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Marine heatwaves have been linked to negative ecological effects in recent decades.!-? If marine
heatwaves regularly induce community reorganization and biomass collapses in fishes, the
consequences could be catastrophic for ecosystems, fisheries, and human communities.>*
However, the extent to which marine heatwaves have negative impacts on fish biomass or
community composition or even whether their effects can be distinguished from natural and
sampling variability remains unclear. We investigated the effects of 248 sea bottom heatwaves
from 1993 to 2019 on marine fishes by analyzing 82,322 hauls (samples) from long-term
scientific surveys of continental shelf ecosystems in North America and Europe spanning the
subtropics to the Arctic. We found that the effects of marine heatwaves on fish biomass were
often minimal and could not be distinguished from natural and sampling variability. Further,
marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated
species) or deborealization (loss of cold-affiliated species) in these ecosystems. While steep
declines in biomass occasionally occurred after marine heatwaves, these were the exception, not
the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not
driven biomass change or community turnover in fish communities that support many of the

world’s largest and most productive fisheries.

Main text

Extreme climatic events exacerbated by global climate change are associated with many
examples of ecological transformation’. Marine heatwaves (MHWs)®—prolonged periods of
anomalously warm ocean temperatures—have been linked to widespread coral bleaching and

die-offs of kelp forests and reef fishes in shallow coastal seas!>. MHWs can rapidly displace
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some marine species by hundreds of kilometers and cause abrupt declines in phytoplankton and
commercially important species’ . These high-profile catastrophes and those emerging from
regional and global model simulations predict that MHWSs will likely wreak ecological
devastation and negatively impact socio-economic systems>*!°, However, accurate predictions
must rely upon generalizable patterns and processes, not case-studies with limited spatial and
taxonomic scope. The extent to which MHWs in general have negative ecological impacts or
even whether they can be differentiated from other sources of natural and sampling variability in
marine systems remains unclear. In the few studies that have compared responses to MHWs
across multiple species within the same ecosystem, some species declined while others thrived'!~
13 suggesting that single-species responses do not accurately reveal net ecological effects. These
net effects are particularly important to understand in continental shelf ecosystems, where many
of the world’s largest ocean fisheries operate'®.

Here, we analyzed the cross-species and cross-ecosystem effects of MHWSs in
Northern-hemisphere shelf ecosystems from the subtropics to the Arctic. We analyzed 82,322
hauls (discrete samples) comprising 22,574,452 observations of 1,769 demersal fish taxa from 18
long-term scientific (i.e., fisheries-independent) bottom trawl surveys covering 45 degrees of
latitude in the Northeast Pacific, Northwest Atlantic, and Northeast Atlantic (Fig. 1). Ninety
percent of hauls occurred in waters 18-448 m deep. These surveys represent the most spatially,
temporally, and taxonomically extensive observations available for testing MHW effects. We
examined observations from 1993-2019 to quantify the effects of MHWs on regional fish
biomass and community composition (Fig. 1).

We defined a MHW as a period of > 5 days with sea bottom temperature (SBT)

anomalies above the seasonally varying 95" percentile for that region® and used cumulative
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intensity as the primary metric characterizing MHW:s (see Methods). Cumulative intensity is
measured in °C-days and represents the sum of the time-varying anomalies above the 95
percentile threshold over the duration of the event. This approach—defining MHWs as physical
phenomena based on relative temperature anomalies—is widely applied in oceanography.!®> A
contrasting approach is to define absolute temperature thresholds above which deleterious
ecological impacts consistently occur, as have been identified for coral reefs.!® Such a biological
threshold has not been described in most marine systems, including the ones we studied, so we
explored a range of relative and absolute MHW metrics (see Methods). We hypothesized that
MHWs altered fish biomass and community composition and that these effects would increase
with the cumulative intensity of MHWs.

This dataset recorded some notable MHW impacts that mirror previous reports in the
literature, including a 22% biomass loss in the Gulf of Alaska following the 2014-2016
Northeast Pacific MHW with a cumulative intensity of 57 °C-days®!7 and a 70% biomass gain in
the Northeast USA following the 2012 Northwest Atlantic MHW (67 °C-days; Fig. 2a, 3a)!!.
However, it is important to note that while these effects were substantial, they were neither large
compared to natural variability in biomass nor repeated across other previously unreported
MHWs. Other intense MHW:s had little discernible effect on total biomass, such as the 42 °C-
days MHW preceding the 2008 North Sea survey that recorded only a 6% biomass decline (Fig.
2a). Some of the largest biomass changes occurred in non-MHW years, such as the 97% increase
in biomass in the North Sea in 2011, or the 77% biomass decline in the Southeast US in 1996.18

In addition, we observed that the most extreme biomass changes were often reversed in
subsequent years. For example, the southern Gulf of St. Lawrence survey hauls caught an

average of 4 metric tons of fish per km? in 2011, a non-MHW year; 13 metric tons per km? in
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2012 following 36 °C-days MHW; and 4 metric tons per km? in 2013 following a MHW with 0.4
°C-days of cumulative intensity (Fig. 2a). The peak in biomass in 2012 was driven by Atlantic
herring (Clupea harengus) and likely reflects a combination of survey variability and a true peak
in population size of the fall Atlantic herring stock in the region'.

Contrary to our expectations, both among surveys that were and were not preceded by a
MHW, the median change in biomass was close to zero (0.023 + 0.367 and 0.016 + 0.323,
respectively; medians and standard deviations of log ratios), indicating that regions were
approximately as likely to exhibit net biomass gains as losses (Fig. 2a). Of the 369 survey-years
we matched with sea bottom temperature data, 139 followed MHWs and 230 did not. There was
no significant difference in mean biomass change between surveys that were and were not
preceded by a MHW (p = 0.40, t = 0.85, df = 249; two-sided t-test; Fig. 2a). Further, the
cumulative intensity of a MHW had no significant relationship with the change in biomass
(linear regression; R? = 0.00; p=0.88; Fig. 2, Supp. Tab. 2).

The ecosystems we studied have distinct climates, species assemblages, and histories of
anthropogenic pressures?’, and might respond at different rates and in different directions to
environmental perturbation.?! More broadly, pulse disturbances and other exogenous drivers
(including heatwaves) are often expected to increase variance in the biomass of populations and
communities??. However, we find no statistically significant relationship between the cumulative
intensity of a MHW and biomass change of these demersal fish assemblages in any individual
region (Extended Data Fig. 1, Supp. Tab. 3). Across all surveys, variability—measured as the
absolute value of the year-over-year biomass log ratios—did not increase with MHW cumulative
intensity (linear regression, R? = 0.00, p = 0.24; Fig. 2b, Supp. Tab. 4). Instead, we find that

variability in biomass change from one year to the next is similarly high with or without MHWs
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(0.22 £0.248 and 0.19 + 0.214, respectively; medians and standard deviations of absolute log
ratios) and that these absolute log ratios of biomass are not significantly different (p = 0.24, t =
1.17, df = 245; two-sided t-test; Fig. 2b).

Accounting for latitude, depth, temporal lags, autoregression in the biomass time-series,
fisheries catch, and species traits (feeding mode, trophic level, and habitat) also did not reveal
any meaningful effect sizes of MHWSs on biomass (Supp. Tab. 6-10, Extended Data Fig. 6-7).
Our results were also robust to the metric used (cumulative intensity, duration, intensity, or
degree heating days) to characterize MHWs, how cumulative intensity was scaled, and to
whether SBT data were detrended (Extended Data Fig. 2, Supp. Tab. 5). Because SBT data was
only available from 1993 onward, we also analyzed a longer time-series of sea surface
temperature (SST) that began in 1982 and thus could be paired additional fish surveys. The SST
analysis included 100,877 hauls comprising 26,886,245 discrete taxon observations, and yielded
results that were qualitatively similar to the SBT results described in the main text (Extended
Data Fig. 2b). Because deleterious heatwave effects have often been recorded in summer!, we
also tested for an effect of summer-only MHWSs on biomass (Extended Data Fig. 2g), finding a
weak positive effect (i.e., greater biomass following more intense MHWs; linear regression, R? =
0.02, p = 0.02). While interpreting this result cautiously given the high leverage of a few data
points, this result is consistent with the 2012 Northwest Atlantic MHW that occurred in summer
and was associated with an increase in biomass in numerous fisheries!!.

Individual MHWs may lead to rapid ecological turnover by causing cold-affiliated
species to decline or go extinct (“deborealization”) and/or by causing warm-affiliated species to
spread or increase (“tropicalization”)?32>. We tested whether tropicalization or deborealization

are general effects of MHWs by calculating the Community Temperature Index (CTI) for each
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survey in each year and comparing CTI change to MHW occurrence and cumulative intensity
(Methods). CTI is an aggregate thermal niche index for the entire community calculated as the
biomass-weighted mean of single-species’ realized thermal niches?®.

Other studies show that CTI has increased in North American fish communities in recent
decades, concomitant with ocean warming.?® To explore whether MHWs induce CTI increases,
we first focused on the 2014-2016 Northeast Pacific MHW, nicknamed “The Blob”—one of the
largest MHWs in our dataset (Fig. 2, 3). Of the four regions in the Northeast Pacific for which
we had data, the Gulf of Alaska exhibited the most pronounced CTI increase after the 2014-2016
MHW—from 7.25 °C in 2013 to 7.39 °C in 2015 and 7.50 °C in 2017. We also found a CTI
increase in the West Coast USA in 2015 following an 8 °C-days SBT MHW (CTI change 0.11
°C), consistent with findings that warm-affiliated subtidal fishes increased in Southern California
that year?”. However, CTI in the Eastern Bering Sea decreased by 0.22 °C from 2015 to 2017. In
British Columbia, we measured CTI values of 8.34 °C in 2013, 8.10 °C in 2015, and 8.31 °C in
2017 (Fig. 3b).

Our analysis found no evidence for systematic tropicalization or deborealization in
marine fish communities across all 18 surveys and 369 survey-years in response to MHWs (Fig.
4). Year-over-year CTI change in communities that did not experience MHWs was not
significantly different from those that did (0.024 + 0.996 and 0.007 + 0.983 °C, respectively;
means and standard deviations; p = 0.87, t = 0.16, df = 280; two-sided t-test; Fig. 4b). Further,
there was no relationship between MHW cumulative intensity and CTI change (R? = 0.00; p =
0.33; linear regression; Supp. Tab. 11).

Marine heatwaves may restructure ecological communities in other ways beyond

tropicalization and deborealization®®. Less predictable changes in species identity and underlying
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community structure could also emerge despite consistent biomass®. We tested for changes in
community composition by calculating dissimilarity over the time-series using occurrence data
(i.e., species presence-absence) as well as biomass data. Each of these dissimilarity indices is
calculated from one year to the next using two components—one measure of how much species
are substituted for one another and one measure of how much each community is a subset of the
other®® (see Methods). A high dissimilarity value between two years may be driven by a
transition away from the baseline community structure as a result of disturbance, which has been
observed in marine systems in response to climate change®’.

In some instances, fish communities exhibited high dissimilarity from the previous year
following a MHW, such as in the Eastern Bering Sea and the West Coast US during the 2014-
2016 MHW (Fig. 3c). However, this was not a general effect. We found that community
dissimilarity measured between consecutive years was not, on average, significantly different
whether or not a MHW occurred when measured with occurrence-based substitution (p = 0.12, t
= 1.57), biomass-weighted substitution (p = 0.99, t = -0.02), or biomass-weighted subset (p =
0.32, t = 1.00; all two-sided t-tests; Extended Data Fig. 8). The one statistically significant
relationship suggested that the subset component of occurrence-based dissimilarity was smaller
after MHW years than after non-MHW years (p = 0.01, t =-2.52, two-sided t-test; Extended
Data Fig. 8b), the opposite of the hypothesized effect. This observed community stability in the
face of MHWs could indicate that climate refugia, such as depth refugia or other thermal refugia,
provide safe havens for species during extreme events.?! Further, changes in community
structure at the local scale may not be reflected at the regional scale of our analysis.

This array of results suggests that the regional impacts of MHWSs on fish communities are

highly idiosyncratic, with dramatic effects in single cases but not in general. In particular, the
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effects of MHWs do not yet exceed natural variability in these ecosystems, or the variability due
to the sampling process. These results also highlight the need to further explore context-

dependent responses®?. Species and spatial portfolio effects®3-34

as well as spatial and temporal
storage effects®> may explain individualistic responses to extreme events that could buffer many
ecosystems from MHWs. Range shifts and mortality and fecundity rates may vary with
latitude,? although we did not find a latitude effect in our analysis (Supp. Tab. 8). Interspecific
variation in the timing, magnitude, and direction of MHW response may also be important*®. For
example, population dynamics of abundant species in response to the environment and fishing
drive some of the biomass changes we observed (Extended Data Fig. 10). Ecological responses
to warming may also be mediated by direct and indirect effects of other human impacts on the
oceans, such as fishing, fisheries management, and changing primary productivity?.

To verify that our dataset had sufficient statistical power, we developed a series of power
analyses. First, we estimated that our dataset (n = 369 survey-years paired with SBT data) had
the power to reveal a consistent MHW-induced regional fish biomass decline of 9% or greater
(Extended Data Fig. 9¢). Using the longer time-series of 441 survey-years that we paired with
SST data had the power to detect a biomass decline of 8% or greater (Extended Data Fig. 9d).
Such an effect did not emerge from the results of this study, suggesting that any MHW effects
are smaller than this. We note that even decline in fish biomass of 8-9% or less, if permanent and
sustained over time, would likely have substantial deleterious consequences for marine fisheries
and social-ecological systems®. One model simulation of marine fishes experiencing MHWs
under the high emission, no mitigation future climate scenario (RCP 8.5) projected that the
negatively affected stocks (approximately % of total stocks) would exhibit an average biomass

decline of 6%°. Approximately 600 survey-years would be required to detect an average biomass



252 decline of 6% (Extended Data Fig. 9a, b). Put another way, MHWs may have had effects on
253  demersal fish communities in recent decades, but if so, those effects were small.

254 In addition, there are alternative explanations to consider. MHWs may affect survey
255  methods themselves: a study on several coral trout species found that they were more

256  catchable—i.e., encountered by fishing gear at higher rates—in warmer temperatures?”.

257  However, if this response was widespread among the species we studied, it would cause an
258 increase in biomass following MHWs that we did not observe. The availability of fishes to
259  surveys can also be influenced by range shifts, possibly induced by MHWSs3#, However, our
260  analysis accounted for this by testing for tropicalization or deborealization within fixed spatial
261 areas (the survey regions). Because biomass trends may be strongly structured by commercial
262 fisheries catches, we fitted models predicting biomass change with fisheries catch as well as
263 MHW cumulative intensity, with no significant results (Supp. Tab. 10). While the choice of
264  metric to quantify MHWs%!5383% and fish community responses'!*” may influence results, our
265  results here were not sensitive to these decisions. The pattern in Fig. 2 emerged regardless of
266  whether we analyzed fish biomass (i.e., weights) or fish abundance (i.e., counts) or whether
267  taxon-level records were summarized as means or medians (Extended Data Fig. 5). The spatial
268  scale of our study was determined by the surveys, which themselves are designed to capture
269  distinct biogeographical and political regions and/or to follow fisheries management criteria*
270  (see Methods). However, it is possible that fish community responses to MHWs vary with the
271  spatial scale at which they are measured, as has been found with other metrics of biodiversity.*!
272 Ecological effects of climate change result from the interaction of long-term climatic
273 change combined with short-term extreme events such as heatwaves>, which have been projected

274  to cause widespread ecological devastation on land and in the sea (although see 3%%?). To date,
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this expectation has largely been based on case studies that select one or a few prominent species
and ecosystems with remarkable MHW responses, rather than the comprehensive approach that
we used. Analyses that focus on particular species that were historically prevalent in a region
may be predisposed to find a biomass decline following a MHW, possibly due to unrelated time-
series dynamics (e.g., mean reversion or density dependence) or because species that were
dominant in historical climates might not be as successful after a MHW. In addition, case study
approaches tend to select and emphasize extreme responses**—although several regional studies
focused on a single MHW event have also found no net loss of abundance or biomass in coral- or

kelp forest-associated fishes?’*

. Further empirical research that builds on the present study and
extends beyond individual case studies is needed to interpret, contextualize, and predict severe
MHW effects.? Building partnerships to leverage existing non-public datasets from the southern
hemisphere and other under-studied parts of the global ocean will also be helpful in
understanding how ecological context influences MHW responses*’.

Our findings highlight the need to understand divergent responses to extreme events.
Single-species responses may be mediated by thermal tolerances, but we did not find evidence
that cold-affiliated species decline or that warm-affiliated species increase following MHW s
(Fig. 4a). Other studies find that species’ responses vary from one extreme event to another*?.
Portfolio and storage effects may explain why ecosystem-level MHW effects are rare, but they
do not reveal what caused certain MHW:s to have deleterious ecological effects. The community
stability we observed in the face of MHWs could indicate that climate refugia, such as depth or
other thermal refugia, provide safe havens for species during extreme events.’! Cumulative

impacts of MHWs and other stressors such as harmful algal blooms'? or low-productivity events’

could play a role. Perhaps very extreme MHWs in the future will cross a tipping point beyond
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which adverse ecological effects occur, but we did not see such a tipping point in the recent
historical record. Other fields (e.g., coral reef ecology) have identified such thresholds, though
the generality of thresholds across ecological systems remains unclear.*> Gaining mechanistic
insight into why only some MHWs have deleterious effects, and on only some species, is
necessary for any future efforts to identify an effect threshold or forecast MHW impacts and
should be a research priority for the field. Additionally, ecosystem responses to extreme “pulse”
events such as MHWs can shape impacts of more gradual “press” trends; the complex
interactions between these climate change effects warrant future research.’

Understanding MHW impacts on entire ocean ecosystems is particularly crucial in the
context of accelerating global change and efforts to advance towards ecosystem-based
management that considers the many links between species and with their environment**. MHW
occurrences are projected to emerge above their natural variability within this century in many
regions*’. Future research will be needed to determine the extent to which fish community
impacts of MHWs will grow as MHWs intensify, or whether portfolio and other ecological
effects can buffer ecosystems from MHW impacts. Marine life is more vulnerable to warming
than terrestrial life, because marine organisms tend to live close to their thermal limits and fewer
thermal refugia exist in the seas*®. Observed and predicted changes in marine ecosystems in
response to global warming formed part of the rationale behind the Paris Climate Agreement to
limit the global mean surface temperature increase above industrial levels to 1.5 °C by 2100%.
As a future that is more than 1.5 °C warmer looks increasingly likely?", it is more critical than
ever to develop a deeper understanding of what drives ecological responses to extreme climate

events.
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Fig. 1. Of 18 regions studied from the Atlantic and Pacific Oceans, all experienced marine
heatwaves during the available scientific fish survey time-series. Highlighted areas on the
map represent the spatial area surveyed by each trawl survey. Inset plots show the number of
distinct sampling events (i.e., hauls of the trawl net) every year (grey bars, right y-axis) and the
MHW cumulative intensity in °C-days calculated from sea bottom temperature data (lines, left y-
axis; warmer colors represent greater cumulative intensity). Years correspond to “survey
reference years”—the twelve months preceding the survey—rather than calendar years, and vary

among regions (see Methods).
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Fig. 2. More intense marine heatwaves were not associated with a decline in fish biomass or
an increase in biomass variability, and biomass was approximately as likely to increase as it
was to decrease from one year to the next, regardless of whether a marine heatwave
occurred. MHW cumulative intensity (°C-days) had no relationship with (a) biomass change
(measured as log ratio; linear regression, R?= 0.00, p = 0.45) or (b) absolute biomass change
(measured as absolute log ratio; linear regression, R>=0.01, p = 0.07). The grey shaded area is a
95% confidence interval. Density plots along the right-hand y-axes show that biomass changes
from one year to the next were the same whether a MHW did (red, n = 139) or did not (blue, n =
230) occur. Points represent (a) log ratios or (b) absolute log ratios of mean biomass in a survey
from one year to the next (n = 369). Surveys following the highest cumulative intensity MHWs
are labeled (years correspond to when the survey was conducted). Colors correspond to regions
in Fig. 1. Models exploring the relationships in (a) and (b) are reported in Supp. Tab. 2 and 4,

respectively.
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2014-2016 Northeast Pacific MHW (“The Blob™).
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Fig. 4. Scientific bottom trawl surveys during the year following marine heatwaves were as
likely to exhibit tropicalization and/or deborealization as those that did not follow marine
heatwaves. (a) There was no relationship between a species’ thermal bias (its cold or warm
affinity relative to the assemblage mean, calculated as STI - CTI; see Methods) and its species-
specific biomass change following a MHW (n = 13,438). (b) There was no difference in CTI
change between surveys in the year following a MHW (red, n = 139) versus surveys that did not
follow a MHW (blue, n = 230). Positive CTI values indicate tropicalization and/or
deborealization. In (a), each point represents a single species that was present in a survey both

before and after a MHW.

Methods

All analyses were conducted in R (R Core Team 2021). Software versions are listed on
GitHub.

Fish biomass and abundance data. We collated publicly available datasets from fishery
management agencies that use scientific (i.e., fisheries-independent) bottom trawl surveys to
monitor marine fish communities*’. These surveys monitor biogeographically and/or politically

distinct areas that are relevant to fisheries management*’. Their footprints often follow marine
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ecosystem boundaries (e.g., Large Marine Ecosystems?®?) and are similar in size to the spatial
extents of MHWs*°. Although these surveys are conducted by many nations, we used only
surveys by agencies that make their raw data publicly available, which facilitates reproducibility
of this study. Those agencies were the National Oceanic and Atmospheric Administration
(NOAA), Fisheries and Oceans Canada (DFO), the International Council for the Exploration of
the Sea (ICES), and the Institute of Marine Research (IMR). This limitation constrained our
analysis to the Northeast Pacific, Northwest Atlantic, and the Northeast Atlantic (Supp. Tab. 1).

In these surveys, the sampling unit is a single haul, i.e., a sampling event in which a net is
towed through the water. We filtered invalid hauls based on reported sample quality, sampling
times, and availability of variables required to calculate taxon-level biomass data. Further detail
on data cleaning and harmonization in addition to raw data and code can be found in Maureaud
et al>. All primary analyses used biomass (weight) data; we conducted a supplementary analysis
of the main results using abundance (count) data for the regions for which it was available (all
but Northeast US; Extended Data Fig. 5).

Datasets were trimmed to standardize the spatial footprint of the survey over time, to
match the available temperature datasets (GLORYS began in 1993 and OISST began in 1982;
see Marine heatwave data), to remove years with very few samples, and to omit samples
collected outside of the focal season (3-month interval) of each survey. We used the World
Register of Marine Species> to standardize taxonomies, and the “dggridR” R package’” to
standardize the survey footprints. Across our 18 surveys, we paired 82,322 hauls with GLORY'S
and 101,376 hauls with OISST. Of the 94% of hauls with an associated depth value, 90%
occurred between 18 m and 451 m depth. The depths sampled vary due to each region’s unique

bathymetry and each survey’s protocols, but surveys tend to sample similar depths over time: for
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example, the Southeast US survey samples very shallow inshore areas of just 3 m depth, while
the Scotian Shelf and West Coast surveys routinely trawl deeper than 1000 m. We used all taxa
for biomass analyses but only the species-level observations for community analyses (see
Species and Community Temperature Indices).

We imputed zeros representing an observed absence in every instance when a species
(that was observed at some point in the region) was not recorded in a haul. These absences can
be considered true non-detections due to the standardized spatiotemporal design of bottom trawl
surveys. We then calculated a mean biomass for each species in every year, and calculated
region-wide biomass as the sum of species-level biomass. To assess the sensitivity of our results
to the metric used, we also calculated median biomass, mean abundance, and median abundance
in the same way (although the Northeast US region did not have abundance data and was thus
omitted from the abundance analysis). We did this across the entire survey domain (following
the spatial standardization mentioned above), rather than within the “strata” used in some
analyses’®, because not all of the surveys have stratified sampling designs and we wanted to be
consistent across all regions.

Year-over-year mean biomass change was calculated as a natural log ratio,

biomass, . . . .
(#). Log ratios for median biomass, mean abundance, and median abundance were
iomassg—q

calculated the same way. For straightforward interpretation, we also reported percentage biomass
changes in the text, although biomass log ratios were used in all models. For example, a 67%
biomass increase means that biomass; = 1.67 x biomass:;. A 67% decrease means that biomass;
= (1-0.67) x biomass1.

Because surveys began in different months, we paired each survey’s biomass data with

MHW data from the preceding 12 months. For example, for a survey that began in August, the
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August 2010 data was paired with MHW data from August 2009 - July 2010. Because we have
no a priori information on the season in which MHWs could have the greatest ecological
impact—and this may vary by species and life stage—we analyzed MHW effects over a full year
(i.e., 12-month interval). Some substantial MHW effects have been reported in summer,*” and
yet winter heatwaves strongly influence distribution and abundance for species limited by winter
survival’®%, Warmer winters are hypothesized to have driven recent ecological changes in the
Gulf of Alaska'?. Winter MHWSs may also reduce recruitment in habitat-forming seaweeds® and
cause metabolic stress to coral reef fishes®’. Spawners and embryos have narrower temperature
tolerance ranges than non-spawning adults®!; a spring heatwave could thus affect the survival or
performance of spring-spawning fishes and their embryos. To test the sensitivity of our results to
this choice, we also explored the effects of only summer anomalies on biomass change
(Extended Data Fig. 2g).

Interannual biomass variability is significantly lower in surveys with more samples per
year (linear regression; R? = 0.08; p < 0.001). To account for this, all models and statistical tests
either included a survey effect or used biomass log ratios that were scaled and centered within
surveys.

Marine heatwave data. We paired the demersal bottom trawl data with MHWs
calculated with sea bottom temperature (SBT) data from the Copernicus 1/12° (about 8 km)
global ocean reanalysis, the Global Ocean Reanalysis and Simulations (GLORYS12).%2 The
reanalysis dataset is generated with the Nucleus for European Modelling of the Ocean (NEMO)
ocean model forced by the ERA-Interim atmospheric reanalysis. The model assimilates satellite
altimetry, satellite SST, sea ice concentrations, and in-situ profiles of salinity and temperature.

We chose GLORYS12 for our analyses because it provided daily estimates of temperature



554  anomalies at depth at a fine spatial resolution, and it reproduces nearshore bottom temperatures
555  and recent MHWs with enhanced fidelity compared to other products.®*$* Being highly

556  dependent on ocean observations for data assimilation, GLORYS12 only began in 1993. We
557  used the 1993-2019 period for our analysis.

558 Because many bottom trawl datasets began earlier than 1993, we also calculated SST
559  MHWs to conduct supplementary analyses with a longer time-series. For SST, we used the
560 NOAA daily Optimum Interpolation Sea Surface Temperature (OISST) Analysis version 2.1
561  dataset®>%® with a horizontal grid resolution of 0.25°, which is available from 1982 onward, to
562  characterize MHWSs. This dataset provides a daily global record of surface ocean temperature
563  observations obtained from satellites, ships, buoys, and Argo floats on a regular grid. Infrared
564  satellite data from the Advanced Very High Resolution Radiometer is its main input and any
565 large-scale satellite biases relative to in-situ data from ships and buoys are corrected. Gaps are
566 filled in by interpolation. We used the 1982-2019 period for our analysis. OISST and GLORYS
567 are plotted against one another in Extended Data Fig. 4.

568 Following standard MHW definition (e.g. **’), both SBT and SST anomalies were

569 calculated within (not across) spatial units—here, the survey regions. This approach defined
570  anomalies relative to historical conditions in a region, which are likely reflective of the

571  environments to which organisms are adapted. In other words, each MHW we identified

572  represented a departure from whatever climate the marine organisms in that region typically
573  experienced. Because our study regions varied substantially in seasonality, natural variability,
574  and exposure to oceanographic phenomena, calculating anomalies from cross-region pooled SBT

575  and SST values would identify only the most globally extreme events as MHWs and would omit



576  the many events in which temperatures were anomalously high for species within a region but
577  not necessarily high for the global oceans.

578 For both SBT and SST, we defined a MHW as a period of at least five continuous days
579  during which the SBT (or SST) averaged for each survey area was larger than a seasonally

580 varying threshold given by the 95" percentile of the survey-area averaged SBT (or SST)

581 anomalies (relative to the mean seasonal cycle that is calculated for each calendar day

582  individually). This is a common approach for defining MHWs, although some authors use the
583 90" percentile® or the 99" 3 instead of the 95", Under our definition, MHWSs may occur

584  throughout the year and at all locations.

585 The temperature data was linearly detrended before any analysis to distinguish discrete
586 MHWs from the long-term warming signal (see Jacox et al. 337 and Extended Data Fig. 3)

587  although we also tested the sensitivity of our results to this decision by re-running the analysis
588  with non-detrended data and reached equivalent conclusions (see Extended Data Fig. 2¢). Using
589 the five-day threshold and the detrended data, we identified 511 distinct surface MHWs in

590 OISST and 248 bottom MHWs in GLORYS. Many years had multiple MHWs. GLORYS had
591 fewer MHWs partly because the time-series is shorter and partly because the MHWs it recorded
592  were longer in duration (leading to fewer discrete MHW events relative to OISST, which

593  recorded many shorter MHW?).

594 We then calculated different MHW metrics: MHW cumulative intensity (the anomaly
595  above the 95™ percentile threshold summed over the duration of the event in °C-days, duration
596  (number of days), and mean intensity (the average anomaly above the 95" percentile threshold
597  over the course of the MHW in °C). We chose MHW cumulative intensity for the main analysis

598 because it encompassed elements of both intensity and duration (i.e., cumulative intensity is
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higher for longer or for more intense MHWs)—but our biomass results did not change if we used
different metrics (Extended Data Fig. 2d, e). Because under our definition all MHWSs exceeded
95% of temperature anomalies in the region, even MHWs with relatively low cumulative
intensities represented extreme events. Unless otherwise specified, models in the main text and
Supplement used MHW cumulative intensity centered and scaled within regions, although our
results were not sensitive to whether we scaled and centered within vs across regions (Supp. Tab.
5).

In coral reef ecology, a threshold for ecological damage (i.e., coral bleaching) has been
identified using degree heating days—the number of days that exceed average temperatures for
the hottest summer month by at least 1 °C.'® We also processed the non-detrended GLORY'S
data using this method for each region (Extended Data Fig. 2f). One data product, Coral Reef
Watch, calculates the average temperatures for the hottest summer month during a baseline
period of 1985-1990 plus 1993.1¢ Because GLORYS began in 1993, we used the four-year
interval 1993-1996 as the baseline to calculate the average temperatures for the hottest summer
month.

The five-day threshold for a MHW used in the main analysis was based on empirical
analyses demonstrating that contemporary heatwaves last on average 4.6 days®®, and is widely
used in the literature$, although we note that alternate methods exist to define and measure
MHWs!33%69 We also assessed whether MHW responses would emerge from classifying any
daily anomaly (without the five-day cutoff) as a MHW. We found no relationship (Extended
Data Fig. 2a).

Species and Community Temperature Indices. The Species Temperature Index (STI)

and Community Temperature Index (CTI) are measures of thermal affinity at the species and
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community level, respectively.”’ We quantified STI as the median sea surface temperatures
found throughout a species’ modeled range from the publicly available STI dataset in Burrows et
al.2%. STI values were available for 844 of our 1772 focal taxa, comprising 82% of total biomass
in our survey dataset. CTI was calculated in each region and year as the biomass-weighted mean
of all STIs, and we used the difference in CTI from one year to the next as our metric of CTI
change. We also quantified the thermal bias of each species relative to the community (STI -
CTD).

Community beta-diversity metrics. Only observations identified at the species level
were included in species composition change (beta diversity) analyses. To assess the impact of
MHWs on community structure, we compared Bray-Curtis dissimilarity between surveys
spanning a MHW to those between years that did not span a MHW. We partitioned Bray-Curtis
dissimilarity into two components (biomass gradient and balanced variation) using the betapart
package in R3*7!, The biomass gradient component focuses on changes in biomass of species
between years within the survey region, while the balanced variation component focuses on the
substitution of the biomass of one species by the biomass of another species. For comparison, we
also calculated occurrence-based dissimilarity metrics (i.e. species presence-absence data) using
Jaccard dissimilarity partitioned into nestedness and turnover components. Balanced variation
and turnover both measure substitution of species between communities while biomass gradient
and nestedness both measure how species are subsetted between communities.

Additional predictors. We conducted supplementary analyses to explore the role of a
number of additional predictors of fish biomass change. In addition to the geographical shifts
that may lead to changes in biomass and community composition in a fixed area, marine fishes

72,73

may shift deeper in response to warming’=’>. We tested for this effect by calculating depth log
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ratios that described whether assemblages had shifted deeper or shallower from one survey to the
next. Depth log ratio was quantified by: 1. Taking an average of depths at which a species was
found in each survey and year, using the depth observations for each haul, and weighted by
biomass in the haul; 2. Taking a biomass-weighted mean of all species-level depth values for the
entire survey; 3. Calculating the log ratio of the survey-level, biomass-weighted depth values
from one year to the next. We found no relationship between MHW cumulative intensity and
depth log ratio and no difference between depth changes that did and did not follow a MHW
(Extended Data Fig. 6, Supp. Tab. 9).

Marine communities across latitudes have responded differently to climate change, with
some declines in species richness recorded in the tropics and at equatorward range edges®*’* and
some increases in species richness recorded in colder oceans and at poleward range edges’’>.
We tested for latitudinal trends in biomass log ratios and found that the direction or magnitude of
biomass change was not related to the median latitude of the region (Supp. Tab. 8).

We explored whether species traits helped to predict species-level biomass change in
general, and specifically in the context of MHWs. All fish species traits were obtained from the
database in Beukhof et al.!. Of the 1772 taxa used in the main analysis, 1620 had trophic level
data, 1591 had feeding mode data, and 1612 had habitat data. The pattern of no relationship
between MHW cumulative intensity and biomass log ratio persisted when data were grouped by
trophic level, feeding mode, or habitat (Extended Data Fig. 7).

Some studies find that marine communities respond rapidly to environmental change’®.
Others suggest that ecological responses may lag disturbances by years”’. We explored whether
MHW data from further into the past—up to five years before each trawl survey—predicted

biomass responses. Analogous to our findings for MHWs that occur up to 12 months before each
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survey reported in the main text, we found no evidence that biomass change is associated
generally with MHW cumulative intensity from prior years (Supp. Tab. 6).

Because fishing, through increased mortality, can influence temporal biomass change, we
also analyzed the effects of catch on biomass change. We extracted a historical time-series of
reconstructed catch values from the Sea Around Us database’ by Marine Ecoregions (MEs).”
The Sea Around Us reconstructed catches are spatially allocated to half degree ocean cells,?
which permits catch data to be assigned to spatial entities such as the 232 MEs identified by
Spalding et al.” We then paired our survey footprints with the most-overlapping ME. In most
cases, the MEs and survey footprints were similar. For two large surveys (the West Coast and the
Northeast US) we summed catch data across two adjacent MEs. Two small surveys (France and
the English Channel) did not correspond well to the MEs and were omitted from the fishing
analysis. Because catch data are recorded by calendar year, and the surveys often occur midyear,
we fitted models comparing biomass change in a given year to the mean catch level in the past
three calendar years (Supp. Tab. 10).

Statistical methods. We tested for the effects of MHWs using linear models, generalized
linear models, or generalized additive models for continuous variables. Models and
transformation of variables are described in Supp. Tab. 2-11. Generalized linear models were
fitted with the R package “glmmTMB”8! and generalized additive models with the R package
“mgcv”82. When comparing MHW versus non-MHW effects we used two-sided t-tests. While
not all of the datasets were normally distributed, the t-test is insensitive to skewness for large
sample sizes such as ours, whereas non-parametric alternatives are better suited to smaller

sample sizes®>.
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Power analysis. We simulated data to assess whether our study had sufficient power to
detect MHW-driven biomass changes. We fitted an autoregressive linear model of log biomass
over time (Gompertz model) to each region's biomass data, including MHW presence/absence as
a predictor. We extracted the coefficient p, intercept ¢, and conditional standard deviation & of
this model, and used them to simulate data from the same Gompertz model

In(B;) = a+p XIn(B;_y) + y X MHW, + ¢’
where B represents biomass in year ¢, MHW is a binary variable for MHW presence/absence, and
yrepresents the "true" MHW effect that we varied to explore power. This simulation also
included an error term ¢’ calculated as a random draw from a normal distribution with mean 0
and standard deviation . We (1) varied the number of years the simulation was run (assuming
that each of the 18 surveys was conducted for that number of years) from 10 to 40 in 1-year steps
and 50-200 in 10-year steps with a fixed value of y= In(0.94), corresponding to the 6% loss of
biomass predicted by Cheung et al.’; and (2) varied yto represent biomass losses ranging from
1% to 30% (in 1% increments up to 10%, and then in 5% increments) given the actual number of
years of data we have (n = 369 for GLORYS and n = 441 for OISST). Note that the mean survey
duration in our analysis was 20-25 years depending on the paired temperature dataset used. For
all these scenarios, simulations were run for each individual survey, converted into log ratio units
(as used in the main text), scaled and centered within regions, and pooled across regions. Each
set of simulations was run 1000 times for each condition (survey and either number of years or
»-

With these four simulated datasets—a true MHW effect on biomass of -6% and variable
numbers of years, or a fixed number of years from the real dataset and a variable effect of MHW

on biomass, each for OISST and GLORYS—we conducted the same statistical tests as we did in
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the main text to test for an effect. For every iteration of the simulation, we split the biomass log
ratio data into MHW and non-MHW years and compared the two with a two-sided t-test. We
then calculated what proportion of those tests were significant (p = 0.05). These results are

shown in Extended Data Fig. 9.
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Extended Data Fig. 1. Alternate version of Fig. 2 from the main text, showing results by
region. MHWs were calculated from the detrended GLORY'S sea bottom temperature data with
a five-day minimum duration threshold for MHWs, as used in the main text. Points represent log
ratios of mean biomass in a survey from one year to the next. The fitted lines are linear
regressions. The shaded areas are 95% confidence intervals. Survey names and sample sizes per

survey are listed in Supp. Tab. 1.
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Extended Data Fig. 2. Results did not change when alternative methods were used to
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detrended data, (d) using a MHW metric of duration (days), (¢) using a MHW metric of intensity
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847  of secular warming. The main text results are detrended. Here, we plot MHW cumulative
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849  that was used the main text, to more clearly show the differences between the two methods.
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Extended Data Fig. 5. Results are consistent across different metrics of the fish
community. We calculated mean abundance (a), mean biomass (b, used in the main text),
median abundance (c), and median biomass (d). MHWs were calculated from the detrended
GLORYS sea bottom temperature data with a five-day minimum duration threshold for MHWs,
as used in the main text. Points represent log ratios of each metric in a survey from one year to
the next (n = 343). The fitted lines are linear regressions. The shaded areas are 95% confidence
intervals. The Northeast US survey was omitted because it did not have abundance data

recorded.
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the detrended GLORYS sea bottom temperature data with a five-day minimum duration
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reduced biomass by 6% using either the GLORYS (a) or OISST (b) datasets; the dashed vertical
line shows the sample size of our actual datasets. Given the true size of our datasets (n = 369
survey-years for GLORYS and 441 for OISST), our analysis had the power to detect a MHW-
induced biomass decline of ~9% with GLORYS (c) and ~8% with OISST (d). The dashed

horizontal line denotes one conventionally accepted threshold for power (0.8).
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Extended Data Fig. 10. Biomass trends over time in each survey. The top five taxa by
biomass are highlighted. Shaded grey rectangles denote when any MHW:s occurred in the
preceding survey-year. MHWSs were calculated from the detrended GLORY'S sea bottom
temperature data with a five-day minimum duration threshold for MHWs, as used in the main

text. Note that x- and y-axes vary depending on time-series length and overall survey catch.



