
Photonic Indistinguishability of the Tin-Vacancy Center in Nanostructured Diamond

Jesús Arjona Martínez ,1,* Ryan A. Parker,1,* Kevin C. Chen,2 Carola M. Purser,1 Linsen Li,2 Cathryn P. Michaels ,1

Alexander M. Stramma,1 Romain Debroux ,1 Isaac B. Harris,2 Martin Hayhurst Appel ,1 Eleanor C. Nichols ,1

Matthew E. Trusheim,2 Dorian A. Gangloff ,1,3,† Dirk Englund,2,‡ and Mete Atatüre 1,§

1Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
3Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom

(Received 30 June 2022; accepted 28 September 2022; published 21 October 2022)

Tin-vacancy centers in diamond are promising spin-photon interfaces owing to their high quantum
efficiency, large Debye-Waller factor, and compatibility with photonic nanostructuring. Benchmarking
their single-photon indistinguishability is a key challenge for future applications. Here, we report the
generation of single photons with 99.7þ0.3

−2.5% purity and 63(9)% indistinguishability from a resonantly
excited tin-vacancy center in a single-mode waveguide. We obtain quantum control of the optical transition
with 1.71(1)-ns-long π pulses of 77.1(8)% fidelity and show it is spectrally stable over 100 ms. A modest
Purcell enhancement factor of 12 would enhance the indistinguishability to 95%.
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Indistinguishable photons from quantum emitters pro-
vide a fundamental resource for scalable quantum commu-
nication and have been employed to realize linear optical
quantum computation [1–3], spin-photon and spin-spin
entanglement [4–6], and quantum repeater schemes [7–10].
Experimentally, the photonic indistinguishability can be
benchmarked through two-photon quantum interference
known as the Hong-Ou-Mandel (HOM) effect. The HOM
indistinguishability places a bound on the fidelities achiev-
able in photon-mediated gates and entanglement distribu-
tion in measurement-based protocols [11–13]. This effect
has been observed across multiple solid-state emitters
such as the nitrogen, silicon, and germanium vacancies
in diamond [14–16], defects in silicon carbide [17], and
semiconductor quantum dots [18].
Within solid-state emitters, the negatively charged

group-IV centers in diamond stand as promising spin-
photon interfaces due to their large Debye-Waller factor
(60%–80%) [19–22], competitive quantum efficiency
(10%–80%) [21–24], and first-order insensitivity to elec-
tric-field noise [25,26]. This electric-field agnosticism is
compatible with complex photonic nanostructuring, as
charge noise does not couple deleteriously to a proximate
emitter. Accordingly, high collection efficiency [27,28],
Purcell enhancement [29,30], and incorporation into
photonic integrated circuits [31] have been demonstrated
using group-IV centers embedded in diamond. The
negatively charged tin-vacancy (SnV) is particularly prom-
ising. Its large ground-state orbital splitting inhibits
phonon-mediated dephasing [32], allowing for operation
at temperatures accessible in standard helium closed-cycle
cryostats. Accordingly, it has shown a spin-coherence

time (T2) of 0.30(8) ms at 1.7 K [33], outperforming other
group-IV centers at this temperature. Observation of trans-
form-limited emission in nanopillars [34] and advance-
ments in fabrication and charge stability [35] further
demonstrate that SnV centers are a suitable spin-photon
interface for quantum networking and measurement-based
computation [12]. Confirming the optical coherence of the
emitted photons is a necessary step toward these goals.
In this Letter, we report the observation of quantum

interference of single photons from a SnV center in a
single-mode diamond waveguide with an indistinguish-
ability of 63(9)% and a single-photon purity of 99.7þ0.3

−2.5%.
The orthogonal propagation directions of the excitation and
collection modes, enabled by the waveguide nanostructure,
suppress the excitation light by over 60 dB. We further
realize coherent control of the optical transition of the SnV
center with a π-rotation fidelity of 77.1(8)% performed
in 1.71(1) ns. Thus, we show that the SnV center has
sufficient photonic coherence to satisfy the requirements
for quantum networking.
We perform our experiments on a diamond grown

via chemical vapor deposition, implanted with Snþþ ions,
annealed, and fabricated into a waveguide chiplet [36,37].
A chiplet consists of eight single-mode waveguides, each
50 μm long with a rectangular cross section of 200 nm
by 270 nm. Figure 1(a) shows a characteristic device.
The waveguides taper adiabatically over 9 μm at the ends
to maximize the theoretical outcoupling efficiency [37].
A support diamond structure connects the waveguides,
allowing the chiplet to be pick and placed onto a silicon
substrate edge [31]. The SnV center fluorescence couples
into a single-mode, lensed fiber giving a 23(3)-fold
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enhancement in collection efficiency relative to conven-
tional confocal microscopy performed on the same emitter
studied in this Letter [37].
Figure 1(b) shows the orthogonal excitation and collec-

tion directions. In this geometry, the continuous-wave laser
suppression is over 60 dB. The fiber-coupled SnV fluo-
rescence is then routed from inside the cryostat, held at
3.6 K, to our optical setup [37].
In the absence of a magnetic field, the SnV center has a

spin-degenerate optical transition between the lower orbital
branch of the ground state and the lower orbital branch of
the excited state [52]. A 619-nm laser excites this transition
resonantly, as highlighted in Fig. 1(c). Also highlighted are
the two radiative-decay pathways, the zero-phonon line
(ZPL) and phonon sideband (PSB). Resonant drive induces
occasional blinking. To remedy this, we alternate between
resonant and off-resonant 532-nm excitation [37], which
pumps the emitter into the photoactive, −1 charge state
[35]. The studied emitter has an excited-state lifetime T1

of 7.44(20) ns, which corresponds to a transform-limited
linewidth Γ0=2π of 21.4(2) MHz [37]. This is longer than
the 5.0 ns reported for bulk diamond [22], likely due to
the emitter being positioned close to the diamond-air
interface [22,53].

We first demonstrate optical control of the SnV center
through resonant excitation and collection of the PSB.
Figure 2(a) shows the averaged PSB fluorescence during a
20-ns-long resonant 619-nm pulse starting at time τ ¼ 0.
The histogrammed time-resolved fluorescence throughout
the pulse is proportional to the instantaneous excited-state

population and shows Rabi oscillations between the ground
and excited states. The laser power P is parametrized by the
saturation parameter s ¼ P=Psat, where Psat ¼ 31ð2Þ nW is
the resonant laser power at which the Rabi rate Ω equals
Γ0=

ffiffiffi

2
p

. For each power, the excited-state population is fit
by a two-level master equation, to extract the corresponding
Ω and dephasing rate [37,54,55]. An optical π rotation at
the highest driving power [s ¼ 367ð1Þ] is performed in
1.71(1) ns, much faster than T1, with a fidelity of 77.1(8)%.
To investigate the effects of decoherence, the master

equation in Fig. 2(a) includes spontaneous emission and
pure dephasing, as well as a shot-to-shot detuning fluc-
tuation resulting in inhomogeneous dephasing [37]. We
confirm in Fig. 2(b) a direct proportionality of the Rabi rate
on the square root of the saturation parameter through the
relationship Ω ¼ Γ0

ffiffiffiffiffiffiffi

s=2
p

. This linear relationship extends
to our highest probed s and indicates that control-limiting

(a) (c)

(b)

FIG. 1. (a) Microscope photograph of the lensed fiber aligned
to a single waveguide using a three-axis nanopositioning stack.
(b) Diagram of the excitation and collection geometry. (c) Elec-
tronic structure of the SnV center with no magnetic field. Off-
resonant 532-nm and on-resonance 619-nm lasers generate
emission into the ZPL and PSB radiative decay pathways.

(a) (b)

(d)

(c)

FIG. 2. (a) Histogrammed PSB fluorescence during a 20-ns-
long resonant laser pulse. Curves are offset proportionally to the
saturation parameter s. Solid curves are fits to a master equation
[37]. At the highest saturation parameter, the excited-state
population saturates to 0.5 at long times [37]. (b) Optical Rabi
frequency Ω extracted from (a) as a function of

ffiffiffi

s
p

. The black
line is a linear fit with zero intercept. (c) Quality factor Q as a
function of s. The solid black curve is a fit to a master equation
including a pure dephasing rate proportional to Ω. The dashed
black curve shows the absolute coherence limit. (d) Detuning δ
dependence of the Rabi oscillations at s ¼ 102ð4Þ for the same
excitation scheme as (a). Color coding with blue (yellow)
corresponds to low (high) fluorescence.
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imperfections such as phonon coupling or multilevel
driving do not cause an appreciable deviation from the
master-equation model [37]. Figure 2(c) shows the power
dependence of the quality factor Q, defined as the product
of Ω and the 1=e envelope decay time extracted from the
master-equation fits. In the low excitation power regime, Q
increases with power and agrees with the limit set by T1. At
higher powers, Q saturates, which implies a laser-induced
dephasing mechanism best modeled with a rate that linearly
depends on Ω. Possible mechanisms could include photo-
induced charge noise or resonant coupling to phononic
modes [56–58].
By varying the frequency of the resonant laser, we also

probe the dependence of the fluorescence on the detuning
δ ¼ ωl − ω0, where ωl and ω0 are the angular frequencies
of the 619-nm resonant laser and the transition, respec-
tively. Figure 2(d) shows the time evolution of the fluo-
rescence as a function of δ at s ¼ 102ð4Þ, yielding a Rabi
rate of 153(3) MHz at δ ¼ 0 and faster, lower-amplitude,
oscillations for δ ≠ 0. The ability to vary the detuning,
phase, and amplitude of the resonant laser pulses enables
multiaxis control of the optical qubit [37,56].
We next leverage multiaxis control to probe the coher-

ence of the optical transition directly through pulsed
resonant excitation. Figure 3(a) displays the measurements
of Ramsey interferometry and Hahn-echo dynamical
decoupling. We read out the state of the emitter by
integrating the fluorescence after the final π=2 rotation.
The population contrast between the ground and excited
states is measured by varying the phase of this π=2 pulse
[33,56]. The solid teal curve in Fig. 3(a) is a fit to the
Ramsey-interferometry data using the master-equation
model employed previously [37]. This yields an inhomo-
geneous dephasing time T�

2 of 4.54(2) ns, which corre-
sponds to a shot-to-shot spectral drift of 82.6(5) MHz at full
width at half maximum (FWHM). The Hahn-echo contrast
decay envelope provides a measurement of the pure-
dephasing rate ΓPD. A fit to the raw contrast results in
ΓPD=2π ¼ 6.39ð14Þ MHz and an inferred homogeneous
linewidth of Γ=2π ¼ ðΓ0 þ 2ΓPDÞ=2π ¼ 34.8ð7Þ MHz.
This linewidth is only a factor of 1.63(4) from its intrinsic
Fourier limit (Γ0) despite the emitter’s close proximity
(< 60 nm) to nanostructured surfaces.
We next probe the spectral stability on longer timescales

by observing the shot-to-shot variation of the transition
frequency through fast photoluminescence excitation
(PLE) scans at s ¼ 0.8ð1Þ. Each scan alternates between
500 ms of resonant 619-nm and off-resonant 532-nm
excitation. During the resonant section, δ=2π is repeatedly
scanned from −100 to 100 MHz using 3-μs-long linearly
chirped laser pulses. Figure 3(b) shows the spectral
evolution over 34 min. Within each vertical cut, and after
correcting for power broadening, the linewidth is 35
(10) MHz, commensurate with the homogeneous linewidth
inferred from the Hahn-echo measurement. This indicates

that there are no significant, additional, dephasing mech-
anisms present between the tens of nanoseconds timescale
probed in Fig. 3(a) and the 500-ms timescale probed by the
PLE scans in Fig. 3(b).
The central frequency does not show significant variation

over consecutive scans. Over the entire measurement, it tends
toward a normal distribution with a FWHM of 64(1) MHz.
Such inhomogeneous broadening has been observed for the
nitrogen-vacancy center [14], and, more recently, the SnV
center [35], and is likely due to the off-resonant laser
rearranging the local charge environment. For the nitro-
gen-vacancy center, the photoinduced spectral broadening

(c)

(b)

(a)

FIG. 3. (a) Measured Ramsey (teal) and Hahn-echo (orange)
contrast decay envelopes with master-equation fits (solid curves)
[37]. The dashed black curve is the absolute coherence limit,
T2 ¼ 2T1. The contrast at 0 ns is normalized to one. (b) Left:
shot-to-shot evolution of the PLE line shape. Each vertical cut is
the average of fast PLE scans over 500 ms. Off-resonant 532-nm
excitation is applied between line cuts. The solid white line
follows the emitter resonance frequency. Right: example line cut
(gray) and inhomogeneous distribution of all line cuts (black),
with Lorentzian and Gaussian fits, respectively. (c) Average PLE
intensity as a function of time following a 532-nm off-resonant
pulse for multiple saturation parameters. Solid curves are fits to
biexponential decays. The experimental protocol is identical to
that of (b). The dark-state pumping time is normalized by
accounting for the fraction of time spent on resonance.
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can be over 0.5 GHz or 35 times broader than the intrinsic
linewidth [59]. In contrast, electric noise only detunes the
SnV center through a second-order Stark shift [25], leading
to a significantly narrower inhomogeneous linewidth. The
deviation with respect to the Ramsey measurement could
be attributed to the variation in 532-nm irradiation time.
Figure 3(b) shows an inhomogeneous broadening of a factor
of ∼2 compared to its homogeneous linewidth.
The 532-nm off-resonant excitation photostabilizes the

emitter as resonant excitation pumps the emitter stochas-
tically into a dark state [35]. To establish the timescale
of this pumping, we monitor the decay of PLE intensity
following a 532-nm off-resonant pulse. Repeatedly scan-
ning 300 MHz across the transition ensures insensitivity
to spectral diffusion. Figure 3(c) shows the decay of PSB
fluorescence for various resonant excitation powers. The
solid curves in Fig. 3(c) are fits to a biexponential model,
where the dominant component is the fast timescale of
pumping into the dark state. The slow timescale contributes
10(1)% of the total fluorescence at the highest power, likely
due to a residual photoactive background [60,61]. The dark-
state pumping rate increases linearly with s, in accordance
with previous reports [35]. At the highest laser power,
fluorescence persists over milliseconds, allowing ∼106 π

pulses to be applied before pumping into the dark state.
When considered in concert with Fig. 3(b), our emitter
remains spectrally stable and optically active over many
milliseconds, as required for quantum networking [62].
To probe the indistinguishability of the emitted photons,

we isolate the ZPL using spectral filtering. The residual
resonant laser is suppressed by > 30 dB by pulsing the
resonant excitation with two electro-optic modulators and
time-tagging ZPL fluorescence after resonant excitation.
Figure 4(a) shows the time-resolved ZPL fluorescence after
a 4-ns resonant excitation pulse. The 90 dB total laser
suppression yields a signal-to-background ratio of 23.91(3)
for the ZPL fluorescence collected within 11.1 ns after the
excitation pulse [37].
We measure a zero-delay second-order intensity corre-

lation gð2Þð0Þraw of 0.067(23), as shown in Fig. 4(b) [63].
This is comparable to previous reports where only the PSB
was collected, despite the added technical challenge of
resonant collection in this Letter[33,34]. After correcting
for detector dark counts, the background-corrected photon
purity [1 − gð2Þð0Þ] is 99.7þ0.3

−2.5%.
Figure 4(c) shows our HOM-interferometry setup [37].

Before the interferometer, a dichroic mirror and a grating
filter photons within a 245(6) GHz bandwidth (FWHM)

(c)

(a)

(d)

(b)

FIG. 4. (a) Time-resolved ZPL fluorescence under excitation with a 4-ns-long resonant laser pulse, at s ¼ 45ð20Þ. Red and teal
shadings correspond to applied laser excitation and ZPL fluorescence collection, respectively. The average background (dashed line) is
extracted with a far-detuned (δ=2π ¼ 6 GHz) laser pulse [37]. (b) Second-order autocorrelation of the ZPL fluorescence under pulsed
resonant excitation. The recorded value gð2Þð0Þraw ¼ 0.067ð23Þ corresponds to a background-corrected photon purity of 99.7þ0.3

−2.5%.
(c) Experimental setup for the HOM measurement. Abbreviations: quarter-wave plate (λ=4), half-wave plate (λ=2), polarizer (Pol.),
beam splitter (BS), and dichroic mirror (DC). (d) Pulsed two-photon interference measurement for the parallel (blue) and perpendicular
(red) polarization configurations, where the coincidence counts are integrated for each pulse. The background-corrected photon
indistinguishability is 73(13)% for photons collected within the teal region in (a). Inset: time-resolved distribution of coincidences
around τ ¼ 0.
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centered on the ZPL transition. This filtered emission is
routed through polarization control optics and into the
interferometer with a relative time delay Δt of 39.93(2) ns
between the two arms. To ensure temporal overlap between
subsequently emitted photons, we apply laser pulses with a
repetition period matching Δt. A half-wave plate placed in
the short arm of the interferometer controls the relative
polarization between the two interfering photons.
Figure 4(d) shows the second-order intensity correlation

measured across the two output ports of the interferometer
for ZPL fluorescence integrated over the first 11.1 ns after
the excitation pulse. When the polarizations of two inter-
fering photons are orthogonal to each other, we measure

gð2Þ⊥ ð0Þ ¼ 0.51ð3Þ, in agreement with the theoretically
expected value of 0.5. When the polarizations of the

photons are matched, we measure gð2Þk ð0Þ ¼ 0.22ð3Þ. The
raw visibility Vraw ¼ 1 − gð2Þk ð0Þ=gð2Þ⊥ ð0Þ ¼ 56ð8Þ% is a

measurement of the indistinguishability of the emitted
photons. Correcting for the background and finite classical
interferometric contrast, we calculate a photon indistin-
guishability V of 73(13)%. When the time window is
extended to the full decay observed in Fig. 4(a), the
indistinguishability is reduced to V ¼ 63ð9Þ% [37].
We compare our measured indistinguishability to a

model that includes homogeneous broadening as the source
of photon distinguishability. Given the measured ΓPD, the
expected HOM visibility Vsim is 63.2(4)%, in agreement
with our measured value [37]. Considering the slow
spectral diffusion measured in Fig. 3(b), the HOM visibility
measured here should extend to interferometer delays
greater than 100 ms.
In this Letter, we demonstrate coherent control of the

optical transition of the SnV in diamond. We achieve a
π-pulse time of 1.71(1) ns and two-photon quantum
interference of resonant photons with an indistinguishabil-
ity of 63(9)%. Purcell enhancement of the emitter, such
as through optical microcavities [64] or photonic crystal
cavities [28–30], increases the radiative decay rate and,
thus, reduces the sensitivity to dephasing. An overall
Purcell enhancement factor of 12, already achieved using
SnV centers in nanocavities [29,30], would yield a photon
indistinguishability in excess of 95%. Moreover, fabrica-
tion and material processing improvements, known to
result in improved optical quality of SnV centers in bulk
diamond [22], should enhance the optical coherence. These
advancements provide a feasible route to near-unity photon
indistinguishability in the near term.
Using the two-photon interference presented in this

Letter, in combination with control of the spin degree of
freedom [33], one could realize spin-photon entanglement
[5,65,66] and entanglement of remote emitters [4,67,68].
Modest improvements in the indistinguishability of the
photons would position multiphoton entangled states as the
next achievement using the SnV center [69,70].

The data that support the findings of this study are
available upon reasonable request from the corresponding
authors.
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