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Abstract: We demonstrate the feasibility of entanglement swapping after storage by 
performing Bell-state measurements on polarization qubits stored in two independent room-
temperature quantum memories, a crucial step in developing a quantum repeater. 

1. Introduction

Quantum technologies have promised many advantages in the fields of computation, metrology, and security, as
well as a plethora of fundamental scientific endeavors. Recently it has become clear that in order to achieve quan-
tum advantage in all of these fields, the development of a large-scale interconnected set of quantum networks, a
quantum internet, is a necessity [1]. Elementary versions of these networks have already been developed and can
distribute engagement over hundreds of kilometers [2]. A new kind of network that has the ability to distribute
entanglement over long distances through entanglement swapping, is now needed. Towards this end, a mecha-
nism of controlled storage, retrieval, and heralding is necessary [3]. Warm atomic vapor quantum memories have
repeatedly been shown to be a promising candidate for such a mechanism [4].

In this work, we describe our efforts to develop a warm Rb vapor memory-assisted Bell-state measurement
station that can be used to facilitate the swapping of entanglement in a type-II quantum repeater. We show our
recent experimental progress in the storage, subsequent interference, and Bell-state projection of single photon-
level coherent phase-randomized qubits stored in two independent quantum memories, we have recently shown
this for uni-polarization qubits [5]. We also discuss the physical limitations of such a system as well as the memory
specifications needed in order to achieve quantum advantage.

2. Experiments

We investigated indistinguishability, and distinguishability, of polarization qubits that were stored in room-
temperature 87Rb vapor quantum memories. This configuration of a basic quantum network requires the use of
two independent qubit memories (four light-matter interfaces), a source of phase-randomized polarization qubits,
and a Bell-state measurement device (Fig. 1a). Our polarization qubits are attenuated coherent states, 400MHz
red detuned from the 1 ↔ 1 87Rb D1 transition, whose amplitudes are modulated by independent but synchro-
nized acousto-optic modulators (AOMs) to achieve, on average, one photon per pulse. One qubit’s phase is then
randomized with an electro-optical modulator (EOM), and then both qubits are sent to wave plates to assign a
polarization before being sent into our quantum memories.

In each memory, individual qubits are separated into their |H⟩ and |V ⟩ components and are combined with a
strong control field, 400MHz red detuned from the 2↔ 1 87Rb D1 transition [6]. We use EIT to store the qubits for
a short time, O(µs), before retrieval. The signal is then sent through polarization and etalon filtering which reduces
the background signal from the control field to mostly four-wave-mixing photons, with a frequency similar to that
of the qubit. Their polarizations are then individually corrected to have the same basis as their creation, before
being sent to the Bell-state measurement station.

In our first experiments [5] we investigated the indistinguishability of single-photon level, vertical polarization
qubits that were stored in a single rail of our quantum memories. This was accomplished using a Hong-Ou-Mandel
(HOM) measurement between the retrieved qubits with the g(2) correlation measured as a function of differences
in storage times between the two memories, ∆τ , with the input time of the qubits being the same (Fig. 1b). The
resulting interference was analyzed for various regions of interest resulting in data sets with different signal-to-
background ratios (SBRs), a maximum visibility of 43.0±1.6% was measured as compared to a measurement of
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48.5±0.5% without memories (Fig. 1c). The relationship between the HOM visibility versus the SBR was inves-
tigated and a heuristic model was used to fit the data (Fig. 1d). From this, it is clear that a high SBR is a necessary
requirement for a high-visibility memory HOM measurement, and thus a high-fidelity Bell-state measurement.

Fig. 1. (a) A schematic of the memory Bell-state measurement experiment (b) Histograms of single-
photon detection events from pulses, ⟨n⟩ ≈ 1.6, stored in two independent single-rail room tem-
perature quantum memories. Black: proportion of unstored events, Purple: storage time difference
∆τ = 0.75µs, Blue: storage time difference ∆τ = 0.3µs, Red: storage time of both memories τ = 2µs.
(c) g(2)(∆τ) of HOM interference between two independent single-rail room temperature quantum
memories for different estimated signal-to-background ratios (SBR), as compared to the visibility
without memories (top x-axis), error bars not shown for clarity. (d) HOM visibility versus the signal-
to-background ratio with a heuristic fit. [5]

3. Outlook: Memory Assisted Measurement Device Independent Quantum Key Distribution

One of the first applications of our system is the implementation of a memory-assisted measurement device inde-
pendent quantum key distribution (MA-MDI-QKD) protocol. Having demonstrated the feasibility of polarization
qubit retention in our memories in the few photon level regime [5], we plan to implement such a protocol under
the same experimental framework. The primary technical challenge of such a system is the real-time generation
and tracking of random polarization qubits. We will accomplish this using a white-rabbit-compatible, FPGA-
controlled EOM system that will assign a polarization to the qubit based on input from a quantum random number
generator (QRNG). These qubits will then be stored and projected into a Bell-state, the results of which will then
be used to generate keys. Using decoy state methods we believe we will be able to achieve a positive key rate.
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