

1

The sizes of life

2

3 Eden W. Tekwa^{1,2*}, Katrina A. Catalano², Anna L. Bazzicalupo¹, Mary I. O'Connor¹, Malin L. Pinsky²

4

5 ¹Department of Zoology, University of British Columbia, Vancouver, BC, Canada.

6 ²Department of Ecology, Evolution, and Natural Resources, Rutgers University, NJ, USA.

7

8 *Corresponding author

9 E-mail: ewtekwa@gmail.com

10

1 **Abstract**

2 Recent research has revealed the diversity and biomass of life across ecosystems, but how that
3 biomass is distributed across body sizes of all living things remains unclear. We compile the present-day
4 global body size-biomass spectra for the terrestrial, marine, and subterranean realms. To achieve this
5 compilation, we pair existing and updated biomass estimates with previously uncatalogued body size
6 ranges across all free-living biological groups. These data show that many biological groups share similar
7 ranges of body sizes, and no single group dominates size ranges where cumulative biomass is highest.
8 We then propagate biomass and size uncertainties and provide statistical descriptions of body size-
9 biomass spectra across and within major habitat realms. Power laws show exponentially decreasing
10 abundance (exponent -0.9 ± 0.02 S.D., $R^2=0.97$) and nearly equal biomass (exponent 0.09 ± 0.01 , $R^2=0.56$)
11 across log size bins, which resemble previous aquatic size spectra results but with greater organismal
12 inclusivity and global coverage. In contrast, a bimodal Gaussian mixture model describes the biomass
13 pattern better ($R^2=0.86$) and suggests small ($\sim 10^{-15}$ g) and large ($\sim 10^7$ g) organisms outweigh other sizes
14 by one order magnitude (15 and 65 Gt versus ~ 1 Gt per log size). The results suggest that the global
15 body size-biomass relationships is bimodal, but substantial one-to-two orders-of-magnitude uncertainty
16 mean that additional data will be needed to clarify whether global-scale universal constraints or local
17 forces shape these patterns.

18 **Introduction**

19 Body size is a widely used metric in biodiversity, ecological, and evolutionary sciences because it
20 is understood to mechanistically link physical, physiological and demographic processes [1,2]. Organisms
21 on Earth range from 10^{-17} (*Nanoarchaeum equitans*) to 10^9 g (*Sequoiadendron giganteum*) in body size
22 when estimated as carbon weight. Body size representations within various taxa have been a major focus
23 in macroecology and biogeography. Such representations are called size spectra, with size-biomass
24 spectra being the cumulative biomass of selected organisms distributed across body size classes,
25 integrated over all individuals and taxa (i.e., not averaging over species). These spectra are also known
26 as biomass size spectra, which are related to size-abundance or normalized size-biomass spectra [3]
27 (see **Error! Reference source not found.** for summary of key terms).

28 Theories have attempted to predict and explain size-biomass spectra in terms of energy
29 availability and transfer, species interactions, metabolic scaling, and aquatic trophic structure [4–9]. Such
30 theories have been applied within limited taxonomic ranges, especially for the relationships between body
31 size and abundance in terrestrial mammalian herbivores [10], marine phytoplankton [11], cross-realm
32 producers [12], and marine trophic communities [4,9]. Within groups that share an energy source (not
33 necessarily with trophic links), energetic equivalence (equal energetic availability to all populations)
34 predicts a power law exponent of -0.75 for size-abundance or size-normalized biomass spectra (where
35 biomass is divided by the size class or bin width), or an exponent of 0.25 for size-biomass spectra [10,13]
36 (Table 1). However, empirical studies show that substantial residuals exist within groups and that the
37 exponent deviates across groups [14]. Across trophic levels, size-ordered predator-prey interactions
38 (especially in aquatic communities) can lead to a power law exponent of -1 or less for size-abundance or
39 normalized size-biomass spectra, which is equivalent to an exponent of 0 or less for size-biomass spectra
40 [15–17,8]. Beyond fundamental science, the power law exponents have also been considered as indices
41 of productivity among marine ecosystems [18]. Deviations from expected exponents can be used to
42 understand perturbations to ecosystems, such as inferring changing food web structure and fish biomass
43 due to fishing [3,19–21], or inferring changes to the real breadth of the energetic base in coral reef

44 systems [22]. Thus, size spectra are important for understanding biological and anthropogenic constraints
45 to life within biological communities.

46 **Table 1. Key terms.**

Statistic	Definition
Normalized biomass (B_N)	B normalized by the width of the body size class. For example, with width defined as one order of magnitude, $B_N=B/(10^{x+0.5}-10^{x-0.5})$ and $\log_{10}B_N=\log_{10}B-x-0.454$
Size-biomass spectra	$\log_{10}(B)$ per unit x
Normalized size-biomass spectra	$\log_{10}(B_N)$ per unit x
Size-abundance spectra	$\log_{10}(B/x)$ per unit x
Power law	2-parameter linear model on log-log scale (exponent is slope α or β)
Gaussian mixture distribution	$n \times 3$ -parameter model with n superimposed Gaussian distributions
Generalized extreme value distribution	3-parameter model for distributions with left or right-skew
Uniform distribution	2-parameter models specifying the same probability across a range from minimum to maximum
Truncated distribution	A distribution that specifies zero probability outside of minimum and maximum sizes

47 B is biomass [g], B_N is normalized biomass [unitless], and x is \log_{10} body size [g/g].

48
49 Despite this progress on power laws, important questions remain about whether small, medium,
50 or large organisms dominate standing biomass of life on Earth at the global scale [8,21,23]. Different
51 disciplines have proposed different biomass modes with or without reference to power laws. From a
52 microbiology or marine perspective, microbes appear to dominate life [9,24]. From the terrestrial
53 perspective, large plants dominate [25]. Each has a legitimate claim based on analysis of particular
54 ecosystems or sets of taxa, but these approaches also prevent a different and novel synthesis in which
55 traditionally excluded organisms may fit in. Empirical studies of size-biomass relationships have yet to
56 include both terrestrial producers and consumers, or both small and large marine producers. The
57 common phrase of bacteria-to-whale, meant to convey a complete marine size range [2,3,9], actually
58 leaves out macroalgae, seagrass, hard corals, and mangroves that have maximum sizes near that of blue
59 whales. Increased inclusivity could reveal deviations from previous theoretical assumptions about size-
60 structured trophic communities that lead to power law predictions. However, macroecological power laws
61 themselves first arose from empirical relationships [4,10,26,27], which only later inspired still-evolving
62 theoretical explanations [7,28]. The fact that some organisms, habitats, and parts of biological materials
63 are routinely excluded from macroecology suggests these entities are poorly understood and a larger

64 picture is missing. Revealing global patterns is a key step towards understanding universal constraints.
65 For example, metabolic and biochemical theories predict universal constraints that govern how biological
66 rates vary with body size and temperature across all organisms, which are largely independent of
67 between-organism interactions and habitat variations [28,29]. Inspiring and testing theories on biomass
68 distributions at biome scales will depend on assessing the current state of living things, but this empirical
69 exercise has so far been prevented by a lack of data synthesis on body size itself.

70 Our objective here is to compile the first global and taxonomically inclusive size-biomass spectra
71 of present-day terrestrial, marine, and subterranean realms. Specifically, we compile—for the first time—
72 data on body size range within major biological groups that include all free-living organisms. The groups
73 we use are not strictly taxonomically consistent, but they are functionally meaningful and follow the
74 convention of our main biomass data source [30]. We then offer statistical descriptions (Table 1) of the
75 global and habitat realm-specific spectra and their uncertainties. Our statistical tests focused on pattern
76 detection rather than on previous theoretical hypotheses because these do not directly apply to global
77 size-biomass spectra. Both the methodology of size spectra construction and statistical analyses serve as
78 guides for how to integrate a taxonomically inclusive set of data with substantial uncertainties. The
79 resulting catalogue of biomass data matched to body sizes stands as a record of present knowledge
80 about life on Earth. We then focus on assessing the quality of available data in order to guide future
81 research on causal mechanisms.

82

83 **Results**

84 The body sizes (Tables 2-4) that comprise the most biomass on Earth are the small (mainly
85 bacteria and archaea, 10^{-15} g per individual) and the large (mainly plants, 10^7 g), and these peaks (15 Gt
86 and 65 Gt per log size) outweighed intermediate sizes (10^{-11} g to 10^{-2} g, ~1 Gt) by an order of magnitude
87 (Fig 1A). The pattern is particularly clear on a linear biomass scale (Fig 1B). Biomass uncertainty
88 persisted across all sizes, with 95% confidence bounds being two orders of magnitude from the smallest
89 size to about 10 g and about one order of magnitude at larger sizes. Multiple unrelated groups exhibited

90 similar upper size limits, including forest plants, grassland plants, fungi, wild terrestrial mammals,
 91 mangroves, fish, hard corals, seagrass, and marine mammals that contribute to the cumulative biomass
 92 peak at the size of 10^7 g. All data and code are provided at
 93 <https://github.com/EWTekwa/BodySizeBiomass>.

94

95 **Fig 1. Global body size biomass spectrum.** **A.** Median carbon biomass (log scale) per log size as a
 96 function of body size with 95% confidence bounds (black dotted curves) cumulated across biological
 97 groups from 1000 bootstraps over within-group biomass and body size error distributions. Groups were
 98 organized from the least massive at the bottom to the most massive at the top for visibility on the log
 99 scale (ordered from top left to bottom right in color legend for group identity). Group biomasses are
 100 stacked so each group's biomass is represented by its upper y-axis location minus its lower y-axis
 101 location (not by the upper y-axis location alone). See Tables 2-4 for within-group biomass uncertainties,
 102 and S3 Table; for icon sources. **B.** Median biomass in linear biomass scale. Confidence bounds are not
 103 shown here because they are so large as to obscure the median patterns on the linear scale.

104 **Table 1. Terrestrial body sizes and biomasses.**

Group	Smallest	Largest	Min. body size (g C)	Median body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Producers							
Forest plants	<i>Salix herbacea</i> ^o	<i>Sequoiadendron giganteum</i>	10.8 [33,34]	1.13×10^6	2.24×10^9 [35]	337.5 [33]	1.2
Grassland plants	<i>Mibora minima</i>	<i>Holcus mollis</i>	3.75×10^{-3} [36]	4.32×10^6	1.34×10^9 [33]	112.5 [33]	1.2
Cryptogamic phototrophs	<i>Nostoc punctiforme</i>	<i>Dawsonia superba</i> [^]	1.15×10^{-11} [37]	2.72×10^{-10} ^a	87.5 [39]	2.5 ^b	2
Consumers							
Soil bacteria	<i>Actinobacteria</i> spp. ^o	<i>Proteobacteria</i> spp. ^o	7.37×10^{-16} [42]	2.86×10^{-14}	1.15×10^{-11} [42]	7.352	6
Soil archaea	<i>Crenarchaeota</i> spp. ^o	<i>Crenarchaeota</i> spp. ^o	7.37×10^{-16} [42]	2.91×10^{-14}	4.72×10^{-14} [42]	0.516	4
Soil protists	<i>Myamoeba</i> spp. ^o	<i>Dictyamoeba</i> spp. ^o	7.37×10^{-13} [43]	7.37×10^{-13}	5.03×10^{-11} [44]	1.605	4
Soil fungi	<i>Batrachochytrium dendrobatidis</i> ^o	<i>Armillaria ostoyae</i>	7.37×10^{-13} [45]	1.53×10^{-11}	9.70×10^6 [46]	11.802	3
Terrestrial arthropods	<i>Archegoletes longisetosus</i>	<i>Birgus latro</i>	1.50×10^{-5} [47]	2.00×10^{-4}	6.00×10^2 [48]	0.212	15

^a Among lichens, likely the most abundant among cryptogams, we estimate that 87% contain phycobionts (*Trebouxia* 8-21 μm)[38] and 13% contain cyanobionts (*Nostoc punctiforme* 5 μm) [37]. This composition was used to estimate the mean body size.

^b The total lichen biomass and uncertainty were obtained from [40]; to obtain cryptogamic phototrophs' biomass, the fungal portion of lichen was subtracted out. Twenty percent of fungi species occur in lichens [41], so 20% of the total fungal biomass was subtracted from the lichen biomass to get the cryptogamic phototrophs' biomass.

Humans	<i>Homo sapiens</i>	<i>Homo sapiens</i>	3.75×10^3 [49]	8.13×10^3	1.13×10^4 [49]	0.055	1.1
Livestock	<i>Gallus gallus domesticus</i>	<i>Bos taurus</i>	270 [30]	2.08×10^4	2.25×10^5 [30]	0.107	1.1
Wild land mammals	<i>Craseonycteris thonglongyai</i>	<i>Loxodonta africana</i>	0.038 [50]	2.53×10^3	1.65×10^6 [51]	0.003	4
Terrestrial nematodes	<i>Protohabditis hortulana</i> ^a	Unspecified species ^a	6.02×10^{-13} [52]	5.00×10^{-8}	7.74×10^{-8} [53]	0.002	10
Wild birds	<i>Mellisuga helena</i>	<i>Struthio camelus</i>	0.27 [54]	6.67	1.50×10^4 [55]	0.199	10
Annelids	<i>Dendrobaena mammalis</i> ^a	<i>Microchaetus rappi</i>	4.16×10^{-8} [14]	2.59×10^{-4}	2.25×10^2 [56]	0.006	10
Reptiles	<i>Brookseia</i> spp.	<i>Crocodylus porosus</i>	0.027 [57]	1.05×10^2	1.80×10^5 [58]	0.003	100
Amphibians	<i>Paedophryne amauensis</i>	<i>Andrias davidianus</i>	0.003 [59]	1.00	7.50×10^3 [60]	0.001 ^a	100

105 ^o indicates spherical bodies formula ([31] for microbes), and ^a indicates tubular bodies formula ([32] for
 106 microbes). Biomass and uncertainty are from [30] unless indicated.

^a Assumes amphibian habitat area is mainly rainforest, $5.50 \times 10^{12} \text{ m}^2$ [33], and 0.1 individual per m^2 (lower than [30]'s likely overestimate). Uncertainty is unknown, so copied from reptiles which is the taxon with the highest uncertainty.

Table 2. Marine body sizes.

Group	Smallest	Largest	Min. body size (g C)	Median body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Producers							
Mangroves	<i>Rhizophora mangle</i> ^o (dwarf)	<i>Rhizophora mangle</i> ^o (canopy)	4.06x10 ⁴ [61]	6.49x10 ⁵ ^a	2.88x10 ⁷ [61]	3.5 [63]	1.4
Seagrass	<i>Halophila decipiens</i> ^o	<i>Posidonia oceanica</i> ^o	2.63x10 ⁻³ [64]	7.53x10 ⁴ ^b	6.91x10 ⁷ [66,67]	0.11	10
Macroalgae	<i>Phaeophyceae</i> spp.	<i>Macrocystis pyrifera</i>	0.135 [68,69]	2.00 ^c	2.70x10 ³ [68,69]	0.14	10
Bacterial picophytoplankton	<i>Prochlorococcus</i> spp.	-	5.00x10 ⁻¹⁴ [70,71]	9.13x10 ⁻¹⁴ ^d	1.67x10 ⁻¹³ ^e	0.13	10
Green algae / protist picophytoplankton	<i>Ostreococcus tauri</i>	-	1.05x10 ⁻¹³ [70,72]	1.49x10 ⁻¹³ ^f	2.10x10 ⁻¹³ ^g	0.30	10
Diatoms	<i>Thalassiosira pseudonana</i>	<i>Ethmodiscus</i> spp.	2.4x10 ⁻¹¹ [73]	9.08x10 ⁻⁹ ^h	5.11x10 ⁻⁶ [73]	0.31	10
Phaeocystis	<i>Phaeocystis globosa</i> cell ^o	<i>Phaeocystis globosa</i> colony ^o	1.15x10 ⁻¹¹ [74]	5.24x10 ⁻⁴ ⁱ	0.047 [74]	0.28	10
Consumers							
Marine bacteria	<i>Pelagibacter ubique</i> ^o	<i>Thiomargarita namibiensis</i> ^o	5.50x10 ⁻¹⁶ [75]	1.32x10 ⁻¹⁴	1.10x10 ⁻⁴ [76]	1.327	1.8
Marine archaea	<i>Nanoarchaeum equitans</i>	<i>Staphylothermus marinus</i> ^o	1.47x10 ⁻¹⁷ [77]	1.22x10 ⁻¹⁴	9.90x10 ⁻¹¹ [78]	0.332	3
Marine protists	<i>Picomonas judraskeda</i> ^o	<i>Rhizarian</i> spp. ^o	1.44x10 ⁻¹² [79]	2.26x10 ⁻¹²	7.37x10 ⁻⁴ [80]	1.058	10
Marine arthropods	<i>Stygotantulus Stocki</i>	<i>Homarus americanus</i>	3.537x10 ⁻⁸ [47,48]	7.08x10 ⁻⁶	3.00x10 ³ [81]	0.940	10
Fish	<i>Paedocypris progenetica</i>	<i>Rhincodon typus</i>	1.50x10 ⁻⁴ [82]	0.627	4.63x10 ⁶ [83]	0.668	8
Molluscs	<i>Ammonicera minoralis</i>	<i>Mesonychoteuthis hamiltoni</i>	0.01 [84,85]	4.02x10 ⁻⁴	3.98x10 ⁴ [86–88]	0.182	10
Cnidaria	<i>Psammohydra nanna</i>	<i>Cyanea capillata</i>	1.00x10 ⁻⁵ [89,90]	5.09x10 ⁻³	1.00x10 ⁵ [89,91]	0.040	10
Hard corals	<i>Leptopsammia pruvoti</i> ^j	<i>Porites lutea</i>	6.41 [93,94]	1.54x10 ³ ^k	1.68x10 ⁷ [96]	0.653 ^l	4
Wild marine mammals	<i>Arctocephalus townsendi</i>	<i>Balaenoptera musculus</i>	4.05x10 ³ [97]	7.42x10 ⁴	2.99x10 ⁷ [83]	0.004	1.4
Marine nematodes	<i>Thalassomonhystera</i> spp.	<i>Platycornopsis</i> spp.	7.50x10 ⁻⁹ [98]	1.80x10 ⁻⁷	1.20x10 ⁻⁵ [98]	0.014	10
Marine fungi	<i>Malassezia restricta</i>	<i>Penicillium chrysogenum</i>	5.89x10 ⁻¹² [99,100]	1.39x10 ⁻¹¹	1.89x10 ⁻⁵ [101]	0.325	10

^a *Rhizophora mangle*, similar to estimates for other typical species [62]^b Based on genet size of *Zostera marina*, a widespread species [65] and carbon density [66].^c Based on *Laminaria saccharina*, a widespread species [69].^d Diameter corresponds to definition of picophytoplanktons (2 µm), and corresponding carbon content is based on conversion formulae from the smallest species.^e Maximum sizes are estimated to correspond to the same deviation from the median size as minimum sizes are (on log scale).^f Same method as for bacterial picophytoplankton.^g Same method as for bacterial picophytoplankton.^h Based on *Dactyliosolen fragilissimus* [73].ⁱ Mean size of colonies of *P. globosa* (2 mm) and *P. pouchetii* (1.5 mm), which are globally distributed and associated with bloom formation [74].^j Classified as "generalist coral" for size estimate [92].^k Mean colony size was estimated as the geometric mean of corallite or maximum colony sizes. Only maximum colony sizes were found across species and may contain several genets, hence the geometric mean. For each estimate, measures for four coral types were converted first to cubic volumes using 3D morphologies, assuming branching morphotype for "competitive" and "weedy" corals, and massive morphotype for "generalist" and "stress-tolerant" corals [92]. Each volume estimates were then converted to mass using type-specific skeletal densities [95], C per CaCO₃, and weighted by global coral cover contributions [94].^l Mean skeleton biomass was the geometric mean of two biomass estimates based on global coral cover having heights corresponding to either corallites or maximum colony sizes. Mean tissue biomass was 0.05 Gt with a 10 fold uncertainty [30]. Overall mean biomass was the sum of mean skeleton and tissue biomass, and overall uncertainty was obtained from assuming that the overall min/max correspond to the sum of min/max skeleton and tissue estimates.

108 ^o indicates spherical bodies formula ([31] for microbes). Biomass and uncertainty are from [30] unless
109 indicated.

110

111 **Table 3. Subterranean consumer body sizes.**

112

Group	Smallest body size	Largest body size	Min. body size (g C)	Median body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Subterranean bacteria	<i>Proteobacteria</i> spp.	<i>Desulforudis audaxviator</i>	9.81×10^{-16} [102]	2.1×10^{-14} [103]	5.90×10^{-12} [104]	18.9 ^a	3 ^b
Subterranean archaea	<i>Thermoproteus</i> spp.	<i>Miscellaneous Crenarchaeotal Group</i> spp.	2.49×10^{-15} [106]	2.1×10^{-14} [103]	9.22×10^{-14} [107]	8.1 ^c	3 ^d

113

114 Our inferred within-group size-biomass relationships (Fig 2) appear reasonable, with fish and
115 plant spectra being comparable to previous community-level results that are relatively well-studied
116 [8,108]. Total biomass in the smallest size classes ($< 10^{-16}$ g) is dominated by marine bacteria (Fig 2 AA).
117 The biomass peak around 10^{-15} g is dominated by subterranean bacteria (Fig 2 AH). Next, terrestrial fungi
118 top the size range of 10^{-12} g to 1 g (Fig 2 AG). Finally, grassland plants (1 g to 10 g, Fig 2 GI) and forest
119 plants (10^{-9} g to 10^9 g, Fig 2 GJ) make up almost all remaining biomass. We note that mangroves, hard
120 corals, macroalgae, and seagrass make up 45% of total marine biomass even though they have been
121 ignored in previous size spectra studies [2,3,9].

122

123 **Fig 2. Body size biomass spectra within groups.** Thick black curve is the median log biomass, and
124 black dotted curves are 95% confidence bounds from 1000 resamples from within-group size and
125 biomass uncertainties. Groups are organized from lowest to highest biomass (**A** to **AJ**). For reference, the
126 thin grey curve is the median cumulative log biomass of all groups.

127

^a Total subterranean microbial biomass was assumed to be the geometric mean of 23 to 31 PgC (which is 27 PgC) from [103]. 70% of microbial abundance is expected to be bacteria [105].

^b Range of total subterranean microbial cell count from four models in [103] was 1.6 to 11.2×10^{29} , with a geometric mean of 4.2×10^{29} . This range corresponds to a three-fold uncertainty, which is similar to bacteria and archaea groups in other habitat realms.

^c 30% of microbial abundance is expected to be archaea [105]. See note for bacterial biomass.

^d Same as uncertainty for subterranean bacteria.

128 Terrestrial and marine spectra are different. Large body sizes dominate on land and across
129 habitat realms, while the marine spectrum is roughly even across sizes (Fig 3). Marine organisms may
130 only contribute significantly to the global biomass spectrum at the size range of 10^{-12} g to 10^{-3} g and below
131 10^{-16} g. Marine biomass is overall likely dwarfed by terrestrial and subterranean biomass, though there is
132 higher uncertainty in total biomass across size classes in the marine realm when compared to the
133 terrestrial realm.

134

135 **Fig 3. Body size biomass spectra by habitat realms.** See Fig 1 caption for description. **A.** Terrestrial.
136 **B.** Marine. Subterranean prokaryotes are excluded. Thin grey curves are the median cumulative log
137 biomass of the global biome.

138

139 Linear regression of log biomass on log body size indicates a global power exponent β of
140 0.086 ± 0.001 (s.d. across bootstraps) with a mean R^2 of 0.56 (Fig 4 A). For the terrestrial realm, we
141 obtained a similar β of 0.100 ± 0.008 with a mean R^2 of 0.66 (Fig 4 F). These results show that biomass
142 increases with size. Even though the variances explained are high, these power laws fail at the small size
143 range, with confidence bounds missing the size class with the most biomass, filled by microbes. For the
144 marine realm we obtained a much lower β of 0.019 ± 0.005 with a mean R^2 of 0.11, indicating a similar
145 biomass across log size bins (Fig 4 K).

146 The overall and terrestrial spectra show similar small mean power law exponents β (0.051 to
147 0.086 and 0.047 to 0.100 respectively), while the marine spectrum has an effectively zero β (-0.007 to
148 0.022) across choices of within group truncation methods, use of ramets (physiological individuals)
149 instead of genets (colonies of genetically identical individuals) as body sizes, and exclusion of
150 metabolically inactive biomass like subterranean microbes (Table 4, S1 Fig). If the linear regressions
151 were performed on log size-log abundance instead (equivalent to normalized size-biomass spectra), we
152 would obtain exponents α of -0.90 ± 0.02 ($R^2=0.98$), -0.80 ± 0.05 ($R^2=0.88$), and -0.96 ± 0.03 ($R^2=0.98$),
153 which are approximately $\beta-1$ as abundance is biomass divided by size (but not exactly because the data,
154 not the mean exponents, were directly transformed, S2 Fig). As the inflated R^2 suggest, the

155 transformation from biomass to abundance may lead us to conclude that there is roughly equal biomass
156 across all sizes (or slightly higher at large sizes on land), and there are little deviations visible from the
157 power laws (S2 Fig). In comparison, the size-biomass spectra (Fig 4) are roughly detrended versions of
158 size-abundance, with the -1 slope between size and abundance being the “trivial” trend on top of which
159 both linear (power laws) and nonlinear (multimodal) patterns emerge.

160

161 **Fig 4. Regression analyses.** Rows represent habitat realms (**A** to **E**: all realms, **F** to **J**: terrestrial, **K** to **O**:
162 marine). Columns represent regression model types: (**A**, **F**, **K**: linear, **B**, **G**, **L**: Gaussian, **C**, **H**, **M**:
163 Gaussian mixture 2, **D**, **I**, **N**: Gaussian mixture 3, **E**, **J**, **O**: Gaussian mixture 4). Grey curves represent
164 95% confidence intervals of the data, and blue curves represent 95% confidence intervals of the model
165 from 1000 bootstraps. For linear models, regression slopes are mean power exponents \pm standard
166 deviations across bootstraps. R^2 and AICc scores are means \pm standard deviations across 1000
167 bootstraps.

168 **Table 4. Size-biomass power law exponents across realms and assumptions.** Assumptions
169 correspond to sensitive analyses plotted in S1 Fig. Exponents and R^2 result from 1000 bootstrapped
170 linear regressions of log biomass on log size.

Realm Assumptions	β exponent (\pm bootstrap S.D.)			R^2 (\pm bootstrap S.D.)		
	All	Terrestrial	Marine	All	Terrestrial	Marine
A. All free-living, body size cutoff at $-2/+0$ \log_{10} of reported (base model)	0.086 \pm 0.013	0.100 \pm 0.008	0.016 \pm 0.005	0.56 \pm 0.06	0.66 \pm 0.10	0.08 \pm 0.02
B. All free-living, body size cutoff at $\pm 1 \log_{10}$ of reported	0.082 \pm 0.007	0.079 \pm 0.007	0.019 \pm 0.005	0.40 \pm 0.08	0.45 \pm 0.11	0.05 \pm 0.03
C. All free-living, body size cutoff at $\pm 0 \log_{10}$ of reported	0.082 \pm 0.013	0.087 \pm 0.017	0.020 \pm 0.002	0.55 \pm 0.06	0.70 \pm 0.07	0.13 \pm 0.04
D. Ramet size definition, body size cutoff at $-2/+0 \log_{10}$ of reported	0.083 \pm 0.012	0.097 \pm 0.008	0.016 \pm 0.005	0.58 \pm 0.07	0.66 \pm 0.11	0.09 \pm 0.02
E. Metabolically active mass only, body size cutoff at $-2/+0 \log_{10}$ of reported	0.078 \pm 0.016	0.079 \pm 0.010	-0.009 \pm 0.006	0.68 \pm 0.09	0.58 \pm 0.13	0.05 \pm 0.03

171

172 Across terrestrial, marine, and subterranean (under both land and sea) organisms, there is a
173 consistent \log_{10} ratio of maximum to minimum size (size range) across all groups regardless of median
174 size (slope=0, p=0.99), with a mean ratio of 7.0 ± 4.2 (S.D.). In other words, as mean size increases, size
175 range also increases with a power law exponent of 0 (S3 Fig). This supports the view that the non-

176 normalized size-biomass spectra are an appropriate way to investigate representation across size, in
177 addition to the statistical reasons outlined above.

178 Gaussian mixture models capable of multiple biomass modes reveal decreasing AICc scores with
179 increasing number of Gaussian components overall and within realms, indicating better statistical
180 descriptions than power laws (linear regressions) (Fig 4 B-E, G-J, L-O). However, visual inspection
181 suggests the size-biomass relationships are well described by two mixture components, and further
182 complexities appear hard to substantiate given the spectral uncertainty and variations in AICc across
183 bootstraps (Fig 4 C, H, M). These two-mode regressions explain much more of the data variation
184 ($R^2=0.86$, 0.84, and 0.56 for all realms, terrestrial, and marine respectively) than power laws, the main
185 difference being the ability to identify both small and large size-biomass modes. These results indicate
186 two size modes are important and useful description of the global biomass spectra, beyond simple power
187 laws.

188

189 **Discussion**

190 We performed a novel synthesis of the mass of all life in the biosphere, revealing size-biomass
191 patterns that contain features reminiscent of published results [4,8,9,20,21], but also new features
192 attributable to a greater taxonomic and error inclusion than previous efforts. Our three major biological
193 findings were: 1.) lower and upper size limits were shared by diverse organisms, and these extreme sizes
194 appear to contain most of the biomass on Earth; 2.) there was relatively consistent biomass across log
195 body size classes, described by power law exponents near zero; and 3.) there was a greater proportion of
196 total biomass on land concentrated in large organisms when compared to the ocean. Methodologically,
197 we found that analyses relating log-biomass to log-size bins across all organisms (rather than size-
198 abundance or normalized size-abundance), while retaining uncertainties in both size and biomass,
199 revealed the most nuanced patterns.

200 The first pattern indicates near-universal lower and upper size limits where the highest biomass
201 accumulates. It is well-known that bacteria and archaea would share the lower size limit of all living things

202 at around 10^{-17} to 10^{-16} g. More surprisingly, multiple producer and consumer groups on land and in the
203 sea coincide with maximum body sizes between 10^7 and 10^9 g – a relatively narrow range compared to
204 the 26 orders of magnitude spanning all free-living things – including such diverse organisms as
205 *Sequoiadendron giganteum*, *Holcus mollis*, *Armillaria ostoyae*, *Rhizophora mangleo*, *Posidonia*
206 *oceanicao*, *Porites lutea*, and *Balaenoptera musculus*. This coincidence suggests an underlying upper
207 size constraint, but multiple mechanisms may simply coincide [109,110]. Gaussian mixtures with two
208 components describe size-biomass spectra better than power laws across-realm and within terrestrial and
209 marine realms, again showing that the lower and upper size limits across all free-living things are also
210 modes where biomass is most concentrated. While our mean estimates indicate these modes contain
211 roughly one order magnitude more biomass per log size than intermediate body sizes, uncertainty in
212 biomass was consistently higher than this magnitude, indicating that the data is too poorly resolved to
213 unequivocally support the bimodal pattern.

214 The second pattern indicates similar biomass across a large size range (a zero power law
215 exponent explaining how biomass varies with body size). This is highly consistent with size spectra
216 documented for aquatic ecosystems or within some taxonomic groups [4,10,13,28], which supports
217 metabolic, competitive, and trophic explanations [17,28]. However, unlike previous studies, we included
218 microbes, large producers, and other traditionally excluded marine groups summing to 45% of total
219 marine biomass [2,3,9]., and propagated both biomass and size uncertainties. The fact that a near-zero
220 exponent still persisted across all habitat realms and analytical assumptions is surprising because our
221 global-scale patterns are not likely shaped by interactive forces such as trophic or competitive interactions
222 previously proposed to cause near-zero exponents [17]. We found some evidence for bimodality that
223 diverged from power laws, but large uncertainties prevent clear conclusions about whether or why such
224 non-linear patterns occur.

225 The third finding, that biomass in the ocean is somewhat more evenly distributed across size
226 classes than on land offers clues to a future theoretical synthesis. The marine realm exhibits trophic
227 positions roughly determined by body size, thus the marine spectrum conforms closer to a trophic-
228 mediated uniform log-log size-biomass expectation [21,28]. Biophysics and ecology – competition for

229 nutrients - explain why primary producers are small in the ocean versus large on land [4,111,112].
230 However, this narrative overlooks the striking similarities between the two realms. Large primary
231 producers that also provide physical structures to ecosystems dominate both land and sea (grass, tree,
232 mangroves, corals, seagrass and kelps). Despite their large biomass, however, we note that large marine
233 primary producers are restricted to shallow seas in which access to light and nutrients in the sediment
234 create a biophysical environment part way between ocean and land, do not dominate all marine
235 ecosystems (e.g., pelagic), and may be considered its own realm. In addition, excluding "metabolically
236 inactive" material such as wood, subterranean microbes, and skeleton produced by living corals would
237 flatten the size-biomass spectra globally and in both terrestrial and marine realms (closer to $\beta=0$, Table
238 4), but without erasing the apparent global bimodality and differences across realms (S1 Fig D). The
239 causes of size-biomass differences in different habitat realms remain to be explored.

240 Together, the findings of universal size limits possibly coinciding with a bimodal biomass
241 distribution, overall similar biomass across sizes, and differences between habitat realms suggest
242 possible roles for both universal and local explanations, depending on which feature of size-biomass
243 spectra we focus on. Previously unexplored universal constraints, perhaps similar to known biochemical
244 [29] or spatial-cellular mechanisms [113], can conceivably explain size limits and multiple high-biomass
245 modes at different sizes, but these constraints may be modified or overwritten by local interactions
246 between different organisms at finer spatial scales. The relative strengths of universal versus local
247 constraints may be partially understood by comparing size-biomass spectra and their uncertainties
248 across-realm versus within-realm. For instance, if the multiple modes observed across-realm are shared
249 by different realms, then spectral uncertainties should be lower across-realm because of more data (lower
250 observation error and greater taxonomic coverage [114,115]) and universal constraints may be
251 responsible. On the other hand, if different realms contribute different size modes, then spectral
252 uncertainties should be higher for the across-realm spectrum because of higher biological variance,
253 supporting the hypothesis that local constraints likely shape the across-realm pattern. However, this
254 reduction in uncertainties at smaller scales is only detectable if sample coverage does not drastically
255 decrease. In our analyses, some size modes coincide across all realms, leaving for the possibilities of
256 both universal and local constraints. In addition, the across-realm data exhibits narrower confidence

257 bounds and a stronger signal of bimodality than the terrestrial realm alone (Fig 4 C, H, M), and even more
258 so when compared to the relatively hard-to-sample marine realm alone, because of higher aggregate
259 data availability. These mode overlaps and uncertainty patterns indicate that universal constraints may
260 strongly shape size-biomass spectra everywhere in similar ways, but this impression may also be due to
261 a lack of data.

262 Our study shows that body size biomass spectra include substantial uncertainties. Within-group
263 biomass uncertainties are high among some taxa, especially in microbes [30]. Data and synthesis of
264 within and between-study uncertainties on biomass that we base our study on remain crude across
265 groups [30] but are consistent with estimates from independent studies on plant and fish [8,108,116].
266 [116]. We have also filled the important gaps of marine habitat builders [40,94,92,63] and incorporated
267 latest estimates for subterranean microbes [103,117]. Definitions of body size (ramets vs. genets), mass
268 (with vs. without metabolically inactive components like wood, skeleton, and subterranean microbes), and
269 realm (mangroves being marine, terrestrial, or partial) remain open for debate. Sensitivity analyses of
270 these variations on cumulative size-biomass spectra show crude patterns like power laws are consistent,
271 but nuances like the location of size-biomass peaks are uncertain. Our methodology was designed to
272 minimize biases and propagated different sources of uncertainty. Indeed, this approach identified that
273 large uncertainty persists through all sizes. In contrast, most previous macroecological studies have
274 assumed certainty in minimum and maximum sizes (size classes) instead of propagating size error
275 [4,7,12,118,119,9]. This assumption would have resulted in nearly uniform biomass distributions across
276 log sizes within biological groups, which though did not affect mean power law parameter estimates,
277 severely underestimated biomass uncertainty particularly at large sizes. Intuition tells us we are nowhere
278 near as certain about where biomass is concentrated at large sizes (1.2-fold uncertainty at sizes 10 to 10⁹
279 g assuming near-uniform within-group distributions in S1 Fig B, which is just the total biomass uncertainty
280 for plants independent of size). Error propagations in both size and biomass, as well as flexible within-
281 group size-biomass distributions rather than strong assumptions like uniformity or a particular skew (like
282 power law, Gaussian, or lognormal), result in ~10 fold uncertainty at the same size range (Fig 1). Given
283 current knowledge on how size range varies with size within biological groups and how biomass varies
284 across sizes, we recommend studying the relationship between log-biomass and log-size (i.e. size-

285 biomass spectra) using both power laws and non-linear statistics such as Gaussian mixtures. Our results
286 highlight as much the current knowledge about the Earth's biosphere as it does potential gaps in
287 observation. For instance, missing observations in specific size classes will tend to create an impression
288 of multimodality even if in reality there is a continuum of biomass across sizes. Multiple within or between-
289 study biomass estimates for particular biological groups may not be spatially independent and thus not
290 representative, which can lead to an underestimation of uncertainty and bias in expected total biomass.
291 However, we would not know what these uncertainties and biases are without more sampling. In light of
292 these limitations, uncertainties of our knowledge of size-biomass spectra were likely underestimated (but
293 to a less severe degree than other macroecological studies [4,7,12,118,28,119,9]), yet even these
294 optimistic estimates reveal how little we know about our global biosphere. Quantifying uncertainties while
295 identifying knowledge gaps remain priorities for macroecology [120].

296 The state and change of size-biomass spectra should be an urgent biodiversity assessment
297 objective and a fertile ground for fundamental theories. The massive data requirement to conduct a more
298 detailed spectral survey may resemble modern cosmology and its collaborative search for patterns in
299 matter distribution [121]. Our results provide a first crude roadmap for what patterns may exist, but they
300 will likely drastically change if size-biomass spectra become targets for research programs. Moving
301 forward, macroecology should embrace taxonomic inclusivity and unexplored scales that defy existing
302 explanations.

303

304 **Materials and Methods**

305 **Biomass Data.** To compile the global aggregate body size biomass spectrum among biological groups
306 defined by habitat and taxonomy, we used global biomass (gigatons [Gt] in carbon content) assessments
307 and minimum, median, and maximum body sizes (grams [g] in carbon content) within groups (Tables 2-
308 4). We started with the most comprehensive existing synthesis of global biomass estimates, which
309 incorporate uncertainties within and between multiple studies [30]. We followed the biological grouping in
310 Bar-On's database [30], which is not at a consistent taxonomic level but instead reflect the highest

311 resolution at which a biomass estimate is available and comparable to other groups. Bar-On et al. drew
312 from hundreds of studies that reported either biomass per sampled area or global extrapolations. The
313 biomass per sampled area data was extrapolated by Bar-On et al. to the global scale based on the spatial
314 distribution of environmental variables such as temperature and habitat type (akin to species distribution
315 models but at a higher taxonomic level). The best estimates were obtained from the geometric mean of
316 multiple data sources within group, and within- and between-study uncertainties were propagated (S4 Fig;
317 see Bar-On et al.'s supplementary). We recognize that estimates of mean biomass and uncertainty can
318 likely be improved for all groups, but this is not the main goal of our paper. Instead, we complemented
319 Bar-On's database only when biological groups with potentially high biomass were missing or clearly
320 outdated, including cryptogamic phototrophs [40], hard corals [94,92], mangroves [63], and subterranean
321 prokaryotes [103,117]. We placed mangroves in the marine realm because they live in coastal salt water,
322 support a high diversity of marine fish, and are considered an integral part of blue carbon accounting
323 [61,63,122]. Details for these new estimates are described in the footnotes of Tables 2-4. For some
324 biological groups, new and potentially relevant data has appeared after Bar-On's publication. However,
325 these studies cataloged only biomass by species without assessing their contributions to overall group
326 biomass (e.g., bird [123] and mammals [124]), did not directly address present-day biomass (e.g., fish
327 [125]), or were nearly identical to Bar-On's original estimates (e.g., terrestrial plants [116]). We included
328 the plant woody material and coral skeleton produced by a living individual as part of biomass in our
329 primary analysis, as was done in a previous global biomass synthesis [30]. This approach is consistent
330 with the idea that all biomass regardless of metabolic status contributes to ecosystem functioning, though
331 we also explored removing this biomass for sensitivity analyses and for future investigations.

332 **Body Size Data.** Size was defined as the carbon content (grams) of a unicellular or multicellular
333 organism. Defining an organism is not entirely straightforward for clonal life forms like grasses, corals,
334 and fungi. Here, we used genets as our primary definition but also explore the consequences of using
335 ramets to measure body size. Genet is a colony of genetically identical ramets in a location from a single
336 parent, whereas a ramet is a physiologically distinguishable individual. Genet is a widely accepted
337 functional definition of a biological unit because genetically identical cell agglomerates function as
338 coherent units and actively share resources, and often seem like separate organisms only because the

339 connecting tissues are invisible to us above the substrate [126,127,67]. We collected minimum, median,
340 and maximum genet sizes from a literature search (Tables 2-4). Three points for biomass distribution
341 within each group is minimalistic but, given our current knowledge of most groups, there are few other
342 reliable size data to serve as additional reference points across each biological group. In the literature,
343 mean sizes are often reported without specifying the species while assuming a log-normal size-biomass
344 distribution [30], so we can record these mean sizes as median size in our dataset without
345 transformations. In cases where no mean or median sizes were reported in [30], we used sizes
346 mentioned in the literature as qualitatively representative species (those mentioned as most “common” or
347 “widespread”), which are likely closer to the median rather than the mean size, given no a priori
348 knowledge of the distribution. We used sizes at maturity because this is likely where biomass is
349 concentrated within species [21], and because data are not available for most taxa on the contribution of
350 spore or juvenile stages. However, our choices of body size cutoffs in subsequent estimates of within-
351 group size-biomass spectra can approximate the biomass share of these immature sizes.

352 We converted all size observations to an estimate of mass in terms of carbon. The body sizes of
353 some species were reported in units of grams carbon, but for many species we needed to extrapolate
354 from wet or dry mass. When size estimates in the literature were reported in wet mass, we first searched
355 the literature for a species-specific wet weight to grams carbon conversion. When a species-specific
356 conversion was not available, we used the conversion from the closest relative within the taxon (see
357 online repository tables). When taxon-specific conversions were not available, we assumed 30% dry
358 mass per wet mass unit, and 50% carbon per dry mass unit following previous conventions [30]. In some
359 cases, body size was reported in units of length (particularly among annelids, nematodes, and fishes).
360 For these taxa, we found existing length to weight conversions for the species or the closest relative
361 within the taxon. If body size was reported in diameter, as was the case for most unicellular species, we
362 found the volume assuming that the organism was either spherical [31] or tubular [32], and then found
363 existing biovolume to biomass conversions for the species or the closest relative within the taxon. For
364 hard corals, since each corallite or colony is often tightly packed among other units, we estimated that
365 volume as the cube of the reported diameter. While some of these assumptions may introduce size errors
366 that we do not explicitly track in our uncertainty analyses, the different plausible conversion factors are

367 within an order of magnitude. This error magnitude is much smaller than the size ranges estimated for
368 each biological group based on the uncertainties that we did track (Fig 2).

369 We excluded from our body size (dry carbon mass) any non-free-living disease organisms, which
370 are mainly found within trematode, nematode, virus, bacterial, and fungal groups. Disease organisms
371 tend to represent extreme body sizes within their groups and may have been double counted as host
372 biomass, which present a special challenge to estimating within-group size-biomass distributions that we
373 do not address here. It is likely that the total biomass of disease organisms is low both within hosts (3% or
374 less) and together as a group (similar to wild birds, the second lowest biomass among free-living groups)
375 [24,128] and thus should not appreciably affect the cross-taxa spectrum, even though parasites and
376 microbiome-associated organisms may have disproportionate effects on the biomass of other organisms.

377 To determine how biomass should be tallied by size class, we assessed how a group's body size
378 (mass) range (as directly observed from data) is related to median body size. A group's size range
379 represents an aspect of biological variation within which organisms can be considered similar. If groups
380 with larger sizes vary in size by the same magnitude (rather than same order of magnitude) as groups
381 with smaller sizes (e.g., group #1 contains 1-10g organisms, group #2 contains 1001g-1010g organisms),
382 then tallying biomass by log size bins would group together increasingly different organisms at large
383 median sizes. This is the rationale for normalized size-biomass, which divides the measured biomass of a
384 size class by the class's presumably artificial size range [8]. Conversely, if groups' size range increases
385 as a power function of median size, then larger size classes conceivably contain larger size variations
386 that represent similar organisms. In this case normalization does not seem necessary on biological basis,
387 and the size-biomass spectrum relating log biomass to log size, as often assumed [129], is natural. We
388 performed a linear regression of the ratio of \log_{10} maximum size to \log_{10} minimum size (from known
389 species) on \log_{10} median size across biological groups. A slope (power exponent) of 0 would support the
390 use of size-biomass spectra without normalization.

391 **Within-Group Size-Biomass Spectra.** We used the truncated generalized extreme value (GEV)
392 distribution to infer the body size-biomass distribution (with size on a log scale) within biological groups
393 (see S4 Fig for examples). The probability distribution function for biomass $y(x)$ in gigatonnes was written

394 in term of log size x , with B being the total biomass of the group, and the three parameters μ , σ , and ξ
395 specifying the location, scale, and shape, respectively:

396
$$y(x) = B \frac{1}{\sigma} t(z)^{\xi+1} \exp(-t(x)) \quad (1)$$

397
$$t(x) = \begin{cases} \left(1 + \xi \left(\frac{x-\mu}{\sigma}\right)\right)^{-1/\xi} & \text{if } \xi \neq 0 \\ \exp\left(\frac{-(x-\mu)}{\sigma}\right) & \text{if } \xi = 0 \end{cases} \quad (2)$$

398 We chose the GEV distribution because it is flexible, encompassing previously proposed body size-
399 biomass relationships outlined below. Cross-taxa size-biomass relationships are often described using
400 power laws, with positive [10,13] or negative [15–17,8] exponents resulting in extremely left or right-
401 skewed distributions (where the body size with the maximum biomass is at the end of the size range). For
402 plant communities where community-level size-biomass relationships are better documented than other
403 groups, the right-skewed Weibull distribution was used [108], which is a special case of the GEV. On the
404 other hand, empirical studies on size-species frequency distributions, though not easily translatable to
405 size-biomass spectra (except when all species have equal biomass), exhibit dome-shaped [130] and
406 becomes less consistently right-skewed as one descends into finer taxonomic classifications [21,131],
407 which are possibilities for size-biomass spectra that cannot be captured by power laws. At the extreme,
408 ontogeny within many species leads to a greater total biomass for large adults than for small larvae (left
409 skew) [21]. The possibilities of both left and right skews in addition to nonlinearity make standard
410 distributions like lognormal, exponential, and gamma inappropriate because each only produces one type
411 of skew. We used truncation because, without it, continuous distributions would typically imply finite
412 biomass at unrealistic body sizes, especially for groups with high total biomass (e.g., bacteria having finite
413 biomass at the size of trees). We also renormalized the distribution to retain the total biomass under the
414 curve. Other similar distributions such as skew normal and extreme value can also be used, but they
415 cannot be meaningfully distinguished from GEV because of the paucity of data, nor favored for
416 mechanistic reasons because of a lack of theories on size-biomass relationships.

417 Two steps were involved in generating a bootstrapped estimate of median size-biomass spectra
418 per group. We first interpolate probability distributions (Eqs. 1 and 2) to three observed reference sizes

419 for each organismal group compiled from the literature: minimum, median, and maximum sizes (Tables
420 S1-S3). This fit was achieved by minimizing the sum of squares of the residuals between the three
421 observed reference (log) sizes and the 0.05th, 50th, and 99.95th percentiles of the truncated generalized
422 extreme value distribution. The probability distribution thus placed close to 99.9% of the biomass within
423 the reported size range. Truncation was applied at two orders of magnitude below the reported minimum
424 size, but not to the maximum size, to accommodate uncertainties associated with undetected small
425 species and immature individuals. This assumption is compatible with empirical evidence across marine
426 and terrestrial life with offspring being around two orders of magnitude smaller than adults in mass
427 [132,133]. For microbes, offspring length (L) is around 0.2 to 0.5 times of the parent among model
428 organisms [134]. Since volume (proportional to mass) is approximately $4/3 \pi L^3$ [31], offspring mass is one
429 to two orders of magnitude smaller than parent mass. We note that *Pseudomonas aeruginosa*, one of the
430 best-known bacteria that live in a wide range of human and natural habitats, have offspring that are two
431 orders of magnitude smaller than parents in mass [135]. The upper size limits are likely more accurate
432 than the lower size limits because larger species are easier to observe; in addition, the upper limits are
433 not influenced by ontogeny, hence the asymmetry in truncation. We explored different truncation amounts
434 to both lower and upper limits in sensitivity tests.

435 In the second step, we used the initial distribution fit from step one to represent our uncertainty in
436 where the median biomass occurs within groups (S4 Fig). A probability distribution is by definition the
437 uncertainty in a parameter's value; in this case the parameter is the median size because it is the most
438 uncertain among the three datapoints that was fitted to data. We then resampled 1000 sets of these
439 within-group median body size and biomass, keeping minimum and maximum sizes constant, and re-fit
440 the truncated generalized extreme value distribution each time to generate bootstrapped size-biomass
441 relationships. This way, even in cases where biomass estimates have low uncertainty, such as in
442 grassland plants, uncertainty in median size leads to large uncertainty in biomass at each possible grass
443 size. In particular, to propagate median size uncertainty, the median size was randomly generated from
444 the initially fitted truncated generalized distribution per bootstrap. To propagate biomass uncertainty, we
445 randomly sampled in log space using standard deviation $\sigma = \lambda/1.96$, where the fold uncertainty λ
446 correspond to the 95% confidence interval (with the log upper/lower bounds deviating by λ from the log

447 mean according to a lognormal error model) following previous report [30]. The 2.5th, 50th, and 97.5th
448 percentiles of the bootstraps represent the lower bound, median, and upper bound of the within-group
449 size-biomass spectra.

450 **Statistical trends and modes across groups.** Global median size-biomass spectra and confidence
451 intervals were obtained by cumulating biomass density (Gt biomass per log body size) of all groups in a
452 habitat realm (or realms) centered at each size bin (1/40 of a log unit) per bootstrap. In other words, the
453 cumulative biomass density is the biomass probability density and then normalized so that the area under
454 the curve matches the total biomass within realm(s). In the main text, we simplified the term “biomass
455 density” to “biomass.” Statistical descriptions were obtained for three different classifications of
456 organisms: all realms, terrestrial, and marine.

457 To fit statistical relationships between size and cumulative biomass in each habitat realm, we did
458 not perform simple regressions directly on the best estimated spectra because 1) biomass datapoints are
459 not independent across sizes within groups, and 2) the cross-taxa biomass totals in any size class
460 depends on all groups in that size class, making the error structure correlated across the size range. To
461 obtain confidence bounds, we relied on a parametric bootstrapped ensemble of possible size class – total
462 biomass spectra (size-biomass spectra). For each bootstrap, the possible continuous size-biomass
463 spectrum was sampled 40 times per log size class from -18 to 11 in the same way that it was plotted for
464 visualization (size bin width was 1/40 of a log unit). We then performed statistical regressions on each of
465 the 1000 bootstrap sampled sets. The 2.5th and 97.5th percentiles of the outputs at each size represented
466 each regression model’s 95% confidence bounds. The result is that the confidence bounds may not
467 strictly resemble the regression models; for example, single Gaussian fits across bootstraps may identify
468 different peaks and thus the upper and lower bounds across size may be multimodal (S4 Fig). Size bins
469 with total biomass lower than 10^{-5} Gt (1000 t), which is an order of magnitude below the lower bound of
470 amphibian biomass (the lowest among all groups), were not included as datapoints for the regression. A
471 cutoff is necessary to avoid large or infinitely negative values after log transformation, which would
472 prevent regression from proceeding.

473 We fit two kinds of regression models to test for trends in the amount of biomass across size
474 classes across all taxa. For allometric power law relationships, ordinary least-squares regressions were
475 performed to obtain power exponents β that explain the discrete sampled log size-log biomass (x-y)
476 relationships. For Gaussian mixture models, up to four modes (components) were fit using an expectation
477 maximization algorithm to minimize nonlinear least squares ('gauss1', 'gauss2', etc. in Matlab R2017a,
478 MathWork, Natick, MA). During fitting for the Gaussian mixture, we added $\log_{10}(10^{-5})+1$ to log biomasses
479 to ensure that the minimum value was 1; smaller values were already removed previously. For plotting,
480 we subtracted $\log_{10}(10^{-5})+1$ from the solutions. We measured R^2 and the corrected Akaike Information
481 Criterion (AICc) for model comparison [136], which results in means and standard deviations across
482 bootstraps.

483 We additionally obtained power laws for two alternative types of size spectra using linear
484 regressions (Table 1). First, the size-abundance spectra [137] replaces biomass with abundance.
485 Abundance is biomass divided by body mass, so the power law exponent α for size (mass)-abundance is
486 approximately the exponent for size (mass)-biomass minus one [3]. Second, the normalized size-biomass
487 [8] replaces biomass with total biomass divided by the width of biomass size class, centered in the middle
488 of the size class along the x-axis. In our data synthesis, the width is a constant of one in log size scale,
489 since each point along the x-axis represents the biomass density, or biomass per log size unit.
490 Consequently, normalized biomass B_N at log size x is $B_N=B/(10^{x+0.5}-10^{x-0.5})$ where B is the cumulative
491 biomass density at size x . By taking the log of both sides of this equation, we obtain $\log_{10}B_N=\log_{10}B-x-$
492 0.454. Since $\log_{10}B-x$ is $\log_{10}(B/10^x)$, or $\log_{10}(\text{abundance})$, log normalized biomass in our data is just log
493 abundance minus 0.454. Thus, the power law exponent for the normalized size-biomass spectrum is
494 identical to α .

495 **Sensitivity Analyses.** We repeat the regression analyses on global size-biomass spectra with datasets
496 composed using different truncation limits for the within-group GEV distributions, different definitions of
497 body size (ramets vs. genets), and different mass inclusivity (with vs. without metabolically inactive
498 material) (S1 Fig, Table 4).

499 Changing truncation limits should affect the GEV distributional fit for within-group size-biomass
500 spectra. In particular, we experimented with the different size truncation limits of [-1,+1] and [0,0] on log
501 scale. A small-enough truncation window should result in a distribution that is relative flat like most
502 continuous probability distributions that have at most one interior inflection point. This implies size-
503 biomass distributions that approach uniform distributions. Additionally, a truncated uniform size-biomass
504 distribution is expected to minimize biomass uncertainty propagation because all bootstraps will have the
505 same size range and only variations from biomass uncertainty.

506 The unit 'genets' was dissolved into smaller units of ramets for the variant definition of body size.
507 Grassland plants, seagrass, soil fungi, and hard corals were affected by the switch to the ramet definition
508 (S1 Table). In particular, the original large size range for soil fungi was reduced but remained the largest
509 among all groups. This large size range reflects the group's unique history of having evolved and lost
510 multicellularity many times [138], and having indeterminate growth through hyphae [139] that manifest in
511 all possible sizes up to the upper limits. Some of the referenced species exhibiting minimum, median, and
512 maximum sizes were changed based on the alternative definition.

513 We re-calculated the biomass spectrum only including the portion of the world's biomass that is
514 "metabolically active", which would exclude skeletons, wood, and subterranean microbes [140]. This
515 affects both the body size and biomass of forest plants, grassland plants, mangroves, and hard corals (S2
516 Table). Excluding biomass with low metabolism potentially reduces all reported minimum, median, and
517 maximum sizes we reference from the literature withing groups because this biomass is taken out of all
518 genets or ramets (individuals). In all cases we found that species with the minimum, median, and
519 maximum sizes remained the same, but their sizes were reduced.

520 **References**

- 521 1. Bonner JT. The origins of multicellularity. *Integrative Biology: Issues, News, and Reviews*:
522 Published in Association with The Society for Integrative and Comparative Biology.
523 1998;1: 27–36.
- 524 2. Andersen KH, Berge T, Gonçalves RJ, Hartvig M, Heuschele J, Hylander S, et al.
525 Characteristic Sizes of Life in the Oceans, from Bacteria to Whales. *Annual Review of
526 Marine Science*. 2016;8: 217–241. doi:10.1146/annurev-marine-122414-034144
- 527 3. Blanchard JL, Heneghan RF, Everett JD, Trebilco R, Richardson AJ. From Bacteria to
528 Whales: Using Functional Size Spectra to Model Marine Ecosystems. *Trends in Ecology
529 & Evolution*. 2017;32: 174–186. doi:10.1016/j.tree.2016.12.003
- 530 4. Sheldon RW, Prakash A, Sutcliffe WH. The size distribution of particles in the ocean. *Limnol
531 Oceanogr*. 1972;17: 327–340. doi:10.4319/lo.1972.17.3.0327
- 532 5. Brown JH. *Macroecology*. Chicago: University of Chicago Press; 1995.
- 533 6. Kerr SR, Dickie LM. The biomass spectrum: a predator-prey theory of aquatic production.
534 New York: Columbia University Press; 2001.
- 535 7. West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth. *Nature*. 2001;413:
536 628–631. doi:10.1038/35098076
- 537 8. Sprules WG, Barth LE. Surfing the biomass size spectrum: some remarks on history, theory,
538 and application. Giacomini H, editor. *Can J Fish Aquat Sci*. 2016;73: 477–495.
539 doi:10.1139/cjfas-2015-0115
- 540 9. Hatton IA, Heneghan RF, Bar-On YM, Galbraith ED. The global ocean size spectrum from
541 bacteria to whales. *Sci Adv*. 2021;7: eabh3732. doi:10.1126/sciadv.abh3732
- 542 10. Damuth J. Population density and body size in mammals. *Nature*. 1981;290: 699–700.
543 doi:10.1038/290699a0
- 544 11. Li WKW. Macroecological patterns of phytoplankton in the northwestern North Atlantic
545 Ocean. *Nature*. 2002;419: 154–157. doi:10.1038/nature00994
- 546 12. Belgrano A, Allen AP, Enquist BJ, Gillooly JF. Allometric scaling of maximum population
547 density: a common rule for marine phytoplankton and terrestrial plants. *Ecol Letters*.
548 2002;5: 611–613. doi:10.1046/j.1461-0248.2002.00364.x
- 549 13. Polishchuk LV. M.S. Ghilarov's Principle, or Biomass Equivalence Rule, as a Conservation
550 Law in Ecology. *Biol Bull Rev*. 2019;9: 215–229. doi:10.1134/S2079086419030083
- 551 14. Hatton IA, Dobson AP, Storch D, Galbraith ED, Loreau M. Linking scaling laws across
552 eukaryotes. *Proc Natl Acad Sci USA*. 2019; 201900492. doi:10.1073/pnas.1900492116
- 553 15. Benoît E, Rochet M-J. A continuous model of biomass size spectra governed by predation
554 and the effects of fishing on them. *Journal of Theoretical Biology*. 2004;226: 9–21.
555 doi:10.1016/S0022-5193(03)00290-X

556 16. Andersen KH, Beyer JE. Asymptotic Size Determines Species Abundance in the Marine
557 Size Spectrum. *The American Naturalist*. 2006;168: 54–61. doi:10.1086/504849

558 17. Jennings S, Oliveira JAAD, Warr KJ. Measurement of body size and abundance in tests of
559 macroecological and food web theory. *J Anim Ecology*. 2007;76: 72–82.
560 doi:10.1111/j.1365-2656.2006.01180.x

561 18. Jennings S, Blanchard JL. Fish abundance with no fishing: predictions based on
562 macroecological theory. *J Anim Ecology*. 2004;73: 632–642. doi:10.1111/j.0021-
563 8790.2004.00839.x

564 19. Shin Y-J, Rochet M-J, Jennings S, Field JG, Gislason H. Using size-based indicators to
565 evaluate the ecosystem effects of fishing. *ICES Journal of Marine Science*. 2005;62: 384–
566 396. doi:10.1016/j.icesjms.2005.01.004

567 20. Jennings S, Melin F, Blanchard JL, Forster RM, Dulvy NK, Wilson RW. Global-scale
568 predictions of community and ecosystem properties from simple ecological theory.
569 *Proceedings of the Royal Society B: Biological Sciences*. 2008;275: 1375–1383.
570 doi:10.1098/rspb.2008.0192

571 21. Andersen KH, Jacobsen NS, Farnsworth KD. The theoretical foundations for size spectrum
572 models of fish communities. Baum J, editor. *Canadian Journal of Fisheries and Aquatic
573 Sciences*. 2016;73: 575–588. doi:10.1139/cjfas-2015-0230

574 22. Trebilco R, Baum JK, Salomon AK, Dulvy NK. Ecosystem ecology: size-based constraints
575 on the pyramids of life. *Trends in Ecology & Evolution*. 2013;28: 423–431.
576 doi:10.1016/j.tree.2013.03.008

577 23. Stock CA, Powell TM, Levin SA. Bottom-up and top-down forcing in a simple size-
578 structured plankton dynamics model. *Journal of Marine Systems*. 2008;74: 134–152.
579 doi:10.1016/j.jmarsys.2007.12.004

580 24. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority. *Proceedings of
581 the National Academy of Sciences*. 1998;95: 6578–6583. doi:10.1073/pnas.95.12.6578

582 25. Erb K-H, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, et al. Unexpectedly large
583 impact of forest management and grazing on global vegetation biomass. *Nature*.
584 2017;553: 73–76. doi:10.1038/nature25138

585 26. Elton CS. *Animal Ecology*. New York, NY: Macmillan; 1927.

586 27. Barneche DR, Kulbicki M, Floeter SR, Friedlander AM, Allen AP. Energetic and ecological
587 constraints on population density of reef fishes. *Proc R Soc B*. 2016;283: 20152186.
588 doi:10.1098/rspb.2015.2186

589 28. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of
590 ecology. *Ecology*. 2004;85: 1771–1789. doi:10.1890/03-9000

591 29. Arroyo JI, Díez B, Kempes CP, West GB, Marquet PA. A general theory for temperature
592 dependence in biology. *Proc Natl Acad Sci USA*. 2022;119: e2119872119.
593 doi:10.1073/pnas.2119872119

594 30. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. *Proceedings of the*
595 *National Academy of Sciences*. 2018; 201711842. doi:10.1073/pnas.1711842115

596 31. Fagerbakke KM, Norland S, Heldal M. The inorganic ion content of native aquatic bacteria.
597 *Canadian Journal of Microbiology*. 1999. doi:10.1139/cjm-45-4-304

598 32. Eibye-Jacobsen D, Kristensen RM. A new genus and species of Dorvilleidae (Annelida,
599 Polychaeta) from Bermuda, with a phylogenetic analysis of Dorvilleidae, Iphitimidae and
600 Dinophilidae. *Zoologica Scripta*. 1994. doi:10.1111/j.1463-6409.1994.tb00379.x

601 33. Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, et al. Unexpectedly large
602 impact of forest management and grazing on global vegetation biomass. *Nature*. 2018.
603 doi:10.1038/nature25138

604 34. Beerling DJ. *Salix herbacea* L. *Journal of Ecology*. 1998. doi:10.1046/j.1365-
605 2745.1998.8650872.x

606 35. National Parks Service. Giant Sequoias. [cited 2 Oct 2020]. Available:
607 <https://www.nps.gov/seki/learn/nature/bigtrees.htm>

608 36. Pemadasa MA, Lovell PH. The Mineral Nutrition of Some Dune Annuals. *The Journal of*
609 *Ecology*. 1974. doi:10.2307/2259004

610 37. Rippka R, Herdman M. *Pasteur Culture Collection of Cyanobacterial Strains in Axenic*
611 *Culture, Catalogue and Taxonomic Handbook*. Paris: Institut Pasteur; 1992.

612 38. Lutzoni F. Peltigera Project Overview. Available: <http://lutzonilab.org/peltigera/overview/>

613 39. Green TGA, Clayton-Greene KA. Studies on *Dawsonia superba* Grev. II. Growth rate.
614 *Journal of Bryology*. 1981. doi:10.1179/jbr.1981.11.4.723

615 40. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of
616 cryptogamic covers to the global cycles of carbon and nitrogen. *Nature Geoscience*.
617 2012. doi:10.1038/ngeo1486

618 41. Rikkinen J, Oksanen I, Lohtander K. Lichen guilds share related cyanobacterial symbionts.
619 *Science*. 2002. doi:10.1126/science.1072961

620 42. Panikov NS. Contribution of nanosized bacteria to the total biomass and activity of a soil
621 microbial community. *Advances in Applied Microbiology*. 2005. doi:10.1016/S0065-
622 2164(05)57008-4

623 43. Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: A
624 fertile frontier in soil biology research. *FEMS Microbiology Reviews*. 2018.
625 doi:10.1093/femsre/fuy006

626 44. Berney C, Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, et al.
627 Expansion of the “Reticulosphere”: Diversity of Novel Branching and Network-forming
628 Amoebeae Helps to Define Variosea (Amoebozoa). *Protist*. 2015.
629 doi:10.1016/j.protis.2015.04.001

630 45. Global Invasive Species Database. *Batrachochytrium dendrobatidis*. Available:
631 <http://www.iucngisd.org/gisd/species.php?sc=123>

632 46. Smith ML, Bruhn JN, Anderson JB. The fungus *Armillaria bulbosa* is among the largest and
633 oldest living organisms. *Nature*. 1992. doi:10.1038/356428a0

634 47. Kawabata K, Urabe J. Length-weight relationships of eight freshwater planktonic crustacean
635 species in Japan. *Freshwater Biology*. 1998. doi:10.1046/j.1365-2427.1998.00267.x

636 48. Boxshall GA, Huys R. New Tantulocarid, *Stygotantulus stocki*, Parasitic on Harpacticoid
637 Copepods, with an Analysis of the Phylogenetic Relationships within the Maxillopoda.
638 *Journal of Crustacean Biology*. 1989. doi:10.2307/1548454

639 49. Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I. The weight of
640 nations: An estimation of adult human biomass. *BMC Public Health*. 2012.
641 doi:10.1186/1471-2458-12-439

642 50. Hill JE, Smith SE. *Craseonycteris thonglongyai*. *Mammalian Species*. 1981.
643 doi:10.2307/3503984

644 51. Wood GL. *The Guinness book of animal facts and feats*. 3rd ed. Enfield, Middlesex:
645 Guinness Superlatives; 1982.

646 52. Abolafia J, Peña-Santiago R. *Protorhabditis Hortulana* Sp. N. (Rhabditida, Protorhabditidae)
647 from southern Iberian Peninsula, one of the smallest free-living soil nematodes known,
648 with a compendium of the genus. *Zootaxa*. 2016. doi:10.11646/zootaxa.4144.3.7

649 53. Mulder C, Vonk JA. Nematode traits and environmental constraints in 200 soil systems:
650 Scaling within the 60–6000 µm body size range. *Ecology*. 2011. doi:10.1890/11-0546.1

651 54. Blackburn TM, Gaston KJ. The Distribution of Body Sizes of the World's Bird Species.
652 *Oikos*. 1994. doi:10.2307/3545707

653 55. Nee S, Mooers A, Harvey PH. Tempo and mode of evolution revealed from molecular
654 phylogenies. *Proceedings of the National Academy of Sciences of the United States of
655 America*. 1992. doi:10.1073/pnas.89.17.8322

656 56. Jim Pattison Group. *Guinness World Records*. New York; 1997.

657 57. Glaw F, Köhler J, Townsend TM, Vences M. Rivaling the world's smallest reptiles:
658 Discovery of miniaturized and microendemic new species of leaf chameleons (*Brookesia*)
659 from northern Madagascar. *PLoS ONE*. 2012. doi:10.1371/journal.pone.0031314

660 58. University of Michigan. *Crocodylus porosus*. In: *Animal Diversity Web* [Internet]. [cited 2 Oct
661 2020]. Available: https://animaldiversity.org/accounts/Crocodylus_porosus/

662 59. Rittmeyer EN, Allison A, Gründler MC, Thompson DK, Austin CC. Ecological guild evolution
663 and the discovery of the world's smallest vertebrate. *PLoS ONE*. 2012.
664 doi:10.1371/journal.pone.0029797

665 60. Wang XM, Zhang KJ, Wang ZH, Ding YZ, Wu W, Huang S. The decline of the Chinese giant
666 salamander *Andrias davidianus* and implications for its conservation. *Oryx*. 2004.
667 doi:10.1017/S0030605304000341

668 61. Smithsonian Institution. Mangroves. [cited 1 Jul 2020]. Available:
669 <https://ocean.si.edu/ocean-life/plants-algae/mangroves>

670 62. Njana MA, Meilby H, Eid T, Zahabu E, Malimbwi RE. Importance of tree basic density in
671 biomass estimation and associated uncertainties: a case of three mangrove species in
672 Tanzania. *Annals of Forest Science*. 2016. doi:10.1007/s13595-016-0583-0

673 63. Hutchison J, Manica A, Swetnam R, Balmford A, Spalding M. Predicting Global Patterns in
674 Mangrove Forest Biomass: Global patterns in mangrove biomass. *Conservation Letters*.
675 2014;7: 233–240. doi:10.1111/conl.12060

676 64. Dawes C, Chan M, Chinn R, Koch EW, Lazar A, Tomasko D. Proximate composition,
677 photosynthetic and respiratory responses of the seagrass *Halophila engelmannii* from
678 Florida. *Aquatic Botany*. 1987. doi:10.1016/0304-3770(87)90067-2

679 65. De Witte LC, Stöcklin J. Longevity of clonal plants: Why it matters and how to measure it.
680 *Annals of Botany*. 2010. doi:10.1093/aob/mcq191

681 66. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, et al. Seagrass
682 ecosystems as a globally significant carbon stock. *Nature Geoscience*. 2012.
683 doi:10.1038/ngeo1477

684 67. Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marbà N, Sintes T, Serrão EA. Implications of
685 extreme life span in clonal organisms: Millenary clones in meadows of the threatened
686 seagrass *Posidonia oceanica*. *PLoS ONE*. 2012. doi:10.1371/journal.pone.0030454

687 68. Catalina Island Marine Institute. Kelp: The Floating Forests. [cited 1 Jul 2020]. Available:
688 <https://cimioutdoored.org/kelp-forest/>

689 69. Gevaert F, Davoult D, Creach A, Kling R, Janquin M-A, Seuront L, et al. Carbon and
690 nitrogen content of *Laminaria saccharina* in the eastern English Channel: biometrics and
691 seasonal variations. *Journal of the Marine Biological Association of the United Kingdom*.
692 2001. doi:10.1017/s0025315401004532

693 70. Mullin MM, Sloan PR, Eppley RW. Relationship between carbon content, cell volume, and
694 area in phytoplankton. *Limnology and Oceanography*. 1966.
695 doi:10.4319/lo.1966.11.2.0307

696 71. Partensky F, Hess WR, Vaulot D. *Prochlorococcus*, a marine photosynthetic prokaryote of
697 global significance. *Microbiology and molecular biology reviews : MMBR*. 1999.

698 72. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. The tiny eukaryote
699 *Ostreococcus* provides genomic insights into the paradox of plankton speciation.
700 *Proceedings of the National Academy of Sciences of the United States of America*. 2007.
701 doi:10.1073/pnas.0611046104

702 73. Leblanc K, Arístegui J, Armand L, Assmy P, Beker B, Bode A, et al. A global diatom
703 database- A abundance, biovolume and biomass in the world ocean. *Earth System*
704 *Science Data*. 2012. doi:10.5194/essd-4-149-2012

705 74. Thronsdæsen J. The Planktonic Marine Flagellates. Identifying Marine Phytoplankton. 1997.
706 doi:10.1016/b978-012693018-4/50007-0

707 75. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11
708 marine bacterioplankton clade. *Nature*. 2002. doi:10.1038/nature00917

709 76. Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB.
710 Dense populations of a giant sulfur bacterium in namibian shelf sediments. *Science*.
711 1999;284: 493–495. doi:10.1126/science.284.5413.493

712 77. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. A new phylum of Archaea
713 represented by a nanosized hyperthermophilic symbiont. *Nature*. 2002.
714 doi:10.1038/417063a

715 78. Schulz HN, Jørgensen BB. Big Bacteria. *Annual Review of Microbiology*. 2001.
716 doi:10.1146/annurev.micro.55.1.105

717 79. Moreira D, López-García P. The rise and fall of picobiliphytes: How assumed autotrophs
718 turned out to be heterotrophs. *BioEssays*. 2014. doi:10.1002/bies.201300176

719 80. Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, et al. In situ imaging
720 reveals the biomass of giant protists in the global ocean. *Nature*. 2016.
721 doi:10.1038/nature17652

722 81. Jim Pattison Group. American lobster. *Guinness World Records*. New York; 1977.

723 82. FishBase. *Schindleria brevipinguis*. [cited 1 Sep 2020]. Available:
724 <https://www.fishbase.se/summary/Schindleria-brevipinguis.html>

725 83. McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, et al. Sizing ocean
726 giants: Patterns of intraspecific size variation in marine megafauna. *PeerJ*. 2015.
727 doi:10.7717/peerj.715

728 84. Pál-Gergely B, Hunyadi A, Jochum A, Asami T. Seven new hypselostomatid species from
729 China, including some of the world's smallest land snails (Gastropoda, Pulmonata,
730 Orthurethra). *ZooKeys*. 2015. doi:10.3897/zookeys.523.6114

731 85. Eckblad JW. Weight-Length Regression Models for Three Aquatic Gastropod Populations.
732 *American Midland Naturalist*. 1971. doi:10.2307/2423940

733 86. Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N. A unique advantage for giant
734 eyes in giant squid. *Current Biology*. 2012. doi:10.1016/j.cub.2012.02.031

735 87. The Official Website of the New Zealand Government. World's largest squid landed in NZ.
736 Available: <https://www.beehive.govt.nz/release/worlds-largest-squid-landed-nz>

737 88. Eklöf J, Austin Å, Bergström U, Donadi S, Eriksson BDHK, Hansen J, et al. Size matters:
738 Relationships between body size and body mass of common coastal, aquatic
739 invertebrates in the Baltic Sea. *PeerJ*. 2017. doi:10.7717/peerj.2906

740 89. Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, et al. Jellyfish Body
741 Plans Provide Allometric Advantages beyond Low Carbon Content. *PLoS ONE*. 2013.
742 doi:10.1371/journal.pone.0072683

743 90. Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH. What's in a jellyfish? Proximate and
744 elemental composition and biometric relationships for use in biogeochemical studies.
745 *Ecology*. 2011. doi:10.1890/11-0302.1

746 91. The Marine Life Information Network. Lion's mane jellyfish (*Cyanea capillata*). Available:
747 <https://www.marlin.ac.uk/species/detail/2090>

748 92. House JE, Brambilla V, Bidaut LM, Christie AP, Pizarro O, Madin JS, et al. Moving to 3D:
749 Relationships between coral planar area, surface area and volume. *PeerJ*. 2018.
750 doi:10.7717/peerj.4280

751 93. Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, et al. Growth and
752 demography of the solitary scleractinian coral *Leptopsammia pruvoti* along a sea surface
753 temperature gradient in the mediterranean sea. *PLoS ONE*. 2012.
754 doi:10.1371/journal.pone.0037848

755 94. Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM. Evaluating life-history
756 strategies of reef corals from species traits. Bellwood D, editor. *Ecol Lett*. 2012;15: 1378–
757 1386. doi:10.1111/j.1461-0248.2012.01861.x

758 95. Darling ES, McClanahan TR, Maina J, Gurney GG, Graham NAJ, Januchowski-Hartley F, et
759 al. Social–environmental drivers inform strategic management of coral reefs in the
760 Anthropocene. *Nature Ecology and Evolution*. 2019. doi:10.1038/s41559-019-0953-8

761 96. Brown DP, Basch L, Barshis D, Forsman Z, Fenner D, Goldberg J. American Samoa's
762 island of giants: Massive *Porites* colonies at Ta'u island. *Coral Reefs*. 2009.
763 doi:10.1007/s00338-009-0494-8

764 97. Belcher RL, Lee Jr. TE. *Arctocephalus townsendi*. *Mammalian Species*. 2002.
765 doi:10.1644/1545-1410(2002)700<0001:at>2.0.co;2

766 98. Armenteros M, Ruiz-Abierno A. Body size distribution of free-living marine nematodes from
767 a Caribbean coral reef. *Nematology*. 2015. doi:10.1163/15685411-00002930

768 99. Amend A. From Dandruff to Deep-Sea Vents: *Malassezia*-like Fungi Are Ecologically Hyper-
769 diverse. *PLoS Pathogens*. 2014. doi:10.1371/journal.ppat.1004277

770 100. Wilson C, Nizet V, Maldonado Y, Remington J, Krupp MA, Klein J. Infectious Diseases of
771 the Fetus and Newborn Infant. *Infectious Diseases of the Fetus and Newborn Infant*.
772 2011. doi:10.1016/C2009-0-50442-4

773 101. Aguilar-Trigueros CA, Rillig MC, Crowther TW. Applying allometric theory to fungi. *ISME J*.
774 2017;11: 2175–2180. doi:10.1038/ismej.2017.86

775 102. Wu X, Holmfeldt K, Hubalek V, Lundin D, Åström M, Bertilsson S, et al. Microbial
776 metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere
777 reveal metabolic partitioning among populations. *ISME J.* 2016;10: 1192–1203.
778 doi:10.1038/ismej.2015.185

779 103. Magnabosco C, Lin L-H, Dong H, Bomberg M, Ghiorse W, Stan-Lotter H, et al. The
780 biomass and biodiversity of the continental subsurface. *Nature Geosci.* 2018;11: 707–
781 717. doi:10.1038/s41561-018-0221-6

782 104. Abe S. Life Without the Sun. In: Astrobiology at NASA [Internet]. 10 Oct 2008. Available:
783 <https://astrobiology.nasa.gov/news/life-without-the-sun/>

784 105. Danovaro R, Corinaldesi C, Rastelli E, Dell'Anno A. Towards a better quantitative
785 assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the
786 functioning of the ocean seafloor. *Aquat Microb Ecol.* 2015;75: 81–90.
787 doi:10.3354/ame01747

788 106. Stetter KO. Smallest Cell Sizes Within Hyperthermophilic Archaea (“Archaeabacteria”).
789 National Research Council (US) Steering Group for the Workshop on Size Limits of Very
790 Small Microorganisms. National Academies Press; 1999. Available:
791 <https://www.ncbi.nlm.nih.gov/books/NBK224742/>

792 107. Kubo K, Lloyd KG, F Biddle J, Amann R, Teske A, Knittel K. Archaea of the Miscellaneous
793 Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. *ISME
794 J.* 2012;6: 1949–1965. doi:10.1038/ismej.2012.37

795 108. Dillon KT, Henderson AN, Lodge AG, Hamilton NI, Sloat LL, Enquist BJ, et al. On the
796 relationships between size and abundance in plants: beyond forest communities.
797 *Ecosphere.* 2019;10. doi:10.1002/ecs2.2856

798 109. Blanckenhorn WU. The Evolution of Body Size: What Keeps Organisms Small? *The
799 Quarterly Review of Biology.* 2000;75: 385–407. doi:10.1086/393620

800 110. Kingsolver JG, Pfennig DW. Individual-level selection as a cause of Cope's rule of phyletic
801 size. *Evolution.* 2004;58: 1608–1612. doi:10.1111/j.0014-3820.2004.tb01740.x

802 111. May RM. Biological diversity: differences between land and sea. *Phil Trans R Soc Lond B.*
803 1994;343: 105–111. doi:10.1098/rstb.1994.0014

804 112. Potapov AM, Brose U, Scheu S, Tiunov AV. Trophic Position of Consumers and Size
805 Structure of Food Webs across Aquatic and Terrestrial Ecosystems. *The American
806 Naturalist.* 2019;194: 823–839. doi:10.1086/705811

807 113. Tekwa EW, Gonzalez A, Loreau M. Spatial evolutionary dynamics produce a negative
808 cooperation–population size relationship. *Theoretical Population Biology.* 2019;125: 94–
809 101. doi:10.1016/j.tpb.2018.12.003

810 114. Chao A. Nonparametric Estimation of the Number of Classes in a Population.
811 Scandinavian Journal of Statistics. 1984;11: 265–270.

812 115. Tekwa EW, Whalen MA, Martone PT, O'Connor MI. An improved species richness
813 estimator using spatial abundance data. *bioRxiv*; 2022. doi:10.1101/2022.05.02.490342

814 116. Ma H, Mo L, Crowther TW, Maynard DS, van den Hoogen J, Stocker BD, et al. The global
815 distribution and environmental drivers of aboveground versus belowground plant
816 biomass. *Nat Ecol Evol*. 2021;5: 1110–1122. doi:10.1038/s41559-021-01485-1

817 117. Elhacham E, Ben-Uri L, Grozovski J, Bar-On YM, Milo R. Global human-made mass
818 exceeds all living biomass. *Nature*. 2020;588: 442–444. doi:10.1038/s41586-020-3010-5

819 118. Ernest SKM, Enquist BJ, Brown JH, Charnov EL, Gillooly JF, Savage VM, et al.
820 Thermodynamic and metabolic effects on the scaling of production and population energy
821 use: Thermodynamic and metabolic effects. *Ecology Letters*. 2003;6: 990–995.
822 doi:10.1046/j.1461-0248.2003.00526.x

823 119. Hatton IA, McCann KS, Fryxell JM, Davies TJ, Smerlak M, Sinclair ARE, et al. The
824 predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. *Science*.
825 2015;349: aac6284–aac6284. doi:10.1126/science.aac6284

826 120. Bar-On YM, Milo R. Towards a quantitative view of the global ubiquity of biofilms. *Nat Rev
827 Microbiol*. 2019;17: 199–200. doi:10.1038/s41579-019-0162-0

828 121. Planck Collaboration, Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, et al.
829 Planck 2015 results: XIII. Cosmological parameters. *A&A*. 2016;594: A13.
830 doi:10.1051/0004-6361/201525830

831 122. Blaber SJ. Mangroves and fishes: issues of diversity, dependence, and dogma. *Bulletin of
832 Marine Science*. 2007;80: 457–472.

833 123. Callaghan CT, Nakagawa S, Cornwell WK. Global abundance estimates for 9,700 bird
834 species. *Proc Natl Acad Sci USA*. 2021;118: e2023170118.
835 doi:10.1073/pnas.2023170118

836 124. Santini L, Benítez-López A, Dormann CF, Huijbregts MAJ, Martins I. Population density
837 estimates for terrestrial mammal species. *Global Ecol Biogeogr*. 2022;31: 978–994.
838 doi:10.1111/geb.13476

839 125. Bianchi D, Carozza DA, Galbraith ED, Guiet J, DeVries T. Estimating global biomass and
840 biogeochemical cycling of marine fish with and without fishing. *Sci Adv*. 2021;7:
841 eabd7554. doi:10.1126/sciadv.abd7554

842 126. Heyward AJ, Collins JD. Fragmentation in *Montipora ramosa*: the genet and ramet concept
843 applied to a reef coral. *Coral Reefs*. 1985;4: 35–40. doi:10.1007/BF00302202

844 127. Dahlberg A, Stenlid J. Size, distribution and biomass of genets in populations of *Suillus
845 bovinus* (L.: Fr.) Roussel revealed by somatic incompatibility. *New Phytologist*. 1994.
846 doi:10.1111/j.1469-8137.1994.tb04006.x

847 128. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, et al.
848 Ecosystem energetic implications of parasite and free-living biomass in three estuaries.
849 *Nature*. 2008;454: 515–518. doi:10.1038/nature06970

850 129. Frank SA, Smith DE. Measurement Invariance, Entropy, and Probability. *Entropy*. 2010;12:
851 289–303. doi:10.3390/e12030289

852 130. Clauset A, Erwin DH. The Evolution and Distribution of Species Body Size. *Science*.
853 2008;321: 399–401. doi:10.1126/science.1157534

854 131. Kozlowski J, Gawelczyk AdamT. Why are species' body size distributions usually skewed
855 to the right? *Functional Ecology*. 2002;16: 419–432. doi:10.1046/j.1365-
856 2435.2002.00646.x

857 132. Neuheimer AB, Hartvig M, Heuschele J, Hylander S, Kiørboe T, Olsson KH, et al. Adult
858 and offspring size in the ocean over 17 orders of magnitude follows two life history
859 strategies. 2015;96: 9.

860 133. Meiri S. Endothermy, offspring size and evolution of parental provisioning in vertebrates.
861 *Biological Journal of the Linnean Society*. 2019; blz138. doi:10.1093/biolinnean/blz138

862 134. Romeijn J, Smallegange IM. Exploring how the fast-slow pace of life continuum and cell
863 size structure microorganism life history variation. *Ecology*; 2022 Nov.
864 doi:10.1101/2022.11.28.517963

865 135. Deforet M, van Ditmarsch D, Xavier JB. Cell-Size Homeostasis and the Incremental Rule
866 in a Bacterial Pathogen. *Biophysical Journal*. 2015;109: 521–528.
867 doi:10.1016/j.bpj.2015.07.002

868 136. Burnham KP, Anderson DR. Multimodel Inference: Understanding AIC and BIC in Model
869 Selection. *Sociological Methods & Research*. 2004;33: 261–304.
870 doi:10.1177/0049124104268644

871 137. White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ. Relationships between body size and
872 abundance in ecology. *Trends in Ecology & Evolution*. 2007;22: 323–330.
873 doi:10.1016/j.tree.2007.03.007

874 138. Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary
875 convergence, single origin, or both?: Complex multicellularity in Fungi. *Biol Rev*. 2018;93:
876 1778–1794. doi:10.1111/brv.12418

877 139. Dee JM, Mollicone M, Longcore JE, Roberson RW, Berbee ML. Cytology and molecular
878 phylogenetics of Monoblepharidomycetes provide evidence for multiple independent
879 origins of the hyphal habit in the Fungi. *Mycologia*. 2015. doi:10.3852/14-275

880 140. Pedersen K. Exploration of deep intraterrestrial microbial life: current perspectives. *FEMS
881 Microbiology Letters*. 2000;185: 9–16. doi:10.1111/j.1574-6968.2000.tb09033.x

882

883 **Supporting Information Captions**

884 **S1 Fig. Sensitivity of the global body size biomass spectrum to different assumptions.** Grey dotted
885 curves are 95% confidence bounds from 200 resamples from within-group uncertainties. See Fig. 1 for
886 color reference and default assumptions. A. Same data as main text, except with truncations at 1 log g on
887 either side of reported minimum and maximum sizes. B. Same data as main text, except with truncations
888 at reported minimum and maximum sizes. C. Sizes are defined for ramets or clones instead of genets,
889 with truncation at -2 log g below the reported minimum size. D. Mass with low metabolism is omitted from
890 body size and biomass estimates (plant woody material, hard coral skeleton, and subterranean
891 microbes), with truncation at -2 log g below the reported minimum size.

892 **S2 Fig. Regression analyses on abundance.** Data is the same as in main text, except biomass is
893 replaced by abundance or normalized biomass (biomass divided by size class width). Rows represent
894 habitat realms (**A**: all realms, **B**: terrestrial, **C**: marine). Grey curves represent 95% confidence intervals of
895 the data, and blue curves represent 95% confidence intervals of the model from 1000 bootstraps. α is the
896 mean power exponent, and \pm indicate standard deviations across bootstraps. Regression results are
897 identical whether it is performed on log abundance or log normalized biomass as the dependent variable,
898 because the latter is only offset from the former by a constant (-0.454).

899 **S3 Fig. Group size range.** Size ranges of 36 groups are quantified as the log max:min size ratio,
900 corresponding to the number of \log_{10} units that each group spans in size (g). This quantity shows no
901 relationship with median body size (on log-log scale), with a power exponent of 0.0 ± 0.10 (S.D.) and a p-
902 value of 0.99. The size ratio has a mean of 7.0 ± 4.2 .

903 **S4 Fig. Estimating within-group size-biomass spectrum.** The size-biomass relationship for each
904 group is composed of biomass and size estimates. Biomass estimates and uncertainties were mostly
905 based on published syntheses that incorporate multiple independent sets of sampled biomass (black dots
906 on maps) that are projected over habitat ranges (akin to species distribution models). Body size
907 distribution and uncertainty were based on literature search for minimum, median, and maximum sizes
908 within groups (green dots). A truncated generalized extreme value distribution was first fitted to the three

909 points that result in an uncertainty estimate for median size. 1000 pairs of resampled total biomass and
910 median size were then used to refit a truncated generalized extreme value distribution, resulting in a set
911 of bootstrap samples that create the final median estimate and 95% confidence intervals for the size-
912 biomass spectrum.

913 **S1 Table. Body sizes measured for ramets instead of genets.**

914

915 **S2 Table. Body sizes excluding sizes and biomass with low metabolism.**

916 **S3 Table. Icon sources.** All icons belong to the public domain.

917 **S1 File. Supporting Information References.**