
PHYSICAL REVIEW A 107, 032415 (2023)

Surrogate-based optimization for variational quantum algorithms

Ryan Shaffer ,1,2,* Lucas Kocia,2 and Mohan Sarovar2,†

1Department of Physics, University of California, Berkeley, California 94720, USA
2Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Livermore, California 94550, USA

(Received 26 April 2022; revised 11 July 2022; accepted 6 February 2023; published 16 March 2023)

Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
The goal of these algorithms is to perform large quantum computations by breaking the problem down into a large
number of shallow quantum circuits, complemented by classical optimization and feedback between each circuit
execution. One path for improving the performance of these algorithms is to enhance the classical optimization
technique. Given the relative ease and abundance of classical computing resources, there is ample opportunity
to do so. In this work, we introduce the idea of learning surrogate models for variational circuits using a few
experimental measurements, and then performing parameter optimization using these models as opposed to the
original data. We demonstrate this idea using a surrogate model based on kernel approximations, through which
we reconstruct local patches of variational cost functions using batches of noisy quantum circuit results. Through
application to the quantum approximate optimization algorithm and preparation of ground states for molecules,
we demonstrate the superiority of surrogate-based optimization over commonly used optimization techniques
for variational algorithms.

DOI: 10.1103/PhysRevA.107.032415

I. INTRODUCTION

As the quality and scale of quantum information proces-
sors (QIPs) increase, the question of whether they can derive
some advantage over conventional (classical) computers, even
before reaching the fault-tolerant regime, is becoming in-
creasingly important to the field. Hybrid algorithms that
utilize quantum and classical computing are perhaps the most
promising route to such an advantage, and variational algo-
rithms (VQAs) where the QIP evaluates a parametrized cost
function that is then optimized by a classical computer are the
prime example of such hybrid algorithms [1,2].

Conventional implementations of variational algorithms
evaluate a parametrized cost function V (θ), usually represent-
ing a parametrized quantum circuit, and then optimize over θ

using off-the-shelf multiparameter optimization routines like
COBYLA, SPSA, and Nelder-Mead [3,4]. Such an approach
only minimally exploits the structure of the underlying prob-
lem, and moreover, only minimally utilizes the computational
power of the classical computing layer. While this approach
has been used to demonstrate variational algorithms with a
handful of parameters, |θ| ≡ D � 10, it is unclear how its
effectiveness and the experimental resources it requires will
scale to larger problems, where the number of variational
parameters becomes hundreds or thousands.

Motivated by this, we introduce an approach to optimiza-
tion in variational algorithms that utilizes modern statistical
inference tools to reduce the experimental burden when run-
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ning variational algorithms. This, in effect, moves more of
the burden from the QIP to the classical computing layer.
The core of our approach is the construction of a surrogate
model for the variational cost function from QIP experimental
data and performing optimization with this surrogate model
instead of the original data. This is an established approach in
optimization theory, and surrogate-based optimization (SBO)
has found uses in applications where the optimization cost
function is difficult to evaluate due to paucity of data or com-
putational expense [5]. There are a variety of techniques for
learning a surrogate model from data, including spline-based
fitting, kriging, and neural network models [6]. In this work,
we demonstrate SBO for VQAs using local kernel approxima-
tion techniques. Kernel approximation is particularly useful
for building surrogate models for variational quantum circuits
for several reasons: (i) the resulting models are explicitly
smooth and smooth out unavoidable shot noise in quantum
circuit measurements, (ii) the models can be learned with
batches of circuit outputs, which has practical advantages
for quantum computing platforms where circuit loading in-
curs latency, and (iii) the models allow numerically efficient
computation of V (θ) and its derivatives, thus enabling opti-
mization by scalable gradient-based algorithms. Intuitively,
surrogate models based on a kernel approximation can be seen
as explicitly taking advantage of the fact that the underlying
variational cost function is smooth [V (θ) ∈ C∞], and thus its
value at θ indicates its value in its neighborhood. We couple
this local surrogate model with an adaptive optimization pro-
cedure to efficiently find local optima of the variational cost
function.

There have been several recent efforts to develop custom
optimizers for VQAs, including: variations of stochastic gra-
dient descent that adapt the number of experimental circuit
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evaluations (shots) to manage the tradeoff between cost func-
tion and gradient estimation quality and experimental burden
[7–9], techniques based on Bayesian optimization [10–12],
and machine learning-based optimization approaches for spe-
cific VQAs [13]. Most relevant to this work is the study of
Sung et al. [14], which in the framework of SBO, devel-
oped local quadratic models based on experimental data and
coupled this with a trust-region optimization algorithm. Our
work expands on this result by considering more general,
nonparametric surrogate models that are designed to be valid
over larger regions in parameter space, where the quadratic
model might break down. We note that a related approach
based on Gaussian process surrogate models has recently been
proposed by Mueller et al. [15].

In the following, we introduce our optimization algorithm
(Sec. II), analyze its theoretical properties and hyperparameter
choices (Sec. III), and present several numerical illustrations
of the approach, including comparisons to conventional varia-
tional optimization algorithms (Sec. IV). Finally, we conclude
with a summary and discussion of possible extensions of our
approach (Sec. V).

II. SURROGATE-BASED OPTIMIZATION

The goal of the classical computing layer in quantum vari-
ational algorithms is to compute

min
θ

V (θ) (1)

and, often, also the argument that attains this minimum. Here,
θ = (θ1, . . . , θD) ∈ [0, 2π )D are parameters that dictate the
variational quantum circuit ansatz for the problem, V (θ) :
[0, 2π )D → R is the variational cost function, which is re-
lated to the parametrized circuit, Û (θ), acting on n qubits:
V (θ) = tr[ÔÛ (θ)ρ̂0Û †(θ)], for some initial n-qubit state ρ̂0

and observable Ô. This quantum expectation must be esti-
mated using many measurements on the circuit output. To do
so, we first decompose the observable into a sum of noncom-
muting operators, Ô = ∑ν

i=1 αiôi, with [ôi, ô j] �= 0 for i �= j.
For all practical VQAs, ν = O(poly(n)). Then, writing the
circuit output as ρ̂(θ) ≡ Û (θ)ρ̂0Û †(θ),

V (θ) =
ν∑

i=1

αitr(ôiρ̂(θ)) =
ν∑

i=1

αiE{Xi(θ)}, (2)

where Xi(θ) is a random variable distributed as pi(θ) that rep-
resents the outcome of measuring ρ̂(θ) in the eigenbasis of ôi.
In practice, the expectation in the final expression is estimated
using a sample mean of a number of shots (executions of the
circuit at θ and measurements in one of the ν bases). That is,
one takes Ki measurements of Xi(θ) : X i

1(θ), . . . ,X i
Ki

(θ), and

approximates E{Xi(θ)} ≈ 1
Ki

∑Ki
j=1 X

i
j (θ). The total number of

shots, or circuit executions, necessary to form an estimate of
the cost function at a given parameter value,

Ṽ (θ) =
ν∑

i=1

αi

⎛
⎝ 1

Ki

Ki∑
j=1

X i
j (θ)

⎞
⎠ (3)

is K = ∑ν
i=1 Ki.

Since V (θ) must be estimated from a finite number of
measurement results, the resulting optimization landscape is
noisy and becomes increasingly so as the number of available
measurements, K, decreases. This is the impact of so-called
quantum shot noise (the irreducible uncertainty of quantum
systems that results in indeterminate measurement outcomes
in general) on the variational optimization problem. The poor
performance of most optimization algorithms in such noisy
landscapes places a burden on the QIP to produce as many
measurements as possible to increase the accuracy of this
expectation estimate, and therefore the smoothness of Ṽ (θ).
In addition to this shot noise, in present and near-future
generations of noisy intermediate scale quantum (NISQ) de-
vices [16] there are other sources of noise coming from
poor control, measurement, and isolation (decoherence) that
produce distortions of the underlying probability distribution
over measurement outcomes, i.e., pi(θ) → p̃ i(θ). We do not
directly address this source of noise, although we note that
several error mitigation techniques have been developed to
address this problem, e.g., Refs. [17–20], and they can be used
in tandem with our optimization approach to achieve some
degree of robustness to both sources of noise (shot noise and
decoherence).

We now introduce the concept of a local surrogate model
to V (θ). This is a function W : � → R that is an approxi-
mation of V (θ) in a local patch, � ⊂ [0, 2π )D. We demand
that this surrogate model must be (i) smooth and (ii) efficient
to evaluate on a classical computer, requiring no additional
measurements from a QIP than those required to construct
it. In this work, we construct such a surrogate model using
a kernel approximation, i.e.,

W�(θ) =
τ∑
j=1

Ṽ (θ j )κ (θ, θ j ), (4)

where Ṽ (θ j ) are standard estimates ofV (θ) (constructed using
K shots) at τ distinct sample points θ j ∈ �, and κ (·, ·) is a
kernel function. Note that the subscript onW� serves to remind
us that the surrogate model is valid in some local patch of
parameter space, since it is formulated based on data from
that local patch.

The choice of κ determines most of the properties of
kernel-based surrogate models. In this work, we choose a
Gaussian kernel, κ (θ, θ j ) = exp(−||θ−θ j ||2/2σ ), for two reasons.
First, it is a simple kernel with only one free parameter, σ ,
that can be set in a data-driven manner, as we show below.
And second, its form allows for easy analytic evaluation of
derivatives of W�(θ), which is a useful property for gradient-
based optimization of W (θ).

It is known that this kernel can result in a systematic
bias [21]. In the context of VQAs, this is often manifest
in an “offset” of the kernel-produced variational cost func-
tion values from the experimental values. However, given the
prevalence of systematic noise in experimental measurements
on current quantum hardware, there is frequently no gain to
be made from expending computational resources to get the
true experimental surface because it is offset already, and
only relative magnitudes matter for optimization. Moreover,
in applications where the goal is finding the parameter argu-
ment of the minimal objective function, the offset is irrelevant.
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FIG. 1. An illustration of a local patch of (a) a true objective function V (θ) with dimension D = 2 where θ = (θ1, θ2), (b) interpolated
samples Ṽ (θ) using K = 100 shots at each of the τ = 20 sample points, and (c) surrogate function W (θ) constructed using a Gaussian kernel
κ (θ, θ j ) = exp(−||θ−θ j ||2/2σ ).

Finally, in applications where the minimal variational cost
function value is desired, it is often possible to fix the offset,
both from experimental noise and the kernel, by appealing to
special cases when the parameter values simplify the objective
function to known values, and shifting the offset of the full
surface accordingly. Figure 1 provides an illustration of a
true objective function V (θ), interpolated samples Ṽ (θ j ), and
surrogate functionW�(θ) constructed using a Gaussian kernel.

A. Adaptive optimization

As described above, the kernel-based surrogate model
is learned over a local patch �. In order to find a lo-
cal optimum of V (θ), we couple this construction with an
adaptive optimization procedure that we describe in this
section.

We begin with an initial seed for the variational parameters,
θ(0), and define a local patch around it as a D-dimensional hy-
percube of length �: �(0) = ∪D

m=1[θ (0)
m − �/2, θ (0)

m + �/2]. Then
we randomly sample τ points in this patch, execute variational
circuits defined by each of those sample points, and use the
resulting data to form estimates Ṽ (θ1), . . . , Ṽ (θτ ). We assume
for simplicity that each of the estimates Ṽ (θ j ) is formed using
K shots, i.e., K does not depend on j, although this is not
an essential assumption. The τ samples of θ j are sampled
sparsely in �(0); to achieve this in practice, we use Latin
hypercube sampling over �(0) to choose each θ j . The number
of samples τ and the patch “size” � are important parameters;
we develop heuristics for choosing their values and study their
scaling with n and D in Sec. III (and also in Appendix A). The
estimates Ṽ (θ j ) are then used to formulate a surrogate model
W�(0) for V (θ) on the patch �(0), as defined in Eq. (4).

Given W�(0) (θ), we perform optimization over this (explic-
itly smooth) function over the local domain �(0). We do not
specify the method to use for this optimization. However,
given a smooth objective and easily computable gradients,
gradient-based optimizers that incorporate parameter con-
straints [since the optimization should only be over �(0)] are
well-suited for this task. In practice, it may be helpful to
optimize over a slightly smaller domain to avoid edge effects
in the kernel approximation, i.e.,

min
θ∈�

(0)
ε

W�(0) (θ), (5)

with �(0)
ε = ∪D

m=1[θ (0)
m − (�−ε)/2, θ (0)

m + (�−ε)/2]. The argument
that achieves the above minimum defines the center of the next
patch, θ(1), and this process is repeated.

We refer to the process above as one iteration of the
optimization run. Each iteration thus requires Kτ shots. We
perform a fixed number of iterations M, giving a total of KτM
shots in a full optimization run. To assist in the convergence of
the optimization run, we linearly increase ε from some initial
(small) value εi in the first iteration to a value near � in the
final iteration.

If the minimum θ(i+1) found after iteration i falls within the
interior of the current patch �(i), i.e., if θ(i+1) ∈ �(i)

εint
for some

small εint ∼ �/20 which excludes the boundary of the patch,
then we add the minimum θ(i+1) to a list of local minima
�minima. After completing M iterations, we calculate the final
estimated optimum θopt by taking the coordinate-wise mean of
all of the elements of �minima that fall within a distance � − ε f

(for ε f ∼ �/2) of the minimum θ(M ) found in the final iteration,
i.e., for �

(M )
ε f ,minima = �minima ∩ �(M )

ε f
,

θopt = 1∣∣�(M )
ε f ,minima

∣∣
∑

θ∈�
(M )
ε f ,minima

θ. (6)

Figure 2 provides a graphical description of the surrogate-
based adaptive optimization approach described above.

We note that the optimization approach is decoupled from
the surrogate model. Although we have found that the adaptive
optimization detailed above is effective, it is by no means
unique or optimal. It is possible to modify it or even replace it
with another approach while keeping the surrogate model idea
intact. In particular, it is likely advantageous to incorporate
a memory element that inclues information from previous
patches into the decisions made at the current patch—this is a
promising area for future study.

III. CONVERGENCE AND HYPERPARAMETER CHOICES

In this section, we discuss practical considerations for
choosing various hyperparameters of SBO and the adaptive
optimization technique described in Sec. II.

Optimization adjustments εi, εint, and ε f . These parameters
are used primarily to avoid boundary effects near the edges
of each patch region, since during each iteration we sample
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FIG. 2. A graphical description of the adaptive surrogate-based
optimization procedure on a two-dimensional objective function
surface parameterized by θ = (θ1, θ2), showing snapshots of an op-
timization run during the first iteration (top left), after the first
iteration (top right), after the fourth iteration (bottom left), and at
the completion of the run after M = 10 iterations (bottom right). The
larger, connected points mark the patch centers θ(i) of each iteration,
with the red point indicating the center of the most recent patch.
The smaller, unconnected points mark the locations of the τ = 8
samples taken during each iteration. The solid black rectangles mark
the boundaries of the sampling region �(i) for each iteration, where
each side has fixed length � = 0.2. The dashed red rectangles mark
the boundaries of the optimization region �(i)

ε for each iteration,
where ε is linearly increased from 0 to � = 0.2 over the course of
the optimization run. The green point in the final plot (bottom right)
marks the final estimated optimum θopt.

from only the interior of the patch. In this work, we have used
εi = 0, εint = �/20, and ε f = �/2 with good results.

Measurement shots permeasurement basis per sample point
K. The choice of K will be primarily driven by experimental
considerations. Larger K is always better since it will reduce
shot noise and therefore improve the accuracy of the surrogate
model, and in turn the performance of the optimization but at
the cost of increased experimental demands (especially run
time). As we shall demonstrate in the next section, one of the
advantages of constructing a surrogate model is an increased
robustness of optimization performance to shot noise, and thus
SBO can alleviate the experimental burden without sacrificing
optimization performance.

Patch size � and sample points per patch τ . These param-
eters are intimately related. Intuitively, the larger the patch
size, �, the larger the number of sample points per patch, τ ,
will need to be in order for the surrogate model to be accurate
to the true cost function V (θ). Since τ is closely tied to ex-
perimental resources, we find it most useful to think in terms
of keeping τ fixed at a constant, and varying �. In practice,
especially in the near-term, experimental constraints such as
device instability and access constraints will dictate how large
τ can be, and therefore we think of it as a fixed parameter,
independent of variational problem parameters such as n and

D. In all of our numerical experiments, including the ones
reported in the next section, we have kept τ ∼ 20.

Given a fixed, constant τ , the choice of � is dictated by the
need to accurately capture the shape of the objective function
V (θ) over the patch in each of the D parameter dimensions.
A conservative way to ensure that a fixed number of samples
captures the objective function is to demand that this function
varies minimally within the patch, i.e., to choose � such that
there is likely no more than one critical point ofV (θ) in any �D

volume in parameter space. In Appendix A, we study the num-
ber of critical points in a general variational cost function and
based on a loose bound, derive the scaling � = 
(1/poly(D,n)).
For the empirical studies reported in this paper, we have found
that patch sizes in the range 0.1 � � � 0.2 worked well for
QAOA problems with n � 12 and p � 7 (D � 14), as well as
VQE problems with n � 8 and D � 8, using K ∼ 100.

Perhaps the most robust solution to determining � is to
employ an adaptive method that dynamically adjusts � along
the optimization path according to a quality of fit metric. This
would be possible by moving to a trust-region framework for
the optimization [22].

Surrogate model parameters. The procedure used to con-
struct the surrogate model will typically have parameters to
set. In this work, we only consider kernel-based surrogate
models, and specifically an isotropic Gaussian kernel κ (θ, θ j ),
which has one parameter, the Gaussian bandwidth σ . Intu-
itively, this parameter describes the volume over which one
sample data point influences the behavior of the surrogate
model. There is a rich literature on Gaussian kernels and
their use in approximation, regression, and smoothing, and
as a result, many data-driven heuristics exist for choosing σ .
In practice, we have observed good performance using the
Silverman bandwidth heuristic [23] σ = [4/τ (D+2)]1/(D+4), where
τ is the number of sample points in the current patch.

IV. ILLUSTRATIONS

In this section, we demonstrate our SBO procedure on
some model VQAs through numerical simulation. We also
compare optimization performance with one of the most
commonly used and recommended optimization methods for
VQAs, simultaneous perturbation stochastic approximation
(SPSA) [24]. SPSA is designed to find optima in the presence
of noise in the objective function. Key to its popularity in
the resource-constrained setting of VQAs is the fact that it
estimates gradients using only two evaluations of the (multi-
parameter) objective function.

A. Quantum approximate optimization algorithm

The quantum approximate optimization algorithm
(QAOA) is a variational circuit approach to combinatorial
optimization [25], where the optimization problem is encoded
in a problem Hamiltonian, Ĥp, whose ground state encodes
the solution to the problem. A commonly studied example is
the MaxCut problem, which aims to partition an n-node graph
into two sets of nodes, such that the weight of the edges going
between the partitions is maximized. A MaxCut problem
instance is encoded in an n-qubit Ising Hamiltonian of the
form Ĥp = ∑

(i, j)∈E wi j ẐiẐ j , where Ẑi is a Pauli Z matrix on
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(a) (b) (c)

FIG. 3. Performance of L-BFGS-B, SPSA, and Gaussian kernel-based SBO optimization runs on QAOA applied to unweighted MaxCut
problems of various sizes using an ideal simulator which has only shot noise (and no other errors). Each plot displays the results of running
p-layer QAOA on a single randomly generated connected graph with n vertices. The x axis represents the number of optimization iterations M.
The y axis represents the relative absolute error achieved by the optimization run, i.e., |1 −VQAOA(γopt, βopt )/VQAOA,min|, where γopt and βopt

are the optimal coordinates obtained by the optimization run andVQAOA,min = minγ,β VQAOA(γ, β) is the true optimum of the objective function.
Each run uses Kτ = 5000 total shots per iteration, where τ is the number of sample points per iteration and K is the number of shots taken per
sample point. Each data point represents the mean of 50 independent optimization runs on one representative problem instance, represented
by an Erdős-Rényi random unweighted graph. The initial parameter choice, θ(0) is the same for all runs; however, the sample points on each
patch obtained via Latin hypercube sampling are chosen independently for each run. Error bars indicate standard error of the mean. Additional
details on hyperparameter choices and implementation notes can be found in Appendix B.

qubit i tensored with the identity on all other qubits, and E is
the set of edges in the graph, each with weight wi j ∈ R.

QAOA approaches the goal of preparing low energy eigen-
states of Ĥp by p iterated applications of a two-layer ansatz to
a product input state to produce the output state:

|ψ (γ,β)〉 =
p∏

l=1

e−iβpĤd e−iγpĤp |+〉⊗n, (7)

where |+〉 = 1/
√

2(|0〉 + |1〉), and Ĥd = ∑n
i=1 X̂i. The vari-

ational parameters γ = (γ1, . . . , γp) and β = (β1, . . . , βp)
are optimized such that the energy of the output state is
minimized, i.e., the objective function is VQAOA(γ,β) =
〈ψ (γ,β)|Ĥp|ψ (γ,β)〉. The approximation ratio, which quan-
tifies how close to the true ground state any |ψ (γ,β)〉 is, is
defined by r = VQAOA/E0, where E0 is the true ground state
energy of Ĥp.

If global optima toVQAOA can be found, in the p → ∞ limit
QAOA prepares the ground state of Ĥp, which encodes the
solution to the original combinatorial optimization problem
[25]. Moreover, in this case, r increases monotonically with
p, although the question of what p is required for r to surpass
approximation ratios achievable by classical approximation
methods is an open one. It is clear that the variational op-
timization, and even finding good quality local minima of
VQAOA, becomes challenging with increasing p.

In terms of the parameters defined in the general descrip-
tion of VQAs in Sec. II, it is important to note that the
QAOA objective is defined through an observable, Hp, that
only consists of commuting terms. Therefore, one only needs
to measure in the computational basis for QAOA, meaning
that we have ν = 1 and we require K = K total shots per
sample point.

Figure 3 shows the results of simulated L-BFGS-B, SPSA,
and SBO optimization runs of QAOA applied to MaxCut

instances on (Erdős-Rényi) random unweighted graphs of (a)
n = 4 vertices using p = 2 layers, (b) n = 6 vertices using
p = 4 layers, and (c) n = 10 vertices using p = 7 layers.
We plot the results of each run using Kτ = 5000 shots per
iteration. We repeated these tests with various values of Kτ

ranging from 103 to 105 and observed qualitatively similar
results.

We choose L-BFGS-B here as an example of a gradient-
free optimizer. We use a gradient-free optimizer because the
gradient of our noisy objective function is not directly avail-
able and therefore traditional gradient descent cannot be used.
We found that L-BFGS-B, although it still performs very
poorly due to the noisy objective function, significantly out-
performed Nelder-Mead, another widely used gradient-free
optimizer.

At the smallest problem size, SBO achieves a lower error
than SPSA for up to M ∼ 103 iterations, indicating that it
converges on a good approximation of the local minimum
more efficiently. At the larger problem sizes, SBO achieves
a lower error than SPSA for even larger numbers of itera-
tions. For perspective, we note that an optimization run with
Kτ = 5000 shots per iteration and M = 103 iterations would
require a total of KτM = 5×106 experimental shots. This
would require an experimental duration on the order of several
minutes using a typical superconducting QIP, or on the order
of several days using a typical trapped-ion QIP. Because our
results indicate that SBO significantly outperforms SPSA in
this regime, it appears likely that SBO will achieve lower
error than SPSA for many QAOA experiments that can be
realistically implemented on current and near-future devices.

B. Variational quantum eigensolver

The first VQA was the so-called variational quantum
eigensolver (VQE) [26], which aims to prepare the ground
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(a) (b)

(c) (d)

FIG. 4. Performance of SPSA and Gaussian kernel-based SBO optimization runs on common small-scale VQE problems using simulators
with and without realistic hardware noise. Each plot displays the minimum energy obtained for each bond length under the specified
optimization conditions. The x axis represents the interatomic distance (in angstroms) used for the energy calculation. The y axis represents
the energy value (in hartrees) obtained at the conclusion of each optimization run. τM is the total number of energy measurements performed
in the optimization run, where τ is the number of sample points per iteration and M is the number of optimization iterations. To measure the
energy, K = 100 shots are taken per measurement basis per sample point. Each data point represents the mean of five independent optimization
runs at the given setting. Error bars indicate standard error of the mean. On each plot, a solid black curve indicates the exact minimum energy
value for the given setting. In (a) and (b), we use an ideal simulator which has only shot noise and no other errors. The data points connected
by dashed curves represent the energy value obtained by evaluating the ansatz on the ideal simulator at the found optimal parameter values θ.
In (c) and (d), we use a noisy simulator implementing a typical noise model and coupling map obtained from the seven-qubit IBM Q Lagos
device. The data points connected by dashed curves represent the energy value obtained by evaluating the ansatz on the noisy simulator at the
found optimal parameter values θ. The data points connected by solid curves represent the energy value obtained by evaluating the ansatz at θ

using an ideal simulator. Additional details on hyperparameter choices and implementation notes can be found in Appendix B.

state of an n-qubit Hamiltonian, ĤE , that encodes the energy
of a molecule. The variational circuits and parameters, θ, that
prepare candidate states vary according to the wave-function
ansatz that is used [27]. In all cases, the objective function is
defined as VVQE (θ) = 〈ψ (θ)|ĤE |ψ (θ)〉. In general, ν > 1 for
nontrivial ĤE and hence measurements in multiple bases are
necessary.

Figure 4 shows the results of simulated SPSA and SBO
optimization runs of VQE for estimating the ground state
energy of H2 and LiH molecules at various interatomic bond
lengths using the unitary coupled cluster ansatz with Hartree-
Fock initial state. The H2 ansatz uses four qubits and |θ| = 3
variational parameters, while the LiH ansatz uses four qubits
and |θ| = 8 variational parameters. In Figs. 4(a) and 4(b),
under shot noise only, we observe that SBO produces a much
more accurate estimate of the ground state energy than SPSA
using the same number of energy measurements τM, and
it remains more accurate even than using SPSA with τM
increased by a factor of 2.5 to 5. In Figs. 4(c) and 4(d), using

a simulator with a realistic hardware noise model, we observe
that SBO achieves consistently lower estimates of the ground
state energy than SPSA. In addition, by taking the parameters
θ found by the noisy optimization runs and evaluating the
ansatz with those values on an ideal simulator, we observe that
the parameter values obtained by SBO correspond to energy
values which are much closer to the exact ground state than
those obtained by SPSA.

V. DISCUSSION

From both the QAOA and VQE illustrations in Sec. IV,
we observe that SBO often achieves a lower error than SPSA
for an equivalent number of iterations or experimental shots.
From the QAOA results in Fig. 3, we note that this advantage
tends to become more pronounced as the problem complex-
ity increases. We believe these results are a good indication
that, for many near-term applications, SBO will achieve bet-
ter variational parameter estimates with fewer experimental
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repetitions than existing techniques such as SPSA. Addition-
ally, because the surrogate function smooths out shot noise,
SBO often requires fewer shots per sample point than SPSA
to produce a result that is equivalent or better.

One unique feature of SBO is that each iteration requires
taking samples for many different parameter settings, as op-
posed to a technique like SPSA which uses only two sample
points per iteration. This may provide a particular advantage
for experimental platforms that suffer a high latency cost from
loading new circuits between each optimization iteration. If
the system can program and execute an entire batch of circuits
without paying this latency cost between each circuit, this may
provide an additional speed advantage, as well as increased
robustness against drift in experimental parameters.

Finding global optima of parametrized quantum circuits
often suffers from the problem of “barren plateaus” [27],
wherein the objective function, V (θ), exhibits exponentially
vanishing gradients, both in the absence and presence of
hardware noise, making optimization exceeding challenging.
Some techniques around this problem are to formulate local
cost functions [28] and to utilize variational circuit forms that
do not exhibit barren plateaus [29]. We emphasize that SBO
is not a technique to address the problem of barren plateaus.
Instead, it is an approach to increase the performance of classi-
cal optimization loops and to reduce the experimental burden
in the VQA setting. These issues are orthogonal to the barren
plateaus issue—strategies to construct variational circuits that
do not possess barren plateaus and the use of more advanced
classical optimization techniques like SBO will be critical for
scaling VQAs.

A promising avenue for future work is the application of
more powerful surrogate models to the VQA setting, e.g., neu-
ral network-based methods for approximation [30] might have
better rates of convergence with limited experimental data.
In addition, building surrogate models to not only perform
smoothing and approximation, as we have done here, but also
physics-informed error mitigation to counter decoherence is a
potentially fruitful direction.

A freely available Python implementation of the Gaussian
kernel-based SBO optimizer, including examples of integra-
tion with IBM’s Qiskit library, is available in Ref. [31].
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APPENDIX A: BOUND ON NUMBER OF CRITICAL
POINTS IN A VARIATIONAL COST FUNCTION

As discussed in the main text, a conservative heuristic for
choosing the SBO patch size, �, is to choose it such that there
are O(1) critical points in the variational cost function within a
�D hypercube. In the following, we will formulate a bound on
the total number of critical points in general variational cost
functions Ncrit , in terms of the key parameters in a variational
circuit: n, the number of qubits, and D, the number of varia-
tional parameters. If we then assume that these critical points
are distributed uniformly in parameter space, we require(

�

2π

)D

Ncrit ∼ 1 ⇒ � ∼ N−1/D

crit . (A1)

First, we write a general variational cost function as

V (θ) = tr

⎡
⎣Ô

⎛
⎝ D∏

j=1

e−iθ j Ĥ j

⎞
⎠ρ0

⎛
⎝ D∏

j=1

eiθ j Ĥ j

⎞
⎠

⎤
⎦, (A2)

where Ĥj are the n-qubit Hamiltonians representing the varia-
tional ansatz. The Hj are multiqubit Hamiltonians in general,
and to derive an informative bound on Ncrit we should take
into account the complexity in decomposing e−iθĤj into im-
plementable unitaries. To make things concrete, we will work
with a decomposition of the form:

e−iθ j Ĥ j = Û ( j)
λ j+1Ẑι(λ j )(θ j )Û

( j)
λ j−1 . . . Ẑι(1)(θ j )Û

( j)
1 , (A3)

where the Û ( j)
i are θ j-independent n-qubit unitaries, and

Ẑι(i)(θ j ) is a Z rotation on qubit ι(i). This decomposition im-
plements e−iθĤj with λ j rotations by the variational parameter
θ j , and we think of λ j as parametrizing the complexity of
Ĥj . Note that λ j can have a dependence on n since it is the
complexity of decomposing an n-qubit unitary. For practical
quantum computations, λ j = O(poly(n)). The decomposition
above is not unique, but we note that it is experimentally rele-
vant since in many modern quantum computing architectures
the only variable angle gates are single qubit Ẑ (θ ) rotations.

As an example, consider the decompositions of the two
terms in a layer of the QAOA ansatz:

e−iβ
∑n

i=1 X̂i = Ĥ⊗nẐ (β )⊗nĤ⊗n, (A4)

e−iγ
∑

(i, j)∈E wi j Ẑi Ẑ j =
|E|∏
k=1

CNOTik , jk Ẑ jk (wik jkγ )CNOTik , jk , (A5)

where Ĥ in the first line is a Hadamard gate, and in the second
line ik and jk index the nodes that edge k connects. λ = 1
in the first line, and in the second line, λ � |E |. The exact λ

for a decomposition of the ẐẐ interactions will depend on the
QAOA problem graph and which CNOT gates can be executed
in parallel – since a CNOTi j and a CNOT jm cannot be simul-
taneously applied, a node j that has edges to both node i and
node m will need its ẐẐ interactions implemented sequentially
(even assuming full connectivity in the hardware). In general,
for a κ-regular problem graph, λ = κ if the device is fully
connected (i.e., a ẐẐ gate can be implemented between all
qubits connected by an edge in E).
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Returning to the general variational cost function in Eq. (A2) and substituting the compiled form of each unitary, we get

V (θ) = tr

⎡
⎣Ô

⎛
⎝ D∏

j=1

Û ( j)
λ j+1

λ j∏
k=1

Ẑι(k)(θ j )Û
( j)
k

⎞
⎠ρ0

⎛
⎝ D∏

j=1

λ j∏
k=1

Û ( j)†
k Ẑι(k)(−θ j )Û

( j)†
λ j+1

⎞
⎠

⎤
⎦. (A6)

Finally, without loss of generality taking ρ0 = |0〉〈0| (where |0〉 is shorthand for the n-qubit state |0〉⊗n), we write

V (θ) = 〈0|
D∏
j=1

λ j∏
k=1

Û ( j)†
k Ẑι(k)(−θ j )Û

( j)†
λ j+1 Ô

D∏
j=1

Û ( j)
λ j+1

λ j∏
k=1

Ẑι(k)(θ j )Û
( j)
k |0〉 = 〈0|

D∏
j=1

U†
j Ô

D∏
j=1

U j |0〉, (A7)

where U j ≡ Û ( j)
λ j+1

∏λ j

k=1 Ẑι(k)(θ j )Û
( j)
k are the decompositions. Taking the derivative with respect to one of the angles, we get

∂V (θ)

∂θt
=

λt∑
r=1

〈0|
⎡
⎣t−1∏

j=1

U†
j

⎤
⎦

(
r−1∏
k=1

Û (t )†
k Ẑι(k)(−θt )

)
Û (t )†
r Ẑι(r)(−(π/2 + θt ))

⎛
⎝ λt∏

k=r+1

Û (t )†
k Ẑι(k)(−θt )

⎞
⎠Û (t )†

λt+1

⎡
⎣ D∏

j=t+1

U†
j

⎤
⎦

× Ô

⎡
⎣ D∏

j=1

U j

⎤
⎦|0〉 + c.c., (A8)

since ∂/∂θ Ẑ (−θ ) = ei(π/2+θ )Ẑ .
Since all the dependence of this expression on the angles θ are within the Ẑ rotations, and Ẑ (θ ) = cos(θ )Î + i sin(θ )Ẑ , we

conclude that ∂V (θ)/∂θt , and V (θ) for that matter, are trigonometric polynomials in the angles. Since taking the derivative of V (θ)
does not introduce any new Ẑ rotations and only shifts the angle of some of the rotations in V (θ), the maximum degree of this
trigonometric polynomial is the same for ∂V (θ)/∂θt and V (θ).

Now we write each decomposition more explicitly as a trigonometric polynomial, using the fact that Û Ẑ (θ )Û † = cos(θ )Î −
i sin(θ )Û ẐÛ †:

U j = �̂
( j)
λ j+1

λ j∏
k=1

(
cos(θ j )Î − i sin(θ j )�̂

( j)
k

) =
∑

{α,β�1:α+β=λ j }
cosα (θ j ) sinβ (θ j )�̂

( j)
α,β, (A9)

where �̂
( j)
k = Û ( j)†

1 . . . Û ( j)†
k Ẑι(k)Û

( j)
k . . . Û ( j)

1 for k � λ j , �̂
( j)
λ j+1 = ∏λ j+1

s=1 Û ( j)
s , and �̂

( j)
α,β is an operator that is a multiple of some

of the �̂
( j)
k that we do not need to specify. Thus U j is a trigonometric polynomial with maximum degree λ j and operator

coefficients. Using the same argument for all the U j , we can write V (θ) as

V (θ) = 〈0|
D∏
j=1

⎛
⎝ ∑

{α j ,β j�1:α j+β j=λ j }
cosα j (θ j ) sinβ j (θ j )�̂

( j)†
α j ,β j

⎞
⎠Ô

D∏
j=1

⎛
⎝ ∑

{α j ,β j�1:α j+β j=λ j}
cosα j (θ j ) sinβ j (θ j )�̂

( j)
α j ,β j

⎞
⎠|0〉

=
∑

{α j ,β j�1:α j+β j=2λ j }

D∏
j=1

cosα j (θ j ) sinβ j (θ j )g
( j)
α j ,β j

, (A10)

where in the final line g( j)
α j ,β j

∈ R. Not all of the terms in this

sum will be present since g( j)
α j ,β j

could be zero. However, with-
out further assumptions about the problem, we must assume
they are all present. In that case, this is a trigonometric poly-
nomial with maximum degree d = ∑D

j=1 2λ j . And as argued
above, all derivatives of V (θ) are trigonometric polynomials
with the same maximum degree. Therefore, critical points
of the variational cost function are defined by a set of D
trigonometric polynomial equations in D angle variables, i.e.,
∂V (θ)/∂θt = 0 for all t .

To count the number of critical points, we wish to count
the number of solutions to this system of equations. We are
unaware of any applicable bounds on the number of solu-
tions of such trigonometric polynomial systems, and therefore
proceed by transforming this into a system of standard

polynomials. To do so, we introduce new variables, s j =
sin(θ j ), and c j = cos(θ j ), 1 � j � D, which transforms
Eq. (A10) into a degree d polynomial equation in 2D vari-
ables. Hence in these two variables, the system ∂V (θ)/∂θt = 0
for all t , is a system of D polynomial equations in 2D vari-
ables, with each equation being degree d . We supplement
these with the equations encoding the constraint between c j
and s j , namely c2

j + s2
j − 1 = 0, for 1 � j � D, to arrive at

a system of 2D polynomial equations in 2D variables. D of
these equations have degree d , and D of them (the constraints
equations) have degree 2.

Now that we have a system of polynomial equations we
can formulate a bound on the number of solutions to this
system. For this purpose, we use Bézout’s theorem, which
states that in general, the number of common zeros for a set of
n polynomials in n variables in Cn is given by the product of
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FIG. 5. Numerical estimation of the optimal SBO patch size � for various instances of n-qubit, p-layer MaxCut QAOA on randomly gener-
ated κ-regular graphs. Each data point is obtained by averaging the final error of 10 independent SBO runs for each � ∈ {0.02, 0.04, . . . , 0.40},
and then using cubic splines to fit the results and find the value of � which minimizes the average error. Each run uses τ = 30 sample points
per patch, K = 60 measurement shots per sample point, and M = 100 optimization iterations.

the degrees of the polynomials [32]. Applying this, we arrive
at our bound for the number of critical points in V (θ):

Ncrit � (2d )D =
⎛
⎝4

D∑
j=1

λ j

⎞
⎠

D

. (A11)

In cases where λ j = λ for all j, Ncrit � (4λD)D.
We pause to emphasize that this is a particularly loose

bound. Firstly, it is well-known that the bound provided by
Bézout’s theorem is loose. Compounding this, Bézout’s the-
orem counts the number of zeros over C2D, whereas we
are concerned with zeros over the domain [−1, 1]2D. Thus,
although we do not expect this bound to be tight, it does high-
light some useful parameter dependencies: (i) there is an ex-
ponential dependence on the number of parameters D and (ii)
the only dependence on n is through the ansatz complexity λ j .

Returning to the scaling of the patch size parameters, �,
Eq. (A1), we arrive at

� �

⎛
⎝4

D∑
j=1

λ j

⎞
⎠

−1

, (A12)

which, taking into account λ j = O(poly(n)), results in the
scaling � = 
(1/poly(D,n)).

As an example, consider QAOA on κ-regular graphs. For
a QAOA variational ansatz with p layers, D = 2p, and as
discussed above, λ j alternates between 1 and κ . Therefore, for
this example we get � � (4p(κ + 1))−1. Note that since the λ j

have no dependence on n in this case, we get n-independent
scaling.

In Fig. 5, we present numerically determined optimal �

for QAOA on κ-regular graphs as we vary the relevant pa-
rameters: the number of QAOA layers p (where D = 2p), the
number of qubits n, and the graph regularity κ . The indepen-
dence of � from n is supported by this data, as the variation
of the surfaces is negligible as n is varied. In order to test
the scaling prediction above, we fit the data in Fig. 5(a) to a
functional form

� = β(κ p+ κ )−α, (A13)

where the parameters α, β allow for numerical factors in the
relations (A1) and (A11), and accommodate for the looseness
of the bound in Eq. (A11). The fit of this form to the n = 8
data, along with the error of the fit, is shown in Fig. 6.

APPENDIX B: IMPLEMENTATION NOTES
FOR SIMULATIONS IN SEC. IV

Here we collect the implementation notes and hyperparam-
eter choices for the simulations presented in the main text.

1. Quantum approximate optimization algorithm

The QAOA circuit simulations were implemented using
the PYQAOA package [33]. SPSA was implemented using the
noisyopt package [34]. L-BFGS-B was implemented using the
optimize.minimize function in scipy.

Simulation hyperparameters. For Fig. 3, we chose hyper-
parameters by manual scans to optimize the performance of
both SBO and SPSA on these problems. We use τ = 20 for
SBO, while τ = 2 for SPSA by definition. In Figs. 3(a)–3(c),
we use SBO parameter � = (0.2, 0.2, 0.1) and SPSA parame-
ter a = (0.2, 0.2, 0.1), respectively. We use SPSA parameters
c = 0.2, α = 0.602, and γ = 0.101 for all simulations pre-
sented in this figure.

2. Variational quantum eigensolver

VQE simulations were implemented via qiskit using
unitary coupled cluster (UCC) ansatz with Hartree-Fock
initial state, following the procedure described in Ref. [35].
For SPSA, we used the implementation provided by qiskit
in Ref. [36], which includes automatic hyperparameter
calibration.

Simulation hyperparameters. In Figs. 4(a)–4(d), we used
τ = (4, 5, 8, 10) and � = (0.15, 0.1, 0.15, 0.1) for SBO, re-
spectively, while τ = 2 for SPSA by definition.

FIG. 6. Fit (left) and error in fit (right) of data in Fig. 5(a) to
the functional form shown in Eq. (A13) with fitting parameters
α = 0.5 and β = 0.7.
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