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The ability to perform measurements in the middle of a quantum circuit
isa powerful resource. It underlies a wide range of applications, from
remote state preparation to quantum error correction. Here we apply
mid-circuit measurements for a particular task: demonstrating quantum
computational advantage. The goal of such ademonstration s for a
quantum device to perform a computational task that is infeasible for
aclassical device with comparable resources. In contrast to existing
demonstrations, the distinguishing feature of our approachis that the
classical verification process is efficient, both in asymptotic complexity and

in practice. Furthermore, the classical hardness of performing the task is
based upon well-established cryptographic assumptions. Protocols with
these features are known as cryptographic proofs of quantumness. Using
atrapped-ion quantum computer, we perform mid-circuit measurements
by spatially isolating portions of the ion chain via shuttling. This enables us
toimplement two interactive cryptographic proofs of quantumness, which
when suitably scaled to larger systems, promise the efficient verification of

quantum computational advantage. Our methods can be applied to arange
of interactive quantum protocols.

To date, experimental quantum computation has largely operated
in a non-interactive paradigm in which classical data are extracted
from the computation only at the very last step. Although this has led
to many exciting advances, it has also become clear that in practice,
interactivity—made possible by mid-circuit measurements performed
on the quantum device—will be crucial to the operation of useful
quantum computers. For example, for quantum error correction,
projective mid-circuit measurements are used to converta continuum
of possible errors into a specific discrete set of errors that can be
corrected, as has been demonstrated in a recent experiment'?. Cer-
tain quantum machine learning algorithms also leverage mid-circuit

measurements to introduce essential nonlinearities®. Recent work
has shown that interaction can do much more: it has emerged as an
indispensable tool for verifying the behaviour of untrusted quan-
tum devices*® and even for testing the fundamentals of quantum
mechanics itself’.

Consideraclassical computer sending commands to an untrusted
quantum device thatit cannot feasibly simulate. This could consist of a
lab computer testing anew, large quantum device butalso, perhaps, a
user connectingto aquantum cloud computingservice over theinter-
net. At first sight, the inability of the classical machine to simulate the
quantumone seems to pose a difficulty for certifying the output. This
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challenge mirrors one explored in classical computer science, which
asks whether a sceptical, computationally bounded ‘verifier’ who is
not powerful enough to validate a given statement on their own can
be convinced of its veracity by amore powerful but untrusted ‘prover’.
Several decades ago, thisidea beganto be pursued through anovel tool
called an interactive proof. In these protocols, the verifier’s goal is to
accept only valid statements, regardless of whether the prover behaves
honestly or attempts to cheat. One of the greatest achievements of
computational complexity theory is a set of results showing that in
certain scenarios, multiple rounds of interaction allow the verifier to
detect cheating by even arbitrarily computationally powerful prov-
ers®'°, The essential idea is that interaction can force the prover to
commit tosome piece of information early inthe protocol, upon which
the verifier follows up with queries that can be answered consistently
only if the prover is being truthful. In exciting recent developments,
success has beenachieved by applying thisideato quantum computing:
interactive proofs have been shown to allow the verification of anum-
ber of practical quantum tasks, including random number generation®,
remote quantum state preparation® and delegating computationtoan
untrusted quantumserver*. Perhaps the most direct application of an
interactive protocol is for a ‘cryptographic proof of quantumness’, a
protocol that allows a quantum device to convincingly demonstrate
its non-classical behaviour to a polynomial-time classical verifier by
performing a task that is assumed to be computationally hard for a
classical machine yet is efficient to check*2,

The simplest proof of quantumness, in general, is a Bell test
(which does not rely on a computational hardness assumption)®. It
uses entanglement to generate correlations that would be impossi-
ble to reproduce classically without communication. While the Bell
test’s simplicity is attractive, avoiding the communication loophole
requires the use of multiple quantum devices that are separated by
a considerable distance' . To prove the quantumness of a single
‘black-box’ quantum device whose inner workings are hidden from the
verifier, one can, instead, rely on differences in classical and quantum
computational power, in other words, asking the device to demon-
strate its quantum computational advantage. In contrast to recent
sampling-based tests of quantum computational advantage?, in
a cryptographic proof of quantumness, the verification step must
also be efficient. Although in principle any algorithm that exhibits a
quantum speedup and has an efficiently verifiable output could be
used for this purpose, most such experiments are infeasible today
because the necessary circuits are far too large to run successfully
on current quantum computers. Remarkably, it has been shown that
interactive proofs provide a way to reduce the experimental cost (in
qubits and gate depth) of this type of test, while maintaining efficient
verification and classical hardness.

In practice, the experimental implementation of interactivity is
extremely challenging. It requires the ability to independently measure
subsets of qubits in the middle of a quantum circuit and to continue
coherent evolution afterwards. Unfortunately, the measurement of a
target qubit typically disturbs neighbouring qubits, degrading the qual-
ity of computations following the mid-circuit measurement. One solu-
tion, which has some commonality among atomic quantum computing
platforms, is to spatially isolate target qubits via shuttling”*°. Although
daunting from the perspective of quantum control, experimental
progress toward coherent qubit shuttling opens the door not only to
interactivity butalso to distinctinformation processing architectures®.

Inthis work, weimplement two complementary interactive cryp-
tographic proof of quantumness protocols, shownin the schematic of
Fig.1, on atrapped-ion quantum computer with up to 11 qubits using
circuits with up to 145 gates. The interactions between verifier and
prover are enabled by the experimental realization of mid-circuit
measurements on a portion of the qubits (Fig. 2)>***". The first protocol
involves two rounds ofinteraction and is based upon the learning with
errors (LWE) problem®>*, The LWE construction is unique because it

has a property known as the ‘adaptive hardcore bit” (described inmore
detailinthe next section), which enables a particularly simple measure-
ment scheme. The second protocol circumvents the need for this
special property and, thus, applies to a more general class of crypto-
graphic functions; here we use a function from the Rabin cryptosys-
tem***, By using an additional interaction round, the cryptographic
information is condensed onto the state of a single qubit. This makes
it possible to implement a cryptographic proof of quantumness that
isas hardtospoof classically as factoring but whose associated circuits
can exhibit an asymptotic scaling much simpler than Shor’s algorithm
(0(nlog n)instead of ©O(n? log n), in terms of gate counts)™.

Trapdoor claw-free functions

Both interactive protocols (Fig. 1) rely upon a cryptographic primitive
called a trapdoor claw-free function (TCF)*, which is a 2-to-1 function f
for whichitis cryptographically hard to find two inputs mapping to the
same output. Such pairs of colliding inputs are called ‘claws’, and the term
‘claw-free’ refers to the hardness of finding them. The function also has
a‘trapdoor’, a secret key with which it is easy to compute the inputs x,
andx; fromany outputw = f(x,) =f(x,). Theintuition behind the protocols
is the following. Despite the claw-free property, a quantum computer
can efficiently generate a superposition of two inputs that form a claw.
This is most simply realized by evaluating fon a superposition of the
entiredomain andthen collapsing toasingle output wviameasurement.
Inthisway, aquantum prover cangenerate thestate|¢) = (|xo) + |X1)) |w)
where wis the measurement result. The prover now sends wto the veri-
fier, who then uses the trapdoor to compute x, and x;, thus giving the
verifier full knowledge of the prover’s quantum state. The verifier then
asks the prover to measure |¢). In particular, they request either a
standard-basis measurement (yielding x, or x; in full) or ameasurement
that interferes the states |x,) and |x;). (Note that the value of w, and by
associationx,andx;, changes each time the protocolis executed, soitis
not possible to find a collision (x,, x;) by simply repeating this process
withastandard-basis measurement multiple times.) The verifier checks
the measurement result on a per-shot basis. Crucially, consistently pro-
ducing correct values for these measurements results is impossible for
aclassical prover (assuming they cannot find a claw of the TCF), so reli-
ably returning correct results constitutes a proof of quantumness.

The LWE problem

Itis believed to be classically intractable to recover an input vector
from the result of certain noisy matrix-vector multiplications, which
constitutes the LWE problem**. In particular, asecret vector, s € {0, 1}",
canbe encoded into an output vector,y =As + e, where A € Z7*"isa
matrix and e is an error vector corresponding to the noise. Using the
LWE problem, a TCF can be constructed as f(b, x) = |Ax + b - y], where
bisasinglebitthat controls whetherygetsaddedtoAxand | - ] denotes
arounding operation®* (see Circuit construction of the LWE-based
protocolin Supplementary Information for additional details). Here,
s and e play the role of then trapdoor, and a claw corresponds to col-
lidinginputs {(0, x,), (1, x))} withf(0, x,) =f(1, x;) and x, = x; + s. By imple-
menting the protocol described above and illustrated in Fig. 1, the
prover is able to generate the state |¢) = (|0, x) + |1, x7)) |w) . For the
aforementioned ‘interference’ measurement, the prover simply meas-
ures each qubit of the superpositioninthe X basis. Crucially, the result
of this measurement is cryptographically protected by the adaptive
hardcore bit property, whichis astrengthening of the claw-free prop-
erty’. Informally, it says that for any input x, (of the prover’s choosing),
itis cryptographically hard to determine evenasingle bit of information
aboutx; (as opposed to the entire value, which is the guarantee of the
claw-free assumption).

Rabin’s function
Thefunction f{x) = x> mod N, with Nbeing the product of two primes
pandgq,was originally introducedin the context of digital signatures®**,
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Fig.1|Schematic diagram of an interactive quantum verification protocol.
The verifier's goal is to test the ‘quantumness’ of the prover through an exchange
of classical information. The protocol begins with the verifier sending the prover
aninstance of a TCF. By applying this function to a superposition of all possible
inputs and projectively measuring the result, the prover commits to a particular
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Measurement results
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quantumstate |xy) + |x;). Subsequent challengesissued by the verifier specify
how to measure this state and enable the efficient validation of the prover’s
commitment. The LWE protocol requires two rounds of interaction, and the
factoring protocol requires an additional round (green box).

This function has the property that finding two colliding inputs (a claw)
in the range [0, N/2] is as hard as factoring N. Moreover, the prime
decomposition N = pq can serve as a trapdoor, enabling one to invert
the function for any output. Thus, f(x) is a TCF. However, f(x) does not
have the adaptive hardcore bit property, making the simple X-basis
interference measurement (described in the LWE context above) not
provably secure. To getaround this, we perform the interference meas-
urement differently. First, the verifier chooses arandom subset of the
qubits of the superposition, and the prover stores the parity of that
subsetonanancilla. Then, the prover measures everything except the
ancillain the X' basis. Given our cryptographic assumption that the
prover cannot find a claw, the prover cannot guess the polarization of
the remaining ancillary qubit. Thisis directly analogous to how, in Bell
experiments, the assumption of no signalling faster than light implies
that if Alice measures one half of an Bell pair, a space-like separated
Bob who holds the other halfis unable toimmediately guess its polar-
ization. Following this intuition, the verifier requests a measurement
oftheancillaqubitinthe Z+ XorZ- Xbasis, effectively completing the
Bell test™*. The verifier accepts this if the prover returns the more
likely measurement outcome. Crucially, the dependence of the meas-
urement result on the claw renders it infeasible to guess classically™.

Implementing aninteractive cryptographic proof
Toimplement aninteractive cryptographic proof of quantumness, we
design quantum circuits for both the LWE and factoring protocols. The
high-level circuit diagrams are shown in Fig. 3a,b. In both cases, the
circuits are composed of several sections. First, the prover creates a
. . LY - .
uniformsuperposition |¢) = 3" _ " |x) viaHadamard gates, where nis

the number of input qubits. Then, they compute the TCF on an output
register using this superposition as input (Fig. 3a,d), thereby generat-
ingthestate |) = ¥, _|x)[f(x)). Next, the prover performs a mid-circuit
measurement on the output register, collapsing the state to
|¥) = (Ixo) + |x1)) |w). Finally, based on the verifier’s choice of measure-
ment scheme (that is standard versus interference), the prover must
perform additional coherent gates and measurements (see Methods
for a full description of the quantum circuits used).

We implement both interactive protocols using a trapped-ion
quantum computer with a base chain length of 15 ions (Fig. 2). For
eachYb" ion, a qubit is encoded in a pair of hyperfine levels*. The
quantum circuits are implemented via the consecutive application of
native single- and two-qubit gates using individual optical addressing
(Fig.2a)". Torealize rapid, successive, two-qubitinteractions, we posi-
tiontheionsinasingle, closely spaced, linear chain (Fig. 2d).

This geometry makes it challenging to implement mid-circuit
measurements, because light scattered from nearby ions during a
state-dependent fluorescence measurement can destroy the state of
the otherions. To overcome thisissue, we vary the voltageson the trap
electrodesto splitand shuttle the ion chain, thereby spatially isolating
theionsnotbeing measured (Fig. 2a-c). Depending on the protocol, the
ion chainissplitinto either two or three segments. Tomeasure theions
ina particular segment, we reshape the electric potential to align the
target segment with the detection system. Inaddition, we calibrate and
correct for spatial drifts of the optical beams, variations of stray fields
and unwanted phase accumulation during shuttling (see ‘Trapped-ion
quantum computer’ and ‘Shuttling and mid-circuit measurements’
sections of Methods for additional details).
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Fig. 2| Mid-circuit measurements with shuttling. a-c, Schematicillustration of
our mid-circuit measurement protocol. a, Initially, the ions are closely spaced in
aone-dimensional chainabove a surface trap. Coherent gates are implemented
viaacombination of individual-addressing beams (purple) and global beams
(notshown). Both the coherent addressing beams and the detection optics are
aligned toionsin the same section of the trap. b, By tuning the electrodes of the
surface trap, we can adjust the potential to deterministically split the ion chain.
Depending on the protocol, we split the chain into either two or three individual
segments. We optimize the rate of shuttling to minimize the perturbation of

the motional state. ¢, Once the segments are sufficiently far away from one
another, it is possible to measure (blue beam) an individual segment without
disturbing the coherence of the remainingions. After the measurement, the
shuttling is reversed and the ion chainis recombined. d, Fluorescence images of
an example shuttling protocol for a chain of 15 ions. Initially, the average spacing
betweenionsis approximately 4 um. At the end of the splitting procedure, the
distance between the two segments is approximately 550 pm. The images show
the splitting up to a distance of approximately 140 pm, at which point the two
subchains reach the edge of the detection beam.

In this demonstration, the qubits play the role of the prover and
the classical control system plays the role of the verifier. This allows
us to compile the decisions of the verifier into the classical controller
before execution of the quantum circuit.

Beating the classical threshold

AsinaBelltest, evenaclassical prover can pass the verifier’s challenges
with finite probability. If the classical prover cannot find a claw in the
TCF (whichisassumedto be the case for asufficiently large problem),
this probability can be bounded by an asymptotic ‘classical threshold’,
whicha quantum prover must exceed to demonstrate advantage. (Fora
discussion of what it means for this threshold to be “asymptotic’ rather
than absolute, see ‘Discussion of the asymptotic classical threshold’
section of Methods) For both protocols, thisthreshold is best expressed
in terms of the probabilities of passing the verifier’s standard-basis
and interference checks, which we denote as p, and p;, respectively
(see ‘Verifier’s check’ section of Methods for a definition of the veri-
fier’s checks). For the LWE protocol, the classical threshold is given
by p, +2p; — 2 < e (derivation in ‘Quantum-classical threshold for the
LWE protocol’ section of Methods). For the factoring protocol, it is
givenby p, + 4p; — 4 < e (ref.12).Inboth cases, eis a function that goes
to zero exponentially in the problem size. An intuition for the differ-
encebetween the thresholdsis that the factoring protocol requires an
additional round of interaction during the interference test.

As depicted in Fig. 3b, we perform multiple instances of the LWE
protocol for different matrices A and noise vectors e (see Instances
of LWE implemented in Supplementary Information). For each of the
verifier’s possible choices, we repeat the experiment approximately
10*times to collect statistics. This yields the experimental probabilities
paand pg, allowing us to confirm that the quantum prover exceeds the
asymptotic classical threshold in all cases. The statistical significance
by which the bound is exceeded (more than 6cin all cases; see Result
data in Supplementary Information) is shown in Fig. 3b. Figure 3e
depictsthe analogousresults for the factoring protocol, where the dif-
ferentinstances correspond to different values of n. For allbut n =21,
whichrequires the deepest circuit, the results exceed the asymptotic
classical bound with more than 40 statistical significance. We utilize

anerror-mitigation strategy based on excluding iterations where wis
measured to be invalid, thatis not in the range of f (see Post-selection
in Supplementary Information). Effectively, this implements a
post-selection that suppresses bit-flip errors™.

To further analyse the performance of eachbranch of theinterac-
tive protocol, corresponding to the verifier’s choices (Fig. 3c,f), we
definetherelative performance R = (Dexp — Pguess)/(Pideal — Pguess) for
eachbranch, where p,,.,, is the probability that an error-free quantum
prover would pass, p,,.ss is the probability that arandom guesser would
pass and pe;, is the passing rate measured in the experiment. This
criterion is away of isolating and evaluating the effect of noise on the
success probabilities of each branch, asit removes effects such asifan
error-freerunifrejected by the verifier, whichisinherent to the proto-
col.Inparticular, for a perfect (noise-free) quantum prover, R = 1always.
For a device so noisy that its outputs are uniformly random, R = 0. To
probe the noise effects of the mid-circuit measurements, we implement
two versions of the protocol, one interactive (the normal protocol) and
the other with all measurements delayed until the end of the circuit.
We comparetherelative performance of the two cases. We emphasize
that the delayed-measurement version is only a tool to probe our
experimental system, and it may be vulnerable to classical spoofing
evenifitwererunwithalarge problemwhere the other cryptographic
assumptions hold, as the interaction due to the mid-circuit measure-
mentsis crucial.

For the LWE protocol, there are two rounds of interaction, corre-
sponding to the two branches I and Ilin Fig. 3c. For the factoring pro-
tocol, thereare three rounds of interaction (Fig. 3f). By comparing the
relative performance between the interactive and delayed-
measurement versions of our experiment, we are able to probe a subtle
feature of the protocols, namely, that certain branches are robust to
additional decoherence induced by the mid-circuit measurements.
Microscopically, this robustness arises because these branches (thick
linesin Fig. 3¢,f) do not depend on the phase coherence between |x,)
and |x;). In particular, thisis true for the standard-basis measurement
branchesin both protocols and also for the branches of the factoring
protocol where the ancilla is polarized in the Zbasis (see Circuit con-
struction of the factoring-based protocol in Supplementary
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Fig. 3| Circuit and experimental results. a, Circuit diagrams for the LWE
protocol.d, Circuit diagrams for the factoring protocols. Details of the
implementation of U(4, b, x, y) and U(x, y) are provided in Circuit construction of
the LWE-based protocol of Supplementary Information. The CNOT gate marked
withanasterisk represents the operations needed to store the parity of selected
qubitsin theancilla. To reduce the impact of shuttling-induced gate fidelity
degradation, we compute the parity for all of the verifier’s possible selections
and then choose the relevant one once the prover receives the challenge. In

the circuitdiagrams, QFT-inverse in the diagram stands for quantum Fourier
transformation, Hstands for Hadamard gate and R,, stands for single qubit
rotations used to perform measurement in different basis. b, Experimentally
measured probabilities of passing the standard-basis (p,) and interference-
measurement (p) challenges for the LWE protocols. e, Experimentally
measured probabilities of passing the standard-basis (p,) and

Pa

interference-measurement (py) challenges for the factoring protocols. These
probabilities are compared against the asymptotic classical limits (p, + 2pz < 2 for
LWE, as derived in ‘Discussion of the asymptotic classical threshold’ section of
Methods and p, + 4p;y < 4 for factoring'®). Results for both interactive and delayed-
measurement versions of the protocols are presented. The numerical values

of p,and p; for each experiment and the corresponding values of statistical
significance are provided in Result data of Supplementary Information. ¢, The
relative performance R of the experiments for all possible branches of the LWE
protocols. f, The relative performance R of the experiments for all possible
branches of the factoring protocols. Certain branches (thick lines) are robust

to phase errors and exhibit similar performance for bothinteractive and
delayed-measurement protocols. The number of shots (sample size) n for each
baris provided in Supplementary Information. Error bars are 95% confidence
computed as a Wald interval.

Information). Noting that mid-circuit measurements are expected to
induce mainly phase errors, one would predict that those branches
insensitive to phase errors should yield similar performance in both
theinteractive and delayed-measurement cases. Thisis, indeed, borne
out by the data.

Discussion and outlook

There are two main experimental challenges to demonstrating quan-
tum computational advantage viainteractive protocols: (1) integrating
mid-circuit measurements into arbitrary quantum circuits with suf-
ficiently high overall fidelity to pass the verifier’s tests and (2) scaling
the protocols to large enough problems that it is classically infeasible
to break the cryptographic assumptions. In this work, we have over-
come the first obstacle, successfully implementing two interactive
cryptographic proofs of quantumness with high enough fidelity to
pass the verifier’s challenges. We leave the second challenge, of scaling
these protocols up, to future work. We estimate that one should be
able to perform a cryptographic proof of quantum computational
advantage using approximately 1,600 qubits (see ‘Estimate of resources
required to achieve a quantum advantage’ section of Methods. Note
thatalthough this qubit countis comparable to some implementations
of Shor’s algorithm, the circuits are orders of magnitude smaller in

gate count (O(n log n)versus O(n? log n)) and depth™. Even with those
smaller circuits, the challenge for near-term devices will almost cer-
tainly remainthecircuit depth. Interestingly, recent advances suggest
thatourinteractive protocols can be performed for constant depth at
the cost of alarger number of qubits***’. Once this scaling is achieved
in an experiment, it will demonstrate a directly verifiable quantum
computational advantage. This would mark a new step forward from
recent sampling experiments, which have demonstrated the system
sizes and fidelities necessary to make classical simulation extremely
hard or impossible'”?° but have no method to directly and efficiently
verify the output (moreover, practical strategies for a classical impos-
tor to replicate the sampling are still being explored**~°).

Our work may also lead to a number of other intriguing direc-
tions. A clear next step is to apply the power of quantum interactive
protocols to achieve more thanjust quantum advantage, for example,
withtasks such as certifiable random number generation, remote state
preparation and verifying arbitrary quantum computations*°. We
emphasize that, unlike, for example, Bell-test protocols for random
number generation, interactive proofs allow us to perform these cryp-
tographictasks with asingle ‘black-box’ prover with which the verifier
caninteractonly classically. This has the potential to allow these types
of protocols (including our cryptographic proofs of quantumness) to
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be performed onaremote prover, such asaquantum cloud service on
theinternet, enabling a wide variety of practical applications. Finally,
the advent of mid-circuit measurement capabilities in a number of
platforms®"**2 enables the exploration of new phenomena, such as
entanglement phase transitions®* as well as the demonstration of
coherent feedback protocols, including quantum error correction’.
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Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Trapped-ion quantum computer

Thetrapped-ion quantum computer used for this study was designed,
built and operated at the University of Maryland and is described
elsewhere**¢, The system consists of a chain of 15 single 'Yb* ions
confinedinaPaul trap and laser cooled close to their motional ground
state. Eachion provides one physical qubitinthe form of a pair of states
in the hyperfine-split %S, ground level with an energy difference of
12.642821 GHz, whichisinsensitive to magnetic fields tofirst order. The
qubits are collectively initialized through optical pumping, and state
readoutis accomplished by detecting state-dependent fluorescence”’.
Qubit operations arerealized via pairs of Raman beams, derived from
asingle 355 nm mode-locked laser*®. These optical controllers consist
ofanarray of individual-addressing beams and a counter-propagating
global beam that illuminates the entire chain. Single-qubit gates are
realized by driving resonant Rabi rotations of defined phase, amplitude
and duration. Single-qubit rotations about the z axis are performed
classically with negligible error. Two-qubit gates are achieved by illu-
minating two selected ions with beat-note frequencies near motional
sidebands and creating an effective Ising spin-spin interaction via
transient entanglement between the two ion qubits and all modes of
motion*’ ., To ensure that the motion is disentangled from the qubit
states at the end of the interaction, we used a pulse-shaping scheme
by modulating the amplitude of the global beam®?.

Verifier’s checks

Inthis section, we explicitly state the checks performed by the verifier
to decide whether to accept or reject the prover’s responses for each
run of the protocol. We emphasize that these checks are performed on
aper-shot basis, and the empirical success rates p, and p; are defined
as the fraction of runs (after post-selection, see below) for which the
verifier accepted the prover’s responses.

Forboth protocols, the check for the A or ‘standard-basis’branch
issimple. The prover has already supplied the verifier with the output
value w. For this test, the prover is expected to measure a value x such
thatf(x) =w. Thus, inthis case, the verifier simply evaluates f(x) for the
prover’s supplied input x and confirms that it is equal to w.

Forthe Borinterference measurement, the measurement scheme
and verification check are different for the two protocols. For the LWE
protocol, theinterference measurement is an X-basis measurement of
all of the qubits holding the input superposition |x,) + |x;). This meas-
urement will return a bit string d of the same length as the number of
qubitsin that superposition. For each qubit, the corresponding bit of
dis Oifthemeasurementreturned the |+)eigenstate and 1if the meas-
urement returned the |-) eigenstate. The verifier has previously
received the value wfromthe prover and used the trapdoor to compute
Xoand x,. The verifier accepts the string dif it satisfies the equation

d-xo=d-xq, 1)

where (-) denotesthebinary inner product, thatis a - b = 3;.a;b; mod 2.
It can be shown that a perfect (noise-free) measurement of the super-
position |x,) + |x;) will yield astring d satisfying equation (1) with prob-
ability 1.

The interference measurement for the computational Bell test
involves a sequence of two measurements (in addition to the first
measurement of the string w). The first measurement yields a bit string
das above. After performing that measurement, the prover holds the
single-qubit state (=1)** |r - xo) + (=)™ |r - x,), where (- ) is the binary
inner product as above and r is a random bit string supplied by the
verifier. This state is one of {|0), |1), |+),|-)} and is fully known to the
verifier after receiving d (via use of the trapdoor to compute x, and x;).
The second measurement is of this single qubit, in an intermediate
basis Z+ X or Z- X chosen by the verifier. For any of the four possible
states, one eigenstate of the measurement basis will be measured with

probability cos?(11/8) ~ 85%(with the other having probability approxi-
mately 15%), just asinaBell test. The verifier accepts the measurement
resultifit corresponds to this more likely result. An ideal (noise-free)
prover will be accepted with probability approximately 85% (Fig. 3).

Shuttling and mid-circuit measurements

We control the position of the ions and run the split and shuttling
sequences by changing the electrostatic trapping potential in amicro-
fabricated chip trap®’, maintained at room temperature. (Technically,
the matrix A is sampled together with the TCF trapdoor. However, as
explained inref. 5, the distribution from which the matrix is sampled
is statistically close to a uniform distribution over z7*".) We generate
40 time-dependent signals using a multi-channel digital-to-analogue
converter voltage source, which controls the voltages of the 38 inner
electrodes at the centre of the chip and the voltages of two additional
outer electrodes. Owing to the strong radial confining potential used
(with secular trapping frequencies near 3 MHz), the potential of the
central electrodes affects predominantly the axial trapping potential
and, inturn, generates movement predominantly along the linear trap
axis. To maintain the ions at a constant height above the trap surface,
we simulate the electric field based on the model in ref. 63 and com-
pensate for the average variation of its perpendicular component by
controlling the voltages of the outer two electrodes.

Inthe first sequence, we split the 15-ion chain into two subchains
of seven and eightions and shuttle the eight-ion group tox = 0.55 mm
away from the trap centre at x = 0. We then align the seven-ion chain
with the individual-addressing Raman beams for the first mid-circuit
measurement. For the LWE protocol, we thenreverse the shuttling pro-
cessand remerge theions toal5-ion chain, completing the circuit and
performingafinal measurement. For the factoring protocol, we shuttle
the eight-ionsubchain to the trap centre and the seven-ion subchainto
x=-0.55mm. Wethen splitthis chaininto five-and three-ion subchains,
shuttle the three-ion subchain to x = 0.55 mm and align the five ions
at the trap centre with the Raman beams to perform additional gates
and a second mid-circuit measurement. Finally, we move away the
measured ions and align the three-ion group to the centre of the trap
to complete the protocol. Reversing the sequence then prepares the
ionsin their initial state. For each protocol, all branches use the same
shuttling sequences but differin the qubit assignment and the realized
gates. The duration of the mid-circuit measurement was experimentally
determined before the experiment by maximizing the average fidelity
of aRamsey experiment using single-qubit gates, approximately opti-
mizing for the trade-off between efficient detection of each subchain
and stray light decoherence.

To enable efficient performance of the split and shuttling
sequences, we numerically simulate the electrostatic potential and
the motional modes of theions that are realized in the sequences. We
minimize heating of the axial motion from low-frequency electric-field
noise by ensuring that the calculated lowest axial frequency does not
go below 100 kHz. We also minimize the frequency of ion loss due to
collisions withbackground gas by maintaining a calculated trap depth
of at least 20 meV for each of the subchains throughout the shuttling
sequences. The simulations enable efficient alignment of the subchains
with the Raman beams, taking into account the variation of the poten-
tialinduced by all electrodes.

We account and correct for various systematic effects and drifts
in the experiment. To eliminate the effect of systematic variation of
the optical phases between the individual beams on the ions, we align
each ion with the same individual beam throughout the protocol.
Before the experiment, we run several calibration protocols that esti-
mate the electrostatic potential at the centre of the trap through a
Taylor series representation up to the fourth order, thus estimating the
dominant effect of stray electric fields on the precalculated potential.
We then cancel the effect of these fields using the central electrodes
during the alignment and split sequences, as these sequences are
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most sensitive to the exact shape of the actual electrostatic potential.
Additionally, we routinely measure the common-mode drift of the
individual-addressing optical Raman beams along the linear axis of
the trap and correct for them by automatically repositioning the ions
by varying the potential.

During shuttling, the ions traverse an inhomogeneous magnetic
field and, consequently, each ion spin acquires a shuttling-induced
phase ¢ that depends on its realized trajectory. We calibrate this by
performing a Ramsey sequence in which each qubit is put in a
superposition of (|0), + |1)i)/\/§ before shuttling. After shuttling,
ROm/2)RY(¢) gates are applied, with ¢ scanned from O to 2.
Fitting the observed fringe for each ion enables us to estimate the
phases ¢, whichare corrected in the protocols by applying the inverse
operation RY (-¢) after shuttling.

Discussion of the asymptotic classical threshold
In cryptography, showing that a new protocol is secure for practi-
cal use (meaning, in our case, that the proof cannot be spoofed by a
classical prover) follows two broad steps: (1) proving that it is secure
asymptotically (showing that the computational cost of cheating is at
least superpolynomial in the problem size) and (2) picking a finite set
of parameters suchthat cheating is not possible under certain classical
resources (computational power and time, usually). What particular
limitations are made for the resources available to the classical cheater
are, ultimately, up to the user. In this section, we attempt to make pre-
cise exactly which statements are asymptotic (step 1), and how these
statements make the jump in step 2 to finite, real parameters.
Thefirstasymptotic statement, whichis, perhaps, the most obvi-
ous, is that finding claws of the TCF is hard. In the theoretical papers
upon which this work is based, this is shown by reducing the problem
offinding claws torelated problems for which there are standard cryp-
tographic assumptions>'. In particular, the assumptions are that the
factoring and LWE problems have superpolynomial classical complex-
ity. Asdiscussed above, when using the test in practice, we would pick
finite parametersin away that finding a claw is infeasible for the set of
classical resources that our quantum computer needs to outcompete
(for arigorous demonstration of quantum advantage, that would
probably be alarge supercomputer with ample runtime). Importantly,
thereduction between the hardness of finding claws and breaking the
cryptographic assumption is not in any sense asymptotic. For both
TCFs, ifamachine can find claws for a specific, finite set of parameters,
these claws can be directly used to break the cryptographic assumption
inpractice. Thereforeifthe cryptographicassumption holds for afinite
set of parameters, we can be sure that the claw-freeness does as well.
The second asymptotic statement used in the analysis of these
protocols refers to the probability that a classical cheater passes a
single iteration of the test. In ‘Beating the classical threshold’ sec-
tion, we discuss the ‘classical thresholds’ that must be exceeded to
demonstrate quantum capability. To be very precise about what we
mean by this, we reproduce exactly what the theorems underlying
these protocols state. If a classical prover’s true success probabilities
(not the empirically determined ones, which are subject to statistical
fluctuation) exceed the givenbound by anon-negligible amount, that
prover could be used as a subroutine in a larger program that finds a
clawin the TCF in polynomial time. Thus, if it is not possible for a clas-
sical prover with certain resources to find a claw (in a TCF with some
specific parameters), it is provably also not possible for a classical
prover with similar resources to non-negligibly exceed the threshold.
There are two asymptotic portions of this statement: the polynomial
time in which the larger program extracts a claw using the prover as a
subroutine (which is the reason for the word ‘similar’ in the previous
sentence) and the word ‘negligible’. Negligible has a technical definition
in cryptography, which is the sense in which we use it here. It means
that a value (in this case, the amount by which the threshold can be
exceeded) isbounded by afunction that goes exponentially to zeroin

the problemsize. The precise form of this exponential is notintended
tobe determined. Instead, the exponential decay isused to argue that
the negligible functionis ‘essentially’ zero for any reasonable problem
size that would be used in practice.

Note that for the small problems we implement in this work, there
is one instance in which this negligible function would meaningfully
affect the classical success threshold, so we modify the protocol slightly
to account for this. In the x2mod N (Rabin’s function) protocol, the
value r sent by the verifier is supposed to be a uniformly random bit
string. If rhappens to be all zero, the product r - x, whose value is sup-
posedtobe cryptographically hard to guess, is simply zero. This is not
an issue for problem sizes that would be used for a full-scale test in
practice, because an all-zero r is extremely unlikely to occur if r is of
length several hundred bits. But for our smaller experiments with r of
only afew bits, the all-zero string represents a sizeable fraction of pos-
sible r’s. To prevent this from affecting the results, we simply choose
our rfromthe set of non-zero bit strings rather than all bit strings. We
note that excluding the all-zero string helps us better resolve the per-
formance, too. When r=0", the qubit measured in the last step of the
protocol never interacts with any of the other qubits throughout the
whole circuit, so the measurement result has nothing to do with the
fidelity of the TCF circuit!

To close this discussion, it is worth taking a broader perspective
and considering how the field of cryptography functions in general.
Asymptotic proofsin cryptography are used to show that for any cheat-
ing machine with finite resources, aproblem canalways be madelarge
enough to be hard in practice. The hardness grows quickly enough
that this approach is, hopefully, not an unreasonable pursuit. But,
ultimately, the question of how large the problem needs to be is an
empirical one. Experts build the best possible algorithms and hardware
they canand attempt to break the assumption. The parameters are then
settobe larger than the largest problem size that canbe broken this way
(usually withanextrabufferadded to secure againstimprovementsin
theattacks).Inour case, the costs of breaking both factoring and LWE
have been extensively explored, and the practical parameters needed
for their security against current classical computing power are well
understood. As described above, because there are no asymptotic
statements in the reduction from the TCF to the underlying crypto-
graphicassumptions, these parameters canbe directly used to ensure
that finding claws is hard in practice. As described above, the precise
relation between the hardness of exceeding the thresholds and find-
ing claws does rely on asymptotics, but the asymptotic function in
the threshold has been shown to decay exponentially, which suggests
strongly that this should notbe anissuein practice.

Quantum-classical threshold for the LWE protocol

In this section, we state and prove the classical threshold for the LWE
protocol. The corresponding proof for the factoring protocolisin the
theoretical manuscript that first presented that protocol™.

Below, the security parameter A is used in the standard crypto-
graphicsense, asameasure of the ‘problemsize’. It can be made larger
to increase security or smaller to improve efficiency. The specifics of
how each parameter of the LWE problem is defined as a function of 1
can be found in the definition of the LWE TCF within the theoretical
work that originally proposed it’.

Proposition 1. For any classical prover, the probabilities that they pass
branches A and B, namely p, and p;, must obey the relation

Pa+2pg -2 <€), 2)

where eis anegligible function of the security parameter A.

Proof. We first want to find the probability that the classical prover
notonly responds correctly for branch Abutalso (for the same output
w that they committed to the verifier) correctly responds for branch
B with probability greater than 1/2 + (1), where u is a non-negligible
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function of the security parameter A. Let this second probability be
denoted as

pgood = I:;)r[pB,w >1/2 +ﬂ(/1)] (3)

Pr[E] denotes the probability of event E. By a union bound, we
arrive at abound on the desired probability:

Pr[Acorrectand pg, > 1/2 + ()] > pa + Pgood — 1. 4)

Here, ‘A correct’ denotes the event where the prover correctly
passes the verifier’s challenge for branch A. Now, we wish to write py,q
interms of p,. Let Sbe the set of w values for which pg ,, > 1/2 + (). By
definition, we know that with probability p,,.q, the prover samples a
w € S so that they pass the verifier’s branch B test with probability at
least 1/2 + u(A) and at most 1. Similarly, we know that with probabil-
ity 1- pgooa the prover samples a w ¢ S so that they pass the verifier’s
branch B test with probability at most 1/2. Hence, overall, we see that
the probability that the prover passes branch B is at most the convex
mixture of these two cases, that is

P <1-Pgood + 0.5 (1= Pgood)- (&)

Solving for p,,.q4, We then obtain

Pgood > 2pp — 1. (6)

Substituting this into equation (4), we have

Pr[A correctand pg,, > 1/2 + p(A)] > pa + 2pg — 2. (7)

However, notice that the probability on the left-hand side is the
probability of breaking the adaptive hardcore bit property, which we
know’ must have

Pr[A correctand pg ,, > 1/2 + u(d)] < €(A), (8)

where € is a negligible function. Thus, combining this with equation
(7), we obtain the desired inequality:

Pa+2pp —2 < ). 9)

Computation of statistical significance contours
Herewe describe the computation of the contour lines denoting various
levels of statistical significance in Fig. 3b,e. Recall the probabilities p,
and pg introduced in ‘Beating the classical threshold’ section, which
denotethe probabilities that the prover will pass the standard-basis and
interferencetests, respectively. Assuming the cryptographic soundness
of the claw-free property of the TCF and in the limit of large problem
size, any classical cheating strategy must have true values of p$ and pg
that obey the bound pS +2p§ -2 <0 for the LWE protocol and
pS +4p§ — 4 < 0 for the factoring protocol. To find the statistical
significance of a pair of values p, and py measured from an (ostensibly)
quantum prover, we consider the null hypothesis that the data were
generated by a classical cheater (which obeys the bounds above) and
compute the probability that the given data could be generated by that
null hypothesis. In particular, since the bounds above exclude aregion
of atwo-dimensional space, we consider aninfinite ‘family’ of nullhypoth-
esesthatliealongtheboundary and define the overall statistical signifi-
cance of measuring p, and p; to be the minimum of the statistical
significances across the entire family of null hypotheses. Thatis, we define
itasthe significance with respect to the least rejected null hypothesis.
To compute the statistical significance of a result (p,, pg)
with respect to a particular null hypothesis (pf\,pcB), we define the

‘quantumness’ g of an experiment as g(p,, pg) = ps + 4pg — 4 for the
factoring protocol and q(p,, pg) = pA + 2pg — 2 for the LWE protocol.
Letting N, and N; be the number of experimental runs performed for
eachbranch, respectively, we define the joint probability mass function
(PMF) as the product of the PMFs of two binomial distributions,
B (Na, ) and B(Ng, p). Mathematically, the joint PMF is

O Yo - -,

f(kA’kaip,c\»pg»NA’NB) = (
kn J \ ks
10)

where k, = p,N, and k; = p;N; are ‘counts’ of the passing runs for each
branch, respectively. Finally, we compute the statistical significance
ofaresult (p,, pg) as the probability of achieving a quantumness meas-
ure of atleast ¢’ = g(pa, pg). Under anull hypothesis (pCA,pg), thisis the
sum of the PMFs over all k, and kg for which q(ky /Ny, kg/Ng) > q'.

In practice, for the contour lines of Fig. 3b,e, we begin with a
desired level of statistical significance (say, 50), and given the sample
sizes N, and Ny, we compute the value of ¢’ that would achieve at least
thatsignificance over all null hypotheses inside the classical bound.

Estimate of resources required to achieve aquantum
advantage

For a conclusive demonstration of quantum advantage, the quan-
tum machine must perform the protocol significantly faster than the
amount of time a classical supercomputer would require to break the
TCF, ideally, orders of magnitude faster. To achieve this, we must set the
parameters of the cryptographic problemto sufficiently large values.
A major benefit of using protocols based on established cryptographic
assumptions (like factoring and LWE) is that the classical hardness of
breaking these assumptions has been extremely well studied, due to
the implications for security®*. Thus, the most straightforward way to
choose parameters for our testsis to rely on publicly available recom-
mendations for cryptographically secure key sizes, which are used in
practice. These parameter settings are designed to be not just slow
for classical machines but infeasible even for classical machines years
from now. Thus, this would certainly constitute a definitive demon-
stration of quantum advantage. However, setting the parameters to
these values may be considered overkill for our purposes, especially
since we would like the problem size to be as small as possible to make
the protocols maximally feasible on near-term quantum devices. With
these considerations, in this section we provide two estimates for each
protocol. We begin by providing estimates for smaller problems that
would still demonstrate some level of quantum advantage and then
give estimates based on cryptographic parameters.

We conservatively estimate that a future quantum device run-
ning the protocols investigated in this work at scale would complete
the protocols on a timescale of at most hours. Thus, to demonstrate
quantum advantage by several orders of magnitude, we must set the
parameters such that a classical supercomputer would require of the
order of thousands of hours to break the TCF. In 2020, Boudot et al.
reported the record-breaking factorization of a 795 bit semiprime®.
The cost of the computation was about 1,000 core-years, meaning
thata1,000-core cluster would complete itin ayear. We consider this
asufficient cost for demonstrating quantum advantage. We emphasize
alsothat factoringis one of the most well-studied hard computational
problems. The record set by Boudot et al. was the product of decades
of algorithm development and optimization, and thus, it is unlikely
that any innovations will drastically affect the classical hardness of
factoring in the near term. By computing and measuring the bits of
the output value w one by one, the computational Bell-test protocol
could be performed using only about 800 qubits with a 795 bit prime.
However, the gate countand circuit depth can be dramatically reduced
by explicitly storing the full output value w, thus requiring roughly
1,600 qubits in total'?. Because it needs a much lower gate count,
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we use the 1,600 qubit estimate as the space requirement to demon-
strate quantum advantage with the computational Bell-test protocol.

For LWE, estimating parameters for the same level of hardness
(1,000 core-years) is difficult to do exactly, because, to the best of our
knowledge, that amount of computational resources has never been
applied to breaking an LWE instance. However, we may make a rough
estimate. There is an online challenge (https://www.latticechallenge.
org/lwe_challenge/challenge.php) intended to explore the practical
classical hardness of LWE in which users compete to see who can break
the largest possible instance. As of this writing, the largest instances
thathave been solved use LWE vectors of about 500-1,000 bits (depend-
ingonthe noise level of the error vector), but the computational cost of
these calculations was only of order 0.5 core-years. To require
1,000 core-years of computation time, we estimate that the LWE vectors
would need to be perhaps1,000-2,000 bits in length. By not explicitly
storing the output vector wbut computing it element by element (simi-
lar in principle to the scheme for evaluating x> mod N using only
log(N) + 1qubits™), itmay be possible to perform the LWE protocol using
anumber of qubits comparable to the bit length of one LWE vector.

We now provide estimates for the cryptographic parameters.
These parameter values should be such that it would be expected to
be completely infeasible for a classical machine to break the TCF. For
the factoring protocol, we apply the key sizes recommended by the
National Institute of Standards and Technology (NIST) for the RSA
cryptosystem, whose security relies on integer factorization. NIST
recommends choosingamodulus Nwith alength of 2,048 bits. By using
circuits optimized to conserve qubits, it is possible to evaluate the
function x2 mod N usingonly log(N) + 1 qubits, yielding atotal require-
ment of 2,049 qubits™. However, the circuit depth can be improved
significantly by including more qubits, so that amore efficient circuit
canberealized with roughly 2 log(V) ~ 4,100qubits. Because LWE is not
yetbroadly usedin practice, unlike RSA, NIST does not provide recom-
mendations for key sizes in its documentation. However, we can use
the estimates of Lindner and Peikert®® to find parameter values that are
expected to beinfeasible classically. In Fig. 3 of that work, the authors
suggest using LWE vectors in 77 with n=256 and g=4,093 for a
‘medium’ level of security. Vectors with these parameters are
nlog(q) ~ 3,072 bits long. To store both an input and output vector
would, thus, require roughly 200 qubits. By repeatedly reusing a set
of qubits to compute the output vector element by element, the com-
putation could be performed using roughly 3,100 qubits.

Data availability

Alldatasupporting the findings of this study are available in the paper
or Methods. The raw experimental data are available from the corre-
sponding author upon reasonable request.
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