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Material vs. structure: Topological origins of band-gap truncation
resonances in periodic structures
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The distinction and correlation between intrinsic and boundary-induced properties represent a core problem
in material physics. While resonant modes do not exist within band gaps in infinite periodic materials, they may
appear as in-gap localized edge modes once the material is truncated to form a finite periodic structure. Here
we reveal the topological origins of truncation resonances in continuous periodic structures and introduce new
avenues for their precise manipulation considering material-property modulation, nature of boundary truncation,
number of unit cells, and the possibility of interaction with nontopological modes. Using theory and experiments,
we consider elastic beams with sinusoidal and stepwise property modulations as representative examples. The
topology of the band gaps is characterized based on the Chern number by variation of the modulation wavelength.
This, in turn, allows the behavior of the truncation resonances to be elucidated as topological edge states
that appear by varying the phason—a parameter that produces spatial shifts of the property modulation while
continuously varying how the boundaries are truncated. Within this framework, we introduce the notion of a
boundary phason for the modification of truncation and associated edge states at only one boundary independent
of the other. The influence of the boundary conditions on mode couplings and implications on the convergence
with the number of unit cells are then analyzed. Finally, nontopological in-gap resonances induced by a defect are
investigated, showing that these can be coupled with topological modes when they spatially coincide. These novel
features of truncation resonances may be exploited both in applications where in-gap resonances are not desired,
such as vibration attenuation and thermal conductivity reduction, or where in-gap resonances provide a functional
role, such as filtering, sensing, waveguiding, energy harvesting, and flow control by phononic subsurfaces.
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I. INTRODUCTION

The study of elastic wave propagation in a continuous
periodic medium is a classical problem in mechanics that can
be traced back to Rayleigh in 1887 [1]. With the advent of
composite materials, the interest in this problem surged with
early contributions in the 1950s [2] and 1960s [3] formulat-
ing dispersion relations for wave propagation in laminated
composites, and other forms of periodic media [4,5], fol-
lowed by extension to multidimensional composites in the
1970s [6]. The field re-emerged in the early 1990s with the
study of phononic crystals [7,8] and the establishment of
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formal connections with lattice dynamics in crystals [9] and
gathered further pace with the rise of acoustic and elastic
metamaterials [10]. In all these studies, periodicity is utilized
enabling dynamic characterization by considering a repre-
sentative unit cell, as commonly done in condensed matter
physics [11]. Calculating the dispersion relation, or the band
structure, using the Floquet-Bloch theorem [12,13] formally
enforces the assumption of an extended medium with an in-
finite number of unit cells. This is not only computationally
rewarding but physically provides a fundamental description
of the modal wave propagation properties of the medium
under investigation—removing any influence of overall size
and external boundary conditions. In this framework, the
medium under consideration is rendered a material [14] with
characteristic intrinsic properties, such as band gaps (whose
locations may be predicted analytically [15–18]) and other
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key features revealed by the nature of the band structure.
The thermal conductivity, for example, is an intrinsic material
property that is directly influenced by the band structure −
determined by analysis of only a single atomic-scale unit
cell [19,20]. Effective dynamic properties, such as effective
density and Young’s modulus [21], provide another example
of intrinsic material properties. On the other hand, unless a
medium practically comprises thousands or millions of unit
cells (as in a bulk crystal for example), realistic realizations
are formed from a relatively small finite number of unit
cells, yielding a periodic structure, rather than a material,
with extrinsic characteristics. This is particularly the case in
engineering problems such as sound [22] and vibration [23]
isolation, and other similar applications [24,25], and also the
case in nanoscale thermal transport [26] where unique dynam-
ical properties emerge primarily from the presence of finite
size along the direction of transport.

A. Truncation resonances

A periodic structure in practice may still consist, in some
cases, of a relatively large but tractable number of unit cells
and in other cases of only a few unit cells along the direction
of vibration transmission. The number of cells impacts the
degree of attenuation within a band gap [27]. However, the
contrast between the material and structure behavior may
not be limited to only quantitative differences but also to
fundamental qualitative distinctions. One noticeable anomaly
between the material and structure responses is the possibility
of existence of resonances inside band gaps, i.e., resonance
peaks in the frequency response function (FRF) of a finite pe-
riodic structure that appear within band-gap frequency ranges
of the corresponding infinite periodic material. These reso-
nances are often referred to as truncation resonances [28,29]
because they emerge from the truncation of a medium that is
otherwise formed from an infinite number of unit cells. These
resonances are associated with mode shapes that localize at
the truncation junction and are thus also commonly referred
to as edge or surface modes [30–38]. The presence of these
modes has been uncovered theoretically by Wallis [30] in his
study of a finite discrete diatomic chain of atoms with free
ends. This followed the work of Born on finite atomic chains
[39] which was motivated by the study of the influence of
lattice vibrations on x-ray scattering. Recent studies extended
Wallis’ theory of finite discrete chains to more general con-
ditions [29,40,41] and experiments on chains of discrete-like
coupled spheres validated the theory [36].

The problem of truncation resonances in continuous
periodic media—the focus of this paper—has also been inves-
tigated extensively. Early studies examined one-dimensional
wave propagation in periodically layered or lamenated com-
posites, also referred to as superlattices. Existence conditions
for truncation resonances were derived for semi-infinite su-
perlattices for out-of-plane [31,33,35] and in-plane [32,34,38]
waves. It was shown that surfaces modes in some instances
may appear below the lowest “bulk” band, i.e., the band that
hosts conventional resonances. Investigations of the trunca-
tion phenomenon were also done on finite layered phononic
crystals examining transverse waves [37,42], on finite
beam-based phononic crystals [43,44] and locally resonant

elastic metamaterials [45,46], and on rod-based phononic
crystals [47,48]. Among the factors that influence the fre-
quency location of the truncation resonances are the unit-cell
symmetry and the boundary conditions [42,44,46–48]. When
there is more than one layer in the unit cell, the number
of surface states increases [35,38]. Techniques proposed for
control of the truncation resonances also include tuning of
unit-cell spatial material distribution or volume fraction [43]
and the anomalous addition of a “cap layer” [33,35] or a “tun-
ing layer” [43,49] at the edge of the structure. A cap layer is
simply a homogeneous layer, whereas a tuning layer is a pur-
posefully truncated single unit cell. The concept of truncation
resonances is also relevant to other areas in applied physics
such as photonic crystals [50] and quantum lattices [42].

B. Connection to topological physics

The principle of a truncation resonance is fundamentally
connected to the periodic structure’s topological properties;
this connection forms the core focus of the present study. In-
spired by the emergence of topological insulators in quantum
systems in condensed matter physics [51], classical analogs
have been developed in photonics [52] and phononics [53,54],
demonstrating the features of robust topological waves. In
passive elastic materials, topological interface modes are
created by contrasting two materials with band gaps exist-
ing at the same frequencies but characterized by different
topological invariants. Examples include interface modes in
one-dimensional (1D) structures [55–58] in analogy to the
Su-Schrieffer-Heeger model [59] and waveguiding along in-
terfaces in 2D materials in analogy to the quantum spin Hall
effect [60–64] or to the quantum valley Hall effect [55,65–67].
These effects rely on symmetry breaking by interfacing two
domains whose unit cells have opposite symmetries, which
results in contrasting topological properties in the reciprocal
space. Hence, an actual interface between two materials is
required, which presents a contrast to the truncation reso-
nances we explore in this paper. We will show an intriguing
connection that stems from a stronger type of topological
effect associated with the quantum Hall effect (QHE) [68,69],
which is not based on spatial symmetries. The QHE man-
ifests in 2D lattices of electrons under the presence of a
strong magnetic field, which leads to robust edge waves that
propagate along the boundaries of a finite sample (structure),
without backscattering at corners or defects. It is therefore
sufficient to exploit the interface between a single material
medium and vacuum. However, such a strong effect requires
breaking time-reversal symmetry, which in the quantum case
is achieved through the magnetic field. Emulating similar
features on 2D elastic materials is possible through active
components that break time-reversal symmetry, such as rotat-
ing frames [70] or gyroscope spinners [71,72]. An alternative
that has emerged later, and which we adopt here, is to map
the QHE to 1D passive structures that have extended dimen-
sionality emanating from their parameter spaces [73,74]. This
has been achieved by using patterned mechanical spinners
[75], spring-mass lattices [76], acoustic waveguides [77,78],
and continuous phononic crystals or elastic metamaterials
with modulations of inclusions such as ground springs [79],
stiffeners [80], and resonators [81,82]. In these examples,
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edge states localized at the boundaries of 1D periodic and
quasiperiodic finite domains are observed to appear in cor-
respondence to nonzero topological invariants called Chern
numbers. The boundary at which the localization occurs can
be determined by a phason parameter that is associated with
spatial shifts in the medium’s modulated properties. Changing
the phason is equivalent to shifting the choice of the unit
cell in space, which does not affect the unit cell’s intrinsic
properties (e.g., dispersion properties) but cause local changes
at the boundaries that affect the existence and characteristics
of truncation resonances. This feature leads to possibilities
for topological pumping by varying the phason parameter
continuously along time [83–87] or along a second spatial di-
mension [76,88], inducing a transition of the edge states from
being localized at one boundary to the other. Thus, energy can
be “pumped” between two boundaries of a system through
a transition of a topological edge state. The application of
the field of topology to elastic and acoustic material sys-
tems continues to attract much interest within the phononics
community [89,90].

In this paper, we provide a formal framework for the iden-
tification of the topological character of truncation resonances
in periodic structures, drawing on concepts from the QHE.
We consider a family of periodic elastic beams with either
sinusoidal or stepwise property modulations. The modula-
tions offer key parameters that expand the structure’s property
space and allow us to readily apply the concepts of topological
band theory. In particular, the variation of a periodic beam’s
spectral properties with respect to the modulation wavelength
allows us to extract the Chern numbers of the band gaps
and identify the locations of truncation resonances. Then
the phason parameters associated with spatial shifts of the
modulations further characterize the truncation resonances as
topological edge states spanning the band gaps. The frequency
dependence of truncation resonances in terms of a unit-cell
symmetry parameter has recently been predicted, for periodic
rods, by means of a closed-form transfer-matrix-based mathe-
matical formulation [48]. Here we reveal, for periodic flexural
beams, the topological origins of this class of relations. We
show that the number of truncation resonances within a gap is
equal to the predicted Chern number, for any set of boundary
conditions, although the particular features of the truncation
resonances’ branches as they traverse the gaps may vary.
We elucidate how additional boundary phason parameters
can be defined, formalizing the notion of the tuning layer
[43,49], to manipulate the edge states localized at different
boundaries independently. Furthermore, we examine the con-
vergence of the truncation resonant frequencies as a function
of the number of unit cells—a matter of significant practical
importance, especially when this number is relatively small.
The fundamental differences, and the possibility of coupling,
between truncation resonances and corresponding nontopo-
logical defect-mode resonances are then investigated. Finally,
we provide laboratory results using bimaterial phononic-
crystal beams as experimental validation of some of the key
features of truncation resonances and their association with
topological theory.

The paper is organized as follows. Following this introduc-
tion, Sec. II provides a description of the considered periodic

flexural beams and their boundary truncation through pha-
sons. Next, Sec. III develops the theory and computational
analysis to characterize the topological properties of trun-
cation resonances and those of nontopological defect reso-
nances, and the coupling of the two types of resonances,
followed by Sec. IV which provides experimental results and
further analysis. Finally, Sec. V adds further discussion on the
material vs. structure theme, and Sec. VI provides a summary
of the key findings and their broader implications to related
areas of research and outlines possible future research direc-
tions.

II. MODULATED PHONONIC-CRYSTAL BEAMS:
TRUNCATION CHARACTERIZATION BY PHASONS

We consider elastic beams undergoing flexural motion de-
scribed by transverse displacement w = w(x) and angle of
rotation ϕ = ϕ(x), where x is the axial position, as clas-
sical examples of 1D periodic materials or structures. The
properties of the beam are the Young’s modulus E = E (x),
shear modulus G = G(x), density ρ = ρ(x), cross-sectional
area A = A(x), and second moment of area I = I (x). These
properties are modulated in space as illustrated in Fig. 1. Two
scenarios are considered; in the first the Young’s modulus is
modulated according to a cosine function, i.e., E (x) = E0[1 +
α cos(2πθx − φ)], while other parameters remain constant
[Fig. 1(a)]. This cosine-modulated phononic crystal (CM-
PnC) serves as an idealized continuous periodic waveguide
used to illustrate the behavior of interest in a simple setting. It
is characterized by a unit cell of length a = 1/θ , where α is the
amplitude of the modulation with respect to the mean value
E0 and θ may be viewed as the modulation wave number. The
second case corresponds to a beam modulated in a stepwise
fashion, which we refer to as stepwise modulated phononic
crystal (SM-PnC). It generically represents a periodic material
of two alternating layers of lengths a1 and a2, with different
constituent material or geometrical (e.g., cross-sectional area)
properties. In this case, the material or geometrical properties
are modulated through a stepwise function of period a =
1/θ = a1 + a2 that takes two different values in the intervals
of length a1 and a2.

The appearance of in-gap resonances in the PnC beam
models considered above stems from the generation of bound-
aries that emerge with spatial truncation. The truncation
details are here characterized by phason parameters that are
connected to nontrivial topological properties. The most natu-
ral choice of the phason is simply the phase φ of the property
modulations, which rigidly shifts the modulation in space.
Thus it results in a simultaneous change of the local prop-
erties of the beam at both boundaries. This is illustrated in
the schematics of Fig. 1 for both the sinusoidal and step-
wise modulations. The blue boxes highlight the region of
the modulations selected to form the properties of the finite
beams. From a given initial configuration, a change in phason
over the range 0 < φ < 2π (higher values of φ do not need
to be considered due to the periodicity) can be interpreted
as simultaneously adding a segment of length φa/2π to the
left boundary, while removing the same length from the right
boundary. This will naturally influence any vibration mode lo-
calized at either boundary. Its effect can be further understood
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FIG. 1. Elastic periodic beams with (a) sinusoidal and (b) stepwise property modulation whose spatial distribution is defined by a phason
φ or boundary phasons φr and φl . A modulation characterized by φ is a superposition of modulations characterized by φr and φl .

as the superpostion of two independent parameters which
we call boundary phasons. A change in the right boundary
phason φr corresponds to removing a length φra/2π from the
right boundary while keeping the left boundary unchanged,
while a change in the left boundary phason φl corresponds to
adding a length φl a/2π to the left boundary while keeping
the right boundary unchanged. Hence, changing the phason
φ corresponds to changing both the left and right boundary
phasons by the same amount (as illustrated in the figure). As
we will show, the boundary phasons independently tune the
topological truncation resonances at their respective bound-
ary, and their superimposed effect leads to the variation of the
resonances with respect to the conventional phason φ.

Herein the flexural motion of the beam is modeled through
Timoshenko theory as governed by the following two coupled
equations:

ρA
∂2w

∂t2
− q(x, t ) = ∂

∂x

[
κsAG

(
∂w

∂x
− ϕ

)]
, (1a)

ρI
∂2ϕ

∂t2
= ∂

∂x

(
EI

∂ϕ

∂x

)
+ κsAG

(
∂w

∂x
− ϕ

)
, (1b)

where κs denotes the shear coefficient and t and q = q(x, t )
represent time and the external forcing, respectively. Equa-
tions (1a) and (1b) are combined to yield a single fourth-order
partial differential equation with only w as the dependent
variable [91]. In our investigation, we consider three types of
problems: a Bloch dispersion analysis problem for a unit cell
representing an infinite material, an eigenvalue analysis prob-
lem for a finite structure with arbitrary boundary conditions
(BCs), and a harmonic forced-response problem for a finite
structure with arbitrary BCs. In the first two problems, we set
q = 0 and

w(x, t ) = ŵei(μx−ωt ), (2)

where ω denotes the frequency. In Eq. (2), we set 0 �
μ � π/a for the Bloch dispersion problem, where μ = 0
is used for the finite periodic-structure eigenvalue with ar-
bitrary BCs. The results are obtained by a finite-element
discretization of the equations of motion. The implementation
details of these methods are omitted here for brevity since
they are widely available in the literature (for example, see
Ref. [92]).

Motivated by the experimental portion of this work (see
Sec. IV), we select the following parameters. The SM-PnC
consists of a bimaterial beam composed of alternating layers
of aluminum (Al) and the polymer acrylonitrile butadiene
styrene (ABS). These materials are selected due to the contrast
of mechanical properties leading to wide band gaps. Their
properties are as follows: Young’s moduli EAl = 68.9 GPa and
EABS = 2.4 GPa, shear moduli GAl = 25.9 GPa and GABS =
0.872 GPa, and densities ρAl = 2700 kg/m3 and ρABS =
1040 kg/m3, respectively. While we will allow the unit-cell
length to vary through the θ parameter, the ABS polymer
length filling fraction is fixed as aABS/a = 0.2; this ratio will
be changed only in Sec. A. For purposes of comparison,
the properties of the CM-PnC are then chosen to make it
statically equivalent [27] to the SM-PnC by selecting a fixed
density ρ0 = (0.2ρABS + 0.8ρAl) and elastic modulus mod-
ulation with a mean value of E0 = (0.2/EABS + 0.8/EAl)−1.
We consider a Poisson’s ratio of ν = 0.33, which conse-
quently determines the shear modulus through the relation
G = E/[2(1 + ν)]. Throughout this paper, the CM-PnC mod-
ulation amplitude is fixed at α = 0.9, and the beams have a
square cross-section geometry with side length h = 2.54 cm.
The finite-element analysis follows by discretizing the beams
with linear Timoshenko beam elements with a shear coeffi-
cient of 5/6. The beam element length varies according to the
case studied but does not exceed a maximum length of ā/100,
where ā = 203 mm is the unit-cell size of the experimental
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FIG. 2. Material versus structure properties. Dispersion diagrams (material) for the CM-PnC and the SM-PnC models are displayed in
(a) and (b) as solid lines, while dashed lines correspond to the homogenized beam dispersion. Band-gap frequency ranges are shaded gray. A
finite structure with 15 unit cells and free-free BCs exhibits in-gap truncation resonances as illustrated alongside the dispersion diagrams, with
selected mode shapes displayed in (c)–(f). For both models, the unit-cell length is ā = 203 mm.

beams and is used as a reference unit-cell length throughout
the paper.

In Fig. 2, we introduce the material or structure configu-
rations we will investigate where we present a comparison
between the properties of the CM-PnC and SM-PnC for the
reference unit-cell size ā = 203 mm. The contrast between
material and structure characterization is also highlighted in
the figure. Figures 2(a) and 2(b) display their dispersion di-
agrams, which is a material feature, in a frequency range of
interest from 0 to 9 kHz. Both CM-PnC and SM-PnC exhibit
the same long-wave static limit that approaches the dispersion
of the homogenized beam with material property constants
ρ0, E0 (dashed lines) but display different band gaps (shaded
gray regions). In particular, the SM-PnC has wider gaps due
to its discrete nature and the contrast of both densities and
elastic moduli, while the CM-PnC has smaller gaps due to a
fixed density and a continuous variation of the elastic modulus
only. On the right side of the dispersion diagrams, the eigen-
frequencies of representative finite beams with 15 unit cells
and free-free BCs are plotted as black dots, with φ = 0.2π

and φ = 0.4π selected for the CM-PnC and SM-PnC beams,
respectively. Truncation resonances are observed to appear
in band gaps, a feature which is unique to the structure,
nonexisting at the material level. The relative locations of the
truncation resonances with respect to the band gaps may be
controlled by changing the unit-cell design, e.g., by varying

the volume fraction of the constituent materials as shown in
Appendix (Fig. 12). An arbitrary phason value is chosen in
Fig. 2 to produce a large number of truncation resonances
as an example, but the behavior with the full range of φ will
later be explored and explained. The truncation resonances are
localized at one of the two boundaries of the finite beams, with
selected mode shapes displayed in Figs. 2(c)–2(f). By looking
at such isolated cases (as has been largely done in previous
studies), there is no apparent reason or pattern pertaining to
the appearance of in-gap resonances, why are they localized at
one boundary instead of the other, and why these features can
change by selecting different BCs or different numbers of unit
cells, etc. In the following sections, we will shed light on all
of these questions by illustrating the topological character of
in-gap truncation resonances associated with nonzero Chern
numbers and, consequently, how they can be manipulated
through the phason and other parameters or design features.

III. TOPOLOGICAL PROPERTIES OF MODULATED
PHONONIC-CRYSTAL BEAMS

In this section we develop the theoretical tools for the
topological characterization of truncation resonances by ex-
amining their behavior inside band gaps. We begin by
investigating the effect of the modulation wave number θ ,
which allows us to extract the topological invariants (Chern
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numbers). We then show how the Chern numbers are related
to in-gap truncation resonances through the variation of the
phason parameters. We also study the effect of the number of
unit cells comprising the finite structure on the convergence
of the truncation resonance frequencies. Finally, we provide
a comparison between topological truncation resonances and
nontopological defect resonances, highlighting their key dif-
ferences and demonstrating the possibility of their coupling as
a defect is moved towards a boundary.

A. Topological characterization by the Chern number

In principle, the Chern number characterizes the topol-
ogy of a vector field defined over a two-dimensional torus.
For 2D periodic materials the torus is composed of two or-
thogonal wave-number coordinates κx and κy and describes
the reciprocal space Brillouin zone [55,61,63,67,93]. For 1D
modulated materials such as the considered beams, the phason
φ serves as an additional dimension and replaces the missing
wave-number component to form a torus based on κ and φ

[76]. The eigenvector field is the Bloch mode displacement
ŵn(κ, φ) corresponding to the nth band defined over the torus
(κ, φ) ∈ T 2 = [0, 2π] × [0, 2π ], recalling that the dispersion
is 2π periodic in both φ and κ , with κ = μa defined as the
nondimensional wave number. Due to the continuous nature
of the beams, the dispersion frequency bands are invariant
with φ, which only produces a shift in the choice of the unit
cell. However, the variation of φ produces changes in Bloch
eigenvectors, which may reflect in nontrivial topological prop-
erties. The Chern number Cn for the nth band is defined as

Cn = 1

2π i

∫
D

βn dD, (3)

where D = T 2, βn = ∇ × An is called the Berry curvature,
and An = ŵ∗

n · ∇ŵn is the Berry connection, with ()∗ denoting
a complex conjugate. The Chern number is an integer that
quantifies the topological properties of the bands; these are
robust to small perturbations in the system’s unit cell as long
as these perturbations do not close the gaps separating the
bands. Among other features, the Chern number is related
to discontinuities (or vorticities) in the eigenvector field [93],
localization of the Berry curvature [55], and to phase accu-
mulation of the Bloch modes along cyclic paths in the torus
Brillouin zone [69,76].

Of particular relevance to the present work is the rela-
tionship between the existence of in-gap edge states in finite
systems to the Chern numbers [94,95], which is commonly
referred to as the “bulk-boundary correspondence principle”
[96,97]. This is done through the computation of a gap label
Cg given by the summation of the Chern numbers of the
bands below the gap, i.e., C(r)

g = ∑r
n=1 Cn, which is equal to

the number of truncation resonances found inside such gap
when the phase φ varies in an interval of 2π (see Sec. III B
for more details). However, the computation of the Chern
number as given by Eq. (3) is often challenging due to phase
or gauge ambiguities [98]. Furthermore, it has to be done
for each θ value that defines a different unit-cell size (see,
for example, Refs. [76,88]). Here we take an alternative, and
more generic, approach that produces the gap labels Cg with-
out direct computation of the band Chern numbers Cn and

for all θ values at once. Such approach relies on density of
states computations based on the spectral variation with θ ,
which has been developed using mathematical principles of
K-theory in the context of periodic and aperiodic topological
insulators [95,99] and later extended to quasiperiodic acoustic
or elastic metamaterials [77–82]. This approach has not yet
been extended to continuous elastic periodic waveguides such
as the beams studied here.

1. Extraction of the Chern number by varying the modulation
wave number

To begin, we investigate the variation of the beams’ spec-
tral properties as a function of the modulation wave number
θ . The procedure relies on a large finite structure of fixed
size L = 100ā, and the computation of its eigenfrequencies
under periodic boundary conditions (PBCs). The results are
illustrated in Figs. 3(a) and 3(b) for the CM-PnC and SM-PnC
configurations, where the eigenfrequencies are plotted as a
function of θ as black dots. In the computation, the consid-
ered range of θ is discretized in intervals of 
θ = 1/L, i.e.,
θn = n/L, such that each considered structure has an integer
number n of unit cells. By doing so, the resulting eigenfre-
quencies sample the Bloch dispersion bands defined for the
considered θ value, and no frequencies are found inside the
gaps due to the PBCs and the “perfect” periodicity emanat-
ing from an integer number of unit cells [79]. The resulting
spectrum provides a map for the location of the bands (black
regions) and band gaps (white regions) as a function of θ

and consequently of unit-cell length a = 1/θ . We note that
SM-PnC produces a more complex spectrum [Fig. 3(b)] with a
larger number of gaps when compared to CM-PnC [Fig. 3(a)],
in particular for lower values of θ as illustrated in the zoomed
view of Fig. 3(c).

The integrated density of states (IDS) of the spectrum, from
which we extract the Chern numbers, is defined as

IDS(θ, f ) = lim
L→∞

∑
n[ fn � f ]

L
, (4)

where [·] denotes the Iverson brackets, which provides a value
of 1 whenever the argument is true. In simple terms, for a
given θ and frequency f , the IDS is the summation of all the
eigenfrequencies below f , normalized by the structure size L.
It theoretically converges as the structure size tends to infinity,
but it is practically sufficient to consider large structures such
as the one with L = 100ā considered in our investigation. The
IDS is displayed for the CM-PnC medium in Fig. 3(d) and
for the SM-PnC medium in Fig. 3(e) with a zoomed view
for the lower θ range in Fig. 3(f). In this representation, the
z axis and the associated colormap represent frequency f as
a function of IDS and θ . The insets in Figs. 3(d) and 3(e)
illustrate the 3D views highlighting sharp discontinuities in
the surface plot, which are visualized as straight lines in the
top view colormaps. Each straight line is associated with a
band gap and occurs since the IDS does not change inside
the gap. Hence, a jump in frequency (color) occurs as the
IDS changes from the last mode before the gap to the first
mode right after the gap. According to the theory [77], and
confirmed by our findings, the variation of the IDS with θ
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FIG. 3. Eigenfrequencies of finite beam with L = 100ā and PBCs for (a) sinusoidal and (b) stepwise modulation, with zoomed view in (c).
Black dots represent eigenfrequencies while white areas denote band gaps. The corresponding IDS plots are displayed in the bottom panels
(d)–(f), where selected fitted lines have colors corresponding to the gaps marked and labeled in (a)–(c).

inside the gaps identify straight lines expressed as

IDS( f ) = n0 + Cgθ, (5)

with the gap Chern number Cg corresponding to the slope.
The lines of the most prominent gaps in Fig. 3 are fitted and
overlaid to the IDS plots, allowing the extraction of the Chern
gap labels from the slopes as marked in the top panels, with
different colors used to represent different gaps. These gap
labels are defined generically for any θ value that defines
the band gap and are related to the truncation resonances as
described in the following section.

B. Topological edge states and their control by phasons

The nonzero Chern gap labels indicate the presence of
in-gap edge states existing for structures with truncated
boundaries, i.e., the truncation resonances. Their properties
are illustrated in Figs. 4 and 5 for the CM-PnC and SM-PnC
configurations, respectively. The figures display the frequen-
cies of a finite structure of fixed length L = 15ā as a function
of modulation wave number θ and phason φ, for different
BCs such as free-free, pinned-pinned, and clamped-free. The
frequencies are color coded according to a localization factor
p to identify modes localized at the boundaries, which is
defined as

p =
∫
Lr

|w|dx − ∫
Ll

|w|dx∫
L |w|dx

, (6)

where L denotes the domain of the beam and Lr and Ll

correspond to a smaller portion of length 0.15L at the right
and left boundaries, respectively. With this definition, positive
(red) and negative (blue) p values indicate modes localized at
the right and left boundary, respectively, while values that are
close to zero (black) indicate nonlocalized conventional bulk
modes.

1. Conventional phasons

The left panels in Figs. 4 and 5 display the eigenfrequen-
cies of the finite beam as a function of θ , for different BCs as
illustrated by the schematics. The spectra are overall similar
to the bulk spectra exhibited in Fig. 3, with black regions also
defining the bulk bands but with additional modes appearing
inside the band gaps. These modes are the topological edge
states, corresponding to the truncation resonances which are
localized at one of the boundaries of the beam. The modes
localized at the right boundary (red) traverse the band gaps
multiple times as they migrate from the band above to the
band below their respective gaps. Although not the focus of
the present investigation, this behavior stems from the positive
gap labels Cg > 0 and can be explained by density of states
arguments [79]. Furthermore, the modes localized at the left
boundary (blue) do not migrate between bands and instead
remain inside the gap for the considered range of θ . The
different behavior between left- and right-localized modes
occur due to the way the finite structure is constructed, where
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FIG. 4. Eigenfrequencies of finite CM-PnC structure with length L = 15ā and free-free (top), pinned-pinned (middle), and clamped-free
(bottom) BCs. The left panels [(a), (d), and (g)] display the variation of the eigenfrequencies with θ , while the middle [(b), (e), and (h)] and
right [(c), (f), and (i)] panels display the variation with φ for the selected θ values highlighted as vertical dashed green lines in (a), (d), and (g).
The frequencies are color coded according to the polarization p, and the gap labels Cg are added for reference. Band-gap frequency ranges are
shaded gray.

the change in θ produces a qualitative change at the right
boundary (the modulation is truncated at different places for
different θ ) but not of the left boundary (the modulation is
always truncated at the same place). The gap label Cg dictates
the number of left- and right-localized edge modes that span
the band gap as the phason φ varies within an interval of 2π ,
for a fixed θ value. This is illustrated for selected θ values
(marked as vertical dashed green lines) in the middle and
right panels of Figs. 4 and 5, which display the variation
of the eigenfrequencies with the phason φ. As previously
mentioned, variations of φ do not affect the frequencies of
the dispersion bands, and therefore the boundaries of the band

gaps (material property) remain unchanged with φ. How-
ever, the phason influences how both boundaries of a finite
structure are truncated (Fig. 1), and its variation causes the
eigenfrequency branches of the truncation resonances to tra-
verse the gaps. The first selected value θ1 = 1/ā corresponds
to the modulation wave number for the reference unit-cell size
ā. In the CS-PnC case [Figs. 4(b), 4(e) and 4(h)], this unit-cell
size produces two small gaps with Chern labels Cg = 1 and
Cg = 2, which were extracted from the procedure in Fig. 3.
For all types of BCs [e.g., free-free in Fig. 4(b), pinned-pinned
in Fig. 4(e), and clamped-free in Fig. 4(h)], one left- and
one right-localized edge state traverse the first gap, and two
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FIG. 5. Eigenfrequencies of the finite SM-PnC structure with length L = 15ā and free-free (top row) or pinned-pinned (middle row) BCs.
The left panels [(a) and(d)] display the variation of the eigenfrequencies with θ , while (g) displays a zoom of (d) in the low θ range. The
middle [(b), (e), and (h)] and right [(c), (f), and (i)] panels display the variation with φ for the selected θ values highlighted as vertical dashed
green lines in (a), (d), and (g). The frequencies are color coded according to the polarization p, and the gap labels Cg are added for reference.
Band-gap frequency ranges are shaded gray.

edge states traverse the second gap, as the phason φ varies
from 0 to 2π . In the SM-PnC case [Figs. 5(b) and 5(e)],
the choice θ1 = 1/ā corresponds to the case investigated in
the experimental section of this paper (see Sec. IV), which
produces three band gaps with Cg values ranging from 1 to 3.
Regardless of the type of boundary condition, the number of
left- and right-localized edge modes spanning the band gaps
is equal to the corresponding Chern gap label. While only a
few BC types are chosen to exemplify the behavior throughout
the paper, this counting principle holds for any other set of
BCs, where different BCs may alter the shape of the edge

state branches traversing the gap but not their total number. In
addition, the gap label sign is related to the direction the edge
modes cross the gap [95]. A positive Cg > 0 indicates that |Cg|
left-localized branches will cross the gap from the lower band
to the upper band, and an equal number of right-localized
states will cross from the upper band to the lower band.
Although no examples are found in this paper, a negative sign
Cg < 0 produces transitions in opposite directions [76]. Also
note that the eigenfrequencies have a periodic behavior with φ

and are actually continuous at φ = 0 = 2π . Therefore a few
branches of the truncation resonances traverse the gap through
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FIG. 6. Examples of mode shape transitions as a function of phason φ for the (a) CM-PnC and (b) SM-PnC structures, corresponding to
the branches highlighted in Fig. 4(f) and Fig. 5(h), respectively. Band-gap frequency ranges are shaded gray.

that point; for example, see the second right-localized mode
in the second gap of Fig. 5(e). Indeed, the phason variable φ

defines a continuous ring, with no start or ending point, with
the beginning and end at φ = 0 and φ = 2π , respectively,
being arbitrary choices for the plots.

Other examples are shown to demonstrate the generality
of the approach and give more insights into the behavior of
the edge states. The case of θ2 = 2.5/ā [panels (c) and (f) in
Figs. 4 and 5] corresponds to a unit-cell size 2.5 times smaller
than the reference ā, and therefore the finite length L = 15ā
now comprises 37.5 unit cells. Even without an integer num-
ber of unit cells, the number of edge states inside each gap
matches the corresponding gap labels, for both CS-PnC and
SM-PnC, and both types of BCs considered. In fact, this be-
havior is general and holds for any arbitrary θ value. The last
row in Fig. 5 focuses on the lower θ range, where the SM-PnC
features additional gaps with higher Chern gap labels. The
examples θ3 = 2 m−1 and θ4 = 3 m−1 correspond to unit cell
sizes of 0.5 and 0.33 m, respectively, and form finite structures
with 6.09 and 9.135 unit cells for the fixed length L = 15ā.
They feature gap labels as high as Cg = 8, and the behavior
of the edge states spanning the gaps with φ is in agreement
with the extracted gap labels, again even without an integer
number of unit cells. Among many edge states, two transitions
experienced by the modes as a function of φ are highlighted
by thicker lines and dots in Fig. 4(f) and in Fig. 5(h) and have
their mode shape variation displayed in Figs. 6(a) and 6(b),
respectively. These examples illustrate a transition between
right- and left-localized modes that occurs as a function of
φ, with intermediate states appearing as nonlocalized trun-
cation modes when the eigenfrequency branch tangentially
approaches the boundary of the band gap. The nonlocalized
modes are in principle also topological as they represent an
extension of the set truncation modes, however they are not
localized because they are close to the gap boundary and
are therefore associated with vanishing imaginary wavevector
components. This type of transitions has been exploited for

topological pumping applications, where the phason φ is var-
ied along an additional spatial [76,88] or temporal [84,86,87]
dimension to induce a migration of localized modes between
two boundaries.

These results reveal that the truncation resonances are in
fact topological edge states that traverse the band gaps for
variations of the phason φ. This type of mode transition has
been observed, for example, in the context of periodic rods
[48], where the truncation resonances have been shown to
traverse the band gaps as a function of a symmetry parameter
that plays a similar role to the phasons described here but does
not correspond to the entire 0 to 2π phason range covered in
the present investigation. As stated earlier, here we establish a
formal connection to relevant concepts of topological physics.
The topological edge states of this work are reminiscent of the
QHE in 2D systems, which we establish in 1D waveguides
by using the phason parameter as an additional dimension.
Therefore, these edge states do not rely on spatial symmetries
but rather on the topology of the extended 2D space. This
contrasts, for example, with previous studies on 1D interface
states that are based on inversion symmetry [55–58]. The
number of truncation resonances that traverse a gap is equal
to the corresponding gap label Cg. This holds true for any
set of BCs, although the particular shape of the branches of
the edge states as they traverse the gap may be different.
In addition, while the number of in-gap resonances can be
predicted, one cannot guarantee the existence of truncation
resonances for a particular phason value φ but only that |Cg|
branches will traverse the gap when φ varies in an interval of
2π . For example, the finite structure considered in Fig. 2(a)
correspond to a phason value φ = 0.2π , which intersects both
the right- and left-localized edge state branches of Fig. 4(b),
and therefore one resonance localized at each boundary is
found in this case. In contrast, for a phason value φ = π , the
same gap in Fig. 4(b) does not exhibit any edge states, and
therefore no truncation resonances would be found. Similarly,
the modes I and II in Fig. 2(b) are intersections of the left- and
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FIG. 7. Eigenfrequency variation as a function of phason φ [(a) and (d)], right-boundary phason φr [(b) and (e)], and left-boundary phason
φl [(c) and (f)] for finite beam with L = 15ā and pinned-pinned BCs. The top row consists of a CM-PnC structure with θ2 = 2.5/ā while the
bottom row consists of a SM-PnC structure with θ3 = 2 m−1. Band-gap frequency ranges are shaded gray.

right-localized edge state branches in the first and third gaps
of Fig. 5(b), respectively, for φ = 0.4π , while other phason
choices would define different truncation resonances or the
their absence. Therefore, to better understand the behavior
of the truncation resonances one needs to consider the entire
family of structures defined for variations of φ, instead of
separately considering particular cases.

2. Boundary phasons

As described, the phason φ simultaneously modifies the
properties of both boundaries of a finite structure (Fig. 1)
and therefore influences the truncation resonances localized
at both boundaries. However, for large-enough waveguides
(see Sec. III C for a convergence analysis), the truncation
resonances at opposite boundaries are independent from each
other and depend solely on local properties of their respec-
tive boundary. Notice, for example, that the right-localized
truncation resonances in Fig. 4 (red branches) are exactly the
same for the free-free and clamped-free cases, since they both
share the same type of BC at the right end. This also confirms
the independence of symmetry in boundary conditions, as the
behavior of each boundary can be understood separately. Mo-
tivated by such observations, we illustrate how a higher degree
of control over the truncation resonances is achieved by using
the right- and left-boundary phasons introduced in Fig. 1,
which modify only one boundary at a time. This is equivalent
to adding a tuning layer at one end of the structure as done in

Refs. [43,49]. The effect of boundary phasons is demonstrated
in Fig. 7, which repeats the eigenfrequency variation with φ

of Fig. 3(f) and Fig. 4(d) in the left panels and compares them
to the the variation as a function of right-boundary phason
φr and left-boundary phason φl displayed in the middle and
right panels, respectively. The plots clearly show evidence of
how the boundary phason only causes the edge states localized
at the corresponding boundary to traverse the gap, while the
superimposed effect of both boundary phasons lead to the
effect caused by the phason φ. Indeed, as φr varies [Figs. 7(b)
and 7(e)], only the right-localized modes traverse the gaps,
producing the same branches as the ones in Figs. 7(a) and
7(d). Any left-localized modes that were defined for φ = 0
(the starting point) appear as roughly flat bands inside the gap,
since the left boundary is not changing with φr . A similar ef-
fect is observed for the variation with φl in Figs. 7(c) and 7(f).
For a structure that has a sufficient number of unit cells (i.e.,
has reached convergence as described Sec. III C to follow), the
right- and left-localized edge states form a set of decoupled
topological bands [95], the number of which corresponds to
the gap label magnitude |Cg| and whose slopes are associated
with the gap label sign.

C. Effect of number of unit cells on frequency convergence
of topological truncation resonances

Next, we investigate the effect of the number of unit
cells on the behavior of the truncation resonances. As shown
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FIG. 8. Eigenfrequency variation with φ for structure with θ1 = 1/ā comprising five cells [(a) and (d)] and 15 cells [(c) and (f)]. The middle
panels [(b) and (e)] show the variation with the number of unit cells for the fixed phason values highlighted as vertical dashed lines in the other
panels. Top and bottom rows correspond to free-free and pinned-pinned BCs, respectively. Band-gap frequency ranges are shaded gray.

earlier, truncation modes exhibit an exponential decay away
from the boundary since their frequency lies inside a band
gap and therefore correspond to a complex wave number.
For structures with a large number of unit cells, the in-gap
truncation modes are only mildly affected by further addition
of unit cells since their displacement tend to zero away from
the boundary. In that scenario, a further increase in number
of unit cells will produce a larger number of bulk modes,
while the branches of the edge states spanning the band gaps
with φ will remain the same. However, for structures with a
small number of unit cells, the truncation resonances are more
likely to be influenced by the opposing edge and by other
effects such as mode coupling and veering with bulk modes
or another edge state.

This behavior and the convergence with the number of
unit cells is elucidated by the results of Fig. 8. The SM-PnC
structure with θ1 = 1/ā is chosen to exemplify these features,
with the first and second rows corresponding to free-free
and pinned-pinned BCs, respectively. Figures 8(a) and 8(d)
display the variation of the eigenfrequencies with φ for a
structure with 5 unit cells, while Figs. 8(c) and 8(f) correspond
to a larger structure comprising 15 cells. In Figs. 8(b) and 8(e),
the variation of the frequencies with the number of unit cells
is displayed for the fixed phason value highlighted by the ver-
tical dashed-line intersections in the other panels. Overall, the
number of bulk modes increase with the number of unit cells
as expected, and the edge state branches traversing the gaps
are similar but exhibit small differences. These differences are

amplified for phason values that are close to mode couplings
as illustrated in the top row. At the selected phason value,
there is a strongly coupled avoided crossing between the right-
and left-localized edge states for the case with 5 unit cells
shown in Fig. 8(a), and therefore the eigenfrequencies defined
for that phason value are more separated when compared to
the structure shown in Fig. 8(c) with 15 cells and without
the avoided crossing. Therefore, the frequencies of the edge
states for this phason value vary as a function of the number
of unit cells and converge to a fixed value at approximately
10 unit cells as illustrated in Fig. 8(b). In contrast, in the case
of the bottom row with pinned-pinned BCs, the chosen phason
value intersects the edge state mode and an adjacent mode
that is well isolated, and therefore the truncation frequency
converges quicker at around four unit cells. While the exact
number of unit cells required for convergence will generally
depend on multiple factors, including design parameters, etc.,
these results illustrate that the most important underlying in-
fluence determining the convergence rate is the characteristics
of the mode couplings. Therefore, while convergence is al-
ways eventually achieved, its rate may vary depending on the
presence of mode crossings near the chosen phason value of
interest − which itself is influenced by the type of the BCs.

D. Topological truncation resonance versus nontopological
defect resonance

Truncation resonances, with their topological character, are
not the only type of resonances that appear due to truncation
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FIG. 9. Eigenfrequencies as a function of phason φ for a finite SM-PnC structure with θ1 = 1/ā, L = 15ā, and a defected unit cell. The
location of the defect changes by one unit-cell increments with every change of 2π in φ, as marked by the vertical dashed lines and illustrated
in the top schematics. Band-gap frequency ranges are shaded gray. Selected mode shapes are displayed in the bottom panels, whose colors
correspond to the polarization of the mode, with dashed and solid lines representing the mode with open and closed circle markers, respectively.

or breakage of symmetry in a periodic medium. Another type
of resonance, that is also of localized nature, is that associated
with defect modes [100–102]. Under the developed frame-
work, the band gaps characterized by nonzero Chern labels are
guaranteed to support |Cg| truncation resonances spanning the
gaps as a function of phason or boundary phason parameters.
Although we do not present an example in this paper, in some
cases a band gap may be characterized by Cg = 0, which is
referred to as a topologically trivial band gap. In this case,
the presence of in-gap resonances is not guaranteed, although
they may appear. Since there is no topological explanation
or origin to their appearance, these truncation resonances are
usually categorized as defect modes. One example can be
found in Ref. [81], where a central trivial gap with Cg = 0
does not exhibit in-gap resonances under pinned-pinned BCs
[Fig. 2(a)] but exhibits truncation resonances under clamped-
free BCs [Fig. 3(a)]. Note that the truncation resonances in
this second case do not traverse the band gap, which is a key
feature expected from topological modes as we highlight in
this work.

We here illustrate another important scenario where a phys-
ical defect is introduced to a finite structure in order to create
an in-gap resonance, although in this case a nontopological
resonance as we will show. As an example, we consider a fi-
nite SM-PnC structure comprising 15 unit cells with θ1 = 1/ā
and introduce a defect initially located at the 8th unit cell by
“skipping” the ABS portion within this unit cell, making it
entirely out of aluminum. The results displayed in Fig. 9 show
the variation of the eigenfrequencies with φ, with the defect
unit cell highlighted in the schematics at the top and identified
by the larger white segment, which represents aluminum. As

the phason varies, material is added to the left boundary and
removed from the right boundary (Fig. 1), which causes the
defect to continuously drift towards the right boundary. The
defect moves by one unit cell with every change in 2π ; these
increments are marked by the vertical dashed lines in the
figure. After a change in phason of 14π , the defect is at the last
unit cell, and finally for 16π it exists the structure and a per-
fect periodic domain is restored. In a defect-free structure, the
variation of the eigenfrequencies with φ is trivially periodic
in intervals of 2π . With the inclusion of the defect, additional
modes are found inside the gaps and coexist with the trun-
cation resonances. The interplay between the in-gap defect
mode and the truncation resonances is highlighted by the
selected mode shapes displayed in the bottom panels. In the
initial configuration, the in-gap defect resonance is localized
at the center (8th unit cell) of the structure and is completely
decoupled from the truncation resonances, as evidenced by
the plots in stage I. As the phason varies, the trajectory
of the defect modes remain almost flat inside the gaps, in
sharp contrast to the behavior of the topological states which
traverse the gaps. Indeed, the truncation resonances exhibit
the expected periodic behavior as their branches traverse the
gaps in a pattern that repeats periodically in intervals of 2π .
However, as the defect physical position approaches the right
boundary, the in-gap defect modes progressively couple with
the truncation resonances localized at the right boundary, this
is seen in all three gaps viewed in the figure. Focusing on the
third band gap as an example, the frequency curves in stage II
exhibit a weak coupling, while in stage III a larger coupling
is observed causing an avoided crossing with relatively strong
repulsion between the defect and truncation resonances. As
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the defect moves within the last unit cells (13th-15th), it
slowly transforms to capture, itself, the characteristics of a
truncation resonance localized at the right boundary, with a
mode shape example displayed for stage IV. At this last stage,
the branches of the right-localized truncation resonances are
very different from the periodic pattern of the perfect periodic
structure, since they are created by a truncation near a defect.

These results highlight key differences between the trun-
cation resonances and defect modes. The defect mode defines
a flat branch inside the gap as a function of φ, until it starts
to couple with the topological truncation resonances—which
happens as the position of the defects nears the boundary. It
is interesting to note that when the coupling takes place, the
shape of the coupled truncation resonance branch changes as
it traverses the gap. However, the counting principle given by
the gap Chern labels is still valid. This can be verified as in ev-
ery interval of φ = 2π , there is a net number of one, two, and
three right-localized modes traversing the first, second, and
third gaps, respectively. Therefore, the truncation resonances
retain this key topological property even with the interference
of a defect at the boundary. We should also stress that the
topological classification of an in-gap mode is always relative
to a given set of parameters. The defect mode introduced
here is nontopological in the context of the phason degree of
freedom, which causes it to remain confined inside the gap as
a flat band. However, in some cases a defect mode might find
a topological classification under a different set of parameters
and analysis framework [103].

IV. EXPERIMENTAL INVESTIGATION OF MODULATED
PHONONIC CRYSTAL BEAMS

A. Experimental setup and measurements

For the experimental investigation, we focus on the SM-
PnC beam structure, again composed of alternating layers of
Al and ABS with a ratio of layer lengths of 4:1 (Al:ABS)
for the baseline unit-cell configuration. The unit-cell length
and cross-sectional area are selected as ā = 203 mm and A =
645 mm2, except in Appendix where the unit-cell length is
varied. The values of these geometric parameters are chosen
to allow for the generation of several band gaps below 9 kHz
for practical reasons; however, all conclusions are scale in-
variant and hence applicable to periodic structures that are
orders of magnitude smaller in size (with the limit that they
are appropriately represented by continuous models). In this
section, we show additional FE results for direct comparison
with the experiments, where we use the same FE model details
as in Sec. III with specifically 100 finite elements being used
per unit cell. For our experimental setup, a set of Al and ABS
solid blocks were fabricated and connected to each other by an
adhesive to form the periodic structure. The test articles were
suspended using thin nylon wires to simulate free-free BCs as
depicted in Fig. 10(a).

First we show the complex band structure of the unit cell,
which is shown in Fig. 10(b)—the real part of which is identi-
cal to Fig. 2(b). This calculation shows that three relatively
large band gaps exist between 0 and 9 kHz. Figure 10(c)
shows a corresponding FRF obtained theoretically (solid line)
and experimentally (dashed line) for a five-unit-cell version

of the structure, in which the “input” force excitation and
the “output” displacement evaluation are at the extreme ends.
For the experimental results, the test article was transversely
excited at the tip of the structure using a force hammer. The
impulse forcing data F from the force hammer was used in
conjunction with the transverse response data U obtained by a
sensing accelerometer connected at the other end of the struc-
ture to generate the receptance U/F over the frequency range
0–9 kHz. The amplitude of the experimental response was
calibrated to match the average of all theoretical data points
over the 0- to 9-kHz frequency range. An excellent correlation
is observed between the theoretical and experimental FRF
curves. It can be seen, however, that the correlation gener-
ally degrades at higher frequencies along with an increasing
level of noise. This is due to the difficulty of stimulating
high frequencies with a force hammer as well as the re-
duced resolution when using a constant sampling rate over all
frequencies.

B. Effects of modulation wave number, boundary phasons,
and number of unit cells by experiment

In Fig. 5(a), we have shown the effect of the modula-
tion wave number (i.e., unit-cell length) on the locations of
the truncation resonances. Here we repeat our computational
investigation focusing on the range 0.18 � a � 0.22 m and
overlay the data of the experimental case of a = 0.2 m (θ =
5). The results, which are shown in the inset of Fig. 10(c), in-
dicate very good agreement between theory and experiments.
Note that the red dots in the inset correspond to the reso-
nance frequencies extracted experimentally from the peaks
of the frequency response curve. To confirm the predicted
topological behavior of the truncation resonances, we examine
experimentally the role of the left boundary phason φl , which
corresponds to the addition of a single tuning layer (or a partial
unit cell) at the end of the finite periodic structure [43,49];
see Sec. III B 1 for the theoretical analysis. The material and
geometrical configuration of the tuning layer should be chosen
such that it would generally form a physically cropped unit
cell, i.e., it would form a partial unit cell when its length
is less than a and a full unit cell when its length is a, as
illustrated in Fig. 10(a). Figure 10(d) displays a plot of the
resonant frequencies as a function of the length of the tuning
layer, denoted by lTL and ranging from lTL = 0 (φl = 0, five
unit cells) to lTL = a (φl = 2π , six unit cells) for the same
baseline design of Fig. 10(a)−this corresponds partially to the
results shown in Fig. 5(b) but now for free-free BCs and with
the addition of experimental data points. With the addition of
a tuning layer, band-gap resonances rapidly traverse the band
gaps, the number of which is correctly predicted by the Chern
labels marked in the figure. However, once they reach the
band-gap boundaries they behave like conventional structural
resonances (bulk modes) with slower levels of variation as
a function of lTL. The experimentally extracted resonance
frequencies (red dots) show a very good agreement with the
numerical curves, thus validating the predicted behavior of the
truncation resonances traversing the gaps.

Given the localization nature of truncation resonances, the
measured amplitude at the far end of the SM-PnC structure
is expected to be less than at the edge where the mode is
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FIG. 10. Experimental validation: (a) Photograph of the experimental setup showing a five-unit-cell SM-PnC beam structure consisting
of layers of aluminum and ABS polymer with a ABS volume fraction of 20% and ā = 203 mm. The structure was excited on the far left
side (on the first ABS polymer layer) with a force hammer and measured with an accelerometer on the other far end. (b) Frequency band
diagram of the infinite (material) constituent of the SM-PnC beam and (c) corresponding FRF response of the finite structure. Inset: Resonance
frequency (thin solid lines, theory; dots, experiment) versus unit-cell length a for the five-unit-cell periodic beam structure. (d) Corresponding
resonance frequency (solid lines, theory; dots, experiment) versus left boundary phase (i.e., length of a tuning layer attached at the far left
end). At φl = 0.4π , the tuning layer transitions from ABS to Al. At φl = 2π , the tuning layer is a full regular unit cell and the total structure
is rendered a six-unit-cell structure. In (b), the solid lines represent propagation modes, and the dashed lines represent attenuation modes.
Band-gap frequency ranges in (b)–(d) are shaded gray.

localized and where the excitation is applied. In Fig. 11, we
show using both theory and experiment an FRF comparison
between 5- and 6-unit-cell structures in Fig. 11(a) and 5- and
15-unit-cell structures in Fig. 11(b). A truncation resonance
peak clearly exists inside the second band gap. We also ob-
serve a stronger attenuation from edge-to-edge as the number
of unit cells (and total structure length) increases. As for the
effect of the number of unit cells on the frequency of the
truncation resonance, we note that there is a negligible shift
from 5 to 15 unit cells. These results are to be compared with

the eigenfrequency versus phason plot shown in Fig. 8(b) for
free-free BCs. It is shown in that figure that beyond 5 unit
cells, the change in the frequency of the truncation resonances
become negligible. In contrast, the frequencies of the conven-
tional resonances demonstrate substantial shifts, as shown in
both Fig. 8(b) and Fig. 11. We also observe in Fig. 11(b) that
while the amplitude of the truncation resonance peak drops
significantly as the number of unit cells is increased from 5 to
15, the amplitudes of all the conventional resonances do not
experience any noticeable drops.
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FIG. 11. Frequency response function comparison for the finite SM-PnC beam structure with different number of unit cells. The results
show a truncation resonance in the second band gap. Compared to the baseline case of 5 unit cells, the tructioan resonance is observed to
experience negligible shift in frequency for (a) a 6-unit-cell structure and (b) a 15-unit-cell structure. Strong spatial attenuation in displacement
amplitude across the structure is observed as the number of unit cells is increased. These results are for the same unit-cell configuration
considered in Fig. 10. Band-gap frequency ranges are shaded gray.

V. FURTHER REFLECTION ON THE MATERIAL VS.
STRUCTURE THEME

The distinction and interconnection between a material and
a structure may be examined and classified at various levels.
We recall that in the presence of periodicity, a material is
described as an infinite medium formed from a repeated unit
cell which itself may comprise constituent materials such as
in composites, for example, and a structure is described as
a finite version of this medium. A basic distinction between
these two entities is that of intrinsic versus extrinsic properties
or characteristics, e.g., the Young’s modulus and density being
intrinsic material properties in contrast to the stiffness and
total mass as extrinsic structural characteristics. The distinc-
tion may also be made based on physical response. In this
context, an elementary classification may be based on the
behavior of static deformation, such as the length scale of
deformation or spatial span of tangible force interactions. For
example, consider a lattice configuration of beams forming a
truss that lies at the core of a larger structural frame. If the
length scale of deformation at, say, the center of the core is
much larger than the individual beam elements and negligible
force interaction occurs with the boundaries formed by the
frame, then this deformation may be viewed as a form of
material behavior. On the other hand, if the length scale of
the deformation is on the order of the beam elements, and
non-negligible interaction occurs with the boundaries, then
the “periodic network of beams behaves as a structure, such
as a frame in a building or a truss in a bridge” [104].

In this work, we have addressed the material-versus-
structure correlation problem at a more fundamental level;
that is, by examining the characteristics pertaining to finite
size in comparison to the properties associated with idealized
infinite size and doing so from a topological elastodynam-
ics perspective. Here the dispersion curves represent material

properties and the natural frequencies represent structural
characteristics. In this context, finite size along the direction
where the physical phenomenon of interest (in this case, wave
propagation) takes effect is what distinguishes the material
versus structure character. Finite size in other lateral dimen-
sions (such as the thickness of a beam, for example) may play
a significant role in altering the material properties or struc-
tural characteristics but not in altering the classification of
material versus structure. As a periodic material is truncated,
and rendered a structure, both bulk and truncation resonances
emerge; the latter being intimately connected to the nature of
the truncation. This investigation focuses primarily on how
the nature of truncation influences the truncation resonances
and their correlation with the underlying unit-cell properties,
the total number of unit cells, and the type of boundary
conditions. While the examples provided comprise unit cells
of macroscopic dimensions, the same basic principles ap-
ply at microscopic scales. With the rising proliferation of
composites, metamaterials, nanomaterials, and architectured
materials in general, these material-structure correlations offer
a form of closure to the design loop pertaining to finite size.

VI. CONCLUSIONS

In this paper, we have investigated using theory and
experiments the fundamental question of the relation and in-
terplay between material and structure. We provided a formal
connection between topological physics and truncation res-
onances in finite periodic structures. Periodic structures can
be understood and topologically characterized using prop-
erty modulation parameters such as the modulation wave
number θ and phason φ. These parameters expand the phys-
ical space and allow for a rigorous study of the nature of
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truncation resonances, in addition to serving as tools for
design.

The Chern number is a material property related to the
dispersion curves of the unit cell and is practically computed
by considering a large number of unit cells with periodic
boundary conditions applied. It allows for the prediction of
the behavior of a periodic medium through the bulk-boundary
correspondence principle, which in fact is itself a manifesta-
tion of the interconnection between the notion of a material
and a structure, originated in the quantum realm − which we
bring here to elastic media in the form of flexural beams. In
the QHE theory, for example, the Chern number is a material
invariant that predicts the existence of edge currents propa-
gating along the edges of truncated finite samples. Similarly,
for our elastic structures, the gap labels predict the number of
truncation resonances that span a band gap as φ is varied for
a finite structure with any prescribed BCs.

We have shown that the existence of in-gap truncation
resonances cannot be guaranteed for any φ and that the topo-
logical character is understood only when sweeping through
φ. This brings a more comprehensive perspective rather than
analyzing particular truncation cases and provides a method-
ology for designing for truncation resonances or their absence.
The boundary phasons, which is a concept we introduce in
this work, provide an additional tool to control truncation
resonances, albeit at different boundaries independently. We
have also investigated the effect of the number of unit cells in
a finite structure, elucidating that the left- and right-boundary
phasons become independent only when a sufficient number
of unit cells is present. We similarly demonstrated that the fre-
quency location of truncation resonances converge only when
the structure is composed of a sufficiently large number of unit
cells, at least five cells in most cases. Mode couplings—whose
locations are influenced by the boundary conditions among
other factors—were shown to impact the rate of convergence
of the truncation resonances. Finally, even for a given set of
BCs and a fixed phason, we have shown that the unit-cell con-
stituent material composition servers as an additional design
tool to control the truncation resonances, demonstrating that
they may be forced to exit a band gap with an appropriate
choice of material volume fraction.

We have also examined another important type of localized
modes in finite structures, the defect mode. We have shown
it to be nontopological, since it remains flat with change of
φ inside the band gap unless it couples with a truncation
resonance. In a perfect “undefected” periodic structure, there
can only be one mode localized at each boundary for any
given phason value. By coupling a truncation resonance with
a defect, it is possible to have two modes with different fre-
quencies living inside a band gap and localized at the same
boundary for a given structure.

This study, we expect, will inspire future work on multiple
fronts. For example, topological properties of discrete chains
with different types of BCs [29,105] and continuous struc-
tures with periodicity in their geometric features or internal
BCs [48,91] may be explored following a similar framework.
More generally, similar principles may be extended to 2D and
3D periodic structures and their truncation resonances, which
may manifest as localized modes at points, edges, and sur-
faces, with possible connections to higher-order topological

FIG. 12. Experimental validation: Resonance frequency (thin
solid lines, theory; dots, experiment) versus ABS length-fraction for
the five-unit-cell SM-PnC beam structure with ā = 203 mm. The
experimental data points correspond to an ABS length-fraction of
0.1, 0.15, 0.2, 0.25, and 0.3, respectively. The thick solid lines repre-
sent the band-gap boundaries for the corresponding infinite periodic
materials.

modes (such as corner modes) [106,107]. Other domains of
potential applicability are coiled phononic crystals for space
saving [108] and combined material-structure design and op-
timization [49,109–111]. A further angle to be explored in
the question of material versus structure is the static regime,
where similar characterization may be established in the con-
text of topological floppy modes [112]. While edge states
have been shown to be robust to disorder in the context of
discrete [71,113] and continuous [114] lattice systems, the
introduction of disorder to truncated periodic structures like
the ones investigated here is a topic for future studies. Other
areas to be investigated are the interplay with nonlinearities
[115] and damping for both free and driven waves [116], the
applicability to damage mechanics such as the effect of num-
ber of unit cells on the fracture toughness [117], and the role of
size effects in nanoscience where small finite dimensions have
profound impact on thermal transport [26] and other physical
properties. Implications to quasiperiodic media [79–82,118]
or nonperiodic media [119] described statistically by repre-
sentative volume elements may also be explored. Finally, the
framework presented for connecting between topology and
truncation may potentially be applied to finite systems in other
branches of physics, such as photonics [50] and quantum
mechanics [42].
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APPENDIX: EFFECT OF UNIT-CELL MATERIAL
VOLUME FRACTION

In addition to property modulation wave number and
phasons, an alternative approach for controlling the fre-
quency locations of truncation resonances is alternation of the
unit-cell design, e.g., by changing its material composition
and/or spatial distribution or its geometry. This can result in

achieving a total exit of a truncation resonance from a
band-gap frequency range, as illustrated in Fig. 12 for a five-
unit-cell SM-PnC structure, which shows that when aABS/a is
set to 0.25 or higher, no in-gap resonances appear in any of
the three gaps covered by both computation and experiment.
In this figure, we consider the full range aABS/a, which at
one extreme (aABS/a = 0) represents a homogenous Al beam,
and at the other extreme (aABS/a = 1) represents a beam
composed of only ABS polymer. This figure also allows us
to examine the sensitivity of the truncation resonances’ fre-
quencies to smooth variations in the material volume fraction.
It can be seen that the truncation resonances are noticeably
more sensitive to varying the unit-cell layer dimensions than
the conventional resonances. Once they exit the band gaps,
however, these unique resonances become less sensitive to
varying aABS/a, and their sensitivity becomes similar to that
of the conventional resonances.
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