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Abstract 1 

Recent research has revealed the diversity and biomass of life across ecosystems, but how that 2 

biomass is distributed across body sizes of all living things remains unclear. We compile the present-day 3 

global body size-biomass spectra for the terrestrial, marine, and subterranean realms. To achieve this 4 

compilation, we pair existing and updated biomass estimates with previously uncatalogued body size 5 

ranges across all free-living biological groups. These data show that many biological groups share similar 6 

ranges of body sizes, and no single group dominates size ranges where cumulative biomass is highest. 7 

We then propagate biomass and size uncertainties and provide statistical descriptions of body size-8 

biomass spectra across and within major habitat realms. Power laws show exponentially decreasing 9 

abundance (exponent -0.9±0.02 S.D., R2=0.97) and nearly equal biomass (exponent 0.09±0.01, R2=0.56) 10 

across log size bins, which resemble previous aquatic size spectra results but with greater organismal 11 

inclusivity and global coverage. In contrast, a bimodal Gaussian mixture model describes the biomass 12 

pattern better (R2=0.86) and suggests small (~10-15 g) and large (~107 g) organisms outweigh other sizes 13 

by one order magnitude (15 and 65 Gt versus ~1 Gt per log size). The results suggest that the global 14 

body size-biomass relationships is bimodal, but substantial one-to-two orders-of-magnitude uncertainty 15 

mean that additional data will be needed to clarify whether global-scale universal constraints or local 16 

forces shape these patterns.   17 



 

 

 

Introduction 18 

Body size is a widely used metric in biodiversity, ecological, and evolutionary sciences because it 19 

is understood to mechanistically link physical, physiological and demographic processes [1,2]. Organisms 20 

on Earth range from 10-17 (Nanoarchaeum equitans) to 109 g (Sequoiadendron giganteum) in body size 21 

when estimated as carbon weight. Body size representations within various taxa have been a major focus 22 

in macroecology and biogeography. Such representations are called size spectra, with size-biomass 23 

spectra being the cumulative biomass of selected organisms distributed across body size classes, 24 

integrated over all individuals and taxa (i.e., not averaging over species). These spectra are also known 25 

as biomass size spectra, which are related to size-abundance or normalized size-biomass spectra [3] 26 

(see Error! Reference source not found. for summary of key terms).  27 

Theories have attempted to predict and explain size-biomass spectra in terms of energy 28 

availability and transfer, species interactions, metabolic scaling, and aquatic trophic structure [4–9]. Such 29 

theories have been applied within limited taxonomic ranges, especially for the relationships between body 30 

size and abundance in terrestrial mammalian herbivores [10], marine phytoplankton [11], cross-realm 31 

producers [12], and marine trophic communities [4,9]. Within groups that share an energy source (not 32 

necessarily with trophic links), energetic equivalence (equal energetic availability to all populations) 33 

predicts a power law exponent of -0.75 for size-abundance or size-normalized biomass spectra (where 34 

biomass is divided by the size class or bin width), or an exponent of 0.25 for size-biomass spectra [10,13] 35 

(Table 1). However, empirical studies show that substantial residuals exist within groups and that the 36 

exponent deviates across groups [14]. Across trophic levels, size-ordered predator-prey interactions 37 

(especially in aquatic communities) can lead to a power law exponent of -1 or less for size-abundance or 38 

normalized size-biomass spectra, which is equivalent to an exponent of 0 or less for size-biomass spectra 39 

[15–17,8]. Beyond fundamental science, the power law exponents have also been considered as indices 40 

of productivity among marine ecosystems [18]. Deviations from expected exponents can be used to 41 

understand perturbations to ecosystems, such as inferring changing food web structure and fish biomass 42 

due to fishing [3,19–21], or inferring changes to the real breadth of the energetic base in coral reef 43 



 

 

 

systems [22]. Thus, size spectra are important for understanding biological and anthropogenic constraints 44 

to life within biological communities. 45 

Table 1. Key terms. 46 

Statistic Definition 

Normalized biomass (BN) 
B normalized by the width of the body size class. For example, with 
width defined as one order of magnitude, BN=B/(10x+0.5-10x-0.5) and 
log10BN=log10B-x-0.454 

Size-biomass spectra log10(B) per unit x 

Normalized size-biomass spectra log10(BN) per unit x 
 

Size-abundance spectra log10(B/x) per unit x 

Power law 2-parameter linear model on log-log scale (exponent is slope 𝛼 or 𝛽) 

Gaussian mixture distribution n x 3-parameter model with n superimposed Gaussian distributions 

Generalized extreme value distribution 3-parameter model for distributions with left or right-skew 

Uniform distribution 2-parameter models specifying the same probability across a range 
from minimum to maximum 

Truncated distribution A distribution that specifies zero probability outside of minimum and 
maximum sizes 

B is biomass [g], BN is normalized biomass [unitless], and x is log10 body size [g/g]. 47 

 48 

Despite this progress on power laws, important questions remain about whether small, medium, 49 

or large organisms dominate standing biomass of life on Earth at the global scale [8,21,23]. Different 50 

disciplines have proposed different biomass modes with or without reference to power laws. From a 51 

microbiology or marine perspective, microbes appear to dominate life [9,24]. From the terrestrial 52 

perspective, large plants dominate [25]. Each has a legitimate claim based on analysis of particular 53 

ecosystems or sets of taxa, but these approaches also prevent a different and novel synthesis in which 54 

traditionally excluded organisms may fit in. Empirical studies of size-biomass relationships have yet to 55 

include both terrestrial producers and consumers, or both small and large marine producers. The 56 

common phrase of bacteria-to-whale, meant to convey a complete marine size range [2,3,9], actually 57 

leaves out macroalgae, seagrass, hard corals, and mangroves that have maximum sizes near that of blue 58 

whales. Increased inclusivity could reveal deviations from previous theoretical assumptions about size-59 

structured trophic communities that lead to power law predictions. However, macroecological power laws 60 

themselves first arose from empirical relationships [4,10,26,27], which only later inspired still-evolving 61 

theoretical explanations [7,28]. The fact that some organisms, habitats, and parts of biological materials 62 

are routinely excluded from macroecology suggests these entities are poorly understood and a larger 63 



 

 

 

picture is missing. Revealing global patterns is a key step towards understanding universal constraints. 64 

For example, metabolic and biochemical theories predict universal constraints that govern how biological 65 

rates vary with body size and temperature across all organisms, which are largely independent of 66 

between-organism interactions and habitat variations [28,29]. Inspiring and testing theories on biomass 67 

distributions at biome scales will depend on assessing the current state of living things, but this empirical 68 

exercise has so far been prevented by a lack of data synthesis on body size itself. 69 

Our objective here is to compile the first global and taxonomically inclusive size-biomass spectra 70 

of present-day terrestrial, marine, and subterranean realms. Specifically, we compile—for the first time—71 

data on body size range within major biological groups that include all free-living organisms. The groups 72 

we use are not strictly taxonomically consistent, but they are functionally meaningful and follow the 73 

convention of our main biomass data source [30]. We then offer statistical descriptions (Table 1) of the 74 

global and habitat realm-specific spectra and their uncertainties. Our statistical tests focused on pattern 75 

detection rather than on previous theoretical hypotheses because these do not directly apply to global 76 

size-biomass spectra. Both the methodology of size spectra construction and statistical analyses serve as 77 

guides for how to integrate a taxonomically inclusive set of data with substantial uncertainties. The 78 

resulting catalogue of biomass data matched to body sizes stands as a record of present knowledge 79 

about life on Earth. We then focus on assessing the quality of available data in order to guide future 80 

research on causal mechanisms. 81 

 82 

Results 83 

The body sizes (Tables 2-4) that comprise the most biomass on Earth are the small (mainly 84 

bacteria and archaea, 10-15 g per individual) and the large (mainly plants, 107 g), and these peaks (15 Gt 85 

and 65 Gt per log size) outweighed intermediate sizes (10-11 g to 10-2 g, ~1 Gt) by an order of magnitude 86 

(Fig 1A). The pattern is particularly clear on a linear biomass scale (Fig 1B). Biomass uncertainty 87 

persisted across all sizes, with 95% confidence bounds being two orders of magnitude from the smallest 88 

size to about 10 g and about one order of magnitude at larger sizes. Multiple unrelated groups exhibited 89 



 

 

 

similar upper size limits, including forest plants, grassland plants, fungi, wild terrestrial mammals, 90 

mangroves, fish, hard corals, seagrass, and marine mammals that contribute to the cumulative biomass 91 

peak at the size of 107 g. All data and code are provided at 92 

https://github.com/EWTekwa/BodySizeBiomass. 93 

 94 

Fig 1. Global body size biomass spectrum. A. Median carbon biomass (log scale) per log size as a 95 

function of body size with 95% confidence bounds (black dotted curves) cumulated across biological 96 

groups from 1000 bootstraps over within-group biomass and body size error distributions. Groups were 97 

organized from the least massive at the bottom to the most massive at the top for visibility on the log 98 

scale (ordered from top left to bottom right in color legend for group identity). Group biomasses are 99 

stacked so each group’s biomass is represented by its upper y-axis location minus its lower y-axis 100 

location (not by the upper y-axis location alone). See Tables 2-4 for within-group biomass uncertainties, 101 

and S3 Table; for icon sources. B. Median biomass in linear biomass scale. Confidence bounds are not 102 

shown here because they are so large as to obscure the median patterns on the linear scale. 103 

Table 1. Terrestrial body sizes and biomasses. 104 

Group Smallest Largest Min. body 
size (g C) 

Median body 
size (g C) 

Max. body 
size (g C) 

Biomass 
(Gt C) 

Uncertainty 
(fold) 

Producers 
Forest plants Salix herbaceao Sequoiadendron 

giganteum 
10.8 
[33,34] 

1.13x106 2.24x109 [35] 337.5 
[33] 

1.2 

Grassland 
plants 

Mibora minima Holcus mollis 3.75x10-3 
[36] 

4.32x106 1.34x109 [33] 112.5 
[33] 

1.2 

Cryptogamic 
phototrophs 

Nostoc punctiforme Dawsonia superba^ 1.15x10-11 
[37] 2.72x10-10a 87.5 [39] 2.5b 2 

Consumers 
Soil bacteria Actinobacteria spp. o Proteobacteria spp. 

o 
7.37x10-16 
[42] 

2.86x10-14 1.15x10-11 
[42] 

7.352 6 

Soil archaea Crenarchaeota spp. o Crenarchaeota spp. 
o 

7.37x10-16 
[42] 

2.91x10-14 4.72x10-14 
[42] 

0.516 4 

Soil protists Myamoeba spp. o Dictyamoeba spp. o 7.37x10-13 
[43] 

7.37x10-13 5.03x10-11 
[44] 

1.605 4 

Soil fungi Batrachochytrium 
dendrohabditiso 

Armillaria ostoyae 7.37x10-13 
[45] 

1.53x10-11 9.70x106 [46] 11.802 3 

Terrestrial 
arthropods 

Archegozetes 
longisetosus 

Birgus latro 1.50 x10-5 
[47] 

2.00x10-4 6.00x102 [48] 0.212 15 

 
 

a Among lichens, likely the most abundant among cryptogams, we estimate that 87% contain phycobionts (Trebouxia 8-21 µm)[38] and 13% contain 
cyanobionts (Nostoc punctiforme 5 µm) [37]. This composition was used to estimate the mean body size. 
b The total lichen biomass and uncertainty were obtained from [40]; to obtain cryptogamic phototrophs’ biomass, the fungal portion of lichen was 
subtracted out. Twenty percent of fungi species occur in lichens [41], so 20% of the total fungal biomass was subtracted from the lichen biomass to get 
the cryptogamic phototrophs’ biomass. 



 

 

 

Humans Homo sapiens Homo sapiens 3.75x103 
[49] 

8.13x103 1.13x104 [49] 0.055 1.1 

Livestock Gallus gallus 
domesticus 

Bos taurus 270 [30] 2.08x104 2.25x105 [30] 0.107 1.1 

Wild land 
mammals 

Craseonycteris 
thonglongyai 

Loxodonta africana 0.038 [50] 2.53x103 1.65x106 
[51] 

0.003 4 

Terrestrial 
nematodes 

Protohabditis 
hortulana^ 

Unspecified 
species^ 

6.02x10-13 
[52] 

5.00x10-8 7.74x10-8 
[53] 

0.002 10 

Wild birds Mellisuga helenae Struthio camelus 0.27 [54] 6.67 1.50x104 [55] 0.199 10 
Annelids Dendrobaena 

mammalis^ 
Microchaetus rappi 4.16x10-

8[14] 
2.59x10-4 2.25x102 [56] 0.006 10 

Reptiles Brookseia spp. Crocodylus porosus 0.027 [57] 1.05x102 1.80x105 [58] 0.003 100 
Amphibians Paedophryne 

amauensis 
Andrias davidianus 0.003 [59] 1.00 7.50x103 [60] 0.001a 100 

o indicates spherical bodies formula ([31] for microbes), and ^ indicates tubular bodies formula ([32] for 105 
microbes). Biomass and uncertainty are from [30] unless indicated.  106 

 
 

a Assumes amphibian habitat area is mainly rainforest, 5.50x1012 m2 [33], and 0.1 individual per m2 (lower than [30]’s likely overestimate). Uncertainty 
is unknown, so copied from reptiles which is the taxon with the highest uncertainty. 



 

 

 

Table 2. Marine body sizes. 107 

Group Smallest Largest Min. body 
size (g C) 

Median body 
size (g C) 

Max. body 
size (g C) 

Biomass 
(Gt C) 

Uncertainty 
(fold) 

Producers 
Mangroves Rhizophora mangleo 

(dwarf) 
Rhizophora 
mangleo (canopy) 

4.06x104 
[61] 6.49x105a 2.88x107 [61] 3.5 [63] 1.4 

Seagrass Halophila decipienso Posidonia 
oceanicao 

2.63x10-3 
[64] 7.53x104b 

 

6.91x107 
[66,67] 

0.11 10 

Macroalgae Phaeophyceae spp. Macrocystis 
pyrifera 

0.135 
[68,69] 2.00c 2.70x103 

[68,69] 
0.14 10 

Bacterial 
picophytoplankton 

Prochlorococcus spp. - 5.00x10-14 
[70,71] 9.13x10-14d 1.67x10-13e  0.13 10 

Green algae / 
protist 
  picophyto-
plankton 

Ostreococcus tauri - 1.05x10-13 
[70,72] 1.49x10-13f 2.10x10-13g 0.30 10 

Diatoms Thalassiosira 
pseudonana 

Ethmodiscus spp. 2.4x10-11 
[73] 9.08x10-9h 5.11x10-6 [73]  0.31 10 

Phaeocystis Phaeocystis globosa 
cell o 

Phaeocystis 
globosa colonyo 

1.15x10-11 
[74] 5.24x10-4 i 0.047 [74] 0.28 10 

Consumers 
Marine bacteria Pelagibacter ubiqueo Thiomargarita 

namibiensiso 
5.50 x10-16 
[75] 

1.32x10-14 1.10x10-4 [76] 1.327 1.8 

Marine archaea Nanoarchaeum 
equitans  

Staphylothermus 
marinuso 

1.47x10-17 
[77] 

1.22x10-14 9.90x10-11 [78] 0.332 3 

Marine protists Picomonas 
judraskedao 

Rhizarian spp.o 1.44x10-12 
[79]  

2.26x10-12 7.37x10-4 [80] 1.058 10 

Marine arthropods Stygotantulus Stocki Homarus 
americanus 

3.537x10-8 
[47,48] 

7.08x10-6 3.00x103 [81] 0.940 10 

Fish Paedocypris 
progenetica  

Rhincodon typus 1.50x10-4 
[82] 

0.627 4.63x106 [83] 0.668 8 

Molluscs Ammonicera 
minortalis 

Mesonychoteuthis 
hamiltoni 

0.01 [84,85] 4.02x10-4 3.98x104 [86–
88] 

0.182 10 

Cnidaria Psammohydra 
nanna  

Cyanea capillata 1.00x10-5 
[89,90] 

5.09x10-3 1.00x105 
[89,91] 

0.040 10 

Hard corals Leptopsammia 

pruvotij 
Porites lutea 6.41 [93,94] 1.54x103k 1.68x107 [96] 0.653l 4 

Wild marine 
mammals 

 Arctocephalus 
townsendi  

Balaenoptera 
musculus 

4.05x103 
[97] 

7.42x104 2.99x107 [83] 0.004 1.4 

Marine nematodes Thalassomonhystera 
spp. 

Platycomopsis 
spp. 

7.50x10-9 
[98] 

1.80x10-7 
[98] 

1.20x10-5 [98] 0.014 10 

Marine fungi Malassezia restricta Penicillium 
chrysogenum 

5.89x10-12 
[99,100]  

1.39x10-11 1.89x10-5 
[101] 

0.325 10 

 
 

a Rhizophora mangle, similar to estimates for other typical species [62] 
b Based on genet size of Zostera marina, a widespread species [65] and carbon density [66]. 
c Based on Laminaria saccharina, a widespread species [69]. 
d Diameter corresponds to definition of picophytoplanktons (2 μm), and corresponding carbon content is based on conversion formulae from the 
smallest species. 
e Maximum sizes are estimated to correspond to the same deviation from the median size as minimum sizes are (on log scale). 
f Same method as for bacterial picophytoplankton. 
g Same method as for bacterial picophytoplankton. 
h Based on Dactyliosolen fragilissimus [73]. 
i Mean size of colonies of P. globosa (2 mm) and P. pouchetii (1.5 mm), which are globally distributed and associated with bloom formation [74]. 
j Classified as “generalist coral” for size estimate [92]. 
k Mean colony size was estimated as the geometric mean of corallite or maximum colony sizes. Only maximum colony sizes were found across 
species and may contain several genets, hence the geometric mean. For each estimate, measures for four coral types were converted first to cubic 
volumes using 3D morphologies, assuming branching morphotype for "competitive" and "weedy" corals, and massive morphotype for "generalist" and 
"stress-tolerant" corals [92]. Each volume estimates were then converted to mass using type-specific skeletal densities [95], C per CaCO3, and 
weighted by global coral cover contributions [94]. 
l Mean skeleton biomass was the geometric mean of two biomass estimates based on global coral cover having heights corresponding to either 
corallites or maximum colony sizes. Mean tissue biomass was 0.05 Gt with a 10 fold uncertainty [30]. Overall mean biomass was the sum of mean 
skeleton and tissue biomass, and overall uncertainty was obtained from assuming that the overall min/max correspond to the sum of min/max skeleton 
and tissue estimates. 



 

 

 

o indicates spherical bodies formula ([31] for microbes). Biomass and uncertainty are from [30] unless 108 
indicated. 109 

 110 

Table 3. Subterranean consumer body sizes. 111 

 112 
Group Smallest body size  Largest body size  Min. body 

size (g C) 
Median body 
size (g C) 

Max. body 
size (g C) 

Biomass 
(Gt C) 

Uncertainty 
(fold) 

Subterranean 
bacteria 

Proteobacteria spp.  Desulforudis 
audaxviator 

9.81x10-16 
[102] 
 

2.1x10-14 [103] 
 

5.90x10-12 
[104] 
 

18.9a 3b 

Subterranean 
archaea 

Thermoproteus 
spp.  

Miscellaneous 
Crenarchaeotal 
Group spp. 

2.49x10-15 
[106] 
 

2.1x10-14 [103] 
 

9.22x10-14 
[107] 
 

8.1c 3d 

 113 

Our inferred within-group size-biomass relationships (Fig 2) appear reasonable, with fish and 114 

plant spectra being comparable to previous community-level results that are relatively well-studied 115 

[8,108]. Total biomass in the smallest size classes (<10-16 g) is dominated by marine bacteria (Fig 2 AA). 116 

The biomass peak around 10-15 g is dominated by subterranean bacteria (Fig 2 AH). Next, terrestrial fungi 117 

top the size range of 10-12 g to 1 g (Fig 2 AG). Finally, grassland plants (1 g to 10 g, Fig 2 GI) and forest 118 

plants (10 g to 109 g, Fig 2 GJ) make up almost all remaining biomass. We note that mangroves, hard 119 

corals, macroalgae, and seagrass make up 45% of total marine biomass even though they have been 120 

ignored in previous size spectra studies [2,3,9]. 121 

 122 

Fig 2. Body size biomass spectra within groups. Thick black curve is the median log biomass, and 123 

black dotted curves are 95% confidence bounds from 1000 resamples from within-group size and 124 

biomass uncertainties. Groups are organized from lowest to highest biomass (A to AJ). For reference, the 125 

thin grey curve is the median cumulative log biomass of all groups. 126 

 127 

 
 

a Total subterranean microbial biomass was assumed to be the geometric mean of 23 to 31 PgC (which is 27 PgC) from [103]. 70% of microbial 
abundance is expected to be bacteria [105]. 
b Range of total subterranean microbial cell count from four models in [103] was 1.6 to 11.2 x 1029, with a geometric mean of 4.2 x 1029. This range 
corresponds to a three-fold uncertainty, which is similar to bacteria and archaea groups in other habitat realms. 
c 30% of microbial abundance is expected to be archaea [105]. See note for bacterial biomass. 
d Same as uncertainty for subterranean bacteria. 
 



 

 

 

Terrestrial and marine spectra are different. Large body sizes dominate on land and across 128 

habitat realms, while the marine spectrum is roughly even across sizes (Fig 3). Marine organisms may 129 

only contribute significantly to the global biomass spectrum at the size range of 10-12 g to 10-3 g and below 130 

10-16 g. Marine biomass is overall likely dwarfed by terrestrial and subterranean biomass, though there is 131 

higher uncertainty in total biomass across size classes in the marine realm when compared to the 132 

terrestrial realm. 133 

 134 

Fig 3. Body size biomass spectra by habitat realms. See Fig 1 caption for description. A. Terrestrial. 135 

B. Marine. Subterranean prokaryotes are excluded. Thin grey curves are the median cumulative log 136 

biomass of the global biome. 137 

 138 

Linear regression of log biomass on log body size indicates a global power exponent 𝛽 of 139 

0.086±0.001 (s.d. across bootstraps) with a mean R2 of 0.56 (Fig 4 A). For the terrestrial realm, we 140 

obtained a similar 𝛽 of 0.100±0.008 with a mean R2 of 0.66 (Fig 4 F). These results show that biomass 141 

increases with size. Even though the variances explained are high, these power laws fail at the small size 142 

range, with confidence bounds missing the size class with the most biomass, filled by microbes. For the 143 

marine realm we obtained a much lower 𝛽 of 0.019±0.005 with a mean R2 of 0.11, indicating a similar 144 

biomass across log size bins (Fig 4 K). 145 

The overall and terrestrial spectra show similar small mean power law exponents 𝛽 (0.051 to 146 

0.086 and 0.047 to 0.100 respectively), while the marine spectrum has an effectively zero 𝛽 (-0.007 to 147 

0.022) across choices of within group truncation methods, use of ramets (physiological individuals) 148 

instead of genets (colonies of genetically identical individuals) as body sizes, and exclusion of 149 

metabolically inactive biomass like subterranean microbes (Table 4, S1 Fig). If the linear regressions 150 

were performed on log size-log abundance instead (equivalent to normalized size-biomass spectra), we 151 

would obtain exponents 𝛼 of -0.90±0.02 (R2=0.98), -0.80±0.05 (R2=0.88), and -0.96±0.03 (R2=0.98), 152 

which are approximately 𝛽-1 as abundance is biomass divided by size (but not exactly because the data, 153 

not the mean exponents, were directly transformed, S2 Fig). As the inflated R2 suggest, the 154 



 

 

 

transformation from biomass to abundance may lead us to conclude that there is roughly equal biomass 155 

across all sizes (or slightly higher at large sizes on land), and there are little deviations visible from the 156 

power laws (S2 Fig). In comparison, the size-biomass spectra (Fig 4) are roughly detrended versions of 157 

size-abundance, with the -1 slope between size and abundance being the “trivial” trend on top of which 158 

both linear (power laws) and nonlinear (multimodal) patterns emerge. 159 

 160 

Fig 4. Regression analyses. Rows represent habitat realms (A to E: all realms, F to J: terrestrial, K to O: 161 

marine). Columns represent regression model types: (A, F, K: linear, B, G, L: Gaussian, C, H, M: 162 

Gaussian mixture 2, D, I, N: Gaussian mixture 3, E, J, O: Gaussian mixture 4). Grey curves represent 163 

95% confidence intervals of the data, and blue curves represent 95% confidence intervals of the model 164 

from 1000 bootstraps. For linear models, regression slopes are mean power exponents ± standard 165 

deviations across bootstraps. R2 and AICc scores are means ± standard deviations across 1000 166 

bootstraps. 167 

Table 4. Size-biomass power law exponents across realms and assumptions. Assumptions 168 
correspond to sensitive analyses plotted in S1 Fig. Exponents and R2 result from 1000 bootstrapped 169 
linear regressions of log biomass on log size. 170 

 𝛽 exponent (± bootstrap S.D.) R2 (± bootstrap S.D.) 
                                                                              
Realm 
Assumptions 

All Terrestrial Marine All Terrestrial Marine 

A. All free-living, body size cutoff at -2/+0 
log10g of reported (base model) 

0.086±0.013 0.100±0.008 0.016±0.005 0.56±0.06 0.66±0.10 0.08±0.02 

B. All free-living, body size cutoff at ±1 log10g 
of reported 

0.082±0.007 0.079±0.007 0.019±0.005 0.40±0.08 0.45±0.11 0.05±0.03 

C. All free-living, body size cutoff at ±0 log10g 
of reported 

0.082±0.013 0.087±0.017 0.020±0.002 0.55±0.06 0.70±0.07 0.13±0.04 

D. Ramet size definition, body size cutoff at -
2/+0 log10g of reported 

0.083±0.012 0.097±0.008 0.016±0.005 0.58±0.07 0.66±0.11 0.09±0.02 

E. Metabolically active mass only, body size 
cutoff at -2/+0 log10g of reported 

0.078±0.016 0.079±0.010 -0.009±0.006 0.68±0.09 0.58±0.13 0.05±0.03 

 171 

Across terrestrial, marine, and subterranean (under both land and sea) organisms, there is a 172 

consistent log10 ratio of maximum to minimum size (size range) across all groups regardless of median 173 

size (slope=0, p=0.99), with a mean ratio of 7.0±4.2 (S.D.). In other words, as mean size increases, size 174 

range also increases with a power law exponent of 0 (S3 Fig). This supports the view that the non-175 



 

 

 

normalized size-biomass spectra are an appropriate way to investigate representation across size, in 176 

addition to the statistical reasons outlined above.  177 

Gaussian mixture models capable of multiple biomass modes reveal decreasing AICc scores with 178 

increasing number of Gaussian components overall and within realms, indicating better statistical 179 

descriptions than power laws (linear regressions) (Fig 4 B-E, G-J, L-O). However, visual inspection 180 

suggests the size-biomass relationships are well described by two mixture components, and further 181 

complexities appear hard to substantiate given the spectral uncertainty and variations in AICc across 182 

bootstraps (Fig 4 C, H, M). These two-mode regressions explain much more of the data variation 183 

(R2=0.86, 0.84, and 0.56 for all realms, terrestrial, and marine respectively) than power laws, the main 184 

difference being the ability to identify both small and large size-biomass modes. These results indicate 185 

two size modes are important and useful description of the global biomass spectra, beyond simple power 186 

laws. 187 

 188 

Discussion 189 

We performed a novel synthesis of the mass of all life in the biosphere, revealing size-biomass 190 

patterns that contain features reminiscent of published results [4,8,9,20,21], but also new features 191 

attributable to a greater taxonomic and error inclusion than previous efforts. Our three major biological 192 

findings were: 1.) lower and upper size limits were shared by diverse organisms, and these extreme sizes 193 

appear to contain most of the biomass on Earth; 2.) there was relatively consistent biomass across log 194 

body size classes, described by power law exponents near zero; and 3.) there was a greater proportion of 195 

total biomass on land concentrated in large organisms when compared to the ocean. Methodologically, 196 

we found that analyses relating log-biomass to log-size bins across all organisms (rather than size-197 

abundance or normalized size-abundance), while retaining uncertainties in both size and biomass, 198 

revealed the most nuanced patterns. 199 

The first pattern indicates near-universal lower and upper size limits where the highest biomass 200 

accumulates. It is well-known that bacteria and archaea would share the lower size limit of all living things 201 



 

 

 

at around 10-17 to 10-16 g. More surprisingly, multiple producer and consumer groups on land and in the 202 

sea coincide with maximum body sizes between 107 and 109 g – a relatively narrow range compared to 203 

the 26 orders of magnitude spanning all free-living things – including such diverse organisms as 204 

Sequoiadendron giganteum, Holcus mollis, Armillaria ostoyae, Rhizophora mangleo, Posidonia 205 

oceanicao, Porites lutea, and Balaenoptera musculus. This coincidence suggests an underlying upper 206 

size constraint, but multiple mechanisms may simply coincide [109,110]. Gaussian mixtures with two 207 

components describe size-biomass spectra better than power laws across-realm and within terrestrial and 208 

marine realms, again showing that the lower and upper size limits across all free-living things are also 209 

modes where biomass is most concentrated. While our mean estimates indicate these modes contain 210 

roughly one order magnitude more biomass per log size than intermediate body sizes, uncertainty in 211 

biomass was consistently higher than this magnitude, indicating that the data is too poorly resolved to 212 

unequivocally support the bimodal pattern. 213 

The second pattern indicates similar biomass across a large size range (a zero power law 214 

exponent explaining how biomass varies with body size). This is highly consistent with size spectra 215 

documented for aquatic ecosystems or within some taxonomic groups [4,10,13,28], which supports 216 

metabolic, competitive, and trophic explanations [17,28]. However, unlike previous studies, we included 217 

microbes, large producers, and other traditionally excluded marine groups summing to 45% of total 218 

marine biomass [2,3,9]., and propagated both biomass and size uncertainties. The fact that a near-zero 219 

exponent still persisted across all habitat realms and analytical assumptions is surprising because our 220 

global-scale patterns are not likely shaped by interactive forces such as trophic or competitive interactions 221 

previously proposed to cause near-zero exponents [17]. We found some evidence for bimodality that 222 

diverged from power laws, but large uncertainties prevent clear conclusions about whether or why such 223 

non-linear patterns occur. 224 

The third finding, that biomass in the ocean is somewhat more evenly distributed across size 225 

classes than on land offers clues to a future theoretical synthesis. The marine realm exhibits trophic 226 

positions roughly determined by body size, thus the marine spectrum conforms closer to a trophic-227 

mediated uniform log-log size-biomass expectation [21,28]. Biophysics and ecology – competition for 228 



 

 

 

nutrients - explain why primary producers are small in the ocean versus large on land [4,111,112]. 229 

However, this narrative overlooks the striking similarities between the two realms. Large primary 230 

producers that also provide physical structures to ecosystems dominate both land and sea (grass, tree, 231 

mangroves, corals, seagrass and kelps). Despite their large biomass, however, we note that large marine 232 

primary producers are restricted to shallow seas in which access to light and nutrients in the sediment 233 

create a biophysical environment part way between ocean and land, do not dominate all marine 234 

ecosystems (e.g., pelagic), and may be considered its own realm. In addition, excluding “metabolically 235 

inactive” material such as wood, subterranean microbes, and skeleton produced by living corals would 236 

flatten the size-biomass spectra globally and in both terrestrial and marine realms (closer to 𝛽=0,	Table 237 

4), but without erasing the apparent global bimodality and differences across realms (S1 Fig D). The 238 

causes of size-biomass differences in different habitat realms remain to be explored. 239 

Together, the findings of universal size limits possibly coinciding with a bimodal biomass 240 

distribution, overall similar biomass across sizes, and differences between habitat realms suggest 241 

possible roles for both universal and local explanations, depending on which feature of size-biomass 242 

spectra we focus on. Previously unexplored universal constraints, perhaps similar to known biochemical 243 

[29] or spatial-cellular mechanisms [113], can conceivably explain size limits and multiple high-biomass 244 

modes at different sizes, but these constraints may be modified or overwritten by local interactions 245 

between different organisms at finer spatial scales. The relative strengths of universal versus local 246 

constraints may be partially understood by comparing size-biomass spectra and their uncertainties 247 

across-realm versus within-realm. For instance, if the multiple modes observed across-realm are shared 248 

by different realms, then spectral uncertainties should be lower across-realm because of more data (lower 249 

observation error and greater taxonomic coverage [114,115]) and universal constraints may be 250 

responsible. On the other hand, if different realms contribute different size modes, then spectral 251 

uncertainties should be higher for the across-realm spectrum because of higher biological variance, 252 

supporting the hypothesis that local constraints likely shape the across-realm pattern. However, this 253 

reduction in uncertainties at smaller scales is only detectable if sample coverage does not drastically 254 

decrease. In our analyses, some size modes coincide across all realms, leaving for the possibilities of 255 

both universal and local constraints. In addition, the across-realm data exhibits narrower confidence 256 



 

 

 

bounds and a stronger signal of bimodality than the terrestrial realm alone (Fig 4 C, H, M), and even more 257 

so when compared to the relatively hard-to-sample marine realm alone, because of higher aggregate 258 

data availability. These mode overlaps and uncertainty patterns indicate that universal constraints may 259 

strongly shape size-biomass spectra everywhere in similar ways, but this impression may also be due to 260 

a lack of data. 261 

Our study shows that body size biomass spectra include substantial uncertainties. Within-group 262 

biomass uncertainties are high among some taxa, especially in microbes [30]. Data and synthesis of 263 

within and between-study uncertainties on biomass that we base our study on remain crude across 264 

groups [30] but are consistent with estimates from independent studies on plant and fish [8,108,116]. 265 

[116]. We have also filled the important gaps of marine habitat builders [40,94,92,63] and incorporated 266 

latest estimates for subterranean microbes [103,117]. Definitions of body size (ramets vs. genets), mass 267 

(with vs. without metabolically inactive components like wood, skeleton, and subterranean microbes), and 268 

realm (mangroves being marine, terrestrial, or partial) remain open for debate. Sensitivity analyses of 269 

these variations on cumulative size-biomass spectra show crude patterns like power laws are consistent, 270 

but nuances like the location of size-biomass peaks are uncertain. Our methodology was designed to 271 

minimize biases and propagated different sources of uncertainty. Indeed, this approach identified that 272 

large uncertainty persists through all sizes. In contrast, most previous macroecological studies have 273 

assumed certainty in minimum and maximum sizes (size classes) instead of propagating size error 274 

[4,7,12,118,119,9]. This assumption would have resulted in nearly uniform biomass distributions across 275 

log sizes within biological groups, which though did not affect mean power law parameter estimates, 276 

severely underestimated biomass uncertainty particularly at large sizes. Intuition tells us we are nowhere 277 

near as certain about where biomass is concentrated at large sizes (1.2-fold uncertainty at sizes 10 to 109 278 

g assuming near-uniform within-group distributions in S1 Fig B, which is just the total biomass uncertainty 279 

for plants independent of size). Error propagations in both size and biomass, as well as flexible within-280 

group size-biomass distributions rather than strong assumptions like uniformity or a particular skew (like 281 

power law, Gaussian, or lognormal), result in ~10 fold uncertainty at the same size range (Fig 1). Given 282 

current knowledge on how size range varies with size within biological groups and how biomass varies 283 

across sizes, we recommend studying the relationship between log-biomass and log-size (i.e. size-284 



 

 

 

biomass spectra) using both power laws and non-linear statistics such as Gaussian mixtures. Our results 285 

highlight as much the current knowledge about the Earth’s biosphere as it does potential gaps in 286 

observation. For instance, missing observations in specific size classes will tend to create an impression 287 

of multimodality even if in reality there is a continuum of biomass across sizes. Multiple within or between-288 

study biomass estimates for particular biological groups may not be spatially independent and thus not 289 

representative, which can lead to an underestimation of uncertainty and bias in expected total biomass. 290 

However, we would not know what these uncertainties and biases are without more sampling. In light of 291 

these limitations, uncertainties of our knowledge of size-biomass spectra were likely underestimated (but 292 

to a less severe degree than other macroecologoical studies [4,7,12,118,28,119,9]), yet even these 293 

optimistic estimates reveal how little we know about our global biosphere. Quantifying uncertainties while 294 

identifying knowledge gaps remain priorities for macroecology [120]. 295 

The state and change of size-biomass spectra should be an urgent biodiversity assessment 296 

objective and a fertile ground for fundamental theories. The massive data requirement to conduct a more 297 

detailed spectral survey may resemble modern cosmology and its collaborative search for patterns in 298 

matter distribution [121]. Our results provide a first crude roadmap for what patterns may exist, but they 299 

will likely drastically change if size-biomass spectra become targets for research programs. Moving 300 

forward, macroecology should embrace taxonomic inclusivity and unexplored scales that defy existing 301 

explanations. 302 

 303 

Materials and Methods 304 

Biomass Data. To compile the global aggregate body size biomass spectrum among biological groups 305 

defined by habitat and taxonomy, we used global biomass (gigatons [Gt] in carbon content) assessments 306 

and minimum, median, and maximum body sizes (grams [g] in carbon content) within groups (Tables 2-307 

4). We started with the most comprehensive existing synthesis of global biomass estimates, which 308 

incorporate uncertainties within and between multiple studies [30]. We followed the biological grouping in 309 

Bar-On’s database [30], which is not at a consistent taxonomic level but instead reflect the highest 310 



 

 

 

resolution at which a biomass estimate is available and comparable to other groups. Bar-On et al. drew 311 

from hundreds of studies that reported either biomass per sampled area or global extrapolations. The 312 

biomass per sampled area data was extrapolated by Bar-On et al. to the global scale based on the spatial 313 

distribution of environmental variables such as temperature and habitat type (akin to species distribution 314 

models but at a higher taxonomic level). The best estimates were obtained from the geometric mean of 315 

multiple data sources within group, and within- and between-study uncertainties were propagated (S4 Fig; 316 

see Bar-On et al.’s supplementary). We recognize that estimates of mean biomass and uncertainty can 317 

likely be improved for all groups, but this is not the main goal of our paper. Instead, we complemented 318 

Bar-On’s database only when biological groups with potentially high biomass were missing or clearly 319 

outdated, including cryptogamic phototrophs [40], hard corals [94,92], mangroves [63], and subterranean 320 

prokaryotes [103,117]. We placed mangroves in the marine realm because they live in coastal salt water, 321 

support a high diversity of marine fish, and are considered an integral part of blue carbon accounting 322 

[61,63,122]. Details for these new estimates are described in the footnotes of Tables 2-4. For some 323 

biological groups, new and potentially relevant data has appeared after Bar-On’s publication. However, 324 

these studies cataloged only biomass by species without assessing their contributions to overall group 325 

biomass (e.g., bird [123] and mammals [124]), did not directly address present-day biomass (e.g., fish 326 

[125]), or were nearly identical to Bar-On’s original estimates (e.g., terrestrial plants [116]). We included 327 

the plant woody material and coral skeleton produced by a living individual as part of biomass in our 328 

primary analysis, as was done in a previous global biomass synthesis [30]. This approach is consistent 329 

with the idea that all biomass regardless of metabolic status contributes to ecosystem functioning, though 330 

we also explored removing this biomass for sensitivity analyses and for future investigations. 331 

Body Size Data. Size was defined as the carbon content (grams) of a unicellular or multicellular 332 

organism. Defining an organism is not entirely straightforward for clonal life forms like grasses, corals, 333 

and fungi. Here, we used genets as our primary definition but also explore the consequences of using 334 

ramets to measure body size. Genet is a colony of genetically identical ramets in a location from a single 335 

parent, whereas a ramet is a physiologically distinguishable individual. Genet is a widely accepted 336 

functional definition of a biological unit because genetically identical cell agglomerates function as 337 

coherent units and actively share resources, and often seem like separate organisms only because the 338 



 

 

 

connecting tissues are invisible to us above the substrate [126,127,67]. We collected minimum, median, 339 

and maximum genet sizes from a literature search (Tables 2-4). Three points for biomass distribution 340 

within each group is minimalistic but, given our current knowledge of most groups, there are few other 341 

reliable size data to serve as additional reference points across each biological group. In the literature, 342 

mean sizes are often reported without specifying the species while assuming a log-normal size-biomass 343 

distribution [30], so we can record these mean sizes as median size in our dataset without 344 

transformations. In cases where no mean or median sizes were reported in [30], we used sizes 345 

mentioned in the literature as qualitatively representative species (those mentioned as most “common” or 346 

“widespread”), which are likely closer to the median rather than the mean size, given no a priori 347 

knowledge of the distribution. We used sizes at maturity because this is likely where biomass is 348 

concentrated within species [21], and because data are not available for most taxa on the contribution of 349 

spore or juvenile stages. However, our choices of body size cutoffs in subsequent estimates of within-350 

group size-biomass spectra can approximate the biomass share of these immature sizes. 351 

We converted all size observations to an estimate of mass in terms of carbon. The body sizes of 352 

some species were reported in units of grams carbon, but for many species we needed to extrapolate 353 

from wet or dry mass. When size estimates in the literature were reported in wet mass, we first searched 354 

the literature for a species-specific wet weight to grams carbon conversion. When a species-specific 355 

conversion was not available, we used the conversion from the closest relative within the taxon (see 356 

online repository tables). When taxon-specific conversions were not available, we assumed 30% dry 357 

mass per wet mass unit, and 50% carbon per dry mass unit following previous conventions [30]. In some 358 

cases, body size was reported in units of length (particularly among annelids, nematodes, and fishes). 359 

For these taxa, we found existing length to weight conversions for the species or the closest relative 360 

within the taxon. If body size was reported in diameter, as was the case for most unicellular species, we 361 

found the volume assuming that the organism was either spherical [31] or tubular [32], and then found 362 

existing biovolume to biomass conversions for the species or the closest relative within the taxon. For 363 

hard corals, since each corallite or colony is often tightly packed among other units, we estimated that 364 

volume as the cube of the reported diameter. While some of these assumptions may introduce size errors 365 

that we do not explicitly track in our uncertainty analyses, the different plausible conversion factors are 366 



 

 

 

within an order of magnitude. This error magnitude is much smaller than the size ranges estimated for 367 

each biological group based on the uncertainties that we did track (Fig 2). 368 

 We excluded from our body size (dry carbon mass) any non-free-living disease organisms, which 369 

are mainly found within trematode, nematode, virus, bacterial, and fungal groups. Disease organisms 370 

tend to represent extreme body sizes within their groups and may have been double counted as host 371 

biomass, which present a special challenge to estimating within-group size-biomass distributions that we 372 

do not address here. It is likely that the total biomass of disease organisms is low both within hosts (3% or 373 

less) and together as a group (similar to wild birds, the second lowest biomass among free-living groups) 374 

[24,128] and thus should not appreciably affect the cross-taxa spectrum, even though parasites and 375 

microbiome-associated organisms may have disproportionate effects on the biomass of other organisms. 376 

 To determine how biomass should be tallied by size class, we assessed how a group’s body size 377 

(mass) range (as directly observed from data) is related to median body size. A group’s size range 378 

represents an aspect of biological variation within which organisms can be considered similar. If groups 379 

with larger sizes vary in size by the same magnitude (rather than same order of magnitude) as groups 380 

with smaller sizes (e.g., group #1 contains 1-10g organisms, group #2 contains 1001g-1010g organisms), 381 

then tallying biomass by log size bins would group together increasingly different organisms at large 382 

median sizes. This is the rationale for normalized size-biomass, which divides the measured biomass of a 383 

size class by the class’s presumably artificial size range [8]. Conversely, if groups’ size range increases 384 

as a power function of median size, then larger size classes conceivably contain larger size variations 385 

that represent similar organisms. In this case normalization does not seem necessary on biological basis, 386 

and the size-biomass spectrum relating log biomass to log size, as often assumed [129], is natural. We 387 

performed a linear regression of the ratio of log10 maximum size to log10 minimum size (from known 388 

species) on log10 median size across biological groups. A slope (power exponent) of 0 would support the 389 

use of size-biomass spectra without normalization.  390 

Within-Group Size-Biomass Spectra. We used the truncated generalized extreme value (GEV) 391 

distribution to infer the body size-biomass distribution (with size on a log scale) within biological groups 392 

(see S4 Fig for examples). The probability distribution function for biomass y(x) in gigatonnes was written 393 



 

 

 

in term of log size x, with B being the total biomass of the group, and the three parameters 𝜇, 𝜎, and 𝜉 394 

specifying the location, scale, and shape, respectively: 395 
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We chose the GEV distribution because it is flexible, encompassing previously proposed body size- 398 

biomass relationships outlined below. Cross-taxa size-biomass relationships are often described using 399 

power laws, with positive [10,13] or negative [15–17,8] exponents resulting in extremely left or right-400 

skewed distributions (where the body size with the maximum biomass is at the end of the size range). For 401 

plant communities where community-level size-biomass relationships are better documented than other 402 

groups, the right-skewed Weibull distribution was used [108], which is a special case of the GEV. On the 403 

other hand, empirical studies on size-species frequency distributions, though not easily translatable to 404 

size-biomass spectra (except when all species have equal biomass), exhibit dome-shaped [130] and 405 

becomes less consistently right-skewed as one descends into finer taxonomic classifications [21,131], 406 

which are possibilities for size-biomass spectra that cannot be captured by power laws. At the extreme, 407 

ontogeny within many species leads to a greater total biomass for large adults than for small larvae (left 408 

skew) [21]. The possibilities of both left and right skews in addition to nonlinearity make standard 409 

distributions like lognormal, exponential, and gamma inappropriate because each only produces one type 410 

of skew. We used truncation because, without it, continuous distributions would typically imply finite 411 

biomass at unrealistic body sizes, especially for groups with high total biomass (e.g., bacteria having finite 412 

biomass at the size of trees). We also renormalized the distribution to retain the total biomass under the 413 

curve. Other similar distributions such as skew normal and extreme value can also be used, but they 414 

cannot be meaningfully distinguished from GEV because of the paucity of data, nor favored for 415 

mechanistic reasons because of a lack of theories on size-biomass relationships. 416 

 Two steps were involved in generating a bootstrapped estimate of median size-biomass spectra 417 

per group. We first interporate probability distributions (Eqs. 1 and 2) to three observed reference sizes 418 



 

 

 

for each organismal group compiled from the literature: minimum, median, and maximum sizes (Tables 419 

S1-S3). This fit was achieved by minimizing the sum of squares of the residuals between the three 420 

observed reference (log) sizes and the 0.05th, 50th, and 99.95th percentiles of the truncated generalized 421 

extreme value distribution. The probability distribution thus placed close to 99.9% of the biomass within 422 

the reported size range. Truncation was applied at two orders of magnitude below the reported minimum 423 

size, but not to the maximum size, to accommodate uncertainties associated with undetected small 424 

species and immature individuals. This assumption is compatible with empirical evidence across marine 425 

and terrestrial life with offspring being around two orders of magnitude smaller than adults in mass 426 

[132,133]. For microbes, offspring length (L) is around 0.2 to 0.5 times of the parent among model 427 

organisms [134]. Since volume (proportional to mass) is approximately 4/3 pL3 [31], offspring mass is one 428 

to two orders of magnitude smaller than parent mass. We note that Pseudomonas aeruginosa, one of the 429 

best-known bacteria that live in a wide range of human and natural habitats, have offspring that are two 430 

orders of magnitude smaller than parents in mass [135]. The upper size limits are likely more accurate 431 

than the lower size limits because larger species are easier to observe; in addition, the upper limits are 432 

not influenced by ontogeny, hence the asymmetry in truncation. We explored different truncation amounts 433 

to both lower and upper limits in sensitivity tests.  434 

In the second step, we used the initial distribution fit from step one to represent our uncertainty in 435 

where the median biomass occurs within groups (S4 Fig). A probability distribution is by definition the 436 

uncertainty in a parameter’s value; in this case the parameter is the median size because it is the most 437 

uncertain among the three datapoints that was fitted to data. We then resampled 1000 sets of these 438 

within-group median body size and biomass, keeping minimum and maximum sizes constant, and re-fit 439 

the truncated generalized extreme value distribution each time to generate bootstrapped size-biomass 440 

relationships. This way, even in cases where biomass estimates have low uncertainty, such as in 441 

grassland plants, uncertainty in median size leads to large uncertainty in biomass at each possible grass 442 

size. In particular, to propagate median size uncertainty, the median size was randomly generated from 443 

the initially fitted truncated generalized distribution per bootstrap. To propagate biomass uncertainty, we 444 

randomly sampled in log space using standard deviation 𝜎 = λ/1.96, where the fold uncertainty λ 445 

correspond to the 95% confidence interval (with the log upper/lower bounds deviating by λ from the log 446 



 

 

 

mean according to a lognormal error model) following previous report [30]. The 2.5th, 50th, and 97.5th 447 

percentiles of the bootstraps represent the lower bound, median, and upper bound of the within-group 448 

size-biomass spectra. 449 

Statistical trends and modes across groups. Global median size-biomass spectra and confidence 450 

intervals were obtained by cumulating biomass density (Gt biomass per log body size) of all groups in a 451 

habitat realm (or realms) centered at each size bin (1/40 of a log unit) per bootstrap. In other words, the 452 

cumulative biomass density is the biomass probability density and then normalized so that the area under 453 

the curve matches the total biomass within realm(s). In the main text, we simplified the term “biomass 454 

density” to “biomass.” Statistical descriptions were obtained for three different classifications of 455 

organisms: all realms, terrestrial, and marine. 456 

To fit statistical relationships between size and cumulative biomass in each habitat realm, we did 457 

not perform simple regressions directly on the best estimated spectra because 1) biomass datapoints are 458 

not independent across sizes within groups, and 2) the cross-taxa biomass totals in any size class 459 

depends on all groups in that size class, making the error structure correlated across the size range. To 460 

obtain confidence bounds, we relied on a parametric bootstrapped ensemble of possible size class – total 461 

biomass spectra (size-biomass spectra). For each bootstrap, the possible continuous size-biomass 462 

spectrum was sampled 40 times per log size class from -18 to 11 in the same way that it was plotted for 463 

visualization (size bin width was 1/40 of a log unit). We then performed statistical regressions on each of 464 

the 1000 bootstrap sampled sets. The 2.5th and 97.5th percentiles of the outputs at each size represented 465 

each regression model’s 95% confidence bounds. The result is that the confidence bounds may not 466 

strictly resemble the regression models; for example, single Gaussian fits across bootstraps may identify 467 

different peaks and thus the upper and lower bounds across size may be multimodal (S4 Fig). Size bins 468 

with total biomass lower than 10-5 Gt (1000 t), which is an order of magnitude below the lower bound of 469 

amphibian biomass (the lowest among all groups), were not included as datapoints for the regression. A 470 

cutoff is necessary to avoid large or infinitely negative values after log transformation, which would 471 

prevent regression from proceeding.  472 



 

 

 

We fit two kinds of regression models to test for trends in the amount of biomass across size 473 

classes across all taxa. For allometric power law relationships, ordinary least-squares regressions were 474 

performed to obtain power exponents 𝛽 that explain the discrete sampled log size-log biomass (x-y) 475 

relationships. For Gaussian mixture models, up to four modes (components) were fit using an expectation 476 

maximization algorithm to minimize nonlinear least squares (‘gauss1’, ‘gauss2’, etc. in Matlab R2017a, 477 

MathWork, Natick, MA). During fitting for the Gaussian mixture, we added log10(10-5)+1 to log biomasses 478 

to ensure that the minimum value was 1; smaller values were already removed previously. For plotting, 479 

we subtracted log10(10-5)+1 from the solutions. We measured R2 and the corrected Akaike Information 480 

Criterion (AICc) for model comparison [136], which results in means and standard deviations across 481 

bootstraps. 482 

We additionally obtained power laws for two alternative types of size spectra using linear 483 

regressions (Table 1). First, the size-abundance spectra [137] replaces biomass with abundance. 484 

Abundance is biomass divided by body mass, so the power law exponent 𝛼 for size (mass)-abundance is 485 

approximately the exponent for size (mass)-biomass minus one [3]. Second, the normalized size-biomass 486 

[8] replaces biomass with total biomass divided by the width of biomass size class, centered in the middle 487 

of the size class along the x-axis. In our data synthesis, the width is a constant of one in log size scale, 488 

since each point along the x-axis represents the biomass density, or biomass per log size unit. 489 

Consequently, normalized biomass BN at log size x is BN=B/(10x+0.5-10x-0.5) where B is the cumulative 490 

biomass density at size x. By taking the log of both sides of this equation, we obtain log10BN=log10B-x-491 

0.454. Since log10B-x is log10(B/10x), or log10(abundance), log normalized biomass in our data is just log 492 

abundance minus 0.454. Thus, the power law exponent for the normalized size-biomass spectrum is 493 

identical to 𝛼. 494 

Sensitivity Analyses. We repeat the regression analyses on global size-biomass spectra with datasets 495 

composed using different truncation limits for the within-group GEV distributions, different definitions of 496 

body size (ramets vs. genets), and different mass inclusivity (with vs. without metabolically inactive 497 

material) (S1 Fig, Table 4). 498 



 

 

 

Changing truncation limits should affect the GEV distributional fit for within-group size-biomass 499 

spectra. In particular, we experimented with the different size truncation limits of [-1,+1] and [0,0] on log 500 

scale. A small-enough truncation window should result in a distribution that is relative flat like most 501 

continuous probability distributions that have at most one interior inflection point. This implies size-502 

biomass distributions that approach uniform distributions. Additionally, a truncated uniform size-biomass 503 

distribution is expected to minimize biomass uncertainty propagation because all bootstraps will have the 504 

same size range and only variations from biomass uncertainty. 505 

The unit ‘genets’ was dissolved into smaller units of ramets for the variant definition of body size. 506 

Grassland plants, seagrass, soil fungi, and hard corals were affected by the switch to the ramet definition 507 

(S1 Table). In particular, the original large size range for soil fungi was reduced but remained the largest 508 

among all groups. This large size range reflects the group’s unique history of having evolved and lost 509 

multicellularity many times [138], and having indeterminate growth through hyphae [139] that manifest in 510 

all possible sizes up to the upper limits. Some of the referenced species exhibiting minimum, median, and 511 

maximum sizes were changed based on the alternative definition. 512 

We re-calculated the biomass spectrum only including the portion of the world’s biomass that is 513 

“metabolically active”, which would exclude skeletons, wood, and subterranean microbes [140]. This 514 

affects both the body size and biomass of forest plants, grassland plants, mangroves, and hard corals (S2 515 

Table). Excluding biomass with low metabolism potentially reduces all reported minimum, median, and 516 

maximum sizes we reference from the literature withing groups because this biomass is taken out of all 517 

genets or ramets (individuals). In all cases we found that species with the minimum, median, and 518 

maximum sizes remained the same, but their sizes were reduced.  519 
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Supporting Information Captions 883 

S1 Fig. Sensitivity of the global body size biomass spectrum to different assumptions. Grey dotted 884 

curves are 95% confidence bounds from 200 resamples from within-group uncertainties. See Fig. 1 for 885 

color reference and default assumptions. A. Same data as main text, except with truncations at 1 log g on 886 

either side of reported minimum and maximum sizes. B. Same data as main text, except with truncations 887 

at reported minimum and maximum sizes. C. Sizes are defined for ramets or clones instead of genets, 888 

with truncation at -2 log g below the reported minimum size. D. Mass with low metabolism is omitted from 889 

body size and biomass estimates (plant woody material, hard coral skeleton, and subterranean 890 

microbes), with truncation at -2 log g below the reported minimum size. 891 

S2 Fig. Regression analyses on abundance. Data is the same as in main text, except biomass is 892 

replaced by abundance or normalized biomass (biomass divided by size class width). Rows represent 893 

habitat realms (A: all realms, B: terrestrial, C: marine). Grey curves represent 95% confidence intervals of 894 

the data, and blue curves represent 95% confidence intervals of the model from 1000 bootstraps. 𝛼 is the 895 

mean power exponent, and ± indicate standard deviations across bootstraps. Regression results are 896 

identical whether it is performed on log abundance or log normalized biomass as the dependent variable, 897 

because the latter is only offset from the former by a constant (-0.454). 898 

S3 Fig. Group size range. Size ranges of 36 groups are quantified as the log max:min size ratio, 899 

corresponding to the number of log10 units that each group spans in size (g). This quantity shows no 900 

relationship with median body size (on log-log scale), with a power exponent of 0.0±0.10 (S.D.) and a p-901 

value of 0.99. The size ratio has a mean of 7.0±4.2. 902 

S4 Fig. Estimating within-group size-biomass spectrum. The size-biomass relationship for each 903 

group is composed of biomass and size estimates. Biomass estimates and uncertainties were mostly 904 

based on published syntheses that incorporate multiple independent sets of sampled biomass (black dots 905 

on maps) that are projected over habitat ranges (akin to species distribution models). Body size 906 

distribution and uncertainty were based on literature search for minimum, median, and maximum sizes 907 

within groups (green dots). A truncated generalized extreme value distribution was first fitted to the three 908 



 

 

 

points that result in an uncertainty estimate for median size. 1000 pairs of resampled total biomass and 909 

median size were then used to refit a truncated generalized extreme value distribution, resulting in a set 910 

of bootstrap samples that create the final median estimate and 95% confidence intervals for the size-911 

biomass spectrum. 912 

S1 Table. Body sizes measured for ramets instead of genets. 913 

 914 

S2 Table. Body sizes excluding sizes and biomass with low metabolism. 915 

S3 Table. Icon sources. All icons belong to the public domain. 916 

S1 File. Supporting Information References. 917 


