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Abstract 40 

Movement facilitates and alters species interactions, the resulting food web structures, 41 

species distribution patterns, community structures and survival of populations and 42 

communities. In the light of global change, it is crucial to gain a general understanding of 43 

how movement depends on traits and environmental conditions. Although insects and notably 44 

Coleoptera represent the largest and a functionally important taxonomic group, we still know 45 

little about their general movement capacities and how they respond to warming. Here, we 46 

measured the exploratory speed of 125 individuals of eight carabid beetle species across 47 

different temperatures and body masses using automated image-based tracking. The resulting 48 

data revealed a power-law scaling relationship of average movement speed with body mass. 49 

By additionally fitting a thermal performance curve to the data, we accounted for the 50 

unimodal temperature response of movement speed. Thereby, we yielded a general allometric 51 

and thermodynamic equation to predict exploratory speed from temperature and body mass. 52 

This equation predicting temperature-dependent movement speed can be incorporated into 53 

modeling approaches to predict trophic interactions or spatial movement patterns. Overall, 54 

these findings will help improve our understanding of how temperature effects on movement 55 

cascade from small to large spatial scales as well as from individual to population fitness and 56 

survival across communities. 57 



Background 58 

Movement is the essential link of species to their environment and each other, and is 59 

therefore vital to sustain individual as well as population survival and fitness (Goossens et al., 60 

2020; Nathan et al., 2008). On smaller scales, it mediates accessing spatially distributed or 61 

mobile resources (Nathan et al., 2008) and is thus one of the major processes driving trophic 62 

interactions (Hirt et al., 2017a, Hodges et al., 2014; Pawar et al., 2012; Schlägel et al., 2019). 63 

On larger scales, movement is the elementary process that shapes the spatial distribution of 64 

species (Jeltsch et al., 2013) and also connects populations, communities, and entire 65 

ecosystems (Massol et al., 2011; Schlägel et al., 2020). Current knowledge about the 66 

movement patterns and processes of larger vertebrates is more comprehensive than ever 67 

before (Dyer et al., 2023; Hirt et al., 2017a; Kays et al., 2015; Nathan et al., 2022). Contrary 68 

and despite the immense importance of insects to our ecosystems highlighted by the 69 

multitude of their diversity, abundance and functional roles (Foottit & Adler, 2017; Wilson, 70 

1987), we still lack systematic information on their movement behavior and dynamics 71 

(Kalinkat et al., 2015; Kissling et al., 2014).  72 

This gap in our understanding of insect movement is partially caused by the 73 

difficulties of applying tracking technologies to small organisms. Laboratory measurements 74 

using camera tracking can help overcome these limitations. While they cannot be used to 75 

assess natural movement patterns that depend on the environment like habitat structure or 76 

microclimates (Terlau et al., 2023; Wallin & Ekbom, 1988), they can help gain a deepened 77 

understanding about movement parameters and fundamental movement capacities. This 78 

information can then be used to inform mechanistic models, which can support predictions of 79 

potential movement patterns in natural environments (Hirt et al., 2018). Such movement 80 

parameters include maneuverability or movement speed. Movement speed, for instance, 81 

captures the movement intensity and its body-size dependence (Hirt et al., 2017a; Hirt et al., 82 



2017b; Iriarte-Díaz, 2002), which allows generalizations from a few measured species to the 83 

multitude of other species in the wild. During attacks or escapes, animals move at maximum 84 

speed. In contrast, they use a more constant and less demanding routine speed during 85 

dispersal (travel speed; minimizing the energy costs) or habitat exploration (exploratory 86 

speed; maximizing the energy gain) (Cloyed et al., 2021). The relative exploratory speed of 87 

interacting species, for instance, is the major constraint on encounter and subsequent 88 

consumption rates, and thus drives interaction strengths (Hodges et al., 2014; Pawar et al., 89 

2012).  90 

Because many physiological and behavioral processes of insects such as metabolism 91 

(Brown et al., 2004; Clarke, 2006; Clarke and Fraser, 2004 Ehnes et al., 2011; Gillooly et al., 92 

2001; Gudowska et al., 2017) or growth rates (Gangloff et al., 2015; Savage et al., 2004) are 93 

strongly driven by ambient temperature, all higher level processes that arise from them such 94 

as demography and movement are also strongly temperature-dependent (Frazier et al., 2006; 95 

Hasan & Shafiq Ansari, 2016; Seebacher & Post, 2015). Yet, studies on the consequences of 96 

climate warming on insect movement remain challenging and scarce compared to less diverse 97 

taxa (Eggleton, 2020). Hitherto, studies on the thermal sensitivity of movement have with 98 

some exceptions (Hurlbert et al. 2008) mostly focused on vertebrates like lizards or other 99 

single species (Angilletta et al., 2007; Cecchetto et al., 2020; Clemente et al., 2009; Cloyed et 100 

al., 2019), and we still lack information on these sensitivities across wider taxonomic and 101 

body size ranges. A general thermal scaling relationship of movement speed across different 102 

species and body sizes will, in the long term, help to gain a mechanistic understanding of how 103 

terrestrial insects will respond to climate warming.  104 

Here, we contribute to filling this gap by assessing the general allometric and thermal 105 

response of exploratory speed of ground beetles. Coleoptera are the largest taxonomic group 106 

of insects and occur in almost every ecosystem (Foottit & Adler, 2017). The group of 107 



Carabids holds an important role as predators, fulfilling, for instance, the ecosystem service 108 

of biological control (Eggleton, 2020). We assessed the movement of 125 individuals of eight 109 

Carabid beetle species varying by an order of magnitude in body size using automated image-110 

based tracking (Barnes et al., 2015; Dell et al., 2014). We hypothesized that exploratory 111 

speed should follow a power-law relationship with body mass and show a unimodal response 112 

to temperature. The main objective of this study was to yield a general allometric and 113 

thermodynamic equation to predict exploratory speed from temperature and body mass. 114 

  115 



Methods and materials 116 

 117 

Figure 1: The experimental setup of the automated image-based tracking of beetles in an 118 

environmental reach-in chamber. A) Sketch of the experimental setup. B) Sketch of an automated 119 

image-based tracking sequence including x- and y-coordinates for each timestamp. C) Actual 120 

experimental setup in an environmental reach-in chamber. 121 

 122 

Study organisms and experimental design 123 

We measured the thermal response of exploratory speed of 125 individuals of eight Central 124 

European Carabid beetle species (Carabidae) in the laboratory using automated image-based 125 



tracking (Barnes et al., 2015; Dell et al., 2014). We collected the beetles in the surrounding 126 

area of Leipzig, Saxony, Germany (51.2910° N, 12.3220° E and 51.2799° N, 12.4119° E) 127 

during 2018-2020 using pitfall traps. Thereby, we obtained the following species for our 128 

experiment: Carabus granulatus, Carabus nemoralis, Pterostichus cristatus, Pterostichus 129 

melanarius, Abax parallelus, Nebria brevicollis, Harpalus affinis, and Anchomenus dorsalis 130 

with body masses ranging from 10 mg (Anchomenus dorsalis) to 303 mg (Pterostichus 131 

cristatus). As our main objective was quantifying a general allometric and thermal response 132 

of movement speed, we grouped the species into body mass classes to get a representative 133 

number of replicates across body masses (see Supplementary Tables S1-S3). However, this 134 

approach inhibited species-specific analysis of thermal responses. We kept all species 135 

separately in boxes (30 x 40 cm) filled with soil, leaves, and bark as habitat structure. The 136 

boxes were kept in a room with daylight to maintain a natural circadian rhythm  at an ambient 137 

temperature of ~19°C. We fed beetles ad libitum with beetle jelly from a commercial supplier 138 

and watered the boxes with a spray bottle. The individuals were kept for a maximum of one 139 

week before measurements.  140 

For the filming records, we used two reach-in environmental chambers in which we 141 

placed circular acrylic-tubes of 490 mm diameter as arenas (Fig. 1). To create a non-uniform 142 

background and to avoid a directional bias of moving beetles, we covered the sides with a 143 

random black-white pattern. Additionally, we applied insect escape protection lacquer 144 

(Polytetrafluorethen) on the first 4 cm of the acrylic tube to prevent the beetles from climbing 145 

up the arena wall. We located a high-resolution camera (Prosilica GT 1920; Allied Vision; 146 

1936 x 1454 pixel) orthogonally above the arena. The bottom of each arena was covered with 147 

white paper (80 g/m²), which was exchanged every new day of recording or when a different 148 

species was recorded. We tracked a maximum of three individuals per day and per 149 

environmental chamber. To track the beetles, we used an open-source software application 150 



(Vimba-Viewer) using the C++ framework of the camera producer (Allied Vision) at a frame 151 

rate of 38 pictures per seconds. The internal real time clock of the camera provided high 152 

precision timestamps for every frame. We developed C++ applications and scripts for 153 

extracting movement trajectories with real world coordinates and timestamps (Boy, 2022). 154 

We analyzed the trajectory data, which consists of x-y-coordinates and time stamps using the 155 

R-package trajr (McLean & Skowron Volponi, 2018). Prior experiments with non-moving 156 

animals showed that artificial changes in position and direction may be recorded although the 157 

beetle was inactive (Hirt et al., 2017b). To remove these spurious movement periods, we set 158 

thresholds and excluded movement data if speeds were lower than 0.6 mm/s (start) and 0.3 159 

mm/s (stop). Before starting a film recording session, we weighed each individual and kept 160 

the beetles separately in small boxes with perforated lids and added beetle jelly to the boxes 161 

to make sure that all beetles were in the same condition and well fed before starting the 162 

measurements. Following an acclimation time of two hours in the environmental chamber at 163 

the respective temperature, we released one single beetle into the arena per session. After a 164 

time delay of ten minutes to account for the temporarily open doors of the climate chamber, a 165 

one-hour film recording was initiated. We assume that a two hour acclimation time is 166 

sufficient to provide reliable results in our experiment. If, however, longer acclimation times 167 

would be needed, we can expect a slight underestimation of movement speed in our results.  168 

We used a temperature gradient of 14 levels from 8 °C to 32 °C. This temperature range 169 

was limited by the technical constraints of the environmental reach-in chamber and the high-170 

resolution camera and does therefore not capture very low temperatures like they occur in 171 

nature (see Supplementary Table S5). However, the highest temperature level of 32°C still 172 

meets realistic temperatures in the environment of species occurrences (Supplementary Table 173 

S4). During the recording, we kept a constant temperature and took three separate records for 174 



every temperature level using different individuals. In total, we recorded movement, weight, 175 

and temperature data for 125 individuals across eight species. 176 

 177 

Analyses and statistics 178 

To analyze the thermal response of movement speed, we fitted thermal performance curves 179 

(TPC) to our data by applying the nls_multstart function from the rTPC package 180 

(Padfield et al., 2021). Although different species will show variations in e.g. thermal optima, 181 

our main goal here was to predict the average thermal response across our species. We 182 

compared five different models included in this package, which we assumed as most relatable 183 

to our movement data (Angilletta, 2006): Gaussian, Modified Gaussian, Quadratic, Pawar (a 184 

modified Sharpe-Schoolfield equation; (Kontopoulos et al., 2018) and Weibull. We compared 185 

these models by using the Akaike information criterion (AIC) to find the most parsimonious 186 

model. Based on the best model fit, we chose the respective equation and incorporated an 187 

additional power-law scaling with body mass (Hirt et al., 2017b), which yielded a final 188 

equation for predicting the exploratory speed from body mass and temperature. We used the 189 

nls function in R to fit the respective equation to our data. 190 

Since we did not have sufficient individuals from all species to measure every species equally 191 

often across all temperature levels, we aggregated them in size classes (Supplementary Table 192 

S1-S3). Therefore, we could not test for species-specific responses or thermal optima. To 193 

account for species-specific responses, we used a linear model to test how the residuals of the 194 

general scaling model (exploratory speed depending on body mass and temperature, see 195 

above)  vary with species identities as well as their habitat preferences(see Supplementary 196 

Table S1).  197 

 198 



All statistical analyses and calculations were performed using R 4.2.1 (R Core Team, 2022). 199 

We used the following R-packages for the graphical presentation: ggplot2 (Wickham, 200 

2009),  grafify (Shenoy, 2021), and sjPlot (Lüdecke, 2018). 201 

 202 

 203 

Results 204 

We measured movement speed of in total 125 individuals of ground beetles ranging between 205 

a body mass of 10 mg and 303 mg with an average body mass of 105 mg. The measured 206 

movement speed lay between 0.008 ms-1 and 0.11 ms-1. The data showed much variation 207 

(Fig. 2), which we aimed to explain by allometric and temperature effects. Subsequently, we 208 

carried out a sensitivity analysis on the residuals of this general scaling relationship to detect 209 

indications of species-specific responses (e.g., species-specific habitat and also thermal 210 

preferences).  211 

The main goal of our study was to predict the general allometric and thermal response of 212 

exploratory speed across the species of our experiment. The thermal performance models we 213 

tested provided fairly similar fits to the data (Fig. 2B). AIC comparisons identified the Pawar 214 

model (Kontopoulos et al., 2018) and the Weibull model as the most parsimonious models 215 

(Table 1). We chose the Pawar model, a modified Sharpe-Schoolfield equation (frequently 216 

used to quantify the thermal response of ecological processes; Schoolfield et al., 1981), with 217 

the lowest AIC (delta AIC < 1.18) for all further analyses.  218 

We modified the  Pawar model (the modified Sharpe-Schoolfield equation; Kontopoulos et 219 

al., 2018) by adding a body mass term, which yielded the following equation: 220 

 221 
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describing how movement speed v [m s-1] depends on body mass M [mg] and temperature T 223 

(°C). Here, the intercept a0 represents the movement speed at the reference temperature Tref 224 

(here: 15 °C) and b is the allometric exponent. E is the activation energy (eV), which controls 225 

the rise of the curve up to the peak, Eh is the de-activation energy (eV), which sets the rate at 226 

which movement speed decreases after the peak, k is the Boltzmann constant (8.617 ⋅ 10−5 227 

eV K−1), and Topt is the optimum temperature at which movement speed is maximized (across 228 

species). Note that species-specific temperature optima likely vary, but could not be 229 

accurately predicted based on our data. Detailed information on the number of individuals per 230 

species, respective body-mass levels and the number of measurements per species and 231 

temperature treatment can be found in the Supplementary Tables S1-S3. 232 



 233 

Figure 2: The unimodal scaling of exploratory speed [ms-1] with temperature [°C] of carabid beetles 234 

(n = 125, number of species = 8). A) Five different thermal performance models included in the rTPC 235 

package (Padfield et al., 2021) in comparison. B) The final selected model based on AIC comparison 236 

(Table 2), a modified Sharpe-Schoolfield equation (pawar model, Kontopoulos et al., 2018, blue 237 

curve). Gray curves show the other tested models in comparison. 238 

 239 

 240 



Table 1:AIC comparison of five thermal performance models included in the rTPC package (Padfield 241 
et al., 2021) for movement speed [ms-1].  242 

Model name AIC ΔAIC 
Gaussian -591.13 11.75 
Modified Gaussian -600.46 2.42 
Quadratic -600.26 2.62 
Weibull -601.70 1.18 
Pawar -602.88 0 
 243 

Table 2: Parameter values for equ. (1), the modified Sharpe-Schoolfield equation after Kontopoulos et 244 
al. (2018) with an additional body-mass term. 245 

Predictors variable Estimates std. Error CI p 
intercept  a 0.03 0.004 0.02 – 0.04 <0.001 

body mass exponent  b 0.12 0.04 0.02 – 0.15 0.002 

activation energy  E 0.37 0.09 0.19 – 0.55 <0.001 

deactivation energy  Eh 3.11 1.33 0.41 – 5.60 0.021 

optimum temperature Topt 26.33 1.20 24.22 – 28.72 <0.001 
 
Observations  125    
 246 



 247 



Figure 3: A) The predicted scaling of movement speed [ms-1] with temperature [°C] for three 248 

different body masses [mg] (blue color scale) based on equ. (1). B) The predicted scaling of 249 

movement speed [ms-1] with body mass [mg] for three different temperature levels [°C] (orange-dark 250 

red color code). 251 

 252 

To illustrate both temperature and body-size effects, we used our allometric and 253 

thermodynamic equation to predict movement speed [ms-1] for different body masses [mg] 254 

(across the temperature gradients) or at different temperature levels (across the body size 255 

gradient) temperature levels [°C]. Our results demonstrate a continuous increase in 256 

exploratory speed with body mass (Fig. 3B). Since a power law scaling with body mass with 257 

an exponent less than one (i.e. b = 0.12 CI = 0.02 – 0.15) indicates that this increase is steeper 258 

from small to medium species than from medium to large species, medium and large species 259 

are at a given temperature quite similar in their exploratory speed (Fig. 3A, medium and dark 260 

blue lines at a given temperature), whereas small species are much slower (Fig. 3A, light blue 261 

line at a given temperature).  262 

The scaling of exploratory speed with temperature exhibits a more complex unimodal pattern 263 

(Fig. 3A). Speeds are increasing from low to intermediate temperatures (Fig. 3B, orange 264 

versus red lines) but decreasing from intermediate to high temperatures (Fig. 3B, red versus 265 

dark red lines). These differences are reflected in the model parameters with an activation 266 

energy E of 0.37 eV for the increasing part and a deactivation energy Eh of 3.11 eV for the 267 

decreasing part of the unimodal relationship (Table 2). Overall, this implies a steady increase 268 

in exploratory speed with warming up to the optimum temperature that is followed by a sharp 269 

decrease (Fig. 3A).  270 

Subsequently, we carried out a sensitivity analysis using linear models to test how the 271 

residuals of the general scaling model (Fig. 3, Table 2) depend either on species identities or 272 

on their habitat preferences. Here, we tested whether the residuals for any group defined by 273 



either species identity (i.e. taxonomy) or habitat preference (i.e. species grouped by their 274 

habitat preferences) deviate significantly from zero representing the model prediction. These 275 

analyses did not show any significant effects of species identities (Supplementary Table S6, 276 

Figure S1) or habitat preferences (Supplementary Tables S7, Figure S2). Overall, these 277 

sensitivity analyses show that deviations of our empirical data points from our model 278 

predictions cannot be explained by species identities or habitat preferences.  279 

 280 

Discussion 281 

 282 

Despite their abundance and functional importance, we still know little about the thermal 283 

sensitivity of movement of insects. Here, we experimentally measured the movement of 284 

differently-sized beetles across a temperature-gradient using image-based tracking (Barnes et 285 

al., 2015; Dell et al., 2014). Thereby, we provide an allometric and thermodynamic model for 286 

predicting exploratory speed from body size and temperature.  287 

Similar to Hirt et al. (2017b) we found a power-law scaling of exploratory speed with 288 

body mass with a slightly smaller allometric exponent (0.12 ± 0.04 compared to 0.19 ± 0.04; 289 

Hirt et al., 2017b). To account for the temperature-dependence of movement speed 290 

(Angilletta et al., 2007; Cecchetto et al., 2020; Cloyed et al., 2019), we fitted a thermal 291 

performance curve to our data, which was best described by the modified Sharpe-Schoolfield 292 

equation (Kontopoulos et al., 2018). While some of the variation in the measured speed data 293 

finds an explanation in body mass effects (Fig. 3A) or temperature effects (Fig. 3B) that are 294 

both accounted for by our fitted model (equation 1, Table 2), there is also unexplained 295 

variation that is potentially related to species-specific responses. Analyses of effects resulting 296 

from species and habitat preferences on residuals showed no significant effects 297 

(Supplementary Tables S6-S7, Figures S1 + S2). This suggests that in our data set, species 298 



identities and habitat preferences do not contribute towards explaining variation in 299 

exploratory speed after accounting for the effects of body mass and ambient temperature. 300 

Nevertheless, we caution that larger datasets covering more species may find signatures of 301 

species-specific effects. In particular, our sensitivity test for species-specific effects was 302 

inspired by findings of shorter acclimation times for smaller animals also making larger 303 

animals more sensitive to higher temperatures (Klockmann et al., 2017; Rohr et al., 2018). 304 

Additionally, thermal performance generally depends on age (life-history stage), body size 305 

and geographic location (Ohlberger, 2013). Since all individuals of our study were collected 306 

within the same area around Leipzig (Germany), we can assume that the species in our study 307 

should not differ much regarding adaptation to the geographic location in general, but rather 308 

regarding their species-specific habitat preferences (Supplementary Table S1) and hence 309 

respective microclimatic preferences (Baudier et al., 2015). As thermal responses generally 310 

vary among species and even populations (Bestion et al., 2015; Moran et al., 2016; 311 

Ohlberger, 2013), incorporating species-specific responses should be addressed in future 312 

research employing individuals or species from different geographic origins and climatic 313 

regimes in their habitats.  Extending our approach across species from different biomes 314 

would be important for global predictions of the consequences of warming for animal 315 

movement.  316 

Our general model relating animal exploratory speed to body mass and ambient 317 

temperature has broad implications for ecological processes. Movement speed is a crucial 318 

movement trait that strongly affects interactions, habitat connectivity, species distributions, 319 

and ultimately survival capacities of animals. The allometric and thermodynamic dependency 320 

of movement speed shown here has thus broad implications on small- and large-scale 321 

processes by implying that (1) larger animals have higher movement rates and (2) higher 322 

temperatures have variable effects on movement speed depending on the initial climatic 323 



conditions. While animals living in areas where they have not yet reached their optimal 324 

temperature will respond with higher average movement speeds to warming,  animals from 325 

warmer climates that already live at or beyond their optimal temperature, will exhibit lower 326 

average movement speeds.  327 

On smaller scales, higher movement speed as induced by higher body sizes or partially 328 

higher temperatures, should lead to higher encounter rates between predator and prey (Pawar 329 

et al., 2012). These higher encounter rates in turn yield higher attack rates and ultimately 330 

feeding rates (Rall et al., 2012). Thus, together with prey preferences and prey density, 331 

movement speed is an important driver of interaction strengths and has direct consequences 332 

for energy fluxes (i.e., energy consumption across trophic groups) within food webs and 333 

therefore communities (Barnes et al., 2018; Brose et al., 2008). With changing environments 334 

(e.g. due to climate warming), studies have found shifts in distribution patterns and habitat 335 

use (Fartmann et al., 2021; Lenoir and Svenning, 2015; Sunday et al., 2012; van Beest et al., 336 

2012), which imply restructured food webs, including new as well as lost interaction links, 337 

and therefore altered interaction structure and strength of a whole food web (Bartley et al., 338 

2019). The fact that both distribution shifts and consequently changes in species composition 339 

as well as the resulting local interactions depend on movement capacities, highlights the 340 

importance of understanding the trait-based response of movement to temperature to predict 341 

future communities re-shuffled by climate change.   342 

On larger scales, higher movement speeds should on average result in higher travel 343 

distances of bigger species and thereby increase the connectivity of habitats and the linkage 344 

to other populations, species, or resources (Hirt et al., 2018, Ryser et al., 2019). This habitat 345 

connectivity could even increase under climate warming for species living in temperate 346 

regions but be detrimentally disrupted in warmer or colder climates depending on the relative 347 

temperature increase (Rantanen et al., 2022) and the thermal sensitivity of species (Angilletta 348 



et al., 2010; Dyer et al., 2023). Since anthropogenic global change also causes disturbances 349 

such as habitat modification or fragmentation (Sage, 2020), our results suggests that under 350 

future conditions, larger animals living in temperate environments will be capable of  longer 351 

travel distances to find new habitats and resources, whereas their movement capacity may 352 

become more limited in warm (e.g., tropic or Mediterranean) environments, which has strong 353 

consequences for their individual fitness and also survival of populations (Doherty et al., 354 

2021). However, trophic interactions not only play a crucial role for the survival of 355 

individuals and populations, but also gene flow between populations, which is particularly 356 

achieved by dispersal (Baguette et al., 2014). Overall, the unimodal response of  movement 357 

speed to warming will have opposing and cascading effects on individual fitness, species 358 

interactions, food webs, and species distributions. 359 

The negative effects of warming on movement speed, however, can also be mitigated in 360 

nature, which cannot be captured under laboratory conditions like in our study. These coping 361 

mechanisms include either reducing movement or seeking shelter (shadow) and thereby 362 

lowering the overall energy loss (Kearney et al., 2009; Terlau et al., 2023) or shifting activity 363 

periods (seasonal and diurnal). This, however, can potentially create activity mismatches 364 

between trophic levels, hence imposing cascading effects across food webs (Seebacher & 365 

Post, 2015), which highlights the importance of considering the combined effects of 366 

temperature and habitat structure on movement speed and behavior in more complex 367 

experimental settings or field studies. Our thermal and allometric scaling relationships can 368 

serve as a baseline for these studies. 369 

Since small invertebrates are hard to track and monitor, trait-based modeling approaches 370 

can be a powerful tool to make predictions on the general effects of warming on invertebrate 371 

movement. Integrating our equation in such models could enable predictions on trophic 372 

interactions or spatial patterns. For instance, biological rates like metabolism and growth also 373 



show a temperature- and body-mass dependence. These processes interactively drive energy 374 

gains via feeding and losses via metabolic expenditure and thus determine the energetic 375 

capacity of animals. Regarding ongoing and fast proceeding climate change, it raises the 376 

question how animals will energetically cope with increasing temperature and more often 377 

heat extremes (Fischer & Knutti, 2015; IPCC, 2021). If, for instance, energy loss increases 378 

faster than energy intake (i.e., feeding), this would create energetic discrepancies (Huey & 379 

Kingsolver, 2019). Thus, a synthesis approach integrating physiological rates and movement 380 

as a central process of species interactions may provide important insights in animal survival 381 

capacities under climate warming. Therefore, however, it is important to measure the thermal 382 

response of movement speed across a wider range of taxonomic groups, which would also 383 

allow testing for differences due to taxonomic traits, mode of locomotion, diet or ecological 384 

requirements. This would also include taxa from different climatic regions since we would 385 

expect varying thermal responses depending on the initial climatic condition (Deutsch et al., 386 

2008; Dillon et al., 2010). Similar to other studies (e.g., Gibert et al., 2016), we were unable 387 

to measure a temperature gradient covering the entire thermal performance gradient of all 388 

species due to technical limitations. If future studies could extend this temperature range 389 

further, it would improve our predictions, especially at the lower and upper critical 390 

temperature limits.  391 

 392 

Conclusions 393 

Movement speed is an essential movement trait of animals shaping central ecological patterns 394 

and processes, making it important to understand how it will be altered by global change 395 

drivers such as climate warming. Although insects and Coleoptera in particular represent the 396 

largest taxonomic group, we still know little about the effects of climate change on this huge 397 

and ecologically important group. Our experimental approach provides a mathematical 398 



equation for predicting movement speed of Central European ground beetles (Carabidae) 399 

from temperature and body mass. This equation can be used to inform modeling approaches 400 

and will thereby help to better understand and predict the consequences of warming on 401 

species interactions, food web structures, species distribution patterns, and therefore 402 

ultimately survival of populations and communities.  403 

 404 
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