© 00 N o O, A WN -

R N G G
A OWODN-O

RGN
o O

—_—
~

W WWWNDNDNDNDNDNDNDDNDNDNDN =2
WN 2000 NOOOOPA,WN-0 OO0

w
D

35

36

37

38

39

Title: Predicting movement speed of beetles from body size and
temperature

Jordis F. Terlau'2, Ulrich Brose!-?, Thomas Boy!-?, Samraat Pawar®, Malin Pinsky*, Myriam
R. Hirt!?

1.

2.
3.
4.

EcoNetLab, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig,
Leipzig, Germany

Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
Department of Ecology, Evolution and Natural Resources, Rutgers University, New
Brunswick, NJ, USA

Running title: temperature-dependent movement speed

Keywords: exploratory speed, climate warming, image-based tracking, movement ecology,
ectotherms, thermal response, allometry

Type of article: Research

Corresponding author: Jordis F. Terlau, German Centre for Integrative Biodiversity
Research (iDiv) Halle-Jena-Leipzig, Puschstralle 4, 04103 Leipzig, Germany, +49 341
9733240, joerdis.terlau@gmail.com

E-mail addresses of co-authors:
Myriam R. Hirt: myriam.hirt@idiv.de
Thomas Boy: thomas.boy@posteo.de
Ulrich Brose: ulrich.brose@jidiv.de
Samraat Pawar: s.pawar@imperial.ac.uk
Malin Pinsky: malin.pinsky@rutgers.edu



40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Abstract

Movement facilitates and alters species interactions, the resulting food web structures,
species distribution patterns, community structures and survival of populations and
communities. In the light of global change, it is crucial to gain a general understanding of
how movement depends on traits and environmental conditions. Although insects and notably
Coleoptera represent the largest and a functionally important taxonomic group, we still know
little about their general movement capacities and how they respond to warming. Here, we
measured the exploratory speed of 125 individuals of eight carabid beetle species across
different temperatures and body masses using automated image-based tracking. The resulting
data revealed a power-law scaling relationship of average movement speed with body mass.
By additionally fitting a thermal performance curve to the data, we accounted for the
unimodal temperature response of movement speed. Thereby, we yielded a general allometric
and thermodynamic equation to predict exploratory speed from temperature and body mass.
This equation predicting temperature-dependent movement speed can be incorporated into
modeling approaches to predict trophic interactions or spatial movement patterns. Overall,
these findings will help improve our understanding of how temperature effects on movement
cascade from small to large spatial scales as well as from individual to population fitness and

survival across communities.



58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Background

Movement is the essential link of species to their environment and each other, and is
therefore vital to sustain individual as well as population survival and fitness (Goossens et al.,
2020; Nathan et al., 2008). On smaller scales, it mediates accessing spatially distributed or
mobile resources (Nathan et al., 2008) and is thus one of the major processes driving trophic
interactions (Hirt et al., 2017a, Hodges et al., 2014; Pawar et al., 2012; Schlégel et al., 2019).
On larger scales, movement is the elementary process that shapes the spatial distribution of
species (Jeltsch et al., 2013) and also connects populations, communities, and entire
ecosystems (Massol et al., 2011; Schligel et al., 2020). Current knowledge about the
movement patterns and processes of larger vertebrates is more comprehensive than ever
before (Dyer et al., 2023; Hirt et al., 2017a; Kays et al., 2015; Nathan et al., 2022). Contrary
and despite the immense importance of insects to our ecosystems highlighted by the
multitude of their diversity, abundance and functional roles (Foottit & Adler, 2017; Wilson,
1987), we still lack systematic information on their movement behavior and dynamics
(Kalinkat et al., 2015; Kissling et al., 2014).

This gap in our understanding of insect movement is partially caused by the
difficulties of applying tracking technologies to small organisms. Laboratory measurements
using camera tracking can help overcome these limitations. While they cannot be used to
assess natural movement patterns that depend on the environment like habitat structure or
microclimates (Terlau et al., 2023; Wallin & Ekbom, 1988), they can help gain a deepened
understanding about movement parameters and fundamental movement capacities. This
information can then be used to inform mechanistic models, which can support predictions of
potential movement patterns in natural environments (Hirt et al., 2018). Such movement
parameters include maneuverability or movement speed. Movement speed, for instance,

captures the movement intensity and its body-size dependence (Hirt et al., 2017a; Hirt et al.,



83  2017b; Iriarte-Diaz, 2002), which allows generalizations from a few measured species to the
84  multitude of other species in the wild. During attacks or escapes, animals move at maximum
85  speed. In contrast, they use a more constant and less demanding routine speed during
86  dispersal (travel speed; minimizing the energy costs) or habitat exploration (exploratory
87  speed; maximizing the energy gain) (Cloyed et al., 2021). The relative exploratory speed of
88 interacting species, for instance, is the major constraint on encounter and subsequent
89  consumption rates, and thus drives interaction strengths (Hodges et al., 2014; Pawar et al.,
90  2012).
91 Because many physiological and behavioral processes of insects such as metabolism
92  (Brown et al., 2004; Clarke, 2006; Clarke and Fraser, 2004 Ehnes et al., 2011; Gillooly et al.,
93  2001; Gudowska et al., 2017) or growth rates (Gangloff et al., 2015; Savage et al., 2004) are
94  strongly driven by ambient temperature, all higher level processes that arise from them such
95  as demography and movement are also strongly temperature-dependent (Frazier et al., 2006;
96  Hasan & Shafiq Ansari, 2016; Seebacher & Post, 2015). Yet, studies on the consequences of
97  climate warming on insect movement remain challenging and scarce compared to less diverse
98 taxa (Eggleton, 2020). Hitherto, studies on the thermal sensitivity of movement have with
99  some exceptions (Hurlbert et al. 2008) mostly focused on vertebrates like lizards or other
100  single species (Angilletta et al., 2007; Cecchetto et al., 2020; Clemente et al., 2009; Cloyed et
101 al., 2019), and we still lack information on these sensitivities across wider taxonomic and
102  body size ranges. A general thermal scaling relationship of movement speed across different
103  species and body sizes will, in the long term, help to gain a mechanistic understanding of how
104  terrestrial insects will respond to climate warming.
105 Here, we contribute to filling this gap by assessing the general allometric and thermal
106  response of exploratory speed of ground beetles. Coleoptera are the largest taxonomic group

107  of insects and occur in almost every ecosystem (Foottit & Adler, 2017). The group of
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Carabids holds an important role as predators, fulfilling, for instance, the ecosystem service
of biological control (Eggleton, 2020). We assessed the movement of 125 individuals of eight
Carabid beetle species varying by an order of magnitude in body size using automated image-
based tracking (Barnes et al., 2015; Dell et al., 2014). We hypothesized that exploratory
speed should follow a power-law relationship with body mass and show a unimodal response
to temperature. The main objective of this study was to yield a general allometric and

thermodynamic equation to predict exploratory speed from temperature and body mass.



116  Methods and materials

A

117

118  Figure 1: The experimental setup of the automated image-based tracking of beetles in an
119  environmental reach-in chamber. A) Sketch of the experimental setup. B) Sketch of an automated
120  image-based tracking sequence including x- and y-coordinates for each timestamp. C) Actual

121  experimental setup in an environmental reach-in chamber.

122

123 Study organisms and experimental design
124  We measured the thermal response of exploratory speed of 125 individuals of eight Central

125  European Carabid beetle species (Carabidae) in the laboratory using automated image-based
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tracking (Barnes et al., 2015; Dell et al., 2014). We collected the beetles in the surrounding
area of Leipzig, Saxony, Germany (51.2910° N, 12.3220° E and 51.2799° N, 12.4119° E)
during 2018-2020 using pitfall traps. Thereby, we obtained the following species for our
experiment: Carabus granulatus, Carabus nemoralis, Pterostichus cristatus, Pterostichus
melanarius, Abax parallelus, Nebria brevicollis, Harpalus affinis, and Anchomenus dorsalis
with body masses ranging from 10 mg (Anchomenus dorsalis) to 303 mg (Pterostichus
cristatus). As our main objective was quantifying a general allometric and thermal response
of movement speed, we grouped the species into body mass classes to get a representative
number of replicates across body masses (see Supplementary Tables S1-S3). However, this
approach inhibited species-specific analysis of thermal responses. We kept all species
separately in boxes (30 x 40 cm) filled with soil, leaves, and bark as habitat structure. The
boxes were kept in a room with daylight to maintain a natural circadian rhythm at an ambient
temperature of ~19°C. We fed beetles ad libitum with beetle jelly from a commercial supplier
and watered the boxes with a spray bottle. The individuals were kept for a maximum of one
week before measurements.

For the filming records, we used two reach-in environmental chambers in which we
placed circular acrylic-tubes of 490 mm diameter as arenas (Fig. 1). To create a non-uniform
background and to avoid a directional bias of moving beetles, we covered the sides with a
random black-white pattern. Additionally, we applied insect escape protection lacquer
(Polytetrafluorethen) on the first 4 cm of the acrylic tube to prevent the beetles from climbing
up the arena wall. We located a high-resolution camera (Prosilica GT 1920; Allied Vision;
1936 x 1454 pixel) orthogonally above the arena. The bottom of each arena was covered with
white paper (80 g/m?), which was exchanged every new day of recording or when a different
species was recorded. We tracked a maximum of three individuals per day and per

environmental chamber. To track the beetles, we used an open-source software application
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(Vimba-Viewer) using the C++ framework of the camera producer (Allied Vision) at a frame
rate of 38 pictures per seconds. The internal real time clock of the camera provided high
precision timestamps for every frame. We developed C++ applications and scripts for
extracting movement trajectories with real world coordinates and timestamps (Boy, 2022).
We analyzed the trajectory data, which consists of x-y-coordinates and time stamps using the
R-package trajr (McLean & Skowron Volponi, 2018). Prior experiments with non-moving
animals showed that artificial changes in position and direction may be recorded although the
beetle was inactive (Hirt et al., 2017b). To remove these spurious movement periods, we set
thresholds and excluded movement data if speeds were lower than 0.6 mm/s (start) and 0.3
mm/s (stop). Before starting a film recording session, we weighed each individual and kept
the beetles separately in small boxes with perforated lids and added beetle jelly to the boxes
to make sure that all beetles were in the same condition and well fed before starting the
measurements. Following an acclimation time of two hours in the environmental chamber at
the respective temperature, we released one single beetle into the arena per session. After a
time delay of ten minutes to account for the temporarily open doors of the climate chamber, a
one-hour film recording was initiated. We assume that a two hour acclimation time is
sufficient to provide reliable results in our experiment. If, however, longer acclimation times
would be needed, we can expect a slight underestimation of movement speed in our results.
We used a temperature gradient of 14 levels from 8 °C to 32 °C. This temperature range
was limited by the technical constraints of the environmental reach-in chamber and the high-
resolution camera and does therefore not capture very low temperatures like they occur in
nature (see Supplementary Table S5). However, the highest temperature level of 32°C still
meets realistic temperatures in the environment of species occurrences (Supplementary Table

S4). During the recording, we kept a constant temperature and took three separate records for
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every temperature level using different individuals. In total, we recorded movement, weight,

and temperature data for 125 individuals across eight species.

Analyses and statistics

To analyze the thermal response of movement speed, we fitted thermal performance curves
(TPC) to our data by applying the n1s multstart function from the rTPC package
(Padfield et al., 2021). Although different species will show variations in e.g. thermal optima,
our main goal here was to predict the average thermal response across our species. We
compared five different models included in this package, which we assumed as most relatable
to our movement data (Angilletta, 2000): Gaussian, Modified Gaussian, Quadratic, Pawar (a
modified Sharpe-Schoolfield equation; (Kontopoulos et al., 2018) and Weibull. We compared
these models by using the Akaike information criterion (AIC) to find the most parsimonious
model. Based on the best model fit, we chose the respective equation and incorporated an
additional power-law scaling with body mass (Hirt et al., 2017b), which yielded a final
equation for predicting the exploratory speed from body mass and temperature. We used the
nls function in R to fit the respective equation to our data.

Since we did not have sufficient individuals from all species to measure every species equally
often across all temperature levels, we aggregated them in size classes (Supplementary Table
S1-S3). Therefore, we could not test for species-specific responses or thermal optima. To
account for species-specific responses, we used a linear model to test how the residuals of the
general scaling model (exploratory speed depending on body mass and temperature, see
above) vary with species identities as well as their habitat preferences(see Supplementary

Table S1).
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All statistical analyses and calculations were performed using R 4.2.1 (R Core Team, 2022).
We used the following R-packages for the graphical presentation: ggplot2 (Wickham,

2009), grafify (Shenoy, 2021), and sjPlot (Liidecke, 2018).

Results

We measured movement speed of in total 125 individuals of ground beetles ranging between
a body mass of 10 mg and 303 mg with an average body mass of 105 mg. The measured
movement speed lay between 0.008 ms™ and 0.11 ms™!'. The data showed much variation
(Fig. 2), which we aimed to explain by allometric and temperature effects. Subsequently, we
carried out a sensitivity analysis on the residuals of this general scaling relationship to detect
indications of species-specific responses (e.g., species-specific habitat and also thermal
preferences).

The main goal of our study was to predict the general allometric and thermal response of
exploratory speed across the species of our experiment. The thermal performance models we
tested provided fairly similar fits to the data (Fig. 2B). AIC comparisons identified the Pawar
model (Kontopoulos et al., 2018) and the Weibull model as the most parsimonious models
(Table 1). We chose the Pawar model, a modified Sharpe-Schoolfield equation (frequently
used to quantify the thermal response of ecological processes; Schoolfield et al., 1981), with
the lowest AIC (delta AIC < 1.18) for all further analyses.

We modified the Pawar model (the modified Sharpe-Schoolfield equation; Kontopoulos et

al., 2018) by adding a body mass term, which yielded the following equation:
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describing how movement speed v [m s!] depends on body mass M [mg] and temperature T
(°C). Here, the intercept ay represents the movement speed at the reference temperature 7.r
(here: 15 °C) and b is the allometric exponent. E is the activation energy (eV), which controls
the rise of the curve up to the peak, Ej is the de-activation energy (eV), which sets the rate at

which movement speed decreases after the peak, k is the Boltzmann constant (8.617 - 107

eV K™), and Ty, is the optimum temperature at which movement speed is maximized (across
species). Note that species-specific temperature optima likely vary, but could not be
accurately predicted based on our data. Detailed information on the number of individuals per
species, respective body-mass levels and the number of measurements per species and

temperature treatment can be found in the Supplementary Tables S1-S3.
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Figure 2: The unimodal scaling of exploratory speed [ms™'] with temperature [°C] of carabid beetles
(n =125, number of species = 8). A) Five different thermal performance models included in the rTPC
package (Padfield et al., 2021) in comparison. B) The final selected model based on AIC comparison
(Table 2), a modified Sharpe-Schoolfield equation (pawar model, Kontopoulos et al., 2018, blue

curve). Gray curves show the other tested models in comparison.



241 Table 1:AIC comparison of five thermal performance models included in the rTPC package (Padfield
242  etal., 2021) for movement speed [ms™].

Model name AIC AAIC
Gaussian -591.13 11.75
Modified Gaussian -600.46 2.42
Quadratic -600.26 2.62
Weibull -601.70 1.18
Pawar -602.88 0

243

244  Table 2: Parameter values for equ. (1), the modified Sharpe-Schoolfield equation after Kontopoulos et
245  al. (2018) with an additional body-mass term.

Predictors variable Estimates std. Error CI p
intercept a 0.03 0.004 0.02 -0.04 <0.001
body mass exponent b 0.12 0.04 0.02-0.15 0.002
activation energy E 0.37 0.09 0.19-0.55 <0.001
deactivation energy Ey 3.11 1.33 0.41 -5.60 0.021
optimum temperature Top: 26.33 1.20 2422 -28.72  <0.001
Observations 125

246
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Figure 3: A) The predicted scaling of movement speed [ms™'] with temperature [°C] for three
different body masses [mg] (blue color scale) based on equ. (1). B) The predicted scaling of
movement speed [ms™'] with body mass [mg] for three different temperature levels [°C] (orange-dark

red color code).

To illustrate both temperature and body-size effects, we used our allometric and
thermodynamic equation to predict movement speed [ms™!] for different body masses [mg]
(across the temperature gradients) or at different temperature levels (across the body size
gradient) temperature levels [°C]. Our results demonstrate a continuous increase in
exploratory speed with body mass (Fig. 3B). Since a power law scaling with body mass with
an exponent less than one (i.e. b = 0.12 CI = 0.02 — 0.15) indicates that this increase is steeper
from small to medium species than from medium to large species, medium and large species
are at a given temperature quite similar in their exploratory speed (Fig. 3A, medium and dark
blue lines at a given temperature), whereas small species are much slower (Fig. 3A, light blue

line at a given temperature).

The scaling of exploratory speed with temperature exhibits a more complex unimodal pattern
(Fig. 3A). Speeds are increasing from low to intermediate temperatures (Fig. 3B, orange
versus red lines) but decreasing from intermediate to high temperatures (Fig. 3B, red versus
dark red lines). These differences are reflected in the model parameters with an activation
energy £ of 0.37 eV for the increasing part and a deactivation energy E; of 3.11 eV for the
decreasing part of the unimodal relationship (Table 2). Overall, this implies a steady increase
in exploratory speed with warming up to the optimum temperature that is followed by a sharp

decrease (Fig. 3A).

Subsequently, we carried out a sensitivity analysis using linear models to test how the
residuals of the general scaling model (Fig. 3, Table 2) depend either on species identities or

on their habitat preferences. Here, we tested whether the residuals for any group defined by



274

275

276

277

278

279

280

281
282
283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

either species identity (i.e. taxonomy) or habitat preference (i.e. species grouped by their
habitat preferences) deviate significantly from zero representing the model prediction. These
analyses did not show any significant effects of species identities (Supplementary Table S6,
Figure S1) or habitat preferences (Supplementary Tables S7, Figure S2). Overall, these
sensitivity analyses show that deviations of our empirical data points from our model

predictions cannot be explained by species identities or habitat preferences.

Discussion

Despite their abundance and functional importance, we still know little about the thermal
sensitivity of movement of insects. Here, we experimentally measured the movement of
differently-sized beetles across a temperature-gradient using image-based tracking (Barnes et
al., 2015; Dell et al., 2014). Thereby, we provide an allometric and thermodynamic model for
predicting exploratory speed from body size and temperature.

Similar to Hirt et al. (2017b) we found a power-law scaling of exploratory speed with
body mass with a slightly smaller allometric exponent (0.12 + 0.04 compared to 0.19 + 0.04;
Hirt et al., 2017b). To account for the temperature-dependence of movement speed
(Angilletta et al., 2007; Cecchetto et al., 2020; Cloyed et al., 2019), we fitted a thermal
performance curve to our data, which was best described by the modified Sharpe-Schoolfield
equation (Kontopoulos et al., 2018). While some of the variation in the measured speed data
finds an explanation in body mass effects (Fig. 3A) or temperature effects (Fig. 3B) that are
both accounted for by our fitted model (equation 1, Table 2), there is also unexplained
variation that is potentially related to species-specific responses. Analyses of effects resulting
from species and habitat preferences on residuals showed no significant effects

(Supplementary Tables S6-S7, Figures S1 + S2). This suggests that in our data set, species
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identities and habitat preferences do not contribute towards explaining variation in
exploratory speed after accounting for the effects of body mass and ambient temperature.
Nevertheless, we caution that larger datasets covering more species may find signatures of
species-specific effects. In particular, our sensitivity test for species-specific effects was
inspired by findings of shorter acclimation times for smaller animals also making larger
animals more sensitive to higher temperatures (Klockmann et al., 2017; Rohr et al., 2018).
Additionally, thermal performance generally depends on age (life-history stage), body size
and geographic location (Ohlberger, 2013). Since all individuals of our study were collected
within the same area around Leipzig (Germany), we can assume that the species in our study
should not differ much regarding adaptation to the geographic location in general, but rather
regarding their species-specific habitat preferences (Supplementary Table S1) and hence
respective microclimatic preferences (Baudier et al., 2015). As thermal responses generally
vary among species and even populations (Bestion et al., 2015; Moran et al., 2016;
Ohlberger, 2013), incorporating species-specific responses should be addressed in future
research employing individuals or species from different geographic origins and climatic
regimes in their habitats. Extending our approach across species from different biomes
would be important for global predictions of the consequences of warming for animal
movement.

Our general model relating animal exploratory speed to body mass and ambient
temperature has broad implications for ecological processes. Movement speed is a crucial
movement trait that strongly affects interactions, habitat connectivity, species distributions,
and ultimately survival capacities of animals. The allometric and thermodynamic dependency
of movement speed shown here has thus broad implications on small- and large-scale
processes by implying that (1) larger animals have higher movement rates and (2) higher

temperatures have variable effects on movement speed depending on the initial climatic
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conditions. While animals living in areas where they have not yet reached their optimal
temperature will respond with higher average movement speeds to warming, animals from
warmer climates that already live at or beyond their optimal temperature, will exhibit lower
average movement speeds.

On smaller scales, higher movement speed as induced by higher body sizes or partially
higher temperatures, should lead to higher encounter rates between predator and prey (Pawar
et al., 2012). These higher encounter rates in turn yield higher attack rates and ultimately
feeding rates (Rall et al., 2012). Thus, together with prey preferences and prey density,
movement speed is an important driver of interaction strengths and has direct consequences
for energy fluxes (i.e., energy consumption across trophic groups) within food webs and
therefore communities (Barnes et al., 2018; Brose et al., 2008). With changing environments
(e.g. due to climate warming), studies have found shifts in distribution patterns and habitat
use (Fartmann et al., 2021; Lenoir and Svenning, 2015; Sunday et al., 2012; van Beest et al.,
2012), which imply restructured food webs, including new as well as lost interaction links,
and therefore altered interaction structure and strength of a whole food web (Bartley et al.,
2019). The fact that both distribution shifts and consequently changes in species composition
as well as the resulting local interactions depend on movement capacities, highlights the
importance of understanding the trait-based response of movement to temperature to predict
future communities re-shuffled by climate change.

On larger scales, higher movement speeds should on average result in higher travel
distances of bigger species and thereby increase the connectivity of habitats and the linkage
to other populations, species, or resources (Hirt et al., 2018, Ryser et al., 2019). This habitat
connectivity could even increase under climate warming for species living in temperate
regions but be detrimentally disrupted in warmer or colder climates depending on the relative

temperature increase (Rantanen et al., 2022) and the thermal sensitivity of species (Angilletta
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et al., 2010; Dyer et al., 2023). Since anthropogenic global change also causes disturbances
such as habitat modification or fragmentation (Sage, 2020), our results suggests that under
future conditions, larger animals living in temperate environments will be capable of longer
travel distances to find new habitats and resources, whereas their movement capacity may
become more limited in warm (e.g., tropic or Mediterranean) environments, which has strong
consequences for their individual fitness and also survival of populations (Doherty et al.,
2021). However, trophic interactions not only play a crucial role for the survival of
individuals and populations, but also gene flow between populations, which is particularly
achieved by dispersal (Baguette et al., 2014). Overall, the unimodal response of movement
speed to warming will have opposing and cascading effects on individual fitness, species
interactions, food webs, and species distributions.
The negative effects of warming on movement speed, however, can also be mitigated in
nature, which cannot be captured under laboratory conditions like in our study. These coping
mechanisms include either reducing movement or seeking shelter (shadow) and thereby
lowering the overall energy loss (Kearney et al., 2009; Terlau et al., 2023) or shifting activity
periods (seasonal and diurnal). This, however, can potentially create activity mismatches
between trophic levels, hence imposing cascading effects across food webs (Seebacher &
Post, 2015), which highlights the importance of considering the combined effects of
temperature and habitat structure on movement speed and behavior in more complex
experimental settings or field studies. Our thermal and allometric scaling relationships can
serve as a baseline for these studies.

Since small invertebrates are hard to track and monitor, trait-based modeling approaches
can be a powerful tool to make predictions on the general effects of warming on invertebrate
movement. Integrating our equation in such models could enable predictions on trophic

interactions or spatial patterns. For instance, biological rates like metabolism and growth also
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show a temperature- and body-mass dependence. These processes interactively drive energy
gains via feeding and losses via metabolic expenditure and thus determine the energetic
capacity of animals. Regarding ongoing and fast proceeding climate change, it raises the
question how animals will energetically cope with increasing temperature and more often
heat extremes (Fischer & Knutti, 2015; IPCC, 2021). If, for instance, energy loss increases
faster than energy intake (i.e., feeding), this would create energetic discrepancies (Huey &
Kingsolver, 2019). Thus, a synthesis approach integrating physiological rates and movement
as a central process of species interactions may provide important insights in animal survival
capacities under climate warming. Therefore, however, it is important to measure the thermal
response of movement speed across a wider range of taxonomic groups, which would also
allow testing for differences due to taxonomic traits, mode of locomotion, diet or ecological
requirements. This would also include taxa from different climatic regions since we would
expect varying thermal responses depending on the initial climatic condition (Deutsch et al.,
2008; Dillon et al., 2010). Similar to other studies (e.g., Gibert et al., 2016), we were unable
to measure a temperature gradient covering the entire thermal performance gradient of all
species due to technical limitations. If future studies could extend this temperature range
further, it would improve our predictions, especially at the lower and upper critical

temperature limits.

Conclusions

Movement speed is an essential movement trait of animals shaping central ecological patterns
and processes, making it important to understand how it will be altered by global change
drivers such as climate warming. Although insects and Coleoptera in particular represent the
largest taxonomic group, we still know little about the effects of climate change on this huge

and ecologically important group. Our experimental approach provides a mathematical



399  equation for predicting movement speed of Central European ground beetles (Carabidae)
400  from temperature and body mass. This equation can be used to inform modeling approaches
401  and will thereby help to better understand and predict the consequences of warming on

402  species interactions, food web structures, species distribution patterns, and therefore

403  ultimately survival of populations and communities.
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