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A central goal in creating long-distance quantum networks and distributed quantum computing is the development
of interconnected and individually controlled qubit nodes. Atom-like emitters in diamond have emerged as a leading
system for optically networked quantum memories, motivating the development of visible-spectrum, multi-channel
photonic integrated circuit (PIC) systems for scalable atom control. However, it has remained an open challenge to
realize optical programmability with a qubit layer that can achieve high optical detection probability over many optical
channels. Here, we address this problem by introducing a modular architecture of piezoelectrically actuated atom-
control PICs (APICs) and artificial atoms embedded in diamond nanostructures designed for high-efficiency free-space
collection. The high-speed four-channel APIC is based on a splitting tree mesh with triple-phase shifter Mach—Zehnder
interferometers. This design simultaneously achieves optically broadband operation at visible wavelengths, high-fidelity
switching (>40 dB) at low voltages, submicrosecond modulation timescales (>30 MHz), and minimal channel-to-
channel crosstalk for repeatable optical pulse carving. Via a reconfigurable free-space interconnect, we use the APIC to
address single silicon vacancy color centers in individual diamond waveguides with inverse tapered couplers, achieving
efficient single photon detection probabilities (~15%) and second-order autocorrelation measurements g» (0) < 0.14
for all channels. The modularity of this distributed APIC-quantum memory system simplifies the quantum control
problem, potentially enabling further scaling to thousands of channels. © 2023 Optica Publishing Group under the terms of

the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.486361

1. INTRODUCTION

Solid-state artificial atoms [1], many of which have long-lived
quantum memories [2—5], can achieve photon-mediated remote
entanglement [6,7], and can be heterogeneously integrated with
photonics [8,9], are a promising platform for the construction of
large-scale quantum networks [10-12]. The networking of these
atom-like emitters requires an efficient and high-fidelity optical
interface for both reconfigurable optical addressing and collection
of photoluminescence (PL) at visible wavelengths. The optical
control layer thus presents two challenges: i) scalable high-fidelity
manipulation of optical fields at high speeds, which necessitates

2334-2536/23/050634-08 Journal © 2023 Optica Publishing Group

high-quality optical switches in atom-control photonic integrated
circuit (APIC) [13] platforms; and ii) scalable high-efficiency pho-
ton collection from remotely addressable single emitters. While
previously demonstrated visible-wavelength APIC platforms such
as thin-film lithium niobate [14-16], thermally tuned silicon
nitride [17-20], and piezoelectrically actuated silicon nitride
[21-24] all have promise for scalability (for example, up to 16
channels [14,20]), none currently combine optically broadband
operation, high switching contrast (>40dB) at nanosecond
timescales, and low-voltage operation. Other multi-channel
optical control systems have been applied to trapped ion systems
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[25,26] and large arrays of neutral atoms [27], but used only passive
PICs or bulk components without independent pulse control. On
the photon collection side, efficient collection has been demon-
strated using standard confocal microscopy [28-30], by leveraging
photonic nanostructures such as immersion lenses [31-33] and
cavities [8,34—37], or single-channel fiber collection from tapered
waveguides [8,38,39]. Collection through a heterogeneously
integrated photonic chip [9,40,41] at the cost of some optical
loss due to the diamond—chip interface has also been reported. To
date, these past works treated each side of the optical control layer
separately, but there remains an open question of how to combine
the requirements of i) and ii) into a single scalable system.

Here we introduce an architecture for the optical control
layer consisting of modular piezoelectrically actuated APICs and
diamond microchiplets with implanted single emitters. In this
configuration, the excitation and collection optical paths are per-
pendicular, enabling the inverse tapered diamond waveguides
to take advantage of free-space modal conversion for efficient
collection through the optical path parallel to the waveguides
while maintaining the ability to selectively address a large area of
distinct emitters through the perpendicular path. We demonstrate
our control scheme by first satisfying requirement i) through our
APIC switch, implemented as a four-channel binary tree mesh [13]
with visible-wavelength switching and power routing capabilities.
The APIC’s switching circuit uses a triple-phase shifter design
that takes advantage of hardware error correction [42,43] and a
stronger strain-optic response than previous designs, enabling low
switching voltages while maintaining high-contrast (>40 dB)
and high-speed (>30 MHz) switching performance. The switch’s
architecture is nonresonant and optically broadband, with the
phase shifters having demonstrated high extinction between 705
and 780 nm [23]. Moreover, the large transparency window of

(a) Routing “Single” MZI
—_ — + —
Input Output
- -

(b) i . . Input
Switching “Triple” MZI

~— o A -
Input Output _ -
- @/ \@ ~

Routing MZIs
(d) g ‘

Grating Coupler

Electrical Contacts

Fig. 1.

(c) D = Single MZI D = Triple Mz

Vol. 10, No. 5 / May 2023 / Optica 635

SiN enables the switch to function at shorter wavelengths down
to 500 nm with optimized waveguide and phase-shifter dimen-
sions. The switch shows negligible crosstalk between channels and
enables repeatable arbitrary pulse carving on all four outputs, com-
bined with >1 MHz power balancing between ports. We further
demonstrate requirement ii) by applying the APIC to a local group
of quantum emitters by projecting the optical output channels
onto ion-implanted silicon vacancy color centers (SiVs) [32,44] in
diamond microchiplets [9] mounted in a 5 K cryostat. Through
PL excitation (PLE) and second-order autocorrelation measure-
ments, we demonstrate optical addressing with independent
temporal control of four spatially distinct color centers and achieve
high (~15%) collection efficiency, single emitter linewidths of
152 MHz-287 MHz, and g®(0) of 0.06-0.14. The modularity
of this architecture allows for easy switching between different
sets of quantum emitters by adding different sets of diamond
microchiplets into the cryostat setup. Our APIC excitation and
diamond collection techniques should enable scalable quantum
control of emitters as part of a larger network of quantum nodes.

2. PHOTONIC INTEGRATED SWITCH DESIGN AND
OPERATION

The schematic of our APIC-to-diamond control architecture is
as follows. The APIC design consists of a “single” routing Mach—
Zehnder Interferometer (MZI) [Fig. 1(a)] and a “triple” switching
MZI [Fig. 1(b)] arranged in a binary tree architecture [Fig. 1(c)].
A single cantilever phase shifter (CPS) [23] in the routing MZIs
directs the desired amount of light to the appropriate outputs. The
switching MZI uses three phase shifters: two CPSs that enable
optically broadband and high-fidelity routing (>40 dB) for cross
and bar ports using hardware error correction robust to fabrication
imperfections [43] and a third, strain-optic phase shifter (SPS)

Output

Photonic integrated network switch architecture for local addressing of multiple quantum emitters. (a) Routing “single” MZIs to split the sin-

gle input into each of the four ports and (b) switching “triple” MZIs that enable fast arbitrary pulsing of light with high extinction. The routing MZIs con-
sist of a single cantilever phase shifter (CPS) and two 50:50 directional couplers, while the switching MZIs consist of two CPSs, a strain-optic phase shifter
(SPS), and three 50:50 couplers. (c) Schematic of the binary tree switch design. (d) Microscope image of the fabricated integrated network switch with
the CPSs and SPSs labeled. Light is input through grating couplers on the left side and collected through edge-coupled outputs on the right. The APIC is
fabricated with 400 nm x 300 nm rectangular SiN waveguides and is actuated using piezoelectric AIN. (e) Cryostat setup housing the quantum emitters
with light from the switch projected through free space for quantum control experiments. (f) Diamond quantum microchiplet overhanging a Si substrate
with (g) implanted Si vacancy color centers with light pulses from the chip controlling the optical emission. The diamond nanostructure allows for high-

efficiency collection of the emitter’s emission.
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[22,45], that enables a fast phase response for on—off switching
of the output channel. The MZI’s bar output port is defined as
the output on the same side as the input light port, and the cross
output port is the output on the opposite side of the input light
port. During operation, a CPU controller programs the two CPSs
to route the light to a dump port while the SPS is held at 0 V. We
then can send an arbitrary pulse sequence to the SPS to switch the
light to the output port without having to change the applied DC
voltages to the CPSs.

A microscope image of the APIC is shown in Fig. 1(d), with
the different phase shifters and electrical contacts labeled. We
input light into the chip with an optical fiber array through a single
grating leading to the routing MZIs, while other inputs are only
used for device calibration. We then collect the edge-coupled light
from each output with a high-NA objective, enabling imaging
of the outputs into any system for optical control experiments.
Figure 1(e) shows the optical imaging schematic where the output
channels are projected into a cryostat to use for optical control
of quantum emitters in diamond waveguides [Fig. 1(f)], such as
SiVs [Fig. 1(g)]. The inverse-tapered diamond waveguides are in
the form of a quantum microchiplet [9], for ease of pick and place
transfer to the Si chip. We chose overhanging waveguides for this
architecture because this configuration enables perpendicular
excitation and collection. The horizontal excitation normal to
the diamond waveguides allows for scalable addressing of many
color centers in the different waveguides of the array. The sin-
gle photon fluorescence from the SiVs couples to the diamond
waveguide mode, which then emits vertically into free space
through the inverse tapered couplers, as shown in Fig. 1(f). This
free-space collection allows for efficient and scalable detection
due to low-loss collection optics that are robust to misalignment
when compared with fiber coupling or PIC integration. Electrical
control of the integrated optical components is made through a
custom printed circuit board (PCB) with wire bonds to the APIC.
Commercial arbitrary waveform generator boards, embedded
in a National Instruments PXle system, control the CPSs and
SPSs. A single board with 22 active channels controls the CPSs,
providing £25 V, and two boards with four channels of arbitrary
waveform generation each control the SPSs, providing £2.5V.
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High-speed amplifiers on the PCB amplify the signals to the SPSs
to+12.5 V. The APIC s fabricated on 200 mm Si technology with
a CMOS-compatible fabrication procedure, as detailed in prior
works [22,23]. See Supplement 1, Sections 1 and 2 for more details
on the optical and electrical components of the system.

Figure 2 summarizes the APIC characterization and calibration
by monitoring the transmission of each edge-coupled optical
output. For all optical tests, we use 737 nm wavelength laser
light coupled into the TM mode of the on-chip 400 nm wide by
300 nm thick silicon nitride waveguides [modal shape simulated
in Fig. 2(a)], which adiabatically expand to 5 um wide in the
SPS [Fig. 2(b)] to increase strain-optic sensitivity [22,45]. The
less-confined TM mode takes advantage of a higher photoelastic
responsivity when compared to the TE mode [46], resulting in a
lower V. of the phase shifter than previously reported [22]. Our
DC calibration results for the routing MZIs [Fig. 2(c)] are shown
in Figs. 2(d)-2(e) and for the switching MZIs [Fig. 2(f)] are shown
in Figs. 2(g)-2(j), highlighting the low-voltage operation of the
SPS for switching and high on—off extinction ratios. These high
extinction ratios for the triple-phase shifter are enabled by the
second CPS accounting for fabrication imperfections in the 50:50
directional couplers. The extinction values are repeatable over the
course of multiple days of experiments with fine-tuned recalibra-
tion only necessary once a week or less. We do not notice any drift
in the extinction voltages due to device heating over the course of
our experiments. For calibration data for each of the output ports,
see Supplement 1, Section 3.

3. PULSE CHARACTERIZATION AND STABILITY

We tested the optical pulse carving of our switch by applying
representative pulse sequences to each of the SPSs in the switch-
ing MZIs. The “off” state of the output is defined to be 0 V due
to the calibration procedure, and the full “on” state is achieved
by applying the experimentally determined cross-state voltage.
DPulses of varying amplitudes below the maximum are created by
setting the applied voltage between these cross and bar states. Using
time-resolved measurements on a 125 MHz photodiode, we found
rise and fall times of ~20 ns when programming a 200 ns pulse

Fig. 2.
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Device performance and calibration. Simulated TM optical waveguide mode for (a) 400 nm waveguides and (b) 5 m waveguides in the SPSs.

(c) Microscope image of a routing MZI. A voltage is antisymmetrically applied to each side of the phase shifter to give the maximum actuation range.
(d) Normalized transmission (Zporm = 7/ T ) and (e) extinction [7¢ = 10 * log( Z;orm)] measured from a single output with the applied voltage to the
cantilever swept from —25 to 25 V. A single phase shifter achieves 25-30 dB extinction. (f) Microscope image of a switching MZI with three phase shifters.
The first two CPSs are calibrated with the SPS held at 0 V to maximize output port extinction. (g) Normalized transmission 750, and (h) extinction 7
plots measured from sweeping the applied voltages of the two CPSs. The addition of the second cantilever compared to the single MZI allows for the output
extinction to exceed 40 dB. (i) Normalized transmission 7,0 and (j) extinction 7; plots for the SPS, calibrated after the two CPSs in the switching MZI.
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High-speed device pulsing qualification. (a) Measured 200 ns pulse from an output port of the chip and (b) inset of the pulse showing a ~20 ns

rise time from the SPS. (c) Normalized modulator response for a 3 V sinusoidal signal showing the —3 dB cutoff at v; g5 = 34 MHz. (d) Pulsing scheme
showing the capabilities of the binary tree for arbitrary pulsing schemes. Each output can be pulsed at arbitrary times, lengths, shapes, and amplitudes.
(e) Repeated 200 ns pulses with a 50% duty cycle to measure the consistency of our device. The standard deviation of the integrated pulse area is 6.8 x 10~

for 1000 consecutive pulses.

[Figs. 3(a) and 3(b)] for all channels. The small-signal frequency-
resolved modular response [Fig. 3(c)] indicates a —3 dB cutoff at
v34p = 34 MHz, allowing for >30 MHz optical control of each
channel. The device can also be run at higher modulation speeds
(>100 MHz) with a trade-off of lower responsivity (< —6 dB).
The speed of the SPS in this work is slightly reduced from previous
demonstrations [22] due to a larger electrical series resistance and
capacitance from the longer phase shifters, which may be alleviated
with wider electrical routing wires.

To explore the optical control programmability, we tested vari-
ous pulse sequences. Figure 3(d) shows the resulting measurement
of each of the outputs and shows four different capabilities of this
system: i) any set of outputs can be pulsed simultaneously, ii) each
pulsewidth can be independently manipulated, iii) the waveform
can be temporally amplitude modulated into different shapes, such
as square or Gaussian, and iv) the pulse height can be independ-
ently set. With these criteria met, our chip has the ability to create
a full set of quantum rotations [47]. Furthermore, we measured
the consistency of the pulsing of our device by applying repeated
200 ns pulses with 200 ns intervals and measuring the devia-
tions in each pulse. We find a pulse area consistency (1o standard
deviation) of 6.8 x 10™* for 1000 pulses, showing robust pulse
uniformity. Examples of these pulses from the beginning, middle,
and end of this pulse sequence are shown in Fig. 3(e). Lastly, we
did not observe crosstalk from thermal, electrical, or piezo effects
between the different phase shifters (details in Supplement 1,
Section 4).

4. INDEPENDENT ADDRESSING OF MULTIPLE
SINGLE SiVs

To demonstrate the applicability of the APIC, we used it to reso-
nantly drive individual emitters within an ensemble of SiVs. As
shown in Fig. 4(a), the APIC projects each port perpendicularly
onto separate diamond waveguides in a cryostat. The diamond
waveguides are fabricated with inverse tapered end couplers ori-
ented towards the collection path, allowing for a high collection
efficiency of ~15%. To calculate our collection efficiency, we
assumed a quantum efficiency of 5% for our SiVs, which has been
reported in the literature for diamond nanostructures [30,34].

Different nanostructuring techniques have yielded different calcu-
lated values for SiV quantum efficiency (e.g., 10% in [8]), adding
some uncertainty to this assumption. See Supplement 1, Sections
5 and 6 for full diamond fabrication information and collection
efficiency calculation. The inverse tapers confine the emitted PL to
an NA much smaller than that of the collection optics, allowing for
scalable collection. In the excitation path, we include a spatial light
modulator (SLM) for small spatial adjustments to each projected
beam. This allows us to independently steer each excitation spot
to specific SiVs in the diamond waveguides. We note that once the
SLM is initially programmed, it is kept static over the course of
the experiment, making its slow reconfiguration time (~100 Hz)
inconsequential for the excitation experiments. We resonantly
excite each of the SiVs while collecting the phonon sideband (PSB)
emission using a 750 nm long pass filter to remove excess pump
light. We projected this fluorescence onto an electron-multiplying
charge-coupled device (EMCCD). Figure 4(b) shows acquisitions
of 30 s of the collected fluorescence normalized to the bright-
est point of each image, with no further image processing. This
sequence shows independent and simultaneous optical control of
SiVs in four different diamond waveguides. Due to variations in
the local strain throughout the diamond, the zero-phonon lines
(ZPLs) have an inhomogeneous distribution that exceeds the
excitation laser linewidth. Improved diamond fabrication proce-
dures that introduce the Si during chemical vapor deposition have
been shown to limit this inhomogeneity [48,49]. To collect SiV
emission from multiple waveguides simultaneously, we increased
the temperature of the diamond samples to broaden the ZPL
linewidths so that they are spectrally overlapping. Thus, for these
images, we likely addressed multiple emitters in each diamond
waveguide due to the high density of SiVs in our sample (>50
emitters per waveguide).

However, to show the applicability of this scheme for control-
ling individual single emitters, we cooled the diamond sample to
a base temperature of 5 K and repeated the excitation scheme with
each channel projected onto a spectrally resolved SiV. Figures 5(a)—
5(d) show the PLE frequency scans for SiVs in four different
waveguides, demonstrating linewidths < 290 MHz. Second-order
correlation measurements indicate strong antibunching, with a

normalized g® (0) ranging from 0.06 & 0.09 t0 0.14 £ 0.11, well
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Fig. 4.
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Independent optical control of Si vacancy color centers. (a) Experimental setup. 737 nm laser light is input into the APIC through grating cou-

plers. The four outputs are imaged onto a diamond microchiplet with the use of an SLM to steer the beams onto individual SiVs. The emission of the SiVs is
collected, and the PSB is filtered out with a 750 nm long pass filter (LP), and imaged onto an EMCCD. (b) Simultaneous PLE measurements on four differ-
ent diamond waveguides. By driving the APIC, emission from emitters in each waveguide can be independently controlled with high extinction. Each panel
shows a different iteration of outputs being driven, showing complete independence of emitter emission.
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Fig.5. Directaddressingand temporal control of single SiV emitters. (a)—(d) PLE spectrum of single SiV's excited with the APIC. Each vacancy is excited
with light from a different APIC channel. (e)—(h) Autocorrelation measurements of the same single SiVs. For each emitter, g (0) < 0.14, well below
the 0.5 threshold to demonstrate single photon emission. (i) Pulsed fluorescence demonstrating temporal control of the emission of a single emitter. Data

shown is integrated over 3 min.

below the 0.5 threshold for single photon emission [Figs. 5(e)—
5(h)]. We find an average emitter lifetime of 1.76(1) ns (see
Supplement 1, Section 6), consistent with other measurements of
ion-implanted SiVs [50]. With the outputs of the MZI tree pro-
jected on these emitters simultaneously, we send pulse sequences
to temporally control the SiV emission. An example pulse train is
shown in Fig. 5(i), where we repeatedly pulse one of the channels
[Channel 3, Figs. 5(c) and 5(g)] with 100 ns pulses and a period of
250 ns and collect the fluorescence on a time-resolved avalanche
photodiode, demonstrating temporal control of a single photon
source. See Supplement 1, Section 7 for more details on the SiV

linewidth and autocorrelation measurements.

5. DISCUSSION

We introduced and demonstrated a scalable optical control system
for individual addressing of quantum atom-like emitters. We
demonstrated that these emitters have single photon emission with
spectral linewidths close to the lifetime limit of 93 MHz for SiVs, a
necessary quality required for quantum networking. We achieved a
high collection efficiency of 15%, which could be further improved
by adding a Bragg reflector to the back half of our diamond wave-
guide, potentially increasing our collection efficiency by a factor of
two. The modularity of the APICs and diamond microchiplets is
scalable to thousands of ports and can be integrated with CMOS
control electronics for VSLI devices. Operating voltages can be
further reduced by allowing for a tradeoff of extinction and applied
voltage; i.e., if only 30 dB extinction is required then the SPS can
be pulsed with < 2.5V applied signal. The diamond collection
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architecture is also readily scalable, with high-efficiency collec-
tion of many waveguides enabled by the modal conversion of the
waveguides to a 0.26 NA (see Supplement 1, Section 8). With
the collection optics used in this setup, this allows for the scaling
to 2975 waveguides with 3 pm spacing between waveguides in a
linear array without a loss of collection efficiency. The losses on
the chip currently limit the scalability of the platform, with a total
measured insertion loss of —19.2 dB. This loss is dominated by a
low grating coupler efficiency of 10%, which can be improved with
design and fabrication iterations (see Supplement 1, Section 9 for
improved grating coupler results >40 %). SiN grating couplers
have had efficiencies up to 59% reported [51], which would sub-
stantially decrease the insertion loss of our device. Other designs,
such adiabatic coupling with tapered fibers, could offer further
improvements with reported single mode fiber to waveguide
coupling efficiencies of 97% [52]. For this chip, we measure an
average insertion loss of ~1.5 dB and ~3 dB for the CPS and SPS,
respectively. We are currently working on improvements to our
fabrication procedure to further decrease these phase shifter loss
values.

Future work will use this platform for running independ-
ent optical control schemes of quantum emitters. Using already
demonstrated strain tuning [53,54] and integrated microwave-
line spin control [40], we envision a second chip built from
the same APIC platform that enables spectral matching of SiV
emission and coherent control of the spin qubits, necessary func-
tionalities for quantum computation. Optical filtering, such as
cross-polarization or coherent nulling, and time-gated detection
will allow for collection and interference of ZPL photons. Our
APIC excitation platform is compatible with other alternative dia-
mond structures beyond waveguides. Once the beams are collected
in free space, the static commercial SLM can beam steer each of the
outputs into an arbitrary orientation to focus on structures such as
diamond nanopillars [55,56] or immersion lenses [31-33]. More
broadly, the broadband [22,23] APIC technology can be applied
to other optically trapped atomic systems [25-27,57-61] and will
enable near-future experiments in the area of optical quantum
control.
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