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ABSTRACT

We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an
array of rf-SQUIDs. The device is matched to the 50 Q environment with a Klopfenstein-taper impedance transformer and achieves a band-
width of 250-300 MHz with input saturation powers up to —95dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark
these devices, providing a calibration for readout power, an estimation of amplifier added noise, and a platform for comparison against stan-
dard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse
effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quan-
tum limit. Finally, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-

tone multiplexed readout with traditional JPAs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127375

Dispersive readout’ of superconducting qubits requires the use
of near quantum limited superconducting amplifiers because of the
severe limits placed by the quantum system on the allowed micro-
wave probe power.” Resonant Josephson parametric amplifiers (JPAs)
have been popular in single qubit readout as they provide high gain,
quantum-limited noise performance, tunable center frequency,” °

and are simple to manufacture. However, larger quantum processors
typically multiplex qubit measurement in the frequency domain,
transmitting and receiving multiple probe tones using the same read-
out line.” This configuration requires a first stage amplifier with
higher bandwidth and saturation power than the typical JPAs can
provide.
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The instantaneous bandwidth of resonant JPAs can be increased
using impedance matching techniques,” ' but their input saturation
power remains low, —115 to —110 dBm. High dynamic range JPAs
using SQUID arrays have been demonstrated, '~ but while improving
the input saturation power up to —95 dBm, they still suffer from rela-
tively narrow bandwidths, less than 200 MHz. Traveling wave para-
metric amplifiers (TWPAs) can provide bandwidths in excess of
2 GHz and high saturation power'* ' but are difficult to fabricate and
typically have lower quantum efficiency than JPAs due to higher dissi-
pative and intermodulation losses.'” Practical systems’ considerations,
such as qubit frequency placement plan,”’ Purcell filter bandwidth,”’
and mixer IF bandwidth,” can additionally prevent the full utilization
of the TWPAs multi-GHz bandwidth.

Here, we demonstrate a resonant Josephson parametric amplifier
that achieves the bandwidth performance of a matched JPA® and a
hundred-fold increase in saturation power. The amplifier design is
based on the impedance matched parametric amplifier (IMPA),”
which is in widespread use in our lab for frequency multiplexed read-
out. Unlike the IMPA, and indeed most JPA implementations, in
which the amplifier’s nonlinear inductance is provided by a single dc-
SQUID (with critical currents of order of a few yA), the amplifiers pre-
sented in this Letter use arrays of high critical current rf-SQUIDs."”
The substitution of an rf-SQUID array for each of the junctions in the
JPA SQUID increases the saturation power of the amplifier while
keeping the total inductance of the device roughly the same.

Figure 1(a) shows a simplified diagram of the amplifier. The non-
linear inductance is composed of two rf-SQUID arrays arranged in
parallel to form a compound SQUID"” with a total of 2N = 40 unit

(=)}

w

Resonance frequency (GHz)

44 12.0 A
\ —— 14.0 yA
31 —— 15.0 A
— 16.0 A

2] — 17.0uA

-0.6 -04 -0.2 0.0 02 04 0.6
Flux per junction (®g)

FIG. 1. (a) Circuit diagram of the amplifier. The active element of the circuit consists
of a tunable inductor made up of two r-SQUID arrays in parallel (“snake”). Each rf-
SQUID consists of a Josephson junction and geometric inductances L4 and Ly, and
each array contains 20 rf-SQUIDs. A differential bias coil allows both DC and RF
modulation of the inductance, while a shunt capacitor sets the frequency range. A
tapered impedance transformer lowers the loaded Q of the device, increasing its
bandwidth. (b) Optical micrograph of the nonlinear resonator showing the shunt
capacitor, snake inductor, and the bias transformer. (c) Calculated resonance fre-
quency vs applied flux bias per junction (or per rf--SQUID) with 2N = 40 rf-SQUID
stages, Cs = 6.0 pF, Ly = 2.6 pH, L, = 8.0 pH, L, = 30 pH, and a range of junc-
tion /..

scitation.org/journal/apl

cells. Each rf-SQUID consists of a junction with critical current I, and
linear inductance composed of two segments with inductance L; and
one segment with inductance L,. The L; segments are shared between
neighboring rf-SQUIDs, so that the structure as a whole forms a ser-
pentine inductive spine of alternating L, and L,, bridged by Josephson
junctions at each meander. We will refer to this structure as the
“snake,” and to the amplifier as a whole as “snake-IMPA” or
“SNIMPA” for short. The parallel arrangement of the arrays enables
us to flux-bias and pump the amplifier via a single superconducting
split-coil spiral transformer as shown in the figure. The transformer
primary coils are connected in parallel paths between the bias feedline
and ground. The secondary coils are counter-wound to primarily cou-
ple the bias to the circulating current mode (Ij0p in the figure) of the
compound SQUID loop formed by the two parallel portions of the
snake (see the supplementary material). The transformer mutual
inductance is M ~ 50 pH, and the self-inductance of the secondary
coil is ~120 pH. Finally, the structure is shunted by a capacitor C; and
is connected to the 50 Q signal port via a Klopfenstein taper as in
Ref. 8. An optical micrograph of the shunt capacitor, compound
snake-SQUID, and bias transformer is shown in Fig. 1(b).

The resonance frequency of the nonlinear circuit created by the
capacitively shunted snake is wres = 1/1/(Ls + Lp)Cs, where L is
given by' > (see the supplementary material)

o N « L](Ll + Lz) + L1L2 CoSs 50
o 2 L] + (4L1 + Lz) cos 50

L, 1)
L; = h/2el., and 0, is the equilibrium junction phase, which is depen-
dent on the flux bias."*** L, is a stray inductance that includes a contri-
bution from the bias transformer self-inductance. The calculated
resonance frequency for typical circuit parameters is shown in Fig. 1(c)
as a function of the applied flux bias per junction (or per rf-SQUID) in
the array.

To avoid hysteresis in the modulation curve, the snake must be
designed such that L; > 4L; + L,. This means that, unlike a conven-
tional de-SQUID, the inductance of a snake-SQUID does not diverge
at @, /2. Therefore, e has a limited tunability range compared to
conventional JPAs, as seen in Fig. 1(c). We, therefore, choose the shunt
capacitance C; such that the frequency tunability range overlaps the
desired operating frequency of the amplifier, 4.5-5.0 GHz. The device
is flux-pumped at frequency wp, which is twice the center frequency of
the amplifier.

Here, we report on amplifiers having two design variants. The
first, design 1, has a nominal junction I, = 16 A and a shunt capaci-
tance of C;=6.5 pF, and the second, design 2, has a nominal
I. =18 uA and C; =6.0 pF. Both designs have nominal snake induc-
tances of L; =2.6 pH and L, =8.0 pH. From measurement of test
junctions, we estimate that the actual critical current of the snake junc-
tions is ~20% lower than designed. The Klopfenstein taper that
matches the low impedance SNIMPA resonator to the 50Q signal port
is similar to that reported in Ref. 8 with a cutoff frequency of 2.6 GHz
and a 50-section taper from 51Q to 24, resulting in a resonator
loaded Q of about 4.5. The devices were built in a three-layer aluminum
process with SiO, interlayer dielectrics and Al/AlO,/Al trilayer
Josephson junctions. The first metal layer was used as a solid ground
plane under the snake structure, and the upper two layers form the cir-
cuit elements of the amplifier (see the supplementary material). In
operation, the amplifiers’ dc flux bias amounts to approximately
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320 1A carried in each of the bias transformer primary coils, well below
the measured critical current of traces and vias in our process.

We have characterized the performance of the SNIMPA devices
with a 54-qubit Sycamore processor.” The processor consists of nine
independent readout lines, each with six frequency-multiplexed read-
out resonators occupying a 4.6-4.8 GHz band. Each readout line has
an on-chip Purcell filter”' and is connected to a SNIMPA amplifier
through four circulators. The readout resonators and Purcell filters
were designed with a target resonator ringdown time of 1/k = 25 ns.
The readout lines are labeled A-I; lines A, C, E, and G had a SNIMPA
with design 1, and the rest had design 2. All SNIMPA were packaged
with a magnetic shield. In a separate cooldown, all readout lines were
outfitted with standard dc-SQUID based IMPA, whose performance
we use as a baseline for comparison.

Figure 2(a) shows the SNIMPA gain vs signal frequency (blue
lines) on all readout lines as labeled. Each curve was measured at low
power with a vector network analyzer, after manual tuneup of the

(a) s

20 A /

A

104

30

20 4 1 1
Ly
10 4 / 1/ ' \ 1 /
30 . : . : . .
§

- A
| Iy

4.‘50 4.‘75 5.‘00 4.|50 4.75 5.|00 4.|50 4.75 S.bO

Frequency (GHz)

Gain (dB)

—&— output saturation power
—#— input saturation power

2

::Z_ ""0-0-.-0". i .'.-&..f W
§ ot T s |1 e
é ::Z_””’*o | eoeeeees | ievoeer”
§-—1oo—m"\ D .“.'“E 1“."‘!",F
i
§ ~100 1 -‘..ri’.g 1 -"""’.H’ | .""I’J.I

0.05 0.|10 O.IlS 0.;)5 0.|10 O.IlS 0.;)5 0.|10 0.|15
Absolute detuning (GHz)

FIG. 2. (a) Gain vs frequency (solid blue lines) of SNIMPA amplifiers for each read-
out line as labeled. Lines A, C, E, and G use design 1, and the rest use design 2.
Vertical lines (dashed red) indicate the frequencies of the readout resonators. Black
crosses denote the frequencies at which saturation power was measured. (b)
Corresponding input and output saturation power (1-dB gain compression) cali-
brated at the processor reference plane vs absolute detuning from the amplifier
center frequency.
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amplifier’s flux bias, pump frequency, and pump power. The frequen-
cies of the readout resonators associated with each line are indicated by
the vertical dashed lines (red). All amplifiers achieve gains greater than
15dB over the entire readout band, and most resonators can be read-
out with a gain exceeding 20 dB. The gain profile is not Lorentzian;
this is because the complex impedance seen by the SNIMPA nonlinear
resonator varies over the amplifier band.” The multi-peak response is
commonly seen in wider band parametric amplifiers,”””** but imped-
ance matching network synthesis techniques could be used to achieve
better control of gain flatness and ripple."’

For the purpose of the present experiments, we were focused on
isolated qubit readout performance. In some cases, we allowed the cen-
ter frequency of the amplifier to reside within the resonator band (e.g.,
line H). In simultaneous multi-qubit readout with degenerate para-
metric amplifiers, in which the signal (at frequency w,) and idler (at
®; = wp — w;) share the same physical circuit, this can cause interfer-
ence between a signal from one of the resonators and an idler gener-
ated by the readout of another. Therefore, in simultaneous multi-qubit
readout, the pump should be tuned such that all readout resonator fre-
quencies reside either below or above wp/2, meaning that only half
the bandwidth is usefully available in practice.

Figure 2(b) shows the input (squares) and output (circles) satura-
tion power (1-dB gain compression) of each of the amplifiers as a func-
tion of the absolute signal detuning from the amplifier center frequency
(half the pump frequency, wp/4m). The crosses in Fig. 2(a) denote the
frequency and gain at which each point was measured. For this experi-
ment, we calibrate the signal power at the processor reference plane
using ac Stark shift of the processor qubits. We first measure the disper-
sive shift y = (@,,jo) — 1)) /2 (Where w, |g) and @, |y are the dressed
resonance frequencies) and the resonator decay rate x spectroscopically
for each qubit in our processor. From the ac Stark shift, which is given
(in the linear regime) by dwq; = —2y#, we extract 71, the average reso-
nator photon occupation for a given combination of resonator drive
power and frequency.”” From the measured values of « and 7 we calcu-
late the microwave power impinging on the resonator.”” Repeating this
measurement at varying powers from the room-temperature signal
generator allows us to calibrate the power delivered to the chip as a
function of the signal generator power. Figure 2(b) shows that the
SNIMPA consistently achieve output saturation powers in the —80 to
—70dBm range, up to 20dB higher than our standard dc-SQUID based
IMPA. While output saturation power, being ideally gain-independent,
is the more fundamental quantity, the figure also reports the input satu-
ration power to allow a more direct comparison with the bulk of the
existing literature.

We do not measure the amplifier added noise directly. Instead,
we focus on the overall readout efficiency,”” 1, which is a more rele-
vant metric from a systems performance perspective (see the supple-
mentary material). Readout efficiency encapsulates all microwave
losses, o, between the readout resonators and the SNIMPA, as well as
the noise temperature of the SNIMPA itself, T}, and the effective noise
temperature, Tj, of the cryogenic HEMT amplifier and the rest of the
measurement chain following the SNIMPA. Since our amplifiers are
operated in a phase preserving mode, the maximum possible efficiency
isn =0.5.

Figure 3(a) shows the measured readout efficiency for all qubits in
our Sycamore processor. The empirical cumulative distribution func-
tion of these data is shown in the main plot with a median of = 0.2
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FIG. 3. (a) Cumulative distribution of readout efficiency over 54 qubits, showing a
mean (dash-dot line) and median (dashed line) around 20%. The top x-axis repre-
sents the equivalent total system noise, expressed in terms of photon number units.
Inset: heat-map of readout efficiency by qubit across the processor. (b) Dephasing
times, Ty, measured using CPMG, vs qubit detuning away from their flux-
insensitive, maximum frequency points. Data show the median over all qubits in the
processor, and error bars represent the 17-83 percentile range. Data measured
with SNIMPA (orange) are compared with those measured with our standard IMPA
(blue), showing similar performance of the two amplifier types.

corresponding to a system noise temperature of Ty g = 560 mK. The
inset shows how these efficiencies are distributed across the qubit grid.

We measure the readout efficiency, #, and signal-to-noise ratio
(SNR) gain, Gsnr, as a function of the SNIMPA power gain, G,,, for all
qubits in our processor

Gsnr = Gp(To + Ti) (2)
GpTo+ (Gp — )T, + Ti
aG, T,
11 rQ 3)

TG T+ (G — VT, + Ty

where T = hiw/2k is the quantum noise at the readout frequency,
and fit the data with both equations simultaneously. Since these fits
cannot separate out contributions from o and T}, we have to fix one
of these parameters. If the SNIMPA were quantum limited and we
fix T, = T, then fits to our data suggest an average insertion loss of
o =0.44 =£0.03 or —3.57dB between the processor chip and the
SNIMPA.

Independent, cryogenically calibrated”® measurements of individ-
ual component losses (circulators and wiring) add up to a minimum
of —2.5dB of loss between the processor chip and the SNIMPA (see

ARTICLE scitation.org/journal/apl

the supplementary material). If we, therefore, fix o = 0.56 (—2.5dB)
in the fits, then we can extract a maximum SNIMPA noise tempera-
ture, T, = 0.18 * 0.02 K, roughly 60% higher than the quantum limit.
A cryogenically calibrated measurement of a representative integrated
readout assembly shows an insertion loss that varies between —3.6
and —2.7 dB over the readout band (see the supplementary material).
These data put bounds on the average noise performance of the
SNIMPA, as deployed, in the context of qubit readout of our proces-
sor. The data suggest that after accounting for component losses, the
measured efficiencies are consistent with near quantum limited noise
performance of the SNIMPA amplifiers.

A potential concern with the SNIMPA is that the snake inductor
could increase back action on the qubit, compared to the standard dc-
SQUID based amplifiers. This could be due to coupling of noise pho-
tons through the large bias transformer, pump leakage to the signal
line, or the generation of spurious signals or noise during amplifica-
tion. Figure 3(b) shows qubit dephasing time, T, as measured using
the CPMG (Carr-Purcell-Meiboom-Gill) method™” vs qubit detuning
away from their flux-insensitive point. The data, representing the
median over all qubits in the processor, compare the performance
measured with the SNIMPAs (orange) to that measured in a separate
cooldown of the same processor with the standard IMPA amplifiers
(blue). The data indicate that the SNIMPAs have no adverse effect on
qubit dephasing as compared to our standard dc-SQUID based
amplifiers.

Finally, we performed multi-tone experiments to test the
SNIMPA performance in an emulated simultaneous multi-qubit read-
out scenario. We chose to do so, instead of directly characterizing
multi-qubit readout fidelity, to avoid confounding qubit-related phys-
ics at high readout powers” that can mask the underlying performance
of the amplifiers. As a baseline, we first measure the amplifier signal
power gain and SNR improvement (SNR gain) as a function of fre-
quency with a single (“isolated”), weak readout tone (approximately
—130dBm), as shown in Fig. 4(a). We then repeat the measurement
with five additional tones (emulating the six-qubit multiplexed readout
in the Sycamore processor’) and with each tone having 10 dB higher
power, as illustrated in Fig. 4(b). Here, each one of the readout tones is
swept in turn across its corresponding frequency band (respective
color), and we measure the signal and SNR gains while the others
tones are on and are kept at the fixed frequencies indicated by the
respective vertical dashed lines. Figures 4(c) and 4(d) show the gain
and SNR improvement, respectively, for our standard dc-SQUID
based IMPA, clearly showing degradation in both quantities in the
multi-tone experiment (color) compared with the low-power baseline
(black). In contrast, no such degradation is observed with the
SNIMPA, as shown in Figs. 4(¢) and 4(f). In fact, we found it difficult
to drive the SNIMPA to saturation with our standard readout elec-
tronics setup. These experiments demonstrate that the SNIMPA’s
high saturation power offers sufficient headroom in a multi-qubit
readout situation to enable more efficient readout multiplexing with
higher number of qubits read-out simultaneously per channel. The
SNIMPA can also accommodate higher power per readout tone,
which may be required for high-fidelity, fast readout with greater
qubit-resonator detuning or weaker qubit-resonator coupling.

In summary, we have demonstrated impedance matched
Josephson parametric amplifiers with saturation powers up to two
orders of magnitude higher than their standard dc-SQUID based
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FIG. 4. Multi-tone readout experiments. (a) and (b) Description of the experiment. (a) The amplifier gain is measured with a single tone at low power levels, typically
—130dBm, and the single tone is swept across the full readout band, and (b) gain is measured for each one of six readout tones as it is swept in turn across its corresponding
frequency band (colored sections) while the other five tones are held at fixed frequencies as indicated by the respective vertical dashed lines. In this experiment, each of the
six tones are roughly —120dBm, i.e., 10dB higher power per tone than the baseline. (c) Measured power gain and (d) SNR gain in the multi-tone experiment (color,
“multitone”) compared to baseline (black, “isolated”) for a traditional IMPA amplifier. The IMPA shows a shift in the gain profile and a degradation of the SNR gain due to satura-
tion. () and (f) Results of the same experiment using the SNIMPA amplifier on readout line G, which shows little change in power gain and SNR gain when driven simulta-

neously with six high power tones, as compared to the single tone low power baseline.

counterparts. By combining an rf-SQUID array nonlinear element
with an impedance matching taper, these amplifiers achieve sufficient
instantaneous bandwidth to support 6:1 frequency-multiplexed read-
out of our Sycamore processors. We have measured a median readout
efficiency of 20%, extracted an upper bound for the SNIMPA noise
temperature at around 60% over the quantum limit, and found no
excess amplifier-related dephasing compared to our standard IMPA-
based setup.

See the supplementary material for details on the derivation of
the snake inductance, transformer design, efficiency measurement,
and loss budget estimates.
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