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ABSTRACT

Metal fatigue is a major concern in civil, mechanical, and offshore structures. As a result, inspections are
frequently directed to critical, fatigue prone locations using visual inspections, nondestructive evaluations, or
sensor data. However, fatigue assessment may be hampered if access to these fatigue-prone areas is difficult or
impossible. Furthermore, when comprehensive sensor use as part of a bridge health monitoring system is desired,
cost and power requirements can be prohibitive. These identified limitations have motivated studies examining
virtual sensing methods that estimate strains at unmeasured locations using indirect measurements. Kalman
filtering (KF) and modal expansion (ME) are two popular strain estimation processes. However, both processes
are model-based, requiring calibration of a finite element (FE) model of the structure of interest, which can be
time-consuming, particularly for complex structures. This constraint has spurred the need for data-driven strain
estimation methods, which depends solely on data from the structure, typically provided by sensors, without any
additional a priori knowledge of the structure, such as what could be provided by a FE model. This study
investigated the use of a novel, data-driven, Singular Value Decomposition (SVD) based method for strain
estimation on an operational railroad bridge. Left singular vector (LSV) SVD modes, also known as Proper
Orthogonal Modes (POMs), were employed for sirain estimation. Machine learning (ML) was implemented to
reduce POM variability and subsequently increase estimation accuracy using two classification methods: k-means
clustering and root mean square (RMS); and self-organizing maps (SOM) and POMs. Strains were predicted using
strain time-history POMs from snapshot matrices from clustered groups of train passages to estimate unmeasured
time-histories from the same group. The method was applied to operational strain measurements from
approximately 300 train passages over a steel, truss, railway bridge. Results showed that use of the data driven
SVD technique in conjunction with ML could predict suitable strain time signals at unmeasured locations, data
that can subsequently be utilized when performing fatigue assessment.

1. Introduction

theory and is an optimal predictor of a system’s variable of interest using
a state space model of the system [1]. ME uses a linear transformation of

One of the challenges when assessing steel structure fatigue sus-
ceptibility is inaccessibility to fatigue prone locations. If sensors can be
implemented as part of a structural health monitoring system, generally
a limited number are available due to their cost and power re-
quirements. To address this issue, several research studies have focused
on using an optimized number of sensors that can predict strain response
at unmeasured locations, which can include fatigue prone regions on
structures, using what is termed virtual sensing. Common processes
adopted for strain estimation include KF and ME. KF comes from control
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measured response to enhance the value of structural response data for
state estimation based on mode shapes of the system [2].
Papadimitriou et al. [3] proposed a methodology for estimating
structure fatigue damage accumulation using spectral characteristics
obtained from vibration measurements at a limited number of locations.
The authors applied KF to estimate stress power spectral densities (PSD)
at unmeasured locations based on limited, available response time-
history measurements in conjunction with a dynamic structural
model. PSD predictions were used to estimate fatigue damage
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accumulation and predict remaining fatigue life. The proposed meth-
odology was evaluated using simulated measurements from a two-
dimensional truss model. Results showed that fatigue life predictions
using KF were sufficiently consistent with values from the reference
model. The authors concluded that accuracy of the proposed method-
ology depends on model complexity, observation errors, and the number
and location of sensors.

Smyth and Wu [4] used KF to fuse accelerations and displacements
sampled at different frequencies to produce more accurate displacement
predictions. Jo and Spencer [5] numerically showed that combining
multi-metric measurements, which involve integration of more than one
measurement metric using KF, such as acceleration and strain, improved
estimation of unmeasured strains when compared to estimations based
on a single acceleration or strain measurement. Palanisamy et al. [6]
further verified performance of KF data fusion using strain estimation at
unmeasured locations via experimental tests of a simply supported
beam.

To address state estimation in non-linear dynamic systems (e.g.,
systems with time varying characteristics), some KF extensions have
been introduced. A common application of these extensions involves
concurrently estimating system states and unknown parameters,
referred to as joint state and parameter estimation [7]. KF extensions
include: Unscented KF (UKF) [8]; Extended KF (EKF) [9]; Augmented KF
(AKF) [10]; and Particle Filters (PF) [11].

ME has been used successfully to estimate strain response for a wide
range of mechanical, civil, and offshore structures. Graugaard-Jensen
et al. [12] employed ME for full-field strain prediction of a laboratory
tested structure and an in-service lattice tower under operational con-
ditions. Avitabile and Pingle [13] utilized ME on a laboratory tested
structure assembled from two aluminum plates to determine full-field
strains using limited measurement locations. Aenlle et al. [14] adop-
ted ME for strain estimation within a scale model of a two-story building.
Skafte et al. [15] combined ME with Ritz-vectors to account for low
frequency response induced by quasi-static effects of wave action on
offshore structures. The method was validated via accurate strain pre-
dictions using data from a scale model offshore platform excited by
shakers simulating wave spectra. Nabuco et al. [16] successfully pre-
dicted geometric strain response of two, scaled, simulated, and labora-
tory tested offshore platforms using ME based on parameters established
from a linear model.

ME techniques can use either mode shapes from finite element (FE)
analyses [13,17] or expanded experimental mode shapes to obtain strain
or stress estimates [18,19]. Tarpg et al. [1] examined the effectiveness
with which both ME approaches estimated full field strains and stresses
for fatigue analyses of operational offshore structures. ME was applied to
a scaled offshore laboratory platform model to estimate strain response
using mode shapes from finite element models along with expanded
mode shapes obtained from Operational Modal Analysis (OMA) of the
system’s response. Estimated strains were analyzed using different
metries: the coefficient of determination, time response assurance cri-
terion (TRAC), and what was termed the normalized fatigue damage
error. Results showed that ME using expanded experimental mode
shapes can improve strain estimations due to its potential to reduce
finite element modeling errors. However, some fitting errors were
introduced because of the expansion process and the finite element
model was shown to outperform expanded experimental modes in
certain cases.

Certain limitations associated with utilizing KF and ME methods for
strain estimation have been identified. Both methods are physics-based,
requiring calibration of an FE model to determine modal parameters
used for strain estimation of the structure under investigation [20].
While KF uses both vibration modes and frequencies from calibrated
models for strain estimation, ME utilizes solely vibration modes. FE
model calibration, especially for large and complex structures, can be
tedious. In addition, these methods have been validated primarily using
numerical and laboratory models. Although the literature introduces
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several Kalman-type filters for strain prediction of large-scale structural
systems, KF application to systems subjected to moving inertial loads,
such as bridges, is limited to numerical simulations [21]. Similarly, ME
has largely been validated using simulated experiments [20] and
measured strains from offshore structures [7].

Recently, Azam et al. [22] examined the ability with which virtual
sensing methods delivered accurate strain estimation for an in-service
steel railway bridge using a sparse sensor network. The authors intro-
duced a novel application of data-driven SVD and compared strain
estimation performance against estimations from physics-based AKF and
ME. A portion of one of the bridge’s exterior stringers was instrumented
with five Bridge Diagnostic, Inc. (BDI) strain transducers and data were
recorded for two train passages. Measured data from four sensors were
used to estimate strain time-histories at a fifth sensor. Using vibration
modes and frequencies from a calibrated FE model, AKF strain predic-
tion performance and accuracy were compared to measured strains.
Vibration modes from the FE model were used for strain estimation with
ME while SVD used LSV modes, also referred to as POMs, in place of
vibration modes to predict strain response. Accurate strain predictions
were obtained, and results demonstrated that these approaches could be
employed as virtual sensing tools in a health monitoring system, with
SVD outperforming AKF and ME.

Azam et al.’s [22] findings indicated that further investigation of
data driven SVD method for strain estimation is necessary as the study
was limited to two train passages since SVD is a data-driven method.
Train loads and speeds, as well as track locations, were also not clearly
defined. Since an in-service railway bridge will be exposed to trains of
different speeds, lengths, and weights traveling in different directions,
inherent variability may affect the accuracy of SVD left singular vector
modes (i.e., POMs) and subsequent strain estimations. Therefore, it was
of interest to investigate how variability in speed, load magnitude and
distribution, and train passage location affected SVD strain estimation
accuracy.

As a result, in this paper strain estimation using a data driven SVD
method was further investigated using significantly larger train passage
data sets from the monitored railway bridge. Generated strain time-
history POMs for selected train passages were also examined and two
methodologies proposed to reduce their variability for better strain
estimation. One of the methodologies classified the strain time-history
based on the RMS utilizing k-means clustering [23], while the other
used classification POM-based strain time-histories with SOM obtained
from neural network clusters [24]. These methods were used to cate-
gorize strain time-histories as a function of trains having similar loads
and speeds and moving across the bridge in similar transverse locations,
thus reducing POM variability. Strains were estimated using POMs of
strain time-history snapshot matrices from the groups/classes to predict
unmeasured location strain time-histories from the same group. Pre-
diction accuracy for each method was assessed by different quality
measurements including normalized fatigue error, TRAC, and coeffi-
cient of determination (R2).

2. SVD for strain estimation
2.1. Singular value decomposition

SVD is a powerful numerical analysis tool, particularly for linear
domains to complete matrix decomposition. Beltrami and Jordan were
reported to have developed SVD for square matrices in the 1870 s [25],
Autonne [26] for complex matrices, and Eckart and Young [27] for
rectangular matrices. Sylvester [28], Schmidt [29], and Weyl [30] are
other mathematicians who contributed to SVD and development for
matrix decomposition.

SVD factors a matrix (A), into products of a unitary matrix (¥), a
diagonal matrix (Q), and another unitary matrix, (VT): YQV7T[31].
Several advantages make SVD a very useful tool for matrix
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Fig. 1. Monitored railway bridge.

approximation. Decomposition accomplished using unitary matrices
makes SVD a great tool for n-space geometries. Since SVD does not add
to a problem’s intrinsic sensitivity to perturbations, it is numerically
stable. This implies that minor changes in matrix A correlate to small
changes in Q, and visa-versa. Furthermore, Q’s diagonality allows for
easy observation when A becomes a rank-degenerate matrix. When this
is observed, decomposition yields optimal low rank approximations for
A. Golub and Reinsch [32] helped develop efficient and stable algo-
rithms to complete SVD.

Strain time-histories from the studied, steel, railway bridge were
saved in a snapshot matrix A € R™*™ from n, measurements and
samples having the following form:

= [al e CI,.,], (1)

where: ay € R™ is data measured from n,, sensors at discrete time in-
tervals for k = 1, 2, ---, n;. SVD of the snapshot matrix A yields the

following:

svd(A) = PQVT, (&)

and: ¥ € R™*"™ is a unitary matrix, whose columns are left singular
vectors of A (i.e., POMs); Q € R™*™ js a diagonal semi-matrix whose
components Q; are singular values of ¥; and V € R™*™ is a unitary
matrix whose columns are right singular vectors of A.

2.2. Poms for strain estimation

The equation of motion for a damped, n-degree of freedom (DOF)
system can be expressed as follows:

Mii + Ci + Ku = p(t), (&)}

where: M e R"*", Ce R"*", and K € R"™" are mass, damping, and
stiffness matrices respectively;i € R", a € R", and u € R" are acceler-
ation, velocity, and displacement column vectors of the system at time
(t) respectively, and p(t) € R" is the applied load on the system at any
time (t).

Response of the system can be written via ME as shown below:

u(t) = Em.(t @q(1), (@)

where: @ € R"*" is the modal matrix containing all vibration modes ¢;
as column vectors; and q(t) € R" are the modal coordinates [33].

Since SVD is to be utilized instead of ME, Eqn. (4) can be rewritten as
a linear combination of left singular vectors:

u(t) = Efm.(t wq(t), (5)

where ¥ € R"*" contains the POMs.

Assuming that measured locations are where physical sensors are
located, and unmeasured locations are where system response will be
predicted, u(t) and ¥ from Eqn. (5) can then be presented as follows:

(2] (2]

where: up(t) € R™ is the measured response; u.(t) € R™ is the esti-
mated response at unmeasured location; and ¥, € R™*™ and ¥, €
R™ * ™ are the POMSs for measured and estimated responses, respectively.

Structural response of a linear system can be written as a linear
combination of its left singular vectors. In case first few left singular
vectors would be kept in the analysis, the reconstructed response would
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Fig. 2. Truss span elevation and plan views.
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Fig. 3. Truss floor system instrumentation plan.

be an approximation. Using Eqn. (6), Eqn. (5) can further be expressed 3. SVD strain estimation: Application to a railway steel bridge

as follows:
u(t) = [:_((tt))] _ [?;:]q(t). . 3.1. Monitored railway bridge

The studied bridge is a functioning open deck, double-track, multi-
span truss and through girder riveted steel railway bridge in central
Nebraska. One major concern for many riveted steel railway bridges is
.(f) = .G(t) =‘P¢(‘P:‘Pn]_1‘f':,ﬂm(f) (8) fatigue of stringer to floor-beam connections, which can result in

connection and, potentially, structural failure. The truss span under
For further details on using SVD for virtual sensing see [22]. (See Fig. 1) investigation is simply supported and has a total length of 44.7 m. The
span consists of seven floor beams supporting four equally spaced
stringers at 2.15 m center to center. Fig. 2 shows the span plan and

Hence, Eqn. (7) can further be expressed as shown below [22]:
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Fig. 4. Partial cross section of stringers and floor beam system with installed strain transducers.

Fig. 5. Installed strain transducer on stringer bottom flange.

elevation. Upper and lower chord panel points are labelled U1-U5 and denotes a floor beam between the same lower chord panel points. More
L0-L6, respectively, in the figure. Lower chord panel points on the north details about the bridge can be found elsewhere [34].
and south trusses are represented as LXN and LXS respectively and FBX A sensitivity analysis was performed before instrument placement
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Fig. 7. Average RMS sub-categorization using k-means clustering (Track 1).

and 20 strain transducers were identified as the minimum number
needed to detect stringer to floor beam connection defects [34]. The
monitoring system is comprised of a BDI data logger, a wireless base
station, and 4-channel wireless nodes, with each connected to 4 strain
transducers via cables. The strain transducer (popular known as ST350)
is resistive-based, and its circuit includes a full Wheatstone bridge with 4
active 350 O strain gages specifically designed to provide high electrical
output for a given strain magnitude. The wireless node serves as a data
acquisition device that facilitate the transmission of data from the strain
transducers for collection and viewing (on a computer) through the
wireless network created by the base station. Six 24-volt batteries,
recharged by two solar panels were employed to power the system. The
system was configured to activate and record strains at a sampling rate
of 50 Hz whenever a train crossed the bridge.

The examined truss span was instrumented with 20 BDI strain
transducers located on stringer bottom flanges adjacent to floor beam
locations. Fig. 3 details strain transducer location on the truss floor
system. The blue and red boxes differentiate between strain transducers
at measured (Sensors 1 — 15) and what were deemed unmeasured

(Sensors 16-20) locations, respectively, as discussed in Section 3.2.1.
Fig. 4 shows a cross section of the stringer and floor beam system with
installed strain transducers while Fig. 5 focuses on one of the strain
transducers at the stringer bottom flange.

3.2. Output classification

Data-driven strain prediction method are solely dependent on
measured data and, as a result, calibrated FE models are not necessary.
Since moving train location, load, and speed variability can lead to
variations in POMs, which can significantly impair data-driven strain
prediction accuracy [35], it is therefore essential to first classify bridge
inputs (e.g., moving loads) prior to strain estimation to minimize pre-
diction variations. It may be difficult to directly determine moving train
load magnitudes and locations and, as a result, categorization of train
passages based on measured response could be beneficial. This study
investigated two methodologies for categorization a single week dataset
of 300 train passages into groups having similar loads and traveling
across the bridge in the same direction. The first methodology was k-
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means clustering [23] and peak picking using strain time-history RMSs
for each passage. The second methodology performed clustering using
SOMs of neural network clustering [24] from POMs of train passage
snapshot matrices.

3.2.1. Classification using k-means clustering and RMS

Azam et al. [35] showed there is a strong correlation between stat-
ically equivalent uniform loads (i.e., input) and RMSs of resulting strain
time-histories for each passage (i.e., output). The higher the loads, the
higher the strain and RMS for each strain signal. This relationship was
explored to help determine train location for each passage. RMSs from
sensors on the south side of each track (i.e., Sensors 1 -5 on the south

side of Track 2, Sensors 11 — 15 on the south side of Track 1 in Fig. 3)
were compared for each train passage. It was shown that the train is on
the track whose sensors had the highest RMS value. Fig. 6 shows snap-
shot matrix POMs from 300 train passages and demonstrates clear
distinction between POMs generated from trains on each track. Track 1
had a total of 142 train passages while Track 2 had a total of 158 pas-
sages. It should be noted that POMs have not unit, and the first mode or
column of POM’s unitary matrix was utilized, hence the reason for the
nomenclature POM #1 on Fig. 6 and other corresponding figures. Y-axis
range —0.5 to 0.5 was employed since POMs values were within the
range and for easy comparison. Classification based on RMS was utilized
to categorize train passages based on track location and consequently
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Fig. 10. SOM sample hits from neural network clustering of 300 train passage POMs.

reduced POM dispersion due to train location as shown in Fig. 6.

To further reduce POM dispersion, the RMS of each track snapshot
matrix was subcategorized using k-means clustering. K-means clustering
is a popular unsupervised machine learning approach that divides a set
of n observations into k clusters by grouping observations with similar
underlying patterns [23]. Grouping is achieved by assigning every
observation to its nearest cluster such that the sum of squared distances
between the observations and the cluster’s centroid (i.e., arithmetic
mean of all data points that belong to the cluster) is minimized. Each
observation can only be assigned to one cluster, and the less variation
there is within each cluster the more similar the data points.

Mean RMSs for all sensors for each train passage were determined,
sorted, and sub-grouped using k-means clustering. Train passages for
each track were arbitrarily sub-categorized into four classes to represent
the different possible categories of train loads (i.e., “light,” “moderate,”
“heavy,” and “extremely heavy”) using k-means clustering. Class 1
represented “light” train loads while Class 4 denoted “exiremely heavy™
loads. Fig. 7 shows resulting sub-categorizations of average snapshot
matrix RMSs for train passages on Track 1.

Additional sub-categorization of train passages on each track into the
four classes further reduced POM dispersion. Fig. 8 shows POMs in each
class after k-means clustering for Track 1. This k-means clustering
resulted in additional reduction in POM variability, especially for Clas-
ses 3 and 4, when compared to all POMs. Fig. 9 shows reduction in POM
variation for Class 4 train passages when compared to that for all train
passages on Track 1. Strain estimation was subsequently achieved by
employing measured strain snapshot matrix POMs from select passages
in each class to predict time-histories in the same class at designated
unmeasured locations using Eqn. (38).

3.2.2. Classification using self organizing maps and POMs
Several neural network architectures have been designed for

clustering analysis. SOM is a promising technique [24] that uses a set of
connected neurons and computes an input pattern’s Euclidean distance
to each neuron. The neuron with the weight vector closest to the input
pattern is considered the winning neuron, and its weight vector is in-
tegrated into the input pattern for that neuron and its neighboring
newrons [36]. As a result, input data with similar patterns cluster
together in the same neuron.

SOM performs clustering while preserving topology [37]. It is also
useful for vector quantification, feature extraction, and data visualiza-
tion [38]. SOM is particularly useful for visualizing high-dimension data
as it converts complex nonlinear statistical relationships into simple
geometric relationships in a low-dimension display. Complex informa-
tion processing systems can further be decomposed into a series of
simpler subsystems using the SOM [39].

For the current study, SOM was implemented using the Neural
Network Clustering App in MATLAB [40]. The clustering app assists
with creation, visualization, and training of SOM networks. The SOM
has one layer with neurons organized in a grid and learns to cluster data
based on similarity. Data was imported, and a neural network was
defined and trained. To define the network, the two-dimensional map of
size n, which corresponds to an output of clusters n? (i.e., ‘n’ rows by ‘n’
columns), is specified. This implies that when a map size of n =1, 2, 3,
..., k is defined, it corresponds to an output of 1, 4, 9, ..., k2 number of
clusters, respectively. A minimum map size of 2 is required to produce
more than one cluster.

POMs from snapshot matrix of 300 strain time-histories were im-
ported with a network and map size of 2 being defined. As a result,
observations (POMs) were categorized into output having 4 clusters. The
number of POMs associated with each neuron (cluster) as well as neuron
locations in the topography are captured via SOM sample hits. Fig. 10
shows resulting SOM sample hits from the clustering analysis. The
proper orthogonal modes were largely categorized into two hits (i.e.,



All problems according to Preflight profile
Convert to PDF/A

os Hit 1 (142)

0 5 10 15 20
Sensor

Structures 58 (2023) 105417

0.5

Hit 2 (158)

POM #1
=

-0.5

0 5 10 15 20
Sensor

Fig. 11. Clustered POMs from 300 train passages.

Position (2,i)

-1 -0.5 0 0.5
Position (1,1)

1 1.5 2 2

Fig. 12. SOM sample hits from Neural Net clustering of 142 train passage POMs (Track 1).

158 and 142 train passages in each), leaving the other hits empty. This
indicates that the input data (train passages) can largely be grouped
initially into two groups. Results from this categorization follow similar
trends to RMS categorization for Tracks 1 and 2 by showing that each
moving train is in one of the two locations (i.e., either Track 1 or 2).

Fig. 11 displays POMs from each populated sample hit and demon-
strates that this clustering analysis is equivalent to classification of train
passages based on transverse location on the bridge. Hits 1 and 2
correspond to train passages on Tracks 1 and 2, respectively, when
compared to categorization using strain signal RMS. This initial clus-
tering analysis reduced POM dispersion due to train passages on both
tracks.

To further reduce POM variability caused by differing train loads and
speeds, Hit 1 from Fig. 11 was subsequently subcategorized into four
classes using a map size of 2. In similar fashion to RMS classification,
four classes were chosen to represent different possible categories of
train loads (i.e., “light,” “moderate,” “heavy,” “extremely heavy™) for
train passages on each track. It was difficult to independently ascertain
which of the classes corresponded to categories of train load shown in
Fig. 7 from this clustering analysis. Resulting clustered hits and

corresponding POMs are shown in Fig. 12 and Fig. 13, respectively.
Strain estimation at unmeasured locations in the each class from Fig. 13
was then performed using measured strain snapshot matrix POMs from
select passages in the same class.

A flow chart summarizing both classification approaches is presented
in Fig. 14.

4. Results and discussion
4.1. Quality measurements

To assess strain estimate quality from the two clustering approaches
and SVD against the actual response obtained during field monitoring at
the same locations, three measures were introduced: normalized fatigue
error; TRAC; and coefficient of determination (R?). The methods are
summarized, and their selection justified in the following sections.

4.1.1. Normalized fatigue error
One important potential application for strain estimation is fatigue
assessment, as fatigue life largely depends on corresponding stress
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ranges and frequencies [41,42]. It is thus vital to compare estimated and
measured strains utilized in cycle counting that helps determine fatigue
life. This can be achieved using the normalized fatigue error, which
measures fatigue based on strain response from an estimated and
measured signal [1].

Use of the Palgreen-Miners Rule [43] and exclusion of the effects of
bilinear S-N curves allows fatigue damage to be expressed as follows [1]:

10

Deycles Teycles m Toycles
1 Ao E
—_ i 1
Di=) <= 3 =¢ A, ()
=11 =1 =1

where: D; = cumulated fatigue damage at the it fatigue location; neyeles
= number of counted cycles; N; = number of cycles for fatigue failure at
the given stress range, Acj; C = fatigue capacity (i.e., S-N curve log(N)
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where n; = 0 indicates a perfect estimation of strain.
A negative 1; indicates underestimation of fatigue damage and a
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positive 1j; indicates damage overestimation.

4.1.2. Time response assurance criterion (TRAC)
TRAC is a measure of overall correlation between estimated and
measured strain time-history signals [13] and is expressed as follows:

co—(2
EEGE)

where € is the measured strain time-history; and £ is the predicted
measured strain time-history.

TRAC is a popular quality assurance quantitative measurement and
was utilized to compare and examine whether measured and estimated

an

strain time-history signals had similar general shape and trends [15].
TRAC values are positive, real quantities between 0 and 1 and are in-
dependent of amplitude differences [1]. Values close to unity indicate
strong agreement between strain time-histories, while values close to
0 indicate minimal or no similarity [44]. However, TRAC does not
consider amplitude differences, but was however considered for reader
(s) to see since this is a commonly used assurance quantitative mea-
surement metrie [1].

4.1.3. Coefficient of determination R

An additional quality measurement, the coefficient of determination
(R?), is employed to compensate for TRAC's limitation associated with
accounting for amplitude differences. The coefficient of determination is

12
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mean squared error normalized with respect to the variance of the
measured strain signal and is frequently used for model validation [45].
As a result, it considers both amplitude discrepancies and overall
amplitude [46] and is defined as follows:

iﬂg(ﬁ -&)?

RR=1-
! Var(&i)

a2

where ¢; is the measured strain time-history; and &; is the predicted
measure strain time-history. When the coefficient of determination is 1,

13

amplitudes are perfectly correlated.

4.2. SVD estimated strain

After clustering strain time-histories into classes to minimize POM
dispersion due to variation in train speeds, loads, and locations, strains
were estimated for each group using data driven SVD. After multiple
trials, the minimum number of strain signals employed as the training
set for a selected clustered class was identified as 25 % of the total



All problems according to Preflight profile

Sensor 18

0.6 i i i
0 20 30

Train Passage

Convert to PDF/A s 58 (2023) 105417
Sensor 16 Sensor 17
lw)mo%cmwoooo OO(:DO% 1 AM&MM&M%;%&A &&&,ﬁ
9 o Q
é 081 é 0.8
1l B
0.6 ; : 0.6 : '
0 10 20 40 0 10 20 40
Train Passage Train Passage
Sensor 18 Sensor 19
» 1o Dmf-\:!qud:u DDDDD djdlganqjanuﬂqjmmm
o
§ 0.8 1
[_1
0.6 + . . . 0.6 : . . .
0 10 20 30 40 0 10 20 30 40
Train Passage Train Passage
Sensor 20
1 e Rttty ﬁﬁﬁﬁﬁﬁwﬁﬁ*ﬁﬁwﬁﬁﬁ P ]
o
2 08} ]
H
0.6 - . : .
0 10 20 30 40
Train Passage
Fig. 21. Classification using RMS: TRAC values, Class 4 (“extremely heavy” train passage, Fig. 3).
Sensor 16 Sensor 17
lctbmoo d:) o ] 1 Ay DN AN IEES NS NN I A
o OOij odi’o o "o A AT BT SO &@a\& o
™08t o o o o8t -
o o
0.6 : - : 0.6 . . .
0 10 20 30 40 0 10 20 30 40
Train Passage Train Passage
Sensnr 19

—

g D‘I'D““ D”DDmE”nGDDDE\: EPD Ud:‘EEIDDZ'DD

2081
0.6 : ! ; -
0 10 20 30 40
Train Passage
Sensor 20

& T kd =3
L PR Pt R R,

i
o ptett mgmr

0 10

20

30 40

Train Passage

Fig. 22. Classification using RMS: R?, Class 4 (“extremely heavy” train passage, Fig. 3).

number of signals. Training set strain time-histories include response at
measured and unmeasured locations, and they were stored in a snapshot
matrix. It was arbitrarily decided to sequentially use Sensors 1-15 as
measured locations with remaining sensors being estimated and subse-
quently compared to actual measurements at those locations (Fig. 3).
Training set POMs were calculated from SVD of the snapshot matrix
and were subsequently used in Eqn. (8) to determine predicted signals
for subsequent train passages at unmeasured locations. It was observed
that strain estimation accuracy using SVD largely depended on the
quality of the entire monitored data set. For instance, in cases where
sensors were not performing adequately, measured response could

14

impair the accuracy of estimated strain. To avoid ill-conditioning,
adequate left singular vectors were needed to calculate generalized co-
ordinates. Trial-and-error was used and 10 left singular vectors were
selected. Representative results from high load categories (i.e., Classes 3
and 4) are presented in the following sections since maximum stress

ranges are produced for higher loads.

4.2.1. Estimated strains using RMS, classification by k-means clustering
Figs. 15 to 22 show strain estimation results from k-means clustering

classification using RMS. Fig. 15 shows a portion of the estimated and

measured strain signals at Sensors 16-20 (unmeasured locations) for the
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first Class 4 (“extremely heavy™) train passage. Estimated and measured
signals match quite well at each location. However, some minimal
amplitude differences are observed at Sensors 16 and 19. Quality mea-
surements are subsequently shown in Fig. 16 and Fig. 22. Fig. 16 details
normalized fatigue error for all Class 4 train passages at each unmea-
sured location. Normalized fatigue error at these locations ranges be-
tween 0.4 to —0.2, i.e., 40 % to —20 %.in terms of percentage. As
presented earlier, results closer to 0.0 represent good estimates. For
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Sensors 18-20, errors are substantially reduced, ranging between 0.2
and —0.2 (i.e, 20 % to —20 %). The range and frequency of the
normalized fatigue error are shown in the histogram in Fig. 17.
Normalized fatigue errors for Classes 1-3 are shown in Figs. 18 to 20.
Normalized fatigue error again ranges between 0.4 and —0.4 (40 % and
—40 %) for all train passages in Classes 1-3, though high but considered
to be an appreciable improvement over reported error ranges (1.5 to
—0.5, i.e., 150 % to —50 %) for an offshore platform using ME [1]. The
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normalized fatigue error can potentially be further reduced by removing
environmental variability in POMs in subsequent follow up study.
However, no environmental data was collected during the field moni-
toring. Correlation between estimated and measured signals was also
examined using TRAG, as shown for Class 4 in Fig. 21. TRAC values
between 0.9 and 1.0 were observed for all unmeasured location esti-
mations, indicating strong correlation between estimated and measured
strain signals. To account for both amplitude discrepancies and
measured signal overall amplitudes, Fig. 22 presents calculated R2
values for all Class 4 train passages at all unmeasured locations, with
values ranging from 0.7 to 1.0. Higher R? values between 0.9 and 1.0,

16

indicative of stronger correlation, are observed at Sensors 18 and 20.
Fig. 19.

Low normalized fatigue errors for all classes and TRAGC and R? results
demonstrate that strain estimation accuracy with SVD improves using
low dispersion POMs achieved via k-means clustering of strain time-
history RMS.

4.2.2. Estimated strains using POMs, classification by SOM

Figs. 23 to 30 show results of strain estimation using POMs with SOM
classification. Fig. 23 shows a portion of estimated and measured strain
signal time-histories at unmeasured location Sensors 1620 for the first
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Fig. 28. Classification using POMS—normalized fatigue

train passage in Class 3. Estimated signals appeared to match measured
signals at each sensor location reaonsably well, but amplitude differ-
ences were observed. Fig. 24 shows that normalized Class 3 fatigue error
ranged between 0.4 and —0.4, with its error histogram shown in Fig. 25.
Normalized fatigue errors for other classes were similar as shown in
Figs. 26 to 28. Fig. 29 details TRAC correlation for Class 3, with values

error for Class 4 (“extremely heavy” train passage, Fig. 3).
ranging between 0.87 and unity, indicating good correlation. R? values

between 0.82 and unity were observed for all unmeasured locations for
Class 3 train passages as shown in Fig. 30.
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5. Conclusion

This study attempted to improve strain estimation using novel, data-
driven SVD by reducing POM variability. Data was supplied from
measured response of an in-service, riveted, steel, truss, two track,
railroad bridge whose response to train passages of varying loads,
speeds, and directions was monitored. Left singular vectors (i.e., POMs)
determined from SVD of measured response data were stored in a
snapshot matrix. This information was utilized to examine the
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effectiveness with which strain signals were predicted at “unmeasured”
locations, which were actually measured. Comparisons were completed
to determine the efficacy and robustness of using a data driven SVD
using a larger data set of trains of varying load, speed, and direction for
strain estimation than earlier studies [22]. POM dispersion of the larger
data set was also investigated to ascertain its effect on the accuracy of
estimated strain response. It was observed that the higher the POM
dispersion, the less accurate the estimated strains.

To further reduce POM variability caused by varying train speeds,
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loads, and directions (i.e., transverse location), two clustering method-
ologies were selected and examined to ascertain their ability to effec-
tively categorize strain time-histories into classes moving in similar
directions and having similar loads. The first methodology involved
classification by k-means clustering using RMS of strain time-histories.
The second methodology involved neural net clustering classification
by SOM using strain time-history POMs. Each developed class strain
responses from trains traveling in similar directions and carrying similar
loads. Strain estimation was performed for each class/cluster and three
quality measurement types were utilized to assess performance and
accuracy of each methodology.

Results showed that a data driven SVD method could predict suitable
strain time signals at unmeasured locations for most train passages in all
classes, with a normalized fatigue error between 0.4 and —0.4 (40 % and
40 %), an improvement over results reported in the literature [1].
Examined clustering methodologies appeared to perform equally well. It
was also observed, however, that the accuracy of strain estimation using
SVD largely depended on data set quality. The placement and configu-
ration of the sensors, their sensitivity, and their resistance to environ-
mental conditions can all have a significant impact on the quality of the
measured response data set. For instance, sensors that are improperly
positioned on a bridge or those that are susceptible to high temperature
ranges may impair response measurements, which could have an impact
on the accuracy of strain estimation. Investigations focused on further
improving the accuracy of virtual sensing by including environmental
variability or choosing an optimal sensor placement strategy or
exploring adoption of other machine learning techniques for time series
analysis are recommended.
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