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Abstract: We demonstrate machine-learning-enhanced Bayesian quantum state tomog-
raphy on near-term intermediate-scale quantum hardware. Our approach to selecting prior
distributions leverages pre-trained neural networks incorporating measurement data and 
en-ables improved inference times over standard prior distributions. 

Bayesian quantum state estimation naturally quantifies uncertainty, provides reliable estimates under any con-
dition (e.g., any number of measurements), and minimizes mean-squared error [1]. However, these advantages
come with practical computational challenges associated with calculating high-dimensional integrals, making it
significantly slower than alternative methods [2]. In addition, Bayesian estimation often relies on custom likeli-
hood functions or the direct manipulation of prior distributions to incorporate prior information. Although the first
approach has shown some promise in boosting performance [3], it is conceptually unsatisfying since, in theory,
all prior information ought to pass through the prior distribution. On the other hand, the current methods for di-
rectly engineering prior distributions to include prior information are relatively coarse, rely on assumptions about
a system that may change over time (like the expected rank of output states), and necessitate manual tuning [4,5].

Here we experimentally implement a method, depicted in Fig. 1, that uses machine learning (ML) to define
prior distributions that automatically adapt to input data and thereby address, in part, these practical and con-
ceptual difficulties of Bayesian state reconstruction. In particular, our system uses pre-trained neural networks to
automatically incorporate properties of the measured data set into the prior distribution. In addition to our system’s
“case-by-case” automatic tuning, we can further manually tune broad features of the prior distribution, making our
approach sufficiently general to encompass several previous manual tuning techniques. Using a dataset obtained
from near-term intermediate-scale (NISQ) hardware, we observe that our method reduces the net time required to
perform high-fidelity Bayesian inference compared to inference with standard prior distributions.

To demonstrate the proof of concept in realistic experimental scenarios, we utilize data sets consisting of to-
mographic measurements performed on random quantum states implemented on ibmq jakarta, one of the IBMQ
Falcon processors. We first numerically generate 200 Haar-random two-qubit pure states and initialize these on
ibmq jakarta. Then, the states are automatically transpiled from the backend into the required quantum circuits
for generation. The depths of the transpiled quantum circuits—i.e., the longest path from input to output—
range between 12 and 16 gates. For each state, we perform full state tomography with a total of 36 measure-
ment projections, corresponding to the four outcomes for all 9 two-qubit combinations of the Pauli operators
{X ,Y,Z}1 ⊗{X ,Y,Z}2.

Our ML-based prior distribution selection method relies on first performing rapid inference using pre-trained

Fig. 1. Schematic of proposed machine learning prior Bayesian estimation technique.

QM4B.3 Quantum 2.0 Conference 2023 © Optica Publishing Group 2023

© 2023 The Author(s)



Fig. 2. Efficacy of ML-prior method for reconstructing states generated by the IBMQ machine
ibmq jakarta. (a) Reconstruction fidelity versus total wall-clock time. (b) Purity distributions for
the ML prior, Bures prior, and IBMQ. The error bars represent one standard deviation from the
mean.

neural networks. To perform this we design a convolutional neural network (CNN) with a convolutional unit of
kernel size (2, 2), strides of 1, ReLU as an activation function, and 25 filters [6]. The output of the CNN is fed
into a layer that performs pooling with a pool size (2, 2), followed by a second convolutional unit of the same
configuration. Then, we combine two dense layers, followed by a dropout layer with a rate of 0.5, which is then
attached to an output layer predicting τ-vectors (Cholesky coefficients of the density matrix). The network takes
in measurements and outputs the density matrix ρML. Note that we evaluate the fidelity of any state ρ with respect
to some target density matrix ρ0 in this paper as
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To find the machine-learning-defined prior (ML prior), we use the convex sum of ML-predicted density
matrix ρML and K − 1 Haar-random pure states |ψi⟩ as ρ = x1ρML +∑

K
i=2 xi|ψi⟩⟨ψi|, where, x = (x1, ...,xK) is a

Dirichlet-distributed vector whose elements belong to the open K −1 simplex. The results are shown in Fig. 2 for
the reconstruction of 200 randomly selected quantum states and K = 5. The time in these figures is wall-clock
timing, meaning it includes the additional time the ML prior requires for the initial rapid inference of ρML, a
step the Bures prior does not require. The cyan and magenta curves, respectively, show the reconstruction using
the ML prior and Bures prior as indicated in Fig. 2(a). The error bars represent one standard deviation from the
mean. We observe that the ML prior significantly outperforms the Bures prior for short timescales, but at long
computation times obtains almost the same fidelity as the Bures prior. This is expected, as our approach essentially
initiates the Bayesian inference “closer” to the correct answer, but given enough time and computational resources
the standard Bayesian inference approach eventually reaches the same conclusion. Furthermore, in Fig. 2(b), we
show numerically generated probability density functions of purity distributions of the states from the Bures prior
(magenta), the ML prior (cyan), and IBMQ experiments (yellow). We clearly observe that the ML prior, which
successfully adapts based on the rapid reconstruction of ρML, has stronger overlap in probability compared to the
Bures prior distribution. Our approach provides a path toward making Bayesian quantum state estimation more
practical by reducing the net computational resources required for high-fidelity inference.
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