleneck and then exponential growth or decline (depicted here as growth), Model
4) exponential change in population size (depicted here as growth) before a bottleneck followed
by an instantaneous change in population size, Model 5) two bottlenecks with instantaneous
changes in population size, Model 6) exponential change in population size before and after the
bottleneck (depicted here as growth), and Model 7) exponential change in ancestral population
size prior to reaching carrying capacity. For the demographic scenarios with instantaneous
change in population size, pre- and post-bottleneck sizes could be greater or less than population
size during the bottleneck.
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Figure 3. Line plot of estimated effective population size over a) contemporary and b) deeper
time from the maximum likelithood demographic model: positive exponential growth before and
after a bottleneck (Model 6; black line). The 100 gray lines in each plot illustrate scenarios used
to estimate the 95% confidence intervals for each parameter. Summer flounder generation time
was estimated to be two years and N estimates have been converted to diploid units.
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