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Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such
protection requires testing its robustness against uncontrolled environmental interactions. Using
47 superconducting qubits, we implement the one-dimensional kicked Ising model, which exhibits nonlocal
Majorana edge modes (MEMs) with ℤ2 parity symmetry. We find that any multiqubit Pauli operator
overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation
rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the
exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against
certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex
interplay between noise and symmetry-protected edge modes in a solid-state environment.

T
he symmetry of a quantum system can
give rise to topologically distinct degen-
erate ground states. A quantum super-
position of such states is, in principle,
immune to dephasing; additionally, an

energy gap separates the ground states from the
excited states and further protects the ground
states from energy decay. As such, symmetry-
protected ground statesmay formdecoherence-
free subspaces (1–4) andare promising candidates
for topological quantum computing (5, 6). An
example model supporting symmetry-protected
topological states is the Kitaev model of spinless
fermions in a one-dimensional (1D) wire (7). The
ℤ2 parity symmetry of the model leads to a pair
of degenerate ground states. Thedistinct parities
of the two ground states protect them against
local parity-preserving noise, such as potential
fluctuations (8). The topological property of
these degenerate ground states is commonly

described by a pair of localized Majorana
edge modes (MEMs) at the ends of the wire.
Whereas the degree of symmetry protection

in a closed quantum system is often under-
stood, experimental quantum systems are in-
variably subject to physical noise sources that
do not necessarily respect the underlying sym-
metry. In the context of MEMs, notable efforts
have been directed toward experimentally re-
alizing the Kitaevmodel, for example, in nano-
wires with spin-orbit interactions placed in
the proximity of a superconductor (9–16). Here,
the underlying ℤ2 symmetry cannot be broken
by local perturbations within a closed system.
Nevertheless, theoretical results have widely
suggested that MEMs remain susceptible to
a variety of decoherence effects from their
open solid-state environment (17–20). Exper-
imental results have also established that the
density of subgap quasiparticles is often orders
of magnitude higher than predictions from
simple thermal population arguments (21–24).
The incoherent processes involving these quasi-
particles can change the parity of the ground state
and, consequently, destroy the topological pro-
tection. These results highlight the importance
of characterizing the extent of symmetry pro-
tection in realistic open-system environments.
The advent of high-fidelity quantum proces-

sors and simulators suggests an alternative

approach to examining the realistic extent of
protection for a given symmetry (25–27). In
this study, we use the Jordan-Wigner trans-
formation (JWT) to map the Kitaev model to a
transverse Ising spinmodel (28), which ismore
compatible with a chain of qubits (29–32). The
JWT also maps each MEM, commonly repre-
sented by a sum of local Majorana operators
in the fermionic chain, to a sum of Pauli spin
operators that can be individually character-
ized on a quantum processor. Given the non-
local nature of the JWT, theMEMs in the Pauli
basis are prone to local symmetry-breaking
noise even within a closed system, which dis-
tinguishes them fromMEMs in fermionic sys-
tems. Despite this disadvantage, we find that
the interplay between ℤ2 parity symmetry
and a prethermalizationmechanism endows
the MEMs with a strong resilience toward
both closed-system thermalization and open-
system perturbations such as low-frequency
noise. Furthermore, we discover a method
for accurately reconstructing the Pauli expan-
sion of MEMs in the presence of decoher-
ence, which may be extended to study other
integrals of motion in many-body quantum
systems.
The experiment is conducted on an open-

ended chain of L = 47 superconducting qubits
[see (33) for device details]. The qubit chain is
periodically driven by a quantum circuit cor-
responding to a kicked Ising model (Fig. 1B),
with the following unitary applied in each
cycle

Û F ¼ e
� i

2

XL
j¼1

hj Ẑ j

e
� ipJ

2

XL�1

j¼1

Ẑ jẐ jþ1

e
� ipg

2

XL
j¼1

X̂ j

ð1Þ

where X̂ j and Ẑ j denote Pauli operators
acting on a given qubit Qj. Here J and g de-
note the strengths of the Ising interaction
and the transverse fields, respectively; and hj
is a set of local z-fields that break integrability
of the model. Compared to a digitized imple-
mentation of the transverse IsingHamiltonian
(see fig. S11 for experimental data of this ap-
proach), the periodic (i.e., Floquet) evolution
here generates faster dynamics in real time
and is advantageous given the finite coherence
times of the qubits. Under such a drive, the
Hilbert space of the systemmay be described
by the eigenstates ofÛ F whose eigenvalues lie
on a unit circle, as illustrated in the right panel
of Fig. 1B.
Given that there is no ground state in a

Floquet system, the twofold degeneracy of the
ground state in the Kitaev model instead be-
comes a pairing of eigenstates across the entire
spectrum. In our work, we fix J = 1/2, wherein
the Floquet system, in the integrable limit hj = 0,
has ℤ2 spin-flip symmetry and exhibits two
phases with distinct spectral pairings. For
the phase characterized by g> 0.5,which is the
focus of the main text, the quasienergy levels
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have a p-pairing (Fig. 1B, right panel): Every
many-body eigenstate of the Û F with quasi-
energy q has a “partner” state with quasi-
energy q + p (34). The transition between any
paired eigenstates is enabled by an application
of the so-called p-MEMs, ĉL and ĉR (35, 36).
The p-MEMs anticommute with Û F in the
large L limit

ĉLÛ F ¼ �Û FĉL; ĉRÛ F ¼ �Û FĉR ð2Þ

At g < 0.5, the eigenspectrum of Û F has a
double degeneracy, that is, each eigenstate
has a partner state with the same quasienergy.
Here, the transition between paired eigen-
states is described by two so-called 0-MEMs
that commute with Û F . Experimental data
for this regime, which is analogous to the
ferromagnetic phase of the transverse Ising
model, are shown in fig. S10. At the critical
point g = 0.5, the eigenstates are distributed

uniformly on the unit circle with a gap of
p/L, which vanishes in the limit L = ∞.
In the presence of finite local fields hj ≠ 0,

Û F is no longer integrable and the ℤ2 sym-
metry is also broken. We begin by searching
for signatures of stable edge modes in this
regime, focusing on the Ẑ operators that, in
the JWT, have large overlap with MEMs on
the edge (Fig. 1A). Figure 1C shows experi-
mental measurements of Ẑ j tð Þ� �

for all qubits
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Fig. 1. Observation of long-lived edge modes in a kicked Ising model.
(A) Schematic illustration of the Jordan-Wigner transformation between a 1D
fermionic Kitaev chain and a qubit chain. In the fermionic (qubit) chain, the
sizes (widths) of the colored spheres (bars) denote the relative weights of the
edge modes in the Majorana fermion (Pauli) basis. The right edge mode in
the Pauli basis is dominated by long Pauli operators spanning the entire chain.
(B) (Left) Quantum circuit implementation of a kicked Ising model. An identical
unitary ÛF is repeated a total of t times. (Right) Eigenstates of ÛF (g > 0.5),

shown on a unit circle according to their quasienergies. (C)
�
Ẑ j tð Þ

�
as a function

of t and qubit location Qj. The initial state is a random product state, 0101001:::j i.
(Inset)

�
Ẑ j tð Þ

�
for the three leftmost and rightmost qubits, between t = 50 and

t = 200. (D)
�
Ẑ j tð Þ

�
for the two edge qubits j = 1 and 47 (left panel) and two

qubits within the bulk j = 16 and 32 (right panel). Top axis for each plot indicates
real time, calculated on the basis of the time needed to execute ÛF (93 ns).
Locations for the qubits shown in this panel are also indicated by colored
arrows in (C).

RESEARCH | REPORT
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of C
hicago on D

ecem
ber 15, 2023



in the chain, wherewe have chosen hj/p from a
random uniform distribution [−1,1] to maxi-
mize the effect of integrability breaking. We
observe a stark contrast in the behavior of the
edge qubits, Q1 and Q47, and qubits within the

chain, Q2 to Q46. Whereas Ẑ j tð Þ� �
decays rap-

idly to 0 after ∼20 cycles (∼2 ms) for any qubit
in the bulk, Ẑ j tð Þ� �

decays much more slowly
for the edge qubits. In addition, Ẑ j tð Þ� �

for each
edge qubit shows a subharmonic oscillation

at a period twice that of the drive Û F, because
each application of Û F changes the sign of
ĉL;R owing to their anticommutation (Eq. 2).
The bulk-edge difference is further illus-

trated in Fig. 1D, where data for four qubits
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Fig. 2. Quasienergy spectroscopy. (A) (Top)
�
Ẑ 1 tð Þ

�
measured in the

integrable limit hj = 0 and system size L = 12. (Bottom) Frequency-dependent
amplitude n(w) of the Fourier transform of

�
Ẑ 1 tð Þ

�
in the top panel. The arrows

indicate the single-particle quasienergy peaks for the bulk and edge fermionic
modes. a.u., arbitrary units. (B) n as a function of both frequency w/p and g,
measured for three different values of L. In all cases, hj = 0. To obtain the

spectra,
�
Ẑ 1 tð Þ

�
is measured up to t = 300, 200, and 150 cycles for L = 6, 12, and

18, respectively. (C) (Top) n(w) for different L, showing the quasienergy peaks
of the hybridized MEMs with a splitting 2D/p. Data are offset for clarity. (Bottom)
D/p measured as a function of L at different values of g. Solid lines represent
exact numerical results from diagonalizing ÛF in the fermionic basis (33).
Random product states are used as initial states in all measurements.

Fig. 3. Low-frequency noise resilience of MEMs and comparison with
unprotected edge modes. (A) (Left) Quantum circuit corresponding to the XY

model, where an identical cycle unitary ÛXY is applied t times. (Right) Top panel
shows

�
X̂1 tð Þ

�
and

�
Ŷ 1 tð Þ

�
measured at Q1, with the control parameter z/p = 1.0

and no disorder hj/p = 0. Bottom panel shows the Fourier spectrum n(w) of�
X̂1 tð Þ

�
þ i
�
Ŷ 1 tð Þ

�
. (B) n(w) as a function of w/p and z for the ÛXY model, where�

X̂1 tð Þ
�
and

�
Ŷ 1 tð Þ

�
are measured up to t = 100. (C) (Top panels)

�
X̂1 tð Þ

��
Ẑ 1 0ð ÞẐ 1 tð Þ

���
for the ÛXY

�
ÛF

�
edge modes, measured for four different disorder

realizations with hj/p ∈ [−0.05,0.05]. (Bottom panels) Disorder-averaged
�
X̂1 tð Þ

��
Ẑ 1 0ð ÞẐ 1 tð Þ

���
for the ÛXY

�
ÛF

�
edge mode, shown over four different disorder

strengths d. Eighty disorder instances hj/p ∈ [−d/p, d/p] are used for averaging
in each case, and the initial states are additionally randomized between instances
for ÛF. (D) Red lines: Fourier spectra n(w) obtained from the disorder instances in
the upper panels of (C). Black lines: n(w) for the disorder-averaged observables
(d = 0.05) in the lower panels of (C). (E) Maximum Fourier amplitude nmax as a
function of d. Data are normalized by nmax at d = 0.
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are shown. The lifetimes of the edge modes,
which include contributions from both exter-
nal decoherence effects and internal non-
integrable dynamics, are extracted by fitting
the envelope of Ẑ 1 tð Þ� �

Ẑ 47 tð Þ� �� �
to an expo-

nential (fig. S8) and found to be 19.5 ms (17.2 ms)
for Q1 (Q47). These values are close to the typ-
ical single-qubit relaxation time T1 = 22.2 ms
on the device—a preliminary indication that
the MEMs are resilient toward integrability-
and symmetry-breaking fields as well as de-
phasing effects such as low-frequency noise.
Recent theoretical works have suggested

that the resilience of the edge modes toward
nonintegrable dynamics is a result of prether-
malization (37–41). Unlike thermalizing sys-
tems, which monotonically decay to ergodic
states over time, a prethermal system relaxes
first to a metastable state before decaying to
ergodic states. A common mechanism for pre-
thermalization is the existence of spectral
gaps, which make relaxation processes driven
by integrability-breaking perturbations off-
resonant, thereby preventing energy absorption.
To experimentally establish prethermalization

in our system, we characterize the excitation
spectrum in the integrable limit,hj=0.Here, the
many-body spectrum of Û F may be constructed
froma total of 2L energy quanta, corresponding
to the quasienergies of noninteractingBogoliubov
fermionic quasiparticles in the fermionic repre-
sentation of Û F . These quasienergies can be
obtained through a Fourier analysis of time-
domain signals (42, 43) [see supplementary
text sections III and V (33)]. Figure 2A shows
measurements of Ẑ 1 tð Þ� �

hj ¼ 0ð Þ for a short
chain L = 12. The time evolution for Ẑ 1 tð Þ� �

is
now seemingly featureless, which results from
interference between different eigenmodes of
Û F . To obtain the quasienergies, a Fourier trans-
formof the time-domain data is then performed
(Fig. 2A, bottom). The Fourier spectrum n(w)
reveals a total of 2L distinct peaks at values of
w corresponding to the quasienergies of the 2L
noninteracting fermionic modes in the system.
The two dominant peaks close to w = p in

the spectrum of Fig. 2A are associated with
the MEMs, which are split in quasienergy be-
cause of their hybridization in this short chain.
To confirm this interpretation, we change the

localization length x of the MEMs by tuning g
and measure the spectra over three different
system sizes. The results, shown in Fig. 2B, re-
veal two important features: First, we observe
that the quasienergy splitting 2D of the two
MEMs decreases as g increases. This is caused
by a reduced x that leads to weaker hybrid-
ization between ĉL and ĉR. Second, we ob-
serve a finite quasienergy gap X between the
MEMs and the other bulk fermionic modes,
which increases at larger g. This quasienergy
gap, which crucially remains open as L in-
creases, suppresses transitions between bulk
and edge states and is the key to protecting the
MEMs against integrability-breaking fields.
Further discussion of this prethermalization
mechanism is presented in supplementary
text section IV (33).
Although thebulkgapprotects theMEMs from

internal thermalization, the finite quasienergy
difference 2D between the two MEMs is sen-
sitive to disorder fluctuations. Such a sensi-
tivity may lead to dephasing of the MEMs
through low-frequency noise (20), as shown
by fig. S5. This effect may be suppressed by
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Fig. 4. Reconstructing the Pauli operator expansion of MEMs. (A) (Top panels)

Correlators
�
Ẑ 1 0ð ÞĈ tð Þ

�
for g = 0.8 and g = 0.6, with the compositions of Ĉ tð Þ

shown in the legend. Here, the g = 0.8 (g = 0.6) data are averaged over 10 (12)
disorder realizations and initial random product states. Bottom panels show the

absolute values of the correlators, Ẑ 1 0ð ÞĈ tð Þ
��� ���. (B) The top eight panels show

experimentally reconstructed Pauli operator expansion of the MEMs ĉL;R;
aZ;n and aY;n correspond to the coefficients of the Pauli operators shown in
the legends. The bottom two panels show experimental values of aZ;n

�� ��
(points) and theoretical predictions (solid lines). Error bars correspond to
statistical uncertainty stemming from single-shot measurements [see
methods (33)].

RESEARCH | REPORT
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of C
hicago on D

ecem
ber 15, 2023



reducing the hybridization between ĉL and
ĉR , which is achievable through increasing
either g (Fig. 2B) or L. The dependence of D on
L is mapped out in detail by the experimental
measurements shown in Fig. 2C. We observe
that for g > 0.6, D is exponentially suppressed
by larger L, in agreement with theory (33). For
g < 0.6, the suppression is no longer exponen-
tial, given the proximity to the phase transi-
tion point g = 0.5, where the bulk gap closes.
We also find excellent agreement between
exact numerical results and experimentalmea-
surements even for D/p ≈ 0.01, which is a result
of accurate gate calibrations described in (33).
We next perform a systematic study on the

low-frequency noise resilience of the MEMs
for a moderately long chain, L = 20. To ex-
amine the role of symmetry in noise protec-
tion, we have also experimentally realized edge
modes in a different periodic circuit with a
cycle unitary Û XY that does not have ℤ2 sym-
metry. As illustrated in Fig. 3A, Û XY consists
of two layers of two-qubit gates applied be-
tween all nearest-neighbor qubits,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
iSP zð Þp ¼

e�iz4 Ẑ j�Ẑ jþ1ð Þe�ip4 ŝþ
j ŝjþ1

� þ ŝj
� ŝjþ1

þð Þe�iz4 Ẑ j�Ẑ jþ1ð Þ, where
ŝþ;�denotes Pauli raising and lowering opera-
tors. In the single-excitation subspace, Û XY has
L eigenmodes, including two localized edge
modes [see appendix E of (44)] for control
parameter z=p ∈ 0:25; 1:75½ �. The leading order
terms in the Pauli operator expansion of the
edge modes are ŝ1

þ and ŝL
þ, respectively.

To probe one of the edge modes for Û XY, we
prepare the system in a superposition state
1ffiffi
2

p 0000:::j i þ 1000:::j ið Þ to maximize the ini-
tial value ŝþ

1 t ¼ 0ð Þ� � ¼ 1.We then apply Û XY

t times before measuring the time-dependent
observable ŝþ

1 tð Þ� �¼ X̂ 1 tð Þ� �þ i Ŷ 1 tð Þ� �
, which

precesses at a frequency corresponding to the
quasienergy of the edge mode. Example ex-
periment data and the corresponding Fourier
spectrum n(w) for z/p = 1.0 are both shown in
Fig. 3A, demonstrating a slowly decaying sub-
harmonic response and a quasienergy peak at
w = p that are similar to those of the MEMs of
theÛ Fmodel. Figure 3B shows experimentally
measured n as a function of both z and w. At
0.25 ≲ z/p ≲ 1.75, we observe a dominant quasi-
energy peak that corresponds to an edgemode
and is separated from the L − 2 bulk modes,
visible as smaller peaks outside the range 0.5 <
wp < 1.5, by spectral gaps akin to the bulk gap X
of the Û F model. Despite these apparent simi-
larities, a crucial distinction exists between the
two models: The quasienergy of the Û XY edge
mode is first-order sensitive to z at all values of
z, whereas the quasienergy of theÛ F edgemode
asymptotically approaches p as g increases. This
distinction stems from the lack of ℤ2 symmetry
in Û XY and leads to drastically different robust-
ness of the two models toward low-frequency
noise in hj, which we explore next.
The upper panels of Fig. 3C show X̂ 1 tð Þ� �
Ẑ 1 0ð ÞẐ 1 tð Þ� �� �

of the Û XY Û F

� �
model, mea-

sured for four different realizations of hj/p
that are uniformly chosen from [−d, d]. Here,
the autocorrelator Ẑ 1 0ð ÞẐ 1 tð Þ� �

differs from
Ẑ 1 tð Þ� �

only by a random ± sign given by the
initial state of Q1, and d = 0.05 is a disorder
strength chosen to be comparable to the low-
frequency fluctuation of the quantum device.
Weobserve that X̂ 1 tð Þ� �

exhibits beatingpatterns
that depend sensitively on the disorder realiza-
tion. This is a result of the first-order sensitivity
toward control parameters demonstrated in
Fig. 3B. On the other hand, Ẑ 1 0ð ÞẐ 1 tð Þ� �

is vir-
tually unchanged between different disorder
realizations. The impact of low-frequency noise
on each edgemode realization is then emulated
by averaging the corresponding observable
over an ensemble of disorder realizations, which
mimics the process of dephasing. The disorder-
averaged X̂ 1 tð Þ� ��

in the Û XY model, shown in
the lower panel of Fig. 3C, decays significantly
faster as the disorder strength d increases. On
the other hand, Ẑ 1 0ð ÞẐ 1 tð Þ� ��

in the Û F model
remains unchanged over d.
The sensitivity of the two edge mode real-

izations toward low-frequency noise is further
elucidated by inspecting the Fourier spectrum
n(w) of each disorder realization, shown in Fig.
3D. Here, we observe that the quasienergy peak
for the Û XY edge mode is different for each dis-
order realization, resulting in a broadened spec-
trum with a lower peak height upon averaging.
On the other hand, the quasienergy peak for
Û F remains stable at w = p, irrespective of
disorder realizations. Lastly, we measure the
disorder-averaged quasienergy peak height,
nmax = Max[n(w)], and show the results in Fig.
3E. For the Û XY model, we observe that nmax

decays exponentially as a function of d irre-
spective of z. For the Û F model, nmax is com-
pletely insensitive to d for sufficiently localized
MEMs (g = 0.8) and remains insensitive for
small d < 0.05 even in the more delocalized
regime g = 0.6. These results highlight the crit-
ical role of symmetry in stabilizing the quasi-
energies of MEMs and protecting their lifetimes
against low-frequency noise.
Finally, using the full L = 47 qubit chain, we

demonstrate an error-mitigation strategy for ac-
curately reconstructing the Pauli operator ex-
pansion of ĉL;R in the presence of noise. Figure
4A shows the late-time evolution of eight multi-
qubit Pauli operators Ĉ entering the JWTof ĉL;R,
experimentally obtained by rotating each qubit
1into the appropriate basis followed by multi-

qubit readout.We observe that each Ẑ 1 0ð ÞĈ tð Þ�

exhibits a similar subharmonic response, with
an amplitude that decreases when Ĉ incorpo-
rates more qubits and has less overlap with
ĉL;R (Fig. 1A). Operators ending with Ŷ also
show smaller amplitudes than those ending
with Ẑ because they have no overlap with ĉL;R

in the time-independent transverse Ising mod-
el and only arise as corrections to the JWT of

ĉL;R as a consequence of the time-dependent,
periodic dynamics. Notably, as shown also in
Fig. 4A, the absolute values (i.e., magnitudes) of
these operators, Ẑ 1 0ð ÞĈ tð Þ�� ���, exhibitnearly iden-
tical decay rates despite their different lengths
and compositions.
The observation in Fig. 4A is contrary to

naïve expectations, wherein the decay rate of
a quantum operator is expected to scale with
the number of qubits it incorporates. The result
may be qualitatively understood by the fact that
ĉL and ĉR anticommute with Û F (Eq. 2) and are
conserved under the periodic dynamics. Even
though external decoherence and integrability-
breaking fields violate this commutation, ĉL;R

remains a slowly decaying mode [see supple-
mentary text section VII (33)]. As a result, any
multiqubit operator having a finite overlapwith
ĉL;R will exhibit a slow-decaying expectation
value in its late-time dynamics, with an ampli-
tude proportional to the overlap.
The uniform decay rates of Ẑ 1 0ð ÞĈ tð Þ�in-

form an experimental strategy for reconstruct-
ing the expansion of the MEMs in the Pauli
operator basis

ĉL;R ¼XL
n¼1

aZ;n
YN
j¼M

X̂ j

 !
Ẑ n þ aY;n

YN
j¼M

X̂ j

 !
Ŷ n

" #

ð3Þ
where the products over j have limits N = n − 1
andM=1 for ĉL, andN=L andM=n+1 for ĉR

(45). The coefficients aZ;n and aY;n normalize
to unity for L = ∞:

X
n
aZ;n
�� ��2þ aY;n

�� ��2 ¼ 1. To
estimate their values, we measure different
Ẑ 1 0ð ÞĈ tð Þ�at 10 late-time cycles. The average
value of each operator and the normalization
condition allow us to determine the ideal val-
ues of aZ;n and aY;n [see methods and supple-
mentary text section VI (33) for details].
The experimentally measured coefficients,

shown in Fig. 4B for four values of g, both
oscillate in sign and decay exponentially as
n moves away from the edge. The decay rate
is also observed to decrease as g approaches
the critical value g = 0.5. This is a result of the
fact that the decay constant for the coeffi-
cients is the localization length x of the MEMs,
which diverges at g = 0.5 [see supplementary
text section III (33)]. A comparison between
theoretical and experimental values of aZ;n

�� ��
is shown in the bottom panels of Fig. 4B, where
good agreement is found over a span of nearly
three orders of magnitude.
In this study, we simulate MEMs using a

system of driven transmon qubits and com-
prehensively study their symmetry protection
against noise in their solid-state environment.
We find that the degree of protection sensi-
tively depends on the physical characteristic
of the noise and generally does not extend to
noise that breaks the underlying symmetry,
such as T1 decay of the transmon qubits. We
also find that, because of a prethermalization
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mechanism, the MEMs in our system are pro-
tected against certain noise that seemingly
violates ℤ2 symmetry, for example, local Ẑ fluc-
tuations. These results highlight the complex
interplay between physical noise and protection
and indicate the crucial importance of testing
symmetry against open-system dynamics in any
experimental platform. Furthermore, we find
that even in the presence of decoherence, the
Pauli expansion of conserved quantities such as
MEMs can be accurately determined by mea-
suring and renormalizing late-time expectation
values of Pauli operators. This error-mitigation
strategy may be applied to study integrals of mo-
tion in physical models that are more difficult to
compute classically. Preliminary results on non-
integrable dynamics are shown in fig. S7.
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