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ABSTRACT

Performing bridge fatigue evaluation using field measurements can be difficult given the amount of data needed
for effective assessment, access needed to effectively monitor all fatigue prone locations, and associated power
requirements and cost. Several studies have been conducted that estimate strain response at unmeasured loca-
tions using indirect measurements and subsequently investigate the quality of the estimation using certain met-
rics [1]. There is little to no research focusing on pragmatically extending these estimation techniques to proba-
bilistic fatigue assessment. This may be because strain estimation has primarily been successful when applied to
numerical and laboratory specimens and perceived potential for difficulties associated with applying developed
techniques at scale. This study investigates using data-driven, Singular Value Decomposition (SVD), estimated
strains at unmeasured locations for probabilistic fatigue assessment of an in-service, railway, bridge. Before per-
forming strain estimations, SVD Proper Orthogonal Modes (POM) variability was reduced using two classifica-
tion approaches: k-means clustering and root mean square (RMS); and self-organizing maps (SOMs) and POMs.
After estimated strains were obtained, reliability analyses using Kernel Density Estimation (KDE) were utilized to
perform probabilistic fatigue assessments. Resulting reliability indices computed using estimated strains were
compared against reliability indices obtained using measured strains at the same locations. Results showed that
reliability indices computed using estimated strains matched closely with indices obtained using measured

strains.

1. Introduction

Performing accurate probabilistic fatigue assessment of an in-
service bridge using response measurements can be difficult due to in-
sufficient data. One of the major factors limiting the amount of data
that can be obtained from a bridge is inaccessibility to myriad fatigue
prone locations needing direct measurements from physical sensors [2].
For cases where access is not as difficult and sensors can be appropri-
ately placed, a limited number of locations can be monitored due to
sensor cost and power requirements [3]. To address this issue, virtual
sensing research studies have been carried out to estimate strain re-
sponse of structures at unmeasured locations via indirect measure-
ments. Successful estimations were obtained for a range of civil, off-
shore, and mechanical structures [4-6]. However, most applications
have been limited to numerical and laboratory specimens.

Virtual sensing can be classified as either model-based (analytical),
data-based (empirical), or a combination of the two [7]. For model
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based virtual sensing, Kalman Filtering (KF) and Modal Expansion (ME)
are two commonly used strain estimation processes [7]. Both KF and
ME allow for estimation of an unmeasured response using sparsely mea-
sured time history response and a physics model, such as finite element
model [8,9].

Comparisons between KF and ME algorithm response estimation ef-
fectiveness have been performed [4,10-12]. Ren and Zhou [4] investi-
gated the accuracy and efficiency of both algorithms for predicting
strain response at unmeasured locations on a steel truss using limited
actual measurements and a FE model. Both algorithms produced good
predictions. Given that both methods are model/physics-based, requir-
ing calibration of an FE model to determine modal parameters for strain
estimation can be tedious, especially for large and complex structures.
These limitations triggered studies investigating data-driven methods
for strain estimation [13,14].

Azam et al. [15] recently introduced novel application of data dri-
ven SVD to predict strain response for an in-service steel railway bridge
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monitored using a sparse sensor network. Strain response at measured
locations from two train passages was stored in a snapshot matrix and
left singular vector (LSV) modes from SVD of snapshot matrices, known
as Proper Orthogonal Modes (POMs), were utilized for strain estimation
instead of vibration modes from a FE model for ME strain estimation.
The developed data-driven SVD method was compared against results
from model-based methods that used augmented KF and ME. Examined
methods produced accurate strain estimations and proved to be ade-
quate virtual sensing tools for continuous health monitoring, with SVD
outperforming augmented KF and ME. It was also stated that SVD can
be seamlessly applied to linear and nonlinear systems and does not
need any information related to external loads (e.g., train axle loads
and length), loaded track, and the direction and speed of the train.

A recent study [16] by the authors contains a detailed discussion of
the developed data driven SVD method using data from many train pas-
sages. It was shown that POM variability resulting from larger data sets
could significantly affect strain estimation accuracy. POM variability
was reduced using two proposed classification methodologies: (1) k-
means clustering and RMS, and (2) classification using Self Organizing
Maps (SOMs) and POMs. Using these methods, measured strain re-
sponses were clustered into groups of trains with similar loads and
speeds moving in the same direction, POM variability was reduced, and
improved strain estimations occurred.

While extensive research into strain estimation on several different
types of structures using various numerical techniques have occurred,
limited research that attempts to utilize estimated response for per-
forming fatigue assessment at unmeasured locations is available. Confi-
dently identifying fatigue-prone zones on bridges using minimal sen-
sors could be of great benefit to the bridge industry and to structural
health monitoring. Leveraging findings from [16], this study investi-
gates and compares the accuracy of fatigue assessment results at what
are assumed unmeasured locations on an in-service steel railroad bridge
to actual measurements at those locations. This investigation helped as-
certain risks associated with using estimated response for fatigue evalu-
ation. To perform the fatigue assessment, a proposed reliability analysis
methodology employing Kernel Density Estimation (KDE) was utilized.
KDE was employed to overcome challenges associated with selecting
appropriate probability distributions to fit equivalent stress range dis-
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tributions as KDE directly addresses statistical uncertainties that may
be introduced.

2. Estimated strain with singular value decomposition

Data driven SVD was utilized to estimate strain response at unmea-
sured locations on the monitored steel, railroad, bridge. To reduce POM
variability observed during the 2-month monitoring period, before
strain estimation occurred two classification methodologies were em-
ployed to group measured strain response into classes of trains moving
in same directions having similar loads and speeds.

2.1. Monitored bridge

The examined bridge is a fully operational, open deck, double-track,
multi-span truss and through girder riveted steel railway bridge in cen-
tral Nebraska. A single, 44.7-meter-long, simply supported truss span
was monitored as shown in Fig. 1. The floor system employed seven
transverse floor beams and four longitudinal stringers spaced 2.15 m
center to center to support timber railroad ties (Fig. 2). In the figure,
U1-US5 and LO-L6 are panel points on the upper and lower chords of the
truss, respectively. LXN and LXS represent lower chord panel point LX
on the north and south truss and FBX represents a floor beam between
the same lower chord points.

Twenty Bridge Diagnostic Inc. (BDI) strain transducers were
mounted on stringer bottom flanges close to the floor beams to obtain
live load response, as fatigue of the stringer to floor beam connections
can be of significant concern for many riveted steel bridges. Strain
transducer locations on the truss floor system are presented in Fig. 3
with transducers numbered indicated. Areas in the red box (Sensors 16
— 20) were presumed to be unmeasured locations for strain estimation
purposes using measured response data from “measured” locations in
the blue box (Sensors 1 — 15). The authors were unable to instrument lo-
cations with the highest stress concentrations (e.g., rivet holes and the
connection angles) during monitoring. However, the proposed SVD
framework was implemented using the existing sensor network to esti-
mate strains and compare estimates to the actual measurements. It is
important to highlight that the proposed framework could be easily im-
plemented for locations having high stress concentrations. Estimates

Fig. 1. Monitored truss span.
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from the developed reliability-based, fatigue assessment process at the
unmeasured locations were validated against results from actual mea-
surements at those locations.

Fig. 4 and Fig. 5 show the strain time history captured during the
monitoring period at Sensor 13 for one train passage on Track 1 and the
equivalent stress-range histogram for the monitoring period at the sen-
sor, respectively. Due to partial fixity at the connections, relatively
small stress ranges are observed in Fig. 5.

2.2. Classification using k-means clustering and RMS

Azam et al. [17] established that the RMS of strain time-histories
from a train passage were strongly correlated to that train’s statically
equivalent uniform load (i.e., input). As expected, when loads increased
the magnitude RMS for each strain signal also increased. This relation-
ship was further explored to ascertain which track the train was on
when it traversed the bridge, with the track having the higher RMS
value being equated to the one carrying the train. As shown in Fig. 3,
RMSs from Sensors 1-5 at the south side of Track 2 were compared to
those from Sensors 11-15 on the south side of Track 1. Fig. 6 presents
snapshot matrix POMs from the 1852 train passages during the 2-
month monitoring period and differentiates POMs from trains on Track
1 from those for trains on Track 2. There was a total of 967 train pas-
sages on Track 1 and 885 train passages on Track 2. Using these classifi-
cations reduced POM variations by eliminating train location uncer-
tainty.

K-means clustering was utilized to further reduce POM variations by
subdividing strain RMSs from each track snapshot matrix into four clus-
ters. K-means clustering is an unsupervised machine learning technique
that splits a set of n observations into k clusters by grouping data with
similar underlying patterns [18]. It is a commonly used clustering algo-
rithm because of low computational cost, simplicity, ease of implemen-
tation, and accuracy [19]. The sum of squared distances between obser-
vations and the cluster’s centroid, which is the arithmetic mean of all
data points belonging to that cluster, is minimized, and grouping is
achieved by allocating every observation to its nearest cluster. Each ob-
servation can only be allocated to one cluster and the less variation
within a cluster, the more similar the data points. Strain response from
each cluster was used for strain estimation. Additional sub-
categorization of train passages by track further minimized POM dis-
persion, which enhanced strain estimation accuracy.

It is difficult to obtain more information about applied load charac-
teristics in terms of the type of freight cars traversing a bridge. To miti-
gate this issue, the authors came up with a way to classify train loads
using measured strain data. In a previous research work [20], the au-
thors showed that there is strong correlation between train axle weights
and RMS of measured dynamic strain. Hence, the average RMS for all
sensors for each train passage was computed, sorted, and sub-
categorized into four classes (i.e., groups) that represent train loads cat-
egories using k-means clustering as shown in Fig. 7. Average RMS was
used to represent each train passage since only a single RMS value is re-
quired for k-means clustering. These classes represented ‘light’ trains
(Class 1), ‘moderate’ trains (Class 2), ‘heavy’ (Class 3), and ‘extremely
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heavy’ (Class 4), with these categories being arbitrarily defined. The
strain response at unmeasured locations in a class as depicted in Fig. 7
was subsequently estimated using measured strain POMs from all
passes in that class. More details about the strain estimation computa-
tional process are presented in [15]. Readers interested in more details
about freight cars characteristics are referred elsewhere [21-25].

Fig. 8 depicts representative estimated and measured strain re-
sponse time-histories at unmeasured locations from Fig. 3 for a Class 4
train passage on Track 1. Class 4 was selected to show strain time-
histories from a higher load category. Estimated time histories closely
match measured responses at each location.

2.3. Classification using Self organizing maps and POMs

SOM is widely applied to clustering applications in industry, fi-
nance, natural science, and linguistics [26] as it clusters data while re-
taining original topology. SOM employs a network of connected neu-
rons to determine Euclidean distances between each neuron and corre-
sponding input data to determine a “winning” neuron. The winning
neuron has a weight vector that is the closest to actual input data pat-
tern, with the weight vector being tuned to both the input pattern and
adjacent neurons [27]. The adoption of SOM over other techniques for
the current study was justified based upon its robust dimensionality re-
duction and grid clustering capabilities, which facilitate data visualiza-
tion, interpretation, and pattern recognition [28].

MATLABs Neural Network Clustering App [29] was utilized to imple-
ment SOM as the app creates, visualizes, and trains the network. A sin-
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gle layer of grid-like SOM neurons learns to cluster data based on simi-
larity. The neural network is trained when data is imported and is de-
fined by specifying a two-dimensional map of size n that corresponds to
n2 output clusters (i.e., n rows by n columns). A map size of n = 1,2,
3..., k corresponds to an output of 1,4, 9..., k2 clusters, respectively. A
minimum map size of ‘2’ is recommended.

POMs from all train passage snapshot matrices were imported into
the clustering app, and a map size of ‘2’ was defined, yielding 4 clus-
ters. As shown in Fig. 9, the number of observations (POMs) connected
with each of the 4 cluster neurons is stored and displayed in a SOM sam-
ple hit, which is a graphical presentation of the number of input obser-
vations classified in each neuron. The number in a colored patch indi-
cates the proportional number of observations for each neuron. Neu-

rons are graphically arranged in a hexagonal pattern with x and y axes
describing the position of each neuron on the grid for easy identifica-
tion. It was observed that POMs were mostly grouped into two clusters/
hits (967 and 885) with the others being empty. Akin to RMS character-
ization, these results demonstrate that the train was on either Track 1
(Hit 1 = 967) or Track (Hit 2 = 885). This preliminary clustering is
analogous to classification of train passages based on location discussed
in the previous section and, again, reduces POM dispersion.

Train passages were further sub-categorized into the 4 classes out-
lined previously using k-means clustering and RMS. The goal of the sec-
ond sub-categorization was to again reduce POM dispersion resulting
from loads and a SOM map size of ‘2’ was used. As indicated in Fig. 10
and Fig. 11, train passages were subcategorized into classes for Tracks 1
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Fig. 9. Sample SOM hits from neural network clustering of train passage POMs;
Hit 1 = Track 1, Hit 2 = Track 2.

and 2, respectively. However, while clear classifications were evident,
given the results it was difficult to independently determine which
classes related to defined train load categories using SOM classification.

Having reduced POM variations somewhat via preliminary and sec-
ondary classifications, strains from the four classes were estimated us-
ing POMs and used to predict unmeasured location strain time-histories
for the same class. Having shown representative strain time-histories
from the higher load category (Class 4) previously, a representative plot
from a lower load category (Class 1) is shown here. Fig. 12 shows a por-
tion of the estimated and measured strain time history for a Class 1
(light) train passage on Track 2. Results indicate that the estimated time
histories closely match measured responses at each location.

3. Fatigue assessment with estimated strain at unmeasured
locations

After estimating strain response at unmeasured locations using RMS
and SOM, fatigue assessment was performed using estimated strains

Position (2,i)

-1 -0.5 0 0.5 | 1.5 2 25
Position (1.i)

Fig. 10. Sample SOM hits from neural network clustering of train passage
POMs, Track 1.

and a reliability analysis methodology. Findings were compared against
similar results from actual data at these locations to investigate the effi-
cacy of using estimated strains to help identify fatigue prone locations.
Reliability analysis using Kernel Density Estimation (KDE) was em-
ployed because it eliminates difficulty associated with choosing an ap-
propriate distribution for equivalent stress range time histories at vari-
ous connections, making it an efficient and accurate method for predict-
ing remaining fatigue useful life.

KDE eliminates difficulty associated with selecting a suitable para-
metric distribution to represent a variation in data, such as equivalent
stress range. Suppose a structure with resistance R is loaded with m
loads, Q. A limit state function, M, can be defined as follows:

M=gR. Q=R->Q ®
i=1
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For an n-dimensional vector of constants aT = [al, a,a3, -, a“] and
X = [Xsz’ X, oes

Eqn. (1) can further be expressed as follows:

random variables, X T the limit state function in

M=a,X; - (a,X; + ;X3 + ... + 3,X,) = a'X 2

where a; X represents the resistance, R; 3,X; to a,X, represent the m
number of Q loads; and m is n — 1.

The aim of performing reliability analysis is to determine the struc-
ture’s reliability index B, which is defined as an objective measure of
safety associated with a limit state function. It is computed by dividing
the mean value E[M] of the limit state function by its standard devia-
tion D[M] as follows [30]:
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The probability of failure is expressed as [31]:
Pr=®(-p), 4

and the limit state function for fatigue of steel railway bridges can
be expressed as [32]:

M= ($N)) - Z(S3N)Q. (5)

i=1

1734

13 is the resistance fatigue parameter; and (S°N) o

where (S3N)
the load fatigue parameter.

The fatigue parameter for resistance, $3N, for riveted details (Cate-
gory D) is termed coefficient A from the literature and its statistics are

obtained as shown in Table 1 [33]. The load fatigue parameter,
RS
meters. Ng is a deterministic parameter and represents the total num-
ber of live load cycles. Sq is a random variable corresponding to equiva-
lent stress ranges from m loads. Both load parameters are established
from railway bridge monitoring data.

is further simplified to (SNI/ 3) qi to compute its statistical para-

3.1. Computation of stress range and number of cycles

To determine the load fatigue parameter, stress ranges and cycle
numbers are extracted from estimated strain response at the unmea-
sured locations using a rainflow counting algorithm, with stresses being
determined from uniaxial strains multiplied by nominal Young’s modu-
lus (200 GPa) using Hooke’s law [34]. The equivalent stress range S, is
subsequently computed using the root-mean-cubed method as recom-
mended in the American Railway Engineering and Maintenance of
Way Association (AREMA) Manual for Railway Engineering [35], which
appears as follows:

Zl n l
See = EN Zpl (6

where N; is the number of cycles at the jth stress range, S;; Y;N; is
the total sum of the number of cycles; and Pi is the fraction of the num-
ber of cycles at the jth stress range to the total number. Fig. 13 shows a

S_Eﬂsur l'_'.l'

T W

f iIl

Mr\\'u I i

LT

Fig. 12. SOM classification: predicted and measured strain time-histories for Class 1 (light) train passages on Track 2, Sensors 16 — 20.
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Table 1
Fatigue resistance statistical parameters [33].
Mean Fatigue,4 = COV
Slope m = 3 for stress range < 10 ksi (68.9 MPa) 98 x 108 20.3%

representative equivalent stress range histogram computed from pre-
dicted strain response at the first unmeasured location, Sensor 16, using
RMS and k-means clustering.

To estimate statistical parameters for Sp, an appropriate parametric
distribution should be fit to the equivalent stress range. However, it is
difficult to choose an appropriate parametric distribution that can suit-
ably fit the histogram in Fig. 13, which represents stress ranges ob-
tained from estimated strains at Sensor 16. Due to this challenge, KDE
was utilized to estimate statistical parameters. It is noteworthy to men-
tion that Sensor 16 data is representative of all unmeasured sensor lo-
cations in the red box in Fig. 3.

3.1.1. Equivalent stress range with KDE

KDE is used to determine a dataset’s underlying probability density
function. KDE does not require the assumption that underlying data be-
longs to a parametric family and has a wide range of applications and
extensions, thereby making it a popular non-traditional estimator of
univariate and multivariate densities [36]. KDE automatically learns
the shape of the density curve from the data, and its non-traditional na-
ture makes it a preferred method for data from an unknown distribution
[371].

KDE calculates the probability density function of a random variable
from an unknown distribution for any real value of x as follows:

?h<x>=$;Kh(x—xi)=$§K(x_hxi) %

where Xi> X2, ***» Xy are random samples from an unknown distrib-
ution; m is the sample size; h is the bandwidth; and K (.) is the kernel
smoothing function. As shown in the literature, a range of smoothing
functions such as normal, uniform, triangular, and Epanechnikov can
be used [38].

KDE is calculated by weighting distances of each random variable
sample from a particular point x. These weighted distances are then
summed to compute a final density estimate. The more samples around
point x, the higher the final density estimate. For each kernel, the mean
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value and standard deviation correspond to the random variable’s ob-
servation and bandwidth, respectively.

The choice of bandwidth plays a vital role in the smoothness of the
density curve. A narrow bandwidth (i.e., lower standard deviation) pro-
duces a jagged curve, indicating undersmoothing, whereas a wide
bandwidth (i.e., higher standard deviation) produces extreme smooth-
ing, hiding important data features. Numerous approaches for deter-
mining an optimal bandwidth are reported in the literature. Silver-
man’s rule of thumb was selected for the current study because of its ro-
bustness and ease of implementation [39]:

_ . IQR ~1/s
h = 0.9min (0, 1.34)m ®

where ¢ is the standard deviation of the random variables; IQR is the
inter-quartile range of the random variables; and m is the number of
variables.

Using Silverman’s rule of thumb as given in Eqn. (8), an optimal
bandwidth of 0.1641 MPa (0.0238 ksi) was determined for the equiva-
lent stress range at Sensor 16 and subsequently utilized to estimate the
density function with Eqn. (7). Fig. 14 depicts the resulting density
function, which was observed to appropriately fit the equivalent stress
range distribution histogram at Sensor 16. Equivalent stress ranges at
other unmeasured locations and their corresponding KDE density func-
tions are found in the Appendix.

The selected, optimal, KDE bandwidth corresponds to the standard
deviation of the equivalent stress range (loads) while each sample/ob-
servation in the equivalent stress range is taken as the mean value for
that load. Hence, each equivalent stress range observation is character-
ized by its mean and standard deviation corresponding to its value and
bandwidth respectively.

3.1.2. Number of stress cycles

The extracted number of cycles from predicted strains (i.e., classifi-
cation based on RMS and k-means clustering) at Sensor 16 for moni-
tored train passages was 4,638,783. Since these cycles do not account
for the entire number of stress cycles experienced by the bridge since it
opened, a conservative assumption was made to establish the total
number of accumulated stress cycles [40]. Following publication of the
first AREMA design specifications for steel railroad bridges in 1905, it
was widely believed that design and rating capacities for bridges based
on the Cooper E series design load doubled over the following decades.
Consequently, demand (measured as weight per car) skyrocketed con-

3 35 4 4.5 5
Equivalent Stress Range (MPa)

Fig. 13. Equivalent stress range at Sensor 16 using estimated strains and RMS.
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Fig. 14. Equivalent stress range at Sensor 16 characterized using KDE (h = 0.1641 MPa).

current with capacity expansion, and soon met the increased bridge’s
capacity [41,42]. Hence, it was assumed that capacity limits for older
bridges had been reached. Although the gap between capacity and de-
mand has narrowed or been exceeded, loads have not increased re-
cently and are not expected to in the near future [41].

Therefore, it is reasonable to assume that applied load magnitudes
on the bridge were lower than or largely constant to the demand (ap-
plied loads) during the monitoring period. Thus, equivalent stress
ranges calculated from monitoring data were assumed to be a fair re-
flection of past and future loading regimes. The number of cycles before
failure was considered a function of time and it was assumed that the
number of cycles would increase by r per year after the bridged opened,
due to the continuous and increasing use of the bridge over time.
Hence, the total accumulated number of cycles per year, N((y), is ex-
pressed as follows:

% 10"

)]

N aaQ y _
Ny S [0

(140! r

where: Y is the number of years after bridge opening year; Nigat is
the total accumulated stress cycles from the two-month monitoring
data; and r is the increase rate.

The resulting total and cumulative number of stress cycles per year
for a 200-year period after the bridge opened is shown in Fig. 15. Cu-
mulative stress cycles per year correspond to the total number of cycles
due to live loads, Nq, defined earlier. When compared to cumulative
stress cycles computed from measured response, stress cycles from
predicted response were slightly higher (2.6%) during the monitoring
period and for the 200-year period. Cumulative stress cycles at other
unmeasured locations are found in the Appendix.

5
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Fig. 15. Classification using RMS — cumulative stress cycles from predicted and measured strain time-histories at Sensor 16.
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3.2. Reliability index

After obtaining fatigue load parameters, Nq, per year and Sqi from
monitoring data at each unmeasured location (Sensors 16-20), fatigue
reliability indices were computed over the period of interest using Eqn.
(3). It was deemed permissible to utilize equivalent stress ranges calcu-
lated from monitoring data as a suitable representation of past and fu-
ture responses since bridge load demands before the monitoring period
were presumed to be less than or equal to demands during the monitor-
ing period [40].

The constant vector a = [a|,a2, ag, -+, an], in Eqn. (3) corresponds
to the number of stress cycles, N, from Eqn. (5). 21 is a constant fa-
tigue resistance parameter value and 3, : a, correspond to constants as-
sociated with each load parameter m , where m = n — 1. Consequently,
a1 is taken to be 1 since the fatigue resistance, $3N, has been evaluated
and its statistics are available as presented in Table 1 [33]. As a result,
a . a, are taken as the cumulative number of stress cycles N; (¥) at load
parameter year Y.

Similarly, the variable

mean of vector

E[X] = [PR; Ho,iHQ,i me]T in Eqn. (3) corresponds to the mean of
the equivalent stress range for the fatigue limit state expressed in Eqn.
(5). The cube root of the mean value presented in Table 1 is calculated
to be 2140 ksi and taken as Hr while FQ,> HQ,>HQ;> "> HQ,, correspond to
equivalent stress ranges Sreis Sre2s Sre3s

The covariance matrix of the random variable vector, Cov [X, XT],

> Sre:m~

corresponds to the covariance of the equivalent stress range. Then X n
matrix provides covariance between each pair of elements i, j of the ran-
dom vector. Its main diagonal contains the variance of each element j
with respect to itself, where i = 1, 2, 3, -, n. Assuming no correlation
between resistance and load parameters, all covariance matrix values
are taken as zero (Xj; = 0 where i # j) except for those on the main di-
agonal. The first diagonal value corresponds to a resistance variance of
Xj; = o2 = 208% while other diagonal values correspond to load vari-
, Xon = Gé) taken to be the square of the KDE band-
width (i.e., 0.16412) at Sensor 16.

It is noteworthy to mention that reliability analyses presented
herein are limited to instrumented bridge components (i.e,. each sensor
location). Establishing accurate system reliabilities are beyond the

ances (X, X33, -

LA

4.8

Reliability Index, 3
Wl =
e = D F= b3 F

b
b2

tad

1950

1910 1930 1970 1990
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scope of this study since sensors are not placed at the connections. How-
ever, the proposed KDE and virtual sensing approach can still be used to
determine system reliability. Interested readers are referred to well
cited system reliability publications [40,43].

4. Results and discussion

After parameters described above were computed, reliability indices
were determined for the period of interest. Results for Sensor 16 are ini-
tially presented with estimated indices found using estimated strains
classified using both RMS and SOM. Resulting reliability indices from
estimated strain responses at Sensor 16 were compared against corre-
sponding indices from measured strain response as shown in Fig. 16.
Reliability indices from estimated strain responses using both classifica-
tion methods were observed to be in good agreement with correspond-
ing indices from the measured responses. In general, the predicted relia-
bility indices from measured and estimated response over the period of
interest exceed the current AREMA practice for fatigue evaluation cor-
responding to Minimum Life (reliability index of 2) [33]. This result in-
dicates that the bridge components continue to perform well in terms of
resistance against crack initiation and can be considered suitable for
further service during the period of interest.

Differences between estimated and measured indices did progres-
sively increase over the 200 years of interest, with reliability indices
from estimated responses using both classification methodologies being
less conservative than indices based on field measurements. The maxi-
mum differences between estimated and measured reliability indices
were approximately 0.14 and 0.16 for RMS and SOM estimates, respec-
tively, which was deemed acceptable. It is worth noting that since the
cumulative number of cycles from predicted strains were higher than
those from measured strains (as shown in Fig. 15), one would expect
lower estimated strain reliability indices than those from the measured
strains. However, as illustrated in Fig. 16, the opposite trend was ob-
served. Reliability indices from estimated strains were observed to be
higher than those from measured strains. This observation can be justi-
fied and attributed to the influence using the equivalent stress range as
the random variable when computing the reliability index.

Similar procedures were followed to determine reliability indices at
other unmeasured locations for the period of interest. Fig. 17 compares
estimates using the two classification methodologies to measured in-

—Measured
- = -S0M estimate
===RMS estimatc|

2010 2030 2050 2070 2090 2110

Year

Fig. 16. Reliability indices using RMS and SOM estimated and measured strains, Sensor 16.
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Fig. 17. Reliability indices using RMS and SOM estimated and measured strains, Sensors 17 — 20.

dices over the 200-year period. Similar trends to Sensor 16 were ob-
served, except for Sensor 18. Observed differences for Sensor 18 were
potentially attributed to sensor data quality throughout the monitoring
period. The data quality could have been affected by sensor placement
and/or position.

For the remaining sensors, reliability indices computed from esti-
mated responses were consistently acceptably close to indices based on
measured responses. This potentially reduces risks associated with inac-
curately identifying areas of concern for fatigue. Estimated results were
generally similar irrespective of classification method, but agreement
did differ slightly between sensors. SOM classification provided more
accurate indices for Sensors 17 — 19 while RMS did so for Sensors 16
and 20. It should be noted that classification using SOM was more effi-
cient computationally than RMS, even though labeling results accord-
ing to track location and load categories was shown to be less accurate
as discussed earlier. To further evaluate and quantitatively compare es-
timation quality, three common mean error methods were employed to
assess levels of error between estimated and measured reliability in-
dices.

4.1. Mean error methods
a. Mean Squared Error (MSE)

MSE is the average squared distance between actual and predicted
values [44] and varies between zero and infinity. A larger MSE indi-
cates that data points are widely dispersed around the mean. Con-
versely, a lower MSE implies smaller errors, less dispersion, and conse-
quently better predictions. MSE is expressed as follows:

11

n

MSE = iz@i B ﬁ’)z,

i=1

10

where f; is the actual reliability index value from measured strain
response; ; is the corresponding reliability index value from estimated
strain response; and # is the number of years/observations.

b. Mean absolute error (MAE)

MAE is the average of the absolute difference between estimated
and true data values [45]. It is expressed as follows:

n
1 ~
MAE =% |(8:=B. an
i=1
where B; is the actual reliability index value from measured strain
response; ﬁi is the corresponding reliability index value from estimated
strain response; and 7 is the number of years/observations.

c. Coefficient of determination g2

The coefficient of determination is the mean squared error normal-
ized with respect to the variance [46,47]. The coefficient of determina-
tion is based on the correlation between actual and predicted values. Its
values lie between 0 and 1 with 1 implying perfect correlation and is ex-
pressed as follows:

) MSE

R P
R Var (ﬁi) a2)
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where MSE is the mean squared error; and B, is the actual reliability
index value from measured strain response.

Results from these quality metric calculations are listed in Table 2.
They indicate that RMS has larger MSE and MAE values, implying
greater error than SOM. Both classification methods have high R2 val-
ues indicating good correlation to actual response indices, except at
Sensor 18, as expected. Based on these results, both methods could be
used interchangeably but SOM classification is recommended based on
lower MAE and MSE values and the aforementioned computational
benefits.

5. Conclusions

In this study, probabilistic fatigue assessment was performed via re-
liability analysis using estimated strain response at select, unmeasured,
locations on a monitored railway bridge. Prior to fatigue assessment,
two classification methods, RMS with k-means clustering and SOM,
were utilized to categorize stain time histories from train passages into
train groups traveling in a similar direction and groups of similar total
load. The purpose of the classification was to reduce POM variability re-
sulting from varying loads and locations during monitoring. Following
classification, strain response was estimated at unmeasured locations
using a data driven SVD method. A reliability analysis methodology
was utilized, one that employed kernel density estimation (KDE) to ap-
propriately fit the equivalent stress range distribution, to perform fa-
tigue assessment. To assess proposed methodology accuracy, unmea-
sured results were compared to results obtained from sensors placed at
those locations.

Results from the study indicated that:

e Reliability-based fatigue assessment employing KDE eliminates
difficulties associated with selecting appropriate probability
distributions and resulted in more accurate predictions.

e Reliability indices from estimated strain response using both
classification approaches closely matched corresponding indices
from actual, measured response at the unmeasured locations (i.e.,
Sensors 16 to 20). Reliability indices from estimated response were
slightly higher than corresponding indices from measured
response.

e Reliability indices from estimated response classified using SOM
appeared to generally provide better prediction than those
classified using RMS. Classification using SOM produced a lower
range of MAE and MSE and is more computationally efficient thus,
making preferable when compared to classification using RMS.

It is important to mention that the novelty of this research relates to
dealing with non-Gaussian or arbitrary equivalent stress range distribu-
tions obtained from actual or estimated strain response. In a follow-up
study, a FE model will be developed to estimate stress concentrations at
the connections using measured strain responses at the stringer-to-
floor-beam locations.

Table 2
Error metric for classification methodologies.
Classification Sensor Sensor Sensor Sensor Sensor 20
16 17 18 19
MSE RMS 0.0084 0.0046 0.0646 0.0043 7.5170e-
04
SOM 0.0117 0.0019 0.0532 0.0030 0.0017
MAE RMS 0.0865 0.0639 0.2402 0.0617 0.0259
SOM 0.1021 0.0415 0.2179 0.0516 0.0387
R2 RMS 0.9351 0.9637 0.5088 0.9685 0.9951
SOM 0.9096 0.9847 0.5958 0.9780 0.9891
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Appendix.
The appendix contains results for:

1. Equivalent stress ranges at unmeasured locations (Sensor 16—20) calculated using estimated and measured strains.
2. Cumulative stress cycles at unmeasured locations (Sensor 16—20) calculated using estimated and measured strains.

1. Equivalent stress range at unmeasured locations
See Figs. A1-A10.

2. Cumulative stress cycles at unmeasured locations
See Figs. A11-A14.

Sensor 17
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Fig. A3. Equivalent stress range at Sensor 17 using RMS estimated strains characterized using KDE (h = 0.0261 ksi).
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Fig. A4. Equivalent stress range at Sensor 17 using SOM estimated strains characterized using KDE (h = 0.0273 ksi).
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Fig. A5. Equivalent stress range at Sensor 18 using RMS estimated strains characterized using KDE (h = 0.0327 ksi).
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Fig. A6. Equivalent stress range at Sensor 18 using SOM estimated strains characterized using KDE (h = 0.0320 ksi).
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Fig. A7. Equivalent stress range at Sensor 19 using RMS estimated strains characterized using KDE (h = 0.0236 ksi).
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Fig. A8. Equivalent stress range at Sensor 19 using SOM estimated strains characterized using KDE (h = 0.0252 ksi).
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Fig. A9. Equivalent stress range at Sensor 20 using RMS estimated strains characterized using KDE (h = 0.0299 ksi).
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Fig. A10. Equivalent stress range at Sensor 20 using SOM estimated strains characterized using KDE (h = 0.0288 ksi).
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Fig. A11. Cumulative stress cycles from predicted and measured strain time-histories at Sensor 17.
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Fig. A12. Cumulative stress cycles from predicted and measured strain time-histories at Sensor 18.
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Fig. A13. Cumulative stress cycles from predicted and measured strain time-histories at Sensor 19.
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Fig. A14. Cumulative stress cycles from predicted and measured strain time-histories at Sensor 20.
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Fig. Al. Equivalent stress range at Sensor 16 using RMS estimated strains characterized using KDE (h = 0.0238 ksi).
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Fig. A2. Equivalent stress range at Sensor 16 using SOM estimated strains characterized using KDE (h = 0.0243 ksi).
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