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Abstract

We develop coarse-grained particle approaches for studying the elastic mechanics of vesicles with heterogeneous membranes
aving phase-separated domains. We perform simulations both of passive shape fluctuations and of active systems where
esicles are subjected to compression between two plates or subjected to insertion into narrow channels. Analysis methods
re developed for mapping particle configurations to continuum fields with spherical harmonics representations. Heterogeneous
esicles are found to exhibit rich behaviors where the heterogeneity can amplify surface two-point correlations, reduce resistance
uring compression, and augment vesicle transport times in channels. The developed methods provide general approaches for
haracterizing the mechanics of coarse-grained heterogeneous systems taking into account the roles of thermal fluctuations,
eometry, and phase separation.
2023TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation

IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Biological membranes consist of complex heterogeneous mixtures of different lipid species, proteins, and other
mall molecules [1,60,81]. Membrane heterogeneity is important to organize cellular structures and mechanical
esponses [4,42,72,77,85]. This includes the insertion, assembly, and activation of membrane-proteins such as
hannels, receptors, or anchoring sites of the cytoskeleton [1,19,21,56,57]. Phase domains also play a role in
he initiation of the formation of buds and endocytosis [7,18,46,64,69], and in the local control of diffusivity
3,32,47,72], fluidity [4], or bending moduli [7,42,84]. For applications and as model physical systems, synthetic

✩ Work supported by DOE Grant ASCR PhILMS DE-SC0019246 and NSF Grant DMS-1616353.
∗ Correspondence to: 6712 South Hall; Department of Mathematics; UC Santa Barbara; Santa Barbara, CA 93106.

E-mail address: atzberg@gmail.com (P.J. Atzberger).
URL: http://atzberger.org/ (P.J. Atzberger).
https://doi.org/10.1016/j.matcom.2023.02.020
0378-4754/© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
Simulation (IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2023.02.020
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2023.02.020&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:atzberg@gmail.com
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
http://atzberger.org/
https://doi.org/10.1016/j.matcom.2023.02.020
http://creativecommons.org/licenses/by-nc-nd/4.0/


D.A. Rower and P.J. Atzberger Mathematics and Computers in Simulation 209 (2023) 342–361

s
a

m
m
s
d
s
m
a
fl

c
c
t
p
i
e

c
g
l
l
f
o
r

e
d
l
o
t
b
t
w

f
a
f
w
m
t

m
o
u
w

oft membranes also have been introduced consisting of self-assembled particles with phases that can form sheets
nd other structures [6,12,17,78].

Heterogeneous membranes can exhibit rich behaviors and geometries arising from the phase-separated do-
ains [7,44,85]. For spherical vesicles, phase separation kinetics and surface transport have been studied experi-
entally in [7,45,85]. To better understand the mechanics of heterogeneous membranes, we develop coarse-grained

imulation approaches and analysis methods. We consider the case of vesicles with phase-separated domains having
ifferent preferred curvatures. Simulations are performed to study the impact of heterogeneity both on passive
hape fluctuations and on vesicles subjected to active deformations. To characterize mechanical responses, analysis
ethods are developed for mapping particle configurations to continuum surface representations. Lebedev sampling

nd spherical harmonic expansions are used to develop spectral analysis methods for studying passive shape
uctuations and other geometric changes.

To investigate active deformations, simulation and analysis methods are developed for vesicles subjected to
ompression between two plates and subjected to insertion into narrow channels. We find heterogeneous vesicles
an exhibit mechanical responses differing significantly from the homogeneous case. For heterogeneous vesicles,
he phase domains are found to amplify surface two-point correlations. For vesicle compression, it is found that the
hase-domains can rearrange to accommodate curvature in membrane bending to reduce energetic costs. In channel
nsertion and transport, the heterogeneity is found to have mixed effects depending on the circumstances which can
ither decrease or increase insertion and transport times.

There have been many continuum mechanics and coarse-grained methods developed for investigating multi-
omponent membranes. At the continuum mechanics level, these include [2,11,41,43,48,53,61]. At the coarse-
rained level, there are models of different levels of detail. Models incorporating some structure of the individual
ipids include [27,28,37,63,74,86] and implicit-solvent models [13,15,16,22,68,86]. Models at a more coarse-grained
evel employing a single-bead to describe a cluster of lipids include [20,51,52,58,90]. Related models and methods
or use in dynamic studies have been developed in [31,49,58,75,88]. In general, coarser models have the advantage
f computationally facilitating access to larger length and time scales, but with the trade-off with the level of physical
esolution at small scales [50,67].

As a basis for our computational studies, we use the single-bead implicit-solvent coarse-grained model of Yuan
t al. [90]. In this approach, the membrane is modeled by a collection of orientable beads having an additional
irector degree of freedom. For biological membranes, the beads can be thought of as representing small patches of
ipids and their orientation as taking into account on a coarse-grained level the collective molecular-level orientation
rder within the patch. For synthetic colloidal membranes, the director–bead model can be interpreted as capturing
he effective physical interactions of distinct colloidal particles that are orientable and with the sterics handled
y spherical repulsive interactions. In our work, we use the molecular dynamics simulation framework referred
o as Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [71]. Related to [25] and our prior
ork [87], we develop stochastic time-step integration methods.
We also develop and implement custom analysis tools mapping particle configurations to continuum fields

or characterizing behaviors of the models. The particle-based methods, combined with our analysis tools, yield
pproaches that can avoid some of the cumbersome aspects of continuum formulations, which often require
ormulations drawing on differential geometry and development of numerical discretizations [29,31,75]. In this
ay, we are able to handle similar geometric contributions and physical phenomena for the phase-separation and
echanics. Much of the modeling is then deferred to the particle-level resolution and parametrization. Our analysis

ools provide general methods for relating such particle-based approaches to continuum-level concepts.
To quantitatively characterize our coarse-grained models and simulation results, we develop spectral analysis

ethods based on the continuum mappings. The vesicle shape is characterized using spherical harmonics expansions
f the mapping operator constructed using Lebedev quadratures [54,55,80]. Results from statistical mechanics are
sed to analyze the passive shape fluctuations to estimate elastic bending moduli and other properties. This is studied
hen varying the vesicle size and phase concentrations.
In Section 2, the coarse-grained model and numerical methods are discussed. In Section 3, the simulation

approaches are discussed. In Section 4, the spectral analysis methods are discussed. In Section 5, the results are
discussed for the simulations of active deformations when vesicles are subjected to compressed between two plates
or subjected to insertion into channels. The results show a few mechanisms by which phase-separated domains
can impact the mechanical responses of heterogeneous vesicles relative to the homogeneous case. The developed
approaches also can be used to study other experimental measurements and simulations for phenomena within

heterogeneous membranes.
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Fig. 1. Coarse-grained particles and their interactions. The particles are at locations ri and r j . The interactions depend on both the relative
displacement ri j and the orientations ni , n j . The θi , θ j give the in-plane angles. The interaction energy is given in Eq. (1), with minimization
ccurring when |ri j | = (2)1/6 σ and θi = θ j = θ0 (left). These interactions can have different affinities and preferred curvatures to drive
hase-separation and shape changes in heterogeneous vesicles (right).

. Coarse-grained approach

.1. Single-bead coarse-grained model for heterogeneous membranes

We investigate the mechanics of heterogeneous vesicles at the level of coarse-grained models and continuum
echanics. As a mesoscopic description of the phase separation and mechanics, we utilize the single-bead coarse-

rained model of Yuan et al. [90]. In this approach, the membrane is modeled by a collection of orientable spherical
eads that have both a translational degree of freedom ri for the center-of-mass location and a rotational degree of
reedom ni for the direction of orientation.

For lipid membranes, the beads can be thought of representing at the coarse-grained level a small patch of lipids
ith the orientation ni serving as the local order parameter for the collective alignment of lipid molecules within

he patch. This allows at the coarse-grained level to account for molecular interactions arising from hydrophilic–
ydrophobic effects driving membrane assembly [38]. One could also interpret the model as a representation
or a colloidal membrane with the beads representing individual colloidal particles having orientation-dependent
nteractions and spherical sterics. In either case, the orientation degrees of freedom ni provide an important way to
apture broken symmetries in the physical system that drive assembly of two-dimensional membrane sheets.

The parameters and quantities are referenced to the non-dimensional Lennard-Jones (LJ) characteristic scales
ϵ, σ,m). These are energy ϵ, length σ , and mass m. We use characteristic time-scale τ ∼

√
mσ 2/ϵ. As in

imensional analysis, in this way our simulations reflect behaviors of all realizable physical systems in the
quivalence class that are dynamically symmetric with respect to the characteristic LJ references. For instance, one
an convert our results for the coarse-grained system to particular physical units by taking σ to be the length-scale
f a cluster of lipids, m to be the mass of a cluster of lipids, and ϵ based on the temperature (thermal energy) of
he system. To account for the interactions between two beads at location ri and r j , unit vectors are introduced to
ccount for the orientation ni and n j . The relative displacement between the two beads is denoted by ri j = ri − r j .
n these interactions, the beads have a preferred angle of alignment, which we denote by θ0. The interaction energy
s minimized when θi = θ j = θ0. The interactions between beads is illustrated in Fig. 1.

To account for interactions between pairs of beads, a potential energy U is used that depends on both the relative
ositions and orientations. This has the general form

U (ri j ,ni ,n j ) =

{
u R(r )+ [1− φ(s)]ϵ, r < rb

u A(r )φ(s), rb < r < rc,
(1)

here s = (r̂i j ,ni ,n j ). The u R is a repulsive potential and u A is an attractive potential with φ mediating the
ransition between these behaviors. The φ is taken to depend on the relative orientations of the beads as

φ(r̂i j ,ni ,n j ) = 1+ µ[a(r̂i j ,ni ,n j )− 1], (2)

here

a = (n × r̂ ) · (n × r̂ )− sin θ (n − n ) · r̂ − sin2 θ . (3)
i i j j i j 0 j i i j 0
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Table 1
Parameters of the coarse-grained model. The values for the
pairwise interactions are given in Table 2.

Parameter Description

rb Distance for LJ minimum.
rc Force cutoff distance.
ζ Repulsive strength exponent.
ϵ Interaction strength.
θ0 Preferred relative orientation.
µ Strength of orientation penalty.

The repulsive steric interactions u R are modeled by a 4-2 Lennard-Jones (LJ) potential energy

u R(r ) = ϵ
[(rb

r

)4
− 2

(rb

r

)2
]
, r ≤ rb, (4)

ith u R(r ) = 0 for r > rb. The value rb =
6√2σ is used for the effective size of a bead. The attractive interactions

u A are modeled by the potential energy

u A(r ) = −ϵ cos2ζ
[
π

2
(r − rb)
(rc − rb)

]
, rb < r < rc. (5)

he parameter ζ allows for tuning the range of the particle attractive forces. The ϵ controls the strength of the
bead–bead interactions and in general is chosen differently according to the different bead interaction pairings. The
interactions are truncated at the critical cut-off length rc = 2.6σ .

The u R potential models repulsion between the beads with a preferred separation distance given by a weak
ong-range attraction similar to a Lennard-Jones potential. The u A potential models a stronger attraction chosen
o have a wide energy-well which allows for beads to exchange cohesively within the sheet promoting fluid-like
ehaviors. The u A potential captures the long-range interactions arising in hydrophobic–hydrophilic effects [38].
urther discussions on how fluid-phases arise in membranes, and the roles of such potentials in coarse-grained
odels, can be found in the works by Farago [22] and Deserno et al. [16]. A summary of the key parameters of

the model is given in Table 1. The default values used throughout the simulation studies are given in Table 2.

2.2. Stochastic time-step integrator

The simulations of the membrane are performed in the canonical NVT ensemble, where there is a constant
number of particles N , fixed volume V , and constant temperature T [24,73]. We use the Langevin dynamics

m
dv
dt
= F,

dr
dt
= v, I

dw
dt
= t,

dq
dt
= w, (6)

here

F = [F, t] = FU + FF + FT . (7)

he r denotes the collective bead positions and v the collective bead velocities. The m is the mass and I plays
role similar to the moment of inertia. The w is the tangential velocity of the directors, and q is the collection

f quaternion [40] vectors for the rotational description of the orientation of the beads. The F is the force. The t
re the forces associated with the director degrees of freedom, similar to a torque. While the director forces will
ometimes be referred to as torques for brevity, these quantities technically would require additional cross-products.

The FU = −∇r,nU denotes force from the potential U in Eq. (1) with collective gradient with respect to both
he translational and rotational degrees of freedom. Expressions are given for computing forces and torques in
ppendix A. The friction FF is modeled by the forces FF = [Ftransl

F ,Frot
F ]. The Ftransl

F = −(M/νr )v involving M
or the mass of a particle and νr for the decay timescale. Similarly, Frot

F = −(I/νn)w involving I for the director
ass moment and νn for the decay time-scale. The thermal fluctuations contribute through the stochastic force
T = [Ftransl

T ,Frot
T ], which represents interactions with the solvent and other implicit degrees of freedom when
he temperature is T . The thermal forces have strength determined by fluctuation–dissipation balance [73]. The
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ranslational thermal forcing is Ftransl
T (t) ∼

√
kB T Mξ (t), and the rotational thermal forcing is Frot

T (t) ∼
√

kB T I ξ̃ (t).
Formally, the ξ (t) and ξ̃ (t) are independent white-noise Gaussian processes [26] with ⟨ξ (t)ξ (t ′)⟩ = δ(t − t ′) and
⟨ξ̃ (t)ξ̃ (t ′)⟩ = δ(t − t ′). This gives the stochastic update of the system.

We develop these Langevin thermostats and associated inertial stochastic time-step integrators for both the trans-
lational and rotational degrees of freedom. Our approach shares similarities with Velocity-Verlet integrators [24],
in which half-time steps are used to update the velocity v and angular velocity ω. These are then used to update
the translational and orientational configuration degrees of freedom r,n. While the presence of the friction and
thermostatting forces no longer give dynamics with strict time-reversibility, using the Verlet-like integrator does
still help with the contributions of the conservative terms and with numerical stability [24].

Our stochastic time-step integrator has three main stages. The first stage updates over a half time step the
momentum associated with the translational degrees of freedom. The second stage updates over the full time step
the translational degrees of freedom. The third stage updates the rotational degrees of freedom. The forces and
torques are recomputed with the momentum of the translational and rotational degrees of freedom updated over
the remaining half time step. The friction and stochastic terms contribute during updates as part of the forces and
effective torques. The translational degrees of freedom are updated using

vn+ 1
2 = vn

+
∆t
2

an, rn+1
= rn
+∆tvn+ 1

2 . (8)

The rotational degrees of freedom are updated using

wn+ 1
2 = wn

+
∆t
2

An, ωn+ 1
2 ← wn+ 1

2 , n̂n
← qn,

n̂∗,n+1
= n̂n

+∆t(ωn+ 1
2 × n̂n), n̂n+1

=
n̂∗,n+1

|n̂∗,n+1|
, qn+1

← n̂n+1.

(9)

The momentum is updated using

vn+1
= vn+ 1

2 +
∆t
2

an+1, wn+1
= wn+ 1

2 +
∆t
2

An+1. (10)

he n̂ denotes the collection of orientation director vectors associated with the beads. The an
= Fn/M denotes

he acceleration of the beads, where Fn is the force from Eq. (7). The M is the mass of the beads. The angular
cceleration is denoted by An

= tn/I , where the tn are the forces associated with the director degrees of freedom,
imilar to a torque from Eq. (7). The I plays a role similar to the moment of inertia. The ω denotes the angular
elocity tangent the directors obtained from the rate of change of the quaternions w. Each of these updates use the
orces and torques acting on the system at time n + 1/2 to obtain an+1, An+1.

The thermal fluctuations contribute through the stochastic force FT = [Ftransl
T ,Frot

T ], which represents interactions
ith the solvent and other implicit degrees of freedom when the temperature is T . The thermal forces have strength
etermined by fluctuation–dissipation balance [73]. In the discretization in time, we use ξ (tn) ≈ ζn where ζn are
aussian variates with mean 0 and covariance ⟨ζnζm⟩ = δmn/∆t , where ∆t is the time-step and δmn the Kronecker

-function. This contributes to the discrete stochastic updates of the system each time-step.
To validate the models, comparisons were made with statistical mechanics for the Maxwellians of the rotational

nd translational velocities [73]. For further validation, we observed the domain interface lengths follow the
nverse power law L ∼ t−α , where we find 0.2 ≤ α ≤ 0.3. It was observed that stalling can occur for the
omain coarsening in a manner positively correlated with the interaction parameter θhc,hc defined in Table 2.
t was found the cross-species well-depth needed to be reduced in order to help drive phase-separation in our
odels. Our results are consistent with previous simulation results in [89]. We implemented the single-bead models

y introducing custom stochastic time-step integrators and force interaction laws within the molecular dynamics
oftware LAMMPS [71,87].

. Simulation approach

.1. Parametrization

To obtain stable vesicles exhibiting phase separation in a fluid phase membrane, we performed exploratory
imulation studies over the parameters. To model phase separation we introduced a weight for the interactions

etween the high-curvature (hc) beads and the lower-curvature base (b) phase. The weight factor used was 0.65.
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Table 2
Parameters for the coarse-grained model. The values are expressed in terms of the Lennard-
Jones (LJ) characteristic scales. The b refers to the base-phase and hc the high-curvature
phase. Parameters for lipid–lipid interactions are given for each pair of phases.

Pair θ0 µ ζ ϵ

b,b 0.0 6.0 4.0 1.0
b,hc θhc,hc 3.0 4.0 0.65
hc,hc θhc,hc 6.0 4.0 1.0

Table 3
Parameters for the Langevin thermostat. The values are expressed in terms of the
Lennard-Jones (LJ) characteristic scales.

kB T νr νn M I

0.23ϵ 1τ 3.333τ 0.523m 0.523mσ 2

To characterize the relative concentration of the high-curvature phase, the percentage nhc is reported for the beads
representing the phase relative to the total number of beads. For all of our simulations, default base-line parameters
are given in Table 2. For the Langevin thermostat our base-line default parameters are given in Table 3.

3.2. Vesicle assembly and equilibration

The vesicles were assembled by developing a geometric generator for spheres based on Spherical Fibonacci Point
Sets (SFPS) [62,83]. As an initial configuration, each bead was placed at the locations of the SFPS with the bead
orientation matching the outward normal of the sphere. To equilibrate the system, the vesicle was treated initially
as homogeneous and simulations were run under the Langevin thermostat over a long trajectory. During these
simulations, the beads both diffused and mixed within the membrane structure, and in some instances spontaneously
ejected or inserted into the membrane surface. After the equilibration stage, simulation studies were performed to
investigate more complex phenomena.

To investigate phase separation, the system was started with an equilibrated homogeneous vesicle. Some of the
identities of the beads were then changed to represent the high-curvature phase. This allowed the system to evolve
from a stable configuration under the interaction potentials of the two-phase system discussed in Section 2. The
membrane structures remained stable throughout all of the simulations. It was found there was not significant loss
of beads within the two-phase membrane structures, other than the explicit budding events.

4. Mapping particle configurations to continuum fields: Spherical Harmonics Representations

To investigate the coarse-grained vesicle structures, we introduce techniques to map collective particle config-
urations to a continuum description. Our continuum representations allow for using approaches from differential
geometry and statistical mechanics to characterize the membrane shape and mechanical properties.

4.1. Continuum surface representations: Spherical harmonics expansions

We represent the membrane surface in terms of the position function r(θ, φ) = r (θ, φ)ê(θ, φ)σ . The θ denotes
the polar angle and φ the azimuthal angle for the spherical coordinate chart, ê(θ, φ) denotes the corresponding
ector on the unit sphere, and σ denotes our length-scale, see Fig. 2. The radial component r of the function is
xpanded in spherical harmonics as

r (θ, φ; a) =
∑

aℓmY m
ℓ (θ, φ), aℓm =

∫
r

r (θ, φ)(Y m
ℓ (θ, φ))∗dΩ . (11)
ℓ, |m|≤ℓ

347



D.A. Rower and P.J. Atzberger Mathematics and Computers in Simulation 209 (2023) 342–361

T
s

T

a

T

T
v

r
p

T

Fig. 2. Mappings to the continuum representations. The collective configurations of the particles {(xi , yi , zi )} are mapped to continuum
representations using spherical harmonics expansions for the radial shape functions r (θ, φ) in Eq. (11). Results are shown for n = 590
Lebedev quadrature points for harmonics with degree ℓ ≤ 21.

The Y m
ℓ denotes the spherical harmonic of degree ℓ and order m. The superscript ∗ denotes the complex conjugate.

The aℓm and expression in Eq. (11) gives the expansion coefficients for r (θ, φ) in spherical harmonics. This can be
viewed as the L2-inner product aℓm = ⟨r (θ, φ), Y m

ℓ (θ, φ)⟩L2 over the sphere surface.
To approximate in practice the integration over the surface of the sphere and the inner-product, we use Lebedev

quadratures [54,55]. The Lebedev quadratures provide weights wk and nodal locations xk to sample scalar functions
f on the spherical surface to approximate integrals as∫

f (x)dΩ ∼
m∑

k=1

wk f (xk). (12)

he Lebedev quadratures have a number of desirable properties that include a high-order of accuracy and a more
ymmetric distribution of nodal samples than uniform latitude-longitude based methods [29,55,80].

We estimate the radial function r (θk, φk) as r̃k using the coarse-grained beads comprising the membrane surface.
his is computed using r̃k of a ray generated by the angles (θk, φk). This is associated with the kth Lebedev

quadrature node on the unit sphere. The coordinates of the closest bead to this ray is used on the surface. These
calculations used 590 Lebedev quadrature points to capture spherical harmonics of degree ℓ ≤ 21. Eq. (11) is
pproximated by the discrete sum

ãℓm =
∑

k

wk r̃k . (13)

he wk denotes the Lebedev quadrature weight associated with the kth node [55]. Eq. (13) provides through the
spherical harmonics expansion a continuum representation of the membrane surface geometry.

Our particle-to-continuum mapping is demonstrated in Fig. 2. Here, the configuration is sampled from a two-
phase membrane and the shape is reconstructed using the continuum representation based on spherical harmonics.
Our approaches also can be used for the related problem of capturing the leading-order spherical harmonic modes
representing other fields and hydrodynamic flows on surfaces of vesicles, see [29–31,75,80].

4.2. Bending elasticity of homogeneous membranes

We consider the elasticity theory for homogeneous membranes introduced by Helfrich [34] and Canham [14]
based on local mean and spontaneous curvatures. The free energy E associated with membrane shape is

E[r] =
∫

r

kc

2
[2H (θ, φ; a)+ c0]2d A + λ

∫
r

d A. (14)

he kc denotes the bending rigidity, H the mean curvature, c0 the spontaneous curvature, d A the infinitesimal
esicle surface area, and λ the tensile stress, serving as a Lagrange multiplier to maintain constant area.

We linearize the free energy in Eq. (14) in the case of vanishing spontaneous curvature c0 = 0 around the
eference configuration of a sphere and expand in spherical harmonics. In this case, the tensile stress term does not
lay a role in the second variation [91]. The free energy can be expressed in terms of spherical harmonics as

Ẽ[r] = Ẽ[{aℓm}] =
kc

2r2
0

∑
ℓ,m

|aℓm |2
[
ℓ(ℓ+ 2)(ℓ2

− 1)
]
. (15)

he a denote the spherical harmonic expansion coefficients of the shape discussed in Section 4.1.
ℓm
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For physical vesicles comprised of molecular or particle constituents, the thermal undulations are modeled in
q. (15) and [35] only up to the leading spherical harmonic modes above the molecular length-scales. Since the

material is not a pure continuum, this results in aliasing artifacts in the harmonics description and for sufficiently
small vesicles can result in what manifests as effective enhancement of the amplitudes of the fluctuations of harmonic
modes.

Using the linearized theory of Eq. (15) to estimate a bending rigidity kc can then lead to an under-estimate of
he mechanical rigidity. Helfrich derived correction terms to account for higher-order contributions in [35] giving
he size-dependent effective bending rigidity

k ′c = kc −
kB T
8π

log M. (16)

or spherical geometries, the M represents half the number of amphilic molecules of a lipid bilayer membrane
r more generally the number N of particles comprising a leaflet of the membrane surface. The term involving

M can be viewed as an entropic contribution capturing neglected degrees of freedom of the system in the
inearized elasticity theory such as higher-order contributions in the free energy [35]. The molecular parameter
M = N ≈ κ4πr2

0 is proportional to the area of the membrane surface. Eq. (16) can be expressed as

βk ′c = K − C log r0, (17)

here β−1
= kB T . Within Helfrich’s theory for the area corrections of the linearized elasticity when treating vesicles

s quasi-spherical [35], the coefficients would be K = βkc −
1

8π log (κ4π ) and C = 1/4π .
We expect more generally for other entropic effects to contribute to the elastic bending modulus with a similar

caling as Eq. (17). This would correspond to other values of K and C . We show in Section 5.2 that such a scaling
heory can be used with fit values of K and C to characterize how the estimated bending rigidity varies with the
ize of our coarse-grained vesicles.

.2.1. Spherical harmonics conventions and scale separation
In practice, we have found it convenient to perform analysis using a real-valued spherical harmonics basis Xm

ℓ ,
Zm
ℓ expressed as Y m

ℓ = Xm
ℓ + i Zm

ℓ with aℓm = 1
2 (xℓm − i zℓm) for m > 0 and xℓm, zℓm ∈ R. Since the membrane

surface function is always real-valued, we have in the spherical harmonics representation that aℓm = a∗ℓm , which
equires that xℓm = xl−m and zℓm = −zℓ−m . This allows us to express the radial function as

r (θ, φ) =
∞∑
ℓ=0

∑
m:−ℓ≤m≤ℓ

aℓmY m
ℓ =

∞∑
ℓ=0

[
aℓ,0Y 0

ℓ +

∑
m:1≤m≤ℓ

xℓm Xm
ℓ + zℓm Zm

ℓ

]
. (18)

This yields a real-valued basis comprised of Y m
ℓ for m = 0 and Xm

ℓ , Zm
ℓ for ℓ > 0, m > 0. This has corresponding

expansion coefficients aℓ,0, xℓm and zℓm similar to [29,30]. This can be related to our spherical harmonics expansion
coefficients aℓm by

aℓm =

⎧⎪⎨⎪⎩
1
2 (xℓm − i zℓm), m > 0
aℓ,0, m = 0
1
2 (xℓ,|m| − i zℓ,|m|), m < 0.

(19)

When considering the continuum mechanics which arises from the collective mechanics associated with the
olecular interactions, it is important to consider the length-scales associated with the observed responses. This

s especially important when length-scales approach molecular scales reaching the limits of a purely continuum
nterpretation. In the spectral analysis this corresponds to considering the length-scales associated with the different
odal responses. To help with such interpretations, we develop relations between the key parameters to characterize

pherical harmonics expansions and related spectral analysis.
Consider the characteristic length-scale of the particle/molecular interactions, which we denote by d. For our

oarse-grained vesicle models, this is taken to be the bead size d = σ . For spherical harmonics expansions, this
ives the critical wave-length associated with continuum responses of the system. One can think of the length d
s that of a small arc that is drawn along the equator of a sphere of radius r0. For a quasi-spherical vesicle, the
pherical harmonics expansion of Eq. (11) can be used to estimate the radius as r0 = a00/

√
4π . The a00 is the

oefficient of the constant mode. In spherical coordinates, the azimuthal angle is given by φ = d/r . The spherical
0
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armonic Y m
ℓ has azimuthal angle dependence through the term eimφ . This has the largest spatial frequency when

m = ±ℓ, giving the smallest wave-length resolved as λℓ ∼ r0/m ∼ r0/ℓ.
In practice, for correspondence with continuum mechanics we should consider modes ℓ with λℓ ≳ d. When
= σ is the bead size, we see this scaling analysis indicates that the local molecular or particle-level contributions

tart to dominate the spherical harmonics expansion when the harmonic degree ℓ is on the scale ℓ ∼ r0/d ∼ r0/σ .
his suggests the modes with ℓ ≲ r0/σ capture most significantly the responses of the system at the level of
ontinuum mechanics. For larger degrees ℓ ≳ r0/σ , the modal responses depend more directly on signatures of
he local molecular level interactions and noise. To relate the exhibited behaviors of our vesicles to continuum
echanics we shall focus on modal responses with ℓ ≲ r0/σ .

.2.2. Spectral analysis of passive shape fluctuations and bending elasticity
We use the passive thermal fluctuations of the vesicle shape to obtain information about the elastic bending

odulus. From equilibrium statistical mechanics, the shape fluctuations are governed by the Gibbs–Boltzmann
istribution

ρ[{aℓm}] =
1
Z

exp (−E[{aℓm}]/kB T ) , (20)

here Z represents the canonical partition function. Using the free energy of Eq. (15), the shape modes of ρ[{aℓm}]
ave a Gaussian distribution with mean zero and variance

Var[aℓm] = ⟨a2
ℓm⟩ =

r2
0

βkc

[
ℓ(ℓ+ 2)(ℓ2

− 1)
]−1

. (21)

he covariance between different modes is zero with Cov[aℓm, aℓ′m′ ] = ⟨aℓmaℓ′m′⟩ = 0, where ℓ ̸= ℓ′, m ̸= m ′. As
becomes large, the variance scales as Var[aℓm] ∼ ℓ−4. Eq. (21) can be used to estimate the bending rigidity kc

rom the passive fluctuations of the vesicle.
In practice, we use the real-valued basis expansion of Eq. (18). We track Var[aℓ,0], Var[xℓm] and Var[zℓm] with
> 0, m > 0. When Cov[xℓm, zℓm] = 0, the variance can be expressed as

Var[aℓm] =

{
Var[aℓ,0], m = 0
1
4 (Var[xℓ,|m|]+ Var[zℓ,|m|]), m ̸= 0.

(22)

When the variances are uncoupled for the different harmonic orders m, as in the elasticity theory of Section 4.2,
averaging can be used to obtain

⟨a2
ℓ ⟩ :=

1
2ℓ+ 1

∑
|m|≤ℓ

⟨a2
ℓm⟩. (23)

For spherical geometries in the basis expansion of Section 4.1, the mean is zero ⟨aℓm⟩ = 0 for ℓ ̸= 0. The bending
rigidity kc is estimated by using a linear regression in log-space with the estimator

log ⟨a2
ℓ ⟩ = b − m log

[
ℓ(ℓ+ 2)(ℓ2

− 1)
]
. (24)

he b = log (2r2
0/βkc) and m = 1. In practice, the effective bending rigidity k ′c is estimated from Eq. (17). In

ection 5.2, we showed that the empirical data exhibits the expected logarithmic scaling for the parameter values
f K and C obtained from fitting simulations varying the vesicle size r0.

. Results

.1. Phase separation in heterogeneous vesicles

The heterogeneity of biological membranes and synthetic soft materials can play a significant role in shaping
he geometry and in mechanical responses [7,45,60,78,82]. For both homogeneous and heterogeneous vesicles, we
tudy how the mechanics depends on the concentration ratio and preferred curvatures of the phases. A few behaviors
xhibited in our simulations are shown in Fig. 3.

In our models the phase separation is driven primarily by the different species affinities, even when the preferred

urvatures are the same. As the preferred curvature of the second phase is increased, it is found that the coarsening

350



D.A. Rower and P.J. Atzberger Mathematics and Computers in Simulation 209 (2023) 342–361

d

Fig. 3. The preferred curvatures and phase separation are shown for a few cases. The phase preferred curvatures can impact coarsening and
the vesicle shape. The top has matched curvatures between phases with θhc,hc ∼ 0 and the middle has intermediate differences. The bottom
shows large differences where domains can form buds and daughter vesicles. The simulations consisted of 8000 beads with nhc = 0.33,
kbT = 0.20ϵ, µb,b = 3.0, and µb,hc = 6.0.

dynamics can stall given competition with curvature effects. The vesicles appear to exhibit meta-stable domains
related to the elastic energy associated with the formation of bulged phase-separated domains. This results in a
bending elasticity for the vesicle which presents a sufficiently large energy barrier inhibiting domains from further
growth and merging during fluctuations. As the preferred curvature increases further, the coarsening dynamics were
found to proceeds until a critical size, after which daughter vesicles bud from the vesicle. A few instances of these
behaviors seen in our simulations are shown in Fig. 3.

In the case of a significant line tension, as opposed to a preferred curvature contrast, there can still be formation of
buds or highly curved sub-domains. The parametrizations are considered where the line tensions are not sufficiently
large to overcome the local bending energy. While the particle interactions are related in the coarse-grained potential,
it is the local preferred curvature terms in the energy that drive the resulting geometry of our vesicles. For spherical
topologies, the phase-separation will tend to proceed with the formation of two meta-stable domains at polar regions
with the base phase in-between. This results in a large energy barrier inhibiting further merging into a single
domain. In the intermediate regime with θhc,hc ∼ 4.6, the preferred curvature difference stalls the coarsening to
yield many distinct sub-domains. We investigate both the passive shape fluctuations and mechanical responses to
active deformations in Sections 5.2–5.5.

5.2. Homogeneous vesicles and size-dependence of the bending elasticity

As a baseline for our studies, we first consider for homogeneous vesicles how their passive shape fluctuations
and mechanical responses depend on the vesicle size. In Helfrich [35], theory was developed for small vesicles
predicting that the effective bending elasticity observed from shape fluctuations can depend significantly on the
vesicle size. The coarse-grained models are used to further investigate the role of the vesicle size. We investigate
the bending elasticity of homogeneous vesicles based on passive shape fluctuations using the methods developed
in Section 4.2.2. The mechanical responses are considered over the range of sizes from 1255 beads with r0 ∼ 9σ
to 20088 beads with r0 ∼ 36σ . The surface area fluctuations are found to be less than 0.05% for all sizes. For our
coarse-grained vesicles, we show the scaling of the variances of the spherical harmonic modal responses aℓm with
egree ℓ in Fig. 4.

The modes are averages over order m as presented in Eq. (23). The linearized continuum elasticity theory predicts
a scaling of Var[aℓm] ∼

[
ℓ(ℓ+ 2)(ℓ2

− 1)
]−1. While holding the particle interaction parameters fixed for the coarse-

grained model, we find the estimated elastic bending modulus decreases as the size of the vesicle increases, see
Fig. 4.

For the linearized elasticity theory, entropy correction terms were derived for estimating the bending rigidity
when varying the vesicle size [35]. The correction terms account for entropic contributions neglected in linear
expansions. Our results show a similar trend with our coarse-grained vesicles having mechanical responses that
exhibit a scaling similar to Eq. (17). The estimated bending modulus is shown in log-space as the vesicle size is
351
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Fig. 4. The fluctuation spectrum of vesicles of different sizes. For passive shape fluctuations mapped to harmonic modes of degree ℓ, the
variances are in good agreement with the continuum elasticity theory in Eqs. (16), (23), and predictions by Helfrich [91]. Results are for
1000 time-samples averaged over 5 runs for each vesicle size.

Fig. 5. The bending elasticity for vesicles of different sizes. Shown is the elastic bending modulus exhibiting logarithmic scaling similar to
the correction terms derived in Helfrich [91] and Eq. (16). The fitting parameters are K = 186.08 and C = 34.70.

aried, see Fig. 5. We find a good fit is obtained for the scaling theory with the regression parameters K = 186.08
nd C = 34.70 in Eq. (17).

.3. Shape fluctuations of heterogeneous vesicles

Heterogeneous vesicles are found to exhibit interesting spatial-correlations associated with sub-domain mechan-
cs. This couples modes and makes traditional spectral analysis challenging. As an alternative we make comparisons
sing real-space two-point correlation functions of the undulations of the membrane surface for heterogeneous and
omogeneous vesicles. The case is considered where heterogeneity occurs at scales comparable to the vesicle size.
he shape fluctuations are characterized by the two-point correlations ψ associated with the radial shape function
(θ, φ).

The correlations are computed by choosing a base point for which the radial component is correlated with other
oints on the vesicle surface. There are three cases for choosing base-points, (i) as any location at random on the
urface, denoted “Random θ = 0”, (ii) to be within a high-curvature domain of phase hc, denoted “hc θ = 0”,
nd (iii) to be any point of the base phase b, denoted by “b θ = 0”. The base-point is taken to have coordinate
= 0. The case (i) is used primarily for homogeneous vesicles. The cases (i) and (ii) is used for the heterogeneous

esicles. The main difference is in case (ii) the base point is chosen within one of the phase-separated domains.
his captures fluctuations within and in the vicinity of the domains of the vesicle. The results are normalized in
cale by the variance at θ = 0 of the homogeneous vesicle.

In more detail, to obtain ψ the chosen base-point can be thought of as being at the north pole of the vesicle
ith angles (θ0, φ0) = (0, 0). In practice, this is achieved by applying a rotation to the vesicle to transform it into

his standard orientation. The base-point radial coordinate is then correlated with the other points of the vesicle at

he polar angles θ by averaging the results over the azimuthal angle φ. For the given cases (i)–(iii) of base-point,
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Fig. 6. The surface two-point correlations are shown for the radial shape function r (θ, φ) for homogeneous nhc = 0 and heterogeneous
esicles nhc > 0. The cases correspond to when the base-point is chosen (i) as any location at random on the surface, denoted “Random
= 0”, (ii) to be within a high-curvature domain of phase hc, denoted “hc θ = 0”, and (iii) to be any point of the base phase b, denoted

y “b θ = 0”. The base-point is taken to have coordinate θ = 0. Sampling was performed for 5 random base-beads for 100 time-samples
veraged over 5 simulations runs. Results are normalized in scale by the variance at θ = 0 of the homogeneous vesicle.

his gives the two-point correlation function ψ = Cov[rθ=0rθ ]. In practice, we approximate this by the estimator
˜ = 1/N

∑N
i=1 r [i]

θ=0r [i]
θ − r̄θ=0r̄θ . The r [i]

θ=0 is the i th sample of the base-point. The r [i]
θ is the i th sample of the

adius for any point with polar angle θ . This is averaged over a sampling of base points consistent with one of
he cases (i)–(iii). The r̄θ denotes the empirical mean of the radius of the points with polar angle θ . Results for
omogeneous vesicles with nhc = 0.0 and heterogeneous vesicles with nhc = 0.025 are shown in Fig. 6.

It is found the two-point correlations for case (i) for both homogeneous and heterogeneous vesicles exhibit a
trong negative correlation at around θ = π/2. A strong positive correlation is also found at around θ = π . These
ngles and correlations indicate significant ellipsoidal shape fluctuations in the overall geometry of the vesicles.
his behavior also is seen to persist when also considering correlations at a base-point chosen in the base phase
, case (iii). When the base-points are chosen within the high-curvature domain of phase hc (case (ii)), more
omplicated behaviors arise. The base-point plays an important role, since within the hc regions it is sensitive to
he local mechanics of the phase-separated domains. For the base-points in the b regions characterizes locally the
ase-phase with more distant coupling to the phase domain mechanics. The correlations appear to be strongest
ithin the high-curvature domain with relatively weak correlations with the regions of the base phase b, see Fig. 6.
he correlation functions are normalized by the nhc = 0.0 surface variance at θ = 0, Var[rθ=0] = 0.38.

Our results for two-point correlations show some of the challenges inherent in developing estimators for the
ending elasticity from a spectral analysis of shape fluctuations of heterogeneous vesicles. The heterogeneity breaks
patial symmetries resulting in coupling between spectral modes posing challenges for theory and analysis. Also, the
hase domains can be of a comparable scale to the vesicle posing further issues. The phase domains have different
ocal mechanical properties and can diffuse during fluctuations, undergo rearrangements, or merge. As an alterative
or heterogeneous vesicles, we perform further simulations to actively drive deformations of the vesicles to better
nderstand their mechanics and the roles of the phase domains.

.4. Compression of heterogeneous vesicles: Mechanical responses

In the molecular biology of cells, a central challenge is to understand the mechanisms by which cells sense and
ransduce mechanical stimuli into biochemical signals [1,39,65]. This includes both passive and active mechanical
esponses of cellular and sub-cellular structures [10,36,46,66]. The coupling of chemical kinetics and mechanics
s also important in the self-assembly and mechanical responses of synthetic soft materials [10,23,33,78]. With
he aim of understanding general principles, laboratory experiments and simulations have been performed with
odel physical systems. In [76], giant liposomes have been compressed between parallel plates to investigate force
ompression curves of the lipid membrane and in the presence or absence of an actin cortex. In [5], coarse-grained
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Fig. 7. The compression forces of the deforming heterogeneous vesicles. A sample multi-phase vesicle is shown during different stages of
compression when nhc = 0.175 (left). For vesicles with different phase mixtures nhc , the resisting forces are shown (right). For the dashed
ines at compressions ∆z = 45σ,∆z = 33σ , ∆z = 20σ , and ∆z = 16σ , the force is compared for the different phase concentrations in
ig. 9.

tudies were performed for the relaxation times of homogeneous vesicles compressed by Atomic Force Microscopic
AFM) to obtain dependence on the applied force of the time-scale for stress relaxation.

We perform studies to probe the mechanics of heterogeneous vesicles by compressing them between flat plates.
collection of representative meta-stable coarse-grained vesicles are used having varying levels of concentration

or a high-curvature species. Vesicles of the type discussed in Section 5.1 are used with θhc,hc = 5.73◦. The
pecific concentrations considered are nhc = 0.025k, where k = 0, 1, 2, . . . , 7. The nhc gives the percentage of
igh-curvature species in the membrane. Our equilibrated non-spherical vesicles have a size characterized by the
xpansion coefficient a00 for the harmonic mode Y 0

0 as in Section 4.2.1. Our vesicles have similar characteristic
adius r0 ranging from r0 ∼ 30.1σ for nhc = 0.0 to r0 ∼ 28.9σ for nhc = 0.175. Vesicles are compressed by moving
top wall downward towards a stationary wall below. The top wall is moved at a constant speed of v = 0.003σ/τ .
he steric particle–wall interactions are modeled by a 9-3 LJ-potential with depth ϵwall = 0.01ϵ with length-scale
wall = σ . The particle–wall force is computed using the approach in Appendix B.

During compression, the high-curvature phase domains rearrange to be parallel to the walls around the free
erimeter of the flattening vesicle, see Fig. 7. For heterogeneous structures arising in cell biology, the rearrangement
f such protruding domains could provide potential mechanisms for mechanosensing large compressive deforma-
ions. During most of the compression, the homogeneous and heterogeneous vesicles take on overall ellipsoidal-like
hape with similar Y modes. However, the shape mode x22 differs significantly for the heterogeneous case given the
ole of the phase domains, see Fig. 8. While the overall shapes following similar trends, the heterogeneous vesicles
an accommodate better the stresses associated with the large deformations by rearrangement of the high-curvature
referring domains towards the areas of larger curvature. This results in a lower energetic cost for the deformation
nd smaller resistance forces since the high-curvature domains rearrange to occupy bending regions at their preferred
urvatures, see Figs. 7 and 9.

We investigate the resisting forces the vesicles exert on the walls as the level of heterogeneity increases in Fig. 9.
It is found the resisting forces the vesicle exerts on the walls decreases as the level of heterogeneity increases.
As the compression becomes larger, and the shape more pancake-like, both the high-curvature domains and base
phase deform significantly. A significant decrease occurs in the resisting force for the heterogeneous vesicles as the
concentration of the high-curvature species increases, see Fig. 9. These results show some of the ways in which the
phase-separated domains can contribute to mechanical responses of heterogeneous vesicles.

5.5. Insertion and transport of heterogeneous vesicles within channels

The mechanics and kinetics of heterogeneous structures inserting into small capillaries, pores, or channels play

an important in cellular processes and microfluidic devices [9,59,70]. Towards understanding general principles,
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Fig. 8. The shape changes and domain rearrangements during compression. For vesicles with nhc = 0 and nhc = 0.175, the shape changes
re characterized by select spherical harmonic modes with coefficients a00, a20, x22, and a40. These correspond to the real-valued harmonics

shown as radial shapes with blue for positive and red for negative values for Y 0
0 , Y 0

2 , X2
2 , and Y 0

4 . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The compression forces of the deforming heterogeneous vesicles. Shown is the z-component of the resistance force when varying
the concentration nhc . The ∆z indicates the wall-separation distance.

model physical systems have been studied [8,79]. In [79], a microfluidics model system was developed to investigate
the role of elastic mechanics of red blood cells in traversing micro-capillaries when in healthy states and when in
diseased states, such as malaria which has increased rigidity. In [8], the permeation of homogeneous vesicles through
narrow pores was studied with an emphasis on the roles of surface adhesion, elasticity, and surface tension on the
pressure differences required to drive transport through pores.

We investigate the behaviors of heterogeneous vesicles when inserted and transported within slit-like channels.
The vesicle kinetics of insertion and transport are studied when varying the concentration of the high-curvature
phase. The hydrodynamics is treated as a simplified model with a constant drag and pressure force acting on all
particles of the vesicle. This is motivated by the hypothesis that as opposed to flow the insertion process is driven
primarily by surface pressures of the incompressible fluid transmitted over the membrane surface of the vesicles.
Other approaches, such as fluctuating hydrodynamics methods incorporating more detailed fluid mechanics could
also be used to extend our coarse-grained model as in [87]. The driving force is taken to be Fd = −(0.015ϵ/σ ) ẑ.
The channel geometry consists of two plates with separation distance 30σ . The channel entrance is smoothed by
two cylinders, both of radius 50σ . At the start, vesicles have effective radii ranging from r0 ∼ 30.1σ for nhc = 0.0
to r0 ∼ 26.0σ for nhc = 0.3, as determined from the a00 basis-expansion coefficient corresponding to spherical
armonic mode Y 0

0 . The channel and some typical configurations of the vesicles before, during, and after insertion
re shown in Fig. 10.

We compare for homogeneous and heterogeneous vesicles how the different concentrations of the high-curvature
hase impact the distance z(t) the vesicles are transported within the channel over time duration t . The distance
f the homogeneous vesicle is denoted by z0(t). We report the lag-distance ∆zlag = z(t; nhc) − z0(t) between
he position z(t; n ) of the heterogeneous vesicle and the homogeneous case. The trials are averaged over 10
hc
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Fig. 10. Heterogeneous vesicles inserting into channels. Vesicles experience a constant pressure load force Fd = −(0.015ϵ/σ ) ẑ that drives
nsertion and transport within slit-like channels. The channels have wall-separation distance 30σ with an entrance smoothed by a cylinder
aving radius 50σ (left). The vesicle significantly deforms and rearranges phase domains during insertion into the channel opening (right).
esults for vesicle transit times are shown in Fig. 12.

Fig. 11. The vesicle shape changes during insertion into channels. The changes are compared for a heterogeneous vesicle relative to the
homogeneous case (left). The changes in shape of vesicles is characterized using the spherical harmonics with coefficients a00, a20, x22,
and a40. The harmonics are shown as radial functions with blue positive and red negative for the modes Y 0

0 , Y 0
2 , X2

2 , and Y 0
4 (right). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

random initial orientations for each vesicle. We report our results in Fig. 12. It was found the heterogeneous vesicles
had longer transport times and larger variances in the channel insertion studies. These vesicles enter the channel
through a combination of rearrangement of the phase domains, further deformation-driven phase coarsening, and
changes in the shape. Since the vesicles have non-spherical shapes, the initial orientations when encountering
the channel entrance also can play a role, see Fig. 10. From our discrete-to-continuum mappings these shape
changes were quantified in terms of modes in Fig. 11. Relative to the homogeneous case, we found there were
significant differences seen in the shapes during the insertion phase. By the time t = 3900τ , all of the vesicles
were fully inserted within the channel and took on similar overall ellipsoidal shapes. For heterogeneous vesicles,
this combination of effects were found to lead to significant differences in transport times and insertion kinetics
relative to the homogeneous case, see Figs. 10–12.

It was interesting that while the heterogeneous vesicles could better accommodate deformations during compres-
sion incurring a lower energetic cost, they still took more time on average to insert into channels. This appears
to be a consequence of the sequential nature of the insertion process. During insertion only the leading part of
the vesicle is initially subjected to deformation. Depending on the initial vesicle orientation and arrangement of
the phase domains, this could delay insertion, given the need for phase domains to rearrange to accommodate
the deformations required for full insertion into the channel. This is seen in the large variability of the insertion
times, with the heterogeneous case sometimes occurring more rapidly or much more slowly than the homogeneous
case, see Fig. 12. The simulation results for the heterogeneous vesicles show how many of the behaviors differ

significantly relative to their homogeneous counter-parts.
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Fig. 12. The vesicle shape changes during insertion into channels. For vesicles with different phase mixtures nhc , the distance z(t) is shown
for how far a vesicle has traveled down the channel by time t . The lag-distance ∆zlag = z(t; nhc)− z0(t) is reported for the position z(t; nhc)
of the heterogeneous vesicle compared with the homogeneous case z0(t). Results are averaged over 10 simulations for vesicles with random
initial orientations. For the case t = 3900τ , when all vesicles were fully inserted into the channel, bars are shown indicating the range of
the smallest and largest lags observed over the trials.

6. Conclusions

Heterogeneous vesicles with membranes having phase-separated domains can exhibit interesting mechanical
responses and other behaviors differing significantly from homogeneous vesicles. Our coarse-grained simulation and
analysis methods allow for better understanding the roles played by the phase-separated domains both in passive
shape fluctuations and during active deformations. Our discrete-to-continuum mapping methods and spherical
harmonics approaches allow for relating configurations in coarse-grained descriptions to corresponding continuum
fields providing quantitative characterizations. For shape fluctuations when varying the vesicle sizes, we showed how
this could be used to make comparisons with theory based on continuum mechanics. We further showed the phase-
separated domains break rotational symmetries resulting in passive shape fluctuations and two-point correlations
having enhanced amplitude and variability relative to the homogeneous case. We also showed how our approaches
can be used to probe mechanical responses when subjected to more active deformations. When compressing
vesicles between two plates, we found the high-curvature phases can rearrange to accommodate bending stresses by
distributing near the most curved edges of the compressing vesicle. For studies of vesicle insertion into channels, we
further found that the heterogeneity can have mixed results. When the orientation of the vesicle had the ellipsoidal
major axis aligned with the channel, we found heterogeneous vesicles can insert rapidly. However, when the
orientation is orthogonal, we found delays can arise from deformations and rearrangements of the phase-separated
domains during vesicle insertion into the channel. This manifested as significant variability in transport times. These
results suggest a few novel mechanisms by which membrane heterogeneity can augment membrane mechanics and
kinetics. Our introduced methods provide ways to quantitatively characterize these differences. Our methods provide
general approaches for further investigations of phenomena within heterogeneous membranes taking into account the
roles played by phase separation, thermal fluctuations, geometry, and mechanics. Our results show that the presence
of even a modest number of phase-separated domains in heterogeneous membranes can significantly augment their
mechanical responses relative to the homogeneous case.
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ppendix A. Gradients of the energy U(ri j , ni, n j )

The detailed expressions are given for each of the gradients of the potential energy with respect to the translational
and rotational ni degrees of freedom contributing in Eq. (1). These gradients can be expressed as

∇ri U =

{
∇ri u R(r )− ϵµ∇ri a r < rb

φ∇ri u A(r )+ u A(r )µ∇ri a rb < r < rc
(25)

∇ni U =

{
−ϵµ∇ni a r < rb

u A(r )µ∇ni a rb < r < rc
(26)

∇ri u R(r ) = −
4ϵ
rb

[(rb

r

)5
−

(rb

r

)3
]

r̂i j (27)

∇ri u A(r ) =
ϵπζ

(rc − rb)
cos2ζ−1(ξ ) sin(ξ )r̂i j , ξ =

π

2
(r − rb)
(rc − rb)

(28)

∇ri a =
1
r

[
2(ni · r̂i j )(n j · r̂i j )r̂i j − (ni · r̂i j )n j − (n j · r̂i j )ni (29)

− sin θ0
(
n j − ni − [(n j − ni ) · r̂i j ]r̂i j

) ]
∇ni a = n j − (n j · r̂i j − sin θ0)r̂i j . (30)

Appendix B. Computing the wall-force: Resistance of vesicles to compression

For compression of the vesicles between the two walls, we compute the effective wall-force, related to the
pressure, exerted by the vesicle on the walls. Consider the geometry of a wall w spanning the xy-plane at
z = zw. Let zi denote the z-position of the i th particle. Consider the free-energy of the particle–wall interaction
w(zi − zw), which in our studies is a 9-3 LJ-potential. The force exerted by the i th particle on the wall is given

by F̃w,i = −∇zwUw(zi − zw). For our studies of compression, we sum over all of the vesicle’s particles with
|zi − zw| < 2.5σ to obtain the total particle–wall force

Fw = −
∑

i

∇zwUw(zi − zw). (31)

In our studies, the bottom wall is stationary, so we use the wall separation z = zT op − zBottom to parameterize the
force FT op(z). We use this approach to compute the reported resisting forces when compressing homogeneous and
heterogeneous vesicles between the planar walls in Section 5.4.
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