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Abstract

We investigate the spectral properties of one-dimensional spatially modulated nonlinear phononic
lattices, and their evolution as a function of amplitude. In the linear regime, the stiffness
modulations define a family of periodic and quasiperiodic lattices whose bandgaps host
topological edge states localized at the boundaries of finite domains. With cubic nonlinearities, we
show that edge states whose eigenvalue branch remains within the gap as amplitude increases
remain localized, and therefore appear to be robust with respect to amplitude. In contrast, edge
states whose corresponding branch approaches the bulk bands experience de-localization
transitions. These transitions are predicted through continuation studies on the linear eigenmodes
as a function of amplitude, and are confirmed by direct time domain simulations on finite lattices.
Through our predictions, we also observe a series of amplitude-induced localization transitions as
the bulk modes detach from the nonlinear bulk bands and become discrete breathers that are
localized in one or more regions of the domain. Remarkably, the predicted transitions are
independent of the size of the finite lattice, and exist for both periodic and quasiperiodic lattices.
These results highlight the co-existence of topological edge states and discrete breathers in
nonlinear modulated lattices. Their interplay may be exploited for amplitude-induced eigenstate
transitions, for the assessment of the robustness of localized states, and as a strategy to induce
discrete breathers through amplitude tuning.

1. Introduction

The discovery of topological insulators in condensed matter physics [ 1] has motivated the exploration of
analogues in classical matter, including electromagnetic [2], acoustic [3] and elastic waves [4]. In this
context, the study of band topology predicts the existence of localized states that are immune to defects and
imperfections. In 1D lattices, dimerized systems analog to the Su—Schrieffer—Heeger (SSH) model [5] provide
a simple and widely employed platform to explore topological concepts, a physical manifestation of which is
the existence of localized states at an interface separating two distinct topological phases [6—11]. More recent
studies seek to enable higher dimensional topological effects in lower dimensional systems by exploiting
virtual dimensions in the parameter space [12—15]. The most common strategy considers 1D lattices whose
positions or interactions are modulated according to the Aubry—André model [16]. The modulation
produces a family of periodic and quasiperiodic lattices that form Hofstadter-like spectra [17] which
highlight topological gaps and edge states that are reminiscent of the quantum Hall effect in 2D electronic
lattices [18]. Hofstadter spectra and topological pumping of edge states have been explored in various
photonic [19], acoustic [20-25], and elastic platforms [26—37], and have been extended to 2D and 3D
modulated lattices exhibiting topological properties analog to the 4D and 6D quantum Hall effects [38—42].
While most studies on band topology described above are conducted on linear systems, there is growing
interest in the investigation of spectral properties in the presence of nonlinearities. For example, the effects of
nonlinearities on the Berry phase have been studied in [43—45], while the amplitude dependent behavior of
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topological states have been addressed in [46—49]. Prior investigations also include the study of the existence
of topological states and of transitions induced by nonlinearities [50-53], of edge [54, 55] and gap

solitons [56—58], and of the robustness and stability of topological states [59]. Of particular relevance to this
work are studies on the amplitude-dependent behavior of nonlinear 1D dimerized elastic lattices inspired by
the SSH model [47-49, 59], which have inspired the present study of Aubry—André modulated lattices.

In [47], the authors illustrate the amplitude-dependent behavior of the interface states, and the associated
hardening properties of the frequency response curves. These predictions were confirmed experimentally
using a lattice of magnetic spinners, for which de-localization of the edge states was observed for increasing
amplitude [48]. A similar behavior was illustrated in [49], where the reduction in localization in the
nonlinear regime was shown for interface modes whose eigenfrequency branch tangentially approaches the
nonlinear bulk bands. The study of the stability of interface modes also confirms the findings of related
work [59]. These prior studies advance the understanding regarding the ability of nonlinear lattices to
support topological states, while suggesting the possible use of amplitude-driven tunability of topological
states.

In this study, we report on the effects of nonlinearities on the spectral properties of elastic lattices
modulated according to the Aubry—André model. In the linear regime, a Hofstadter-like spectrum is formed
as a function of the stiffness modulation wavenumber, featuring non-trivial spectral band-gaps that are
characterized by non-zero Chern numbers [26, 28, 60]. The non-trivial topology manifests itself as edge
states that are localized at the boundary of finite domains, which are present for a broad family of periodic
and quasiperiodic lattices. Inspired by [47-49, 59], we perform a continuation of the linear modes into the
nonlinear regime, and we observe their collective behavior for increasing amplitude levels. The results
highlight a number of transitions experienced by localized states due to the presence of nonlinearities. We
find that the edge states remain localized at the boundaries when their frequency stays within a gap, or
experience a de-localization transition as their frequency tangentially approaches a non-linear bulk band. In
addition, we note that, as amplitude increases, a number of modes detach from the collective of bulk modes
and transition to discrete breathers localized in one or more locations. These transitions are found to be
independent of the lattice size, suggesting a general feature of nonlinear lattices. In contrast to the linear
regime, where modes inside gaps are always localized at an edge (or interface), nonlinearities produce modes
that are localized in multiple regions within the lattice, and that emerge as continuations of the linear bulk
modes. Hence, these results illustrate the co-existence of topological edge states and discrete breathers in
nonlinear modulated lattices, opening opportunities for exploring their interplay for amplitude-induced
topological and localization transitions.

This paper is organized as follows: following this introduction, section 2 introduces the non-linear
modulated lattices and the employed numerical simulation methods. Next, section 3 describes the behavior
of the modulated lattices in the linear regime, highlighting the existence of topological edge states localized at
the boundaries of finite lattices. Section 4 then provides the results concerning the non-linear regime, which
includes the amplitude-dependent spectra and associated mode transitions, followed by transient
time-domain numerical simulations to confirm the predicted behavior. Finally, section 5 summarizes the key
findings of the study and highlights possible future research directions.

2. One-dimensional modulated phononic lattices: equations of motion and solution
methods

We consider a 1D lattice of equal masses m, connected by springs whose stiffnesses are modulated by the
sampling of a sinusoidal function (figure 1). In this setting, the spring constant k,, connecting masses n and
n+ 1is expressed as

k,=ko[1+ Acos(2mnd + ¢)], (1)

where ky is a stiffness offset, while A < 1 is the modulation amplitude. This modulation, inspired by the
Aubry—André model [16], has been widely employed in the investigation of topological edge states in linear
1D lattices [19-32, 32-37]. The lattice periodicity is determined by the parameter 6: rational values of the
form 0 = p/q, where p, q are co-prime integers, define periodic lattices whose unit cell comprises g masses,
while irrational 6 values define quaisperiodic lattices with no repeating pattern of spring constants. Two
examples are illustrated in figure 1, a periodic trimer lattice obtained with = 1/3 (b), whose unit cell
comprises 3 masses, and a quasiperiodic lattice obtained with # = 1/3/8 (c). Additionally, the modulation
phase (or phason) ¢ is a parameter that does not affect the lattice periodicity, but produces stiffness shifts
that result in the presence of edge states localized at the boundaries of finite lattices. The topological
properties of this family of lattices in the linear regime have been explored in previous studies [28, 60], and
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Figure 1. Schematics of the nonlinear modulated elastic lattices (a). The spring constants k, = ko [1 + Acos (2 n0 + ¢ )] are
obtained from the sampling of a sinusoidal function [28]. Cubic nonlinearities with strength ~y are introduced in the expression of
the spring force f = k(Ju + ~vSu?). (b) Periodic trimer lattice obtained with § = 1/3, whose unit cell is highlighted by the blue
box. (c) Example of quasiperiodic lattice with 6 = 1/3/8.

are here investigated in the presence of cubic nonlinearities, whereby the nearest neighbor interaction is
described as f = k(6 + v4°), where § denotes the spring stretch, while -y defines the strength of the
nonlinearity. The equation of motion for mass # is thus given by

mi'ln + kn (un — Mn+1) —+ kn,1 (Mn — unfl)
k(1 = th 1)+ Ykt (= 1)’ =0,
(2)

with u, denoting the displacement of the ny, mass.

The spectral properties of finite lattices are first investigated by computing the linear eigenstates, obtained
for -y = 0. This is done through the solution of a standard eigenvalue problem of the form w?Mu = Ku, where
M is the mass matrix (in this case populated by a diagonal of constants 1), and K is the stiffness matrix that
incorporates the modulated spring constants. These linear eigenstates are then continued into the nonlinear
regime for increasing amplitudes of wave motion. To that end, a harmonic balance method [48] is employed
to obtain numerical estimates of the periodic solutions to the nonlinear equations of motion. These solutions
are sought by assuming the motion of the n-th mass to be of the form u,(t) = a, cos(wt) + b, sin(wt), where
ay, b, are unknown displacement constants, while w = 27 /T is the assumed angular frequency of the
periodic motion with period T, also to be determined. The method proceeds by weighting the residuals of
the assumed solution against the basis provided by the considered harmonics. For a finite lattice of N masses,
a set of 2N algebraic equations with 2N+ 1 unknowns is obtained by substituting the solution ansatz into
equation (2), then multiplying by cos(wt) and, separately, by sin(wt), and finally integrating over the period
t € [0, T]. The unknowns include the 2N displacement constants u = {a;,by,as,bs,...,an,by}7, and the
angular frequency w. An additional equation is imposed by the £, norm of the displacements ||u||, = 4,
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where A is the imposed amplitude of motion. To solve the set of algebraic equations, we start from a small
amplitude A and use the linear solution as a initial guess. We then progressively increase A and numerically
solve the algebraic equations using the previous solution as initial guess. In particular, the numerical solution
follows a trust-region algorithm implemented via MATLAB’s fsolve function with default tolerance values.
For periodic lattices, the wave dispersion properties can be conveniently estimated in the linear regime by
enforcing Bloch-Floquet periodicity conditions [28, 61]. The introduction of nonlinearities causes the
relationship between frequency and wavenumber to depend also on the amplitude of the wave motion.
Herein, we track the amplitude-dependent nature of the dispersion bands by following a Multiple Time Scales
approach, which has been successfully applied and extensively detailed in previous studies [62—64]. The
method is applied to first order as detailed in the appendix, and in the trimer lattice case considered in this

paper (6 = 1/3) the following expression for the non-linear dispersion wjf-\’L( 1) of the jy, band is obtained:

o?

3 g _
gwcj (1), (3)

where 11 is the wavenumber, ij(u) denotes the linear dispersion of the jy, band (obtained through standard
Bloch-Floquet conditions), c; is the wave amplitude, and ¢; is a quantity defined in terms of the linear Bloch
modes and stiffness values. For a given non-linearity strength -, the equation provides the relationship
between the frequency of the dispersion bands w]M (1) as a function of wavenumber 1, which is also
influenced by the wave amplitude «;. As it will be shown, the behavior of the finite lattice modes when

continued into the nonlinear regime has a close relationship to the nonlinear dispersion bands defined above.
3. Background: edge states in linear modulated lattices

This section provides an overview of the behavior of the modulated lattices in the linear regime, focusing on
the topological properties that lead to the existence of edge states. We follow a general approach that
describes the behavior of both periodic and quasiperiodic lattices, which has been developed based on
mathematical principles of K-theory [65, 66]. While our description is kept brief with more focus given to
the non-linear regime behavior in the next section, this approach has been applied in a series of other studies
with greater level of detail. These include investigations on patterned resonators [26, 67], spring-mass

chains [60], acoustic waveguides [20, 21], elastic beams with stiffning or resonator inclusions [30, 31, 36, 68],
periodic elastic waveguides [69] and elastic metasurfaces [70].

3.1. Bulk spectra and Chern number calculation
The properties of the modulated lattices are uncovered by analyzing its bulk spectrum, here estimated by
computing the eigenfrequencies of a large finite lattice. We consider a lattice with N = 600 masses, and
compute its eigenfrequencies as a function of ¢ in the presence of periodic boundary conditions, i.e. by
connecting the first mass to the last mass. Throughout this paper, we consider A = 0.6, and we introduce a
normalized frequency 2 = w/wy, with wy = y/ko/m. The results are displayed in figure 2(a), where the
frequencies are plotted as black dots and form a spectrum that resembles the Hofstadter butterfly
encountered for 2D electronic lattices subject to an external magnetic field [17]. Here, the 6 parameter serves
as an additional dimension defining a family of periodic and quasiperiodic lattices, replacing the magnitude
of the magnetic field. In the figure, band gaps are identified as the white areas featuring an absence of
eigenmodes. To ensure that no modes are found inside the gaps, only commensurate 6 values of the form
0, =n/Nwithn=1[0,1,...,N] are considered in the computation. This choice results in perfectly periodic
ring-like lattices comprising an integer number of unit cells, with no boundaries or defects to generate in-gap
modes. Therefore, their frequencies sample the underlying Bloch dispersion bands for the corresponding ¢
value [29], providing a good representation of the bulk spectrum of infinite lattices. While only periodic
values are considered, the spectrum is defined by continuity within the entire [0, 1] interval, including
irrational 6 values that define quasiperiodic lattices. Two vertical dashed blue lines in figure 2(a) illustrate
two examples that are used throughout this paper to exemplify the behavior of the considered lattices: a
periodic trimer lattice defined by 6 = 1/3, and a quasiperiodic lattice defined by # = 1/3/8. The frequency
ranges defining bulk bands and band gaps for these lattices are respectively identified by the intersection of
the vertical lines with the black and white regions of the spectrum.

The topological properties of the spectrum are evaluated by computing the integrated density of states
(IDS) [67]. It is defined as:

IDS(Q,0) = lim w (4)

)
N—o0
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Figure 2. Spectral properties of linear modulated lattices. (a) Eigenfrequencies of finite lattice with N = 600 masses and periodic
boundary conditions. Vertical dashed blue lines mark the periodic trimer lattice (6 = 1/3) and a quasiperiodic lattice

(6 =+/3/8). (b) IDS as a function of § with color representing frequency Q. Non-horizontal lines represent non-trivial gaps
whose slope define non-zero gap labels Cg. Selected lines are fitted in (b) and the corresponding gaps are labeled in the spectrum
shown in (a).

where [-] denotes the Iverson Brackets, which provide a value of 1 whenever the argument is true. It consists
on a simple computation whereas, for a given point 6, €2 in the spectrum of figure 2(a), the IDS is simply the
number of modes below that frequency €2 divided by the total number of modes N. The computed IDS is
displayed in figure 2(b). While the IDS is computed as a function of €2, this representation uses the inverted
relationship where the colormap represents frequency €2 as a function of IDS and 6. The rendering of the IDS
highlights straight lines that mark discontinuities associated with the spectral gaps. They occur because the
density of states does not change inside a bandgap, since it does not contain any modes. Hence, a sudden
jump in frequency (color) occurs as the IDS changes from the last mode before the gap to the first mode after
the gap. Non-horizontal IDS lines indicate non-trivial gaps, which are characterized by a nonzero topological
invariant called the Chern number [21, 26]. According to the theory, the IDS inside a bandgap is expressed as

IDS (0) = n+ C,0, (5)

with the Chern gap label C, corresponding to the slope of the corresponding IDS line. A few selected lines are
fitted and labeled in figure 2(b), with the corresponding gaps labeled in the spectrum of figure 2(a). Through
such computation, the derived Chern numbers are assigned to each gap for all 6 values that define it,
including rational and irrational values.

3.2. Topological edge states in finite lattices

The non-zero Chern numbers indicate that in-gap topological edge states will exist in finite realizations of the
modulated lattices. These modes are localized at the boundaries of the lattice and define eigenvalue branches
that traverse the gap as the phase ¢ of the stiffness modulation is varied. Such behavior is exemplified for the
periodic trimer lattice with # = 1/3 in figures 3(a) and (b), and for the quasiperiodic lattice with § = V3 /8
in figures 3(c) and (d), corresponding to the two cases highlighted by the blue lines in figure 2(a). The finite
lattice comprises N = 42 masses, which in the periodic trimer lattice includes 14 unit cells. The variation of
its eigenfrequencies with the phase ¢ under free-free boundary conditions is displayed in panels (a) and (c),
while the mode shapes for selected eigenfrequencies are displayed in (b) and (d). Throughout this paper, the
eigenfrequencies are color-coded according to the inverse participation ratio (IPR), which is defined as:

S
(>, 12)°

where u, are the components of the eigenvector. High values of IPR indicate localized modes, while low
values correspond to non-localized bulk modes. The plots evidence a number of mode branches within the
gaps which are localized at the boundaries, corresponding to the topological edge states. While in the linear
regime described here the modes are only localized at the boundaries, the IPR is used in the following section
to signal also transitions of modes that localize in other regions of the lattice.

IPR = (6)

5
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Figure 3. Topological edge states in linear modulated lattices. (a), (c) Eigenfrequencies as a function of stiffness modulation phase
¢, color-coded by the IPR, for periodic trimer lattice with § = 1/3 and quasiperiodic lattice with 6 = 1/3/8. A finite lattice with
N =42 masses and free-free boundary conditions is considered. The shaded gray areas in (a) denote the frequency ranges
occupied by the Bloch bands for the periodic lattice. The gap labels C, are included for convenience, and the edge state branches
are labeled as R and L for right- and left-localized, respectively. (b), (d) Mode shapes for examples highlighted by the ¢ = 0.35 and
¢ = 0.47 intersections (vertical dashed lines) in (a) and (c).

The features of the topological edge states are related to the corresponding gap label C,. According to the
theory [66], there is a total of |C,| pairs of right- and left-localized eigenvalue branches that traverse the gap
as ¢ varies in an interval of 2. For the periodic lattice in figure 3(a), both gaps are characterized by |C,| = 1
(as extracted from figure 2(a)), and indeed feature one left-localized and one right-localized edge state. The
shaded gray regions in the figure correspond to the frequencies defined by the linear dispersion bands. We
note that, for periodic lattices, the Chern numbers can alternatively be extracted from the dispersion bands
in the 4, ¢ space as detailed in previous studies [28], which produces the same results as found here. The sign
of the gap label indicates the direction at which the edge state branches migrate as they traverse the gaps.
When C; > 0 (as in the first gap with C; = 1), the left-localized states migrate from the band below the gap
to the band above the gap, while the right-localized states migrate in the opposite direction. The behavior is
inverted for C, < 0, as observed in the second gap with C, = —1. The modes displayed in figure 3(b)
exemplify a left-localized edge state (I), a non-localized bulk mode (II), and a right-localized edge state (III)
that are defined by the ¢ = 0.357 intersection (dashed vertical line) of the spectrum in (a). Similarly, the
quasiperiodic lattice with § = 1/3/8 in figure 3(c) is characterized by three main gaps with Chern gap labels
of 1, —2 and —1, as extracted from figure 2. The number of modes traversing each gap is in agreement with
the gap label, with the first and last gap exhibiting one pair of right and left-localized edge states, and the
middle gap exhibiting two pairs. The modes displayed in figure 3(d) exemplify a left-localized edge state (1),
and two right-localized edge states (II,III) that are defined by the ¢ = 0.47 intersection of the spectrum in
(c). This framework provides a unified characterization of all periodic and quasiperiodic lattices defined for
different 0 values, with the two selected cases illustrating the behavior of one periodic and one quasiperiodic
example. In general, other 6 values would define different intersections of the spectrum of figure 2(a), with
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band-gaps at different frequencies, but with similar features in terms of topological edge states and their
relationship to the Chern gap labels Cg, regardless of periodicity or quasiperiodicity (i.e. rational or irrational
0 values). In the following section, the amplitude-dependent behavior of the lattices is explored under the
presence of nonlinearities.

4. Spectral properties of nonlinear modulated lattices

The presence of nonlinearities introduce an amplitude dependence on the time-periodic solutions, with the
linear eigenmodes detailed in the previous section defining the low-amplitude solutions. In this section we
uncover the amplitude-dependent nature of such periodic solutions, showing a series of localization and
de-localization transitions of the lattice modes that occur for increasing amplitude levels. We first explore the
periodic trimer lattice (6 = 1/3), illustrating it is behavior for both positive and negative cubic
nonlinearities, and also for different lattice sizes. We then characterize similar transitions that occur for the
quasiperiodic lattice with # = 1/3/8. Finally, we confirm the existence of the predicted periodic solutions by
simulating the free temporal evolution of the lattice motion when these are enforced as initial conditions.

4.1. Amplitude-induced modal transitions for periodic trimer lattice (6 = 1/3)

4.1.1. Positive cubic nonlinearities

We first observe the evolution of the eigenvalue branches in terms of amplitude for the periodic trimer lattice
with @ = 1/3 and positive cubic nonlinearities of strength v = 0.1. The results for ¢ = 0.357 (vertical dashed
line in figure 3(a)) are displayed in figure 4(a), which were obtained as the continuation of the linear modes
via the described harmonic balance approach. We observe that all eigenvalue branches experience a shift
towards higher frequencies for increasing amplitudes, which is consistent with the hardening behavior of the
lattice due to v > 0. The shaded gray areas correspond to the frequency ranges occupied by the nonlinear
bands obtained through equation (3) when (i is swept in the Brillouin zone [0, 7]. These areas also
experience a shift towards higher frequencies as amplitude increases. In order to match amplitudes and to
conduct a comparison with the finite lattice modes, the amplitude of the Bloch wave o; is linked to the
amplitude A of the finite lattice modes by imposing oj = A//N/3, so that when a wave-based solution is
extended to a finite lattice with N masses, the resulting £, norm is equal to A. Note that this assumes a
unitary £, normalization of the Bloch eigenvectors. In the linear regime, the eigenfrequencies of the finite
lattice lie within the shaded regions that define the Bloch bands, with the exception of the topological modes
inside the gaps that are localized at the edges. As amplitude increases, we observe that the majority of the
finite lattice modes still remain concentrated in frequency regions delimited by the nonlinear dispersion
bands. However, a few mode branches detach from or approach these bands, undergoing localization or
de-localization transitions as evidenced by the variation of their IPR. In contrast to the linear regime, the
localization induced by nonlinearities may occur in multiple regions within the lattice, not only at the edges.
This behavior is illustrated for a few selected mode branches highlighted by thicker lines and dots in

figure 4(a), whose mode shapes are displayed as a function of amplitude in figure 4(b). Each panel displays
the variation of absolute value of the mode shape, normalized by the maximum value at each amplitude. The
mode shapes for the initial, intermediate, and final amplitude value are highlighted by red lines to highlight
the transitions that have occurred for these modes.

We first examine the behavior of the topological edge state branches I and III, which are the continuation
of the linear modes I and III of figure 3(a). The edge state in the first gap (mode I), which is localized at the
left boundary in the linear regime, remains localized for increasing amplitudes since its branch remains
within the gap. Note that the nonlinearities induce a shift of the branch to higher frequencies. However, this
shift is not sufficient to cause the branch to exit the band-gap region for the considered range of amplitudes.
In contrast, the branch of the edge state in the second gap (mode III), which is localized at the right
boundary in the linear regime, slowly approaches the boundaries of the third nonlinear band, eventually
remaining tangential to it. This causes a de-localization transition for the corresponding mode shape
(figure 4(b)), which becomes less localized as its eigenvalue branch approaches the nonlinear band. The
behavior of this second edge state is reminiscent to the de-localization transitions of topological interface
states previously reported for dimerized lattices [48, 49]. However, it is interesting to note that the modulated
lattices investigated here generally feature more than one edge state, and in the same amplitude range one
edge state may remain robustly localized while the other experiences a de-localization transition.

In addition to the edge states, the modes which detach from the nonlinear bulk bands become localized
in one or more regions within the lattice, as evidenced by modes II, IV, V and VI. We identify these as discrete
breathers, i.e. time-periodic and spatially localized solutions. The existence of breathers has been
theoretically investigated in mono-atomic lattices [71] and experimentally demonstrated in dimerized
granular chains [72], for example. Indeed, a common factor in these prior studies is that discrete breathers
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Figure 4. Amplitude dependent spectrum of periodic trimer lattice with § = 1/3, N =42 masses, ¢ = 0.357 and v =0.1 (a).
Selected highlighted branches have their mode shapes displayed in the panels of (b), for the amplitudes corresponding to the dots
along the branches. The mode shapes for the initial, intermediate and final amplitude value are highlighted by red lines to
enhance the visualization of their transitions.

emerge as continuations of the band-edge modes into the nonlinear regime for increasing amplitudes. By
conducting a continuation of all the lattice modes (which we believe has not been done in prior studies), our
results reveal a multitude of such breather solutions. For example, the last modes of the lattice IV-VI, which
detach from the third band, become breathers localized in one, two, and three sub-regions respectively. These
localization transitions seem to be triggered by the amplitude value for which the eigenvalue branch detaches
from the nonlinear bulk bands. The number of regions of localization appears to be connected to the shape
of the linear modes defined for A ~ 0: modes IV-VI are respectively characterized by three, two and one
primary regions of motion in the linear regime, and then localize in the same number of sub-regions in the
nonlinear regime. Of note is the transition experienced by mode II: for increasing amplitudes it detaches
from the edge of the second nonlinear band and enters the region of the second gap. Through the transition,
it becomes a discrete breather localized in a region near the center of the lattice. Therefore, the second gap
features a right-localized edge state defined for low amplitudes (mode III), and a discrete breather at higher
amplitudes (mode II). Their interplay can be potentially engineered for amplitude-induced localization
transitions at a constant frequency.

4.1.2. Negative cubic nonlinearities

The spectral characteristics for negative cubic nonlinearities (v = —0.1) are reported in figure 5. The results
are obtained as continuation of the linear modes for the same selected phase ¢ = 0.357 (vertical dashed line
in figure 3(a)). In this case, the frequencies decrease with amplitude following the typical softening behavior
associated with v < 0. Both edge states (mode I and II) experience a de-localization transition as their
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Figure 5. Amplitude dependent spectrum of periodic trimer lattice with § = 1/3, N =42 masses, ¢ = 0.357 and v = —0.1 (a).
Selected highlighted branches have their modes displayed in (b)—(f).

branches tangentially approach the bulk bands below the gap. Discrete breathers localized in one (mode III),
two (mode IV), and three (mode V) sub-regions emerge as the bulk modes detach from the lower edge of the
third band, similar to the examples described for v > 0 above. A particularly interesting behavior is noted for
mode III; it starts as an extended bulk mode for low amplitudes, and then becomes a discrete breather
localized at the center of the lattice as its branch enters the region of the gap. For even higher amplitudes, its
branch tangentially approaches the upper boundary of the second band, causing a reduction of localization,
similar to that experienced by the edge states. Hence, this mode branch essentially migrates from one band to
the other, which resembles the typical spectral flow behavior of topological states that occur upon varying a
parameter such as the wavenumber, or the phase ¢ as shown in section 3. Here, the spectral flow is driven by
the amplitude A, and the behavior of the mode shape can be predicted based on whether the eigenvalue is
near the bulk band (non-localized) or isolated inside the gap (localized).

4.1.3. Influence of lattice size

While the examples described above illustrate the transitions that happen for a particular phase (¢ = 0.357),
similar transitions happen for other phase values, which simply define different linear solutions as the
starting point. In addition, these transitions also seem to be robust with respect to the lattice size. A few
examples are illustrated in figure 6, which reports the amplitude-dependent spectrum for the trimer lattice
(0 = 1/3) lattice with (a) N =24, and (b) N = 84 masses for y = 0.1. Overall, both spectra are similar to that
for N =42 shown in figure 4, and exhibit similar transitions. A few selected modes highlighted in figures 6(a)
and (b) are displayed in figure 6(c), illustrating the similarity of the transitions. For instance, irrespective of
lattice size, a similar de-localization transition is observed for the edge state in the second gap. Although not
reported for brevity, the edge state in the first gap also remains localized as in the case of figure 4, since the
eigenvalue branch remains within the gap. In addition, the same number of branches detach from the third
bulk band and transition into discrete breathers, which are localized in the same relative regions of the lattice
(center for mode III, and two regions for mode II). Our simulations also confirmed a similar behavior for
other modes and lattice sizes, suggesting the potential generality of these mode transitions.

4.2. Amplitude-induced modal transitions for quasiperiodic lattice (8 = /3/8)

The results described so far illustrate the typical behavior of a periodic lattice, exemplified by the trimerized
case @ = 1/3. It was shown that the localization or de-localization transition of the finite lattice periodic
solutions respectively occur as the eigenfrequency branches detach or approach the non-linear dispersion
bands. We note that other authors have defined the nonlinear bands as the frequency-amplitude (or
frequency-energy) regions delimited by the first and last modes of the finite lattice [49]. In the present work,
this definition would include the discrete breathers IV-VI from the third band of figure 4, for example.
Hence, our results suggest an alternative interpretation where the amplitude-dependent behavior of Bloch
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waves defines nonlinear bulk bands instead, since these regions correspond to plane waves propagating along
the lattice with a given amplitude-frequency relation [62-64]. We indeed notice that the majority of the bulk
modes of a non-linear finite lattice have frequencies belonging to such regions. In contrast, modes which
detach from these bands are discrete breathers, which are localized. While more work is still needed for a
rigorous understanding of these relations, our interpretation is that the non-linear finite lattice modes
residing in the non-linear bulk bands are defined by the superposition of two amplitude-dependent Bloch
wave modes that form a standing wave at the same frequency. In contrast, the frequency of the discrete
breathers do not reside within the non-linear bulk bands, and their mode shapes have a localized character
since they cannot be defined by the superposition of only two amplitude-dependent Bloch wave modes.
Therefore, these results suggest that the finite lattice modes do not necessarily define the nonlinear bands,
and the amplitude-dependent Bloch wave solutions may provide a better representation of the non-linear
bulk spectrum.

While the same analysis could be conducted for other periodic lattices defined by rational § = p/q, we
here illustrate that such mode transitions appear more generally also for quasiperiodic lattices, that define
arbitrary intersections of the spectrum in figure 2(a) for irrational 6 values. The results for a representative
case ) = /3 /8 are displayed in figure 7, which show the continuation of the linear modes defined for
¢ = 0.47 (vertical dashed line in figure 3(c)) as a function of amplitude for positive cubic nonlinearities of
strength v = 0.1. In the quasiperiodic case, one cannot estimate the non-linear dispersion bands due to the
absence of periodicity, but the transitions of the finite lattice modes exhibit similar patterns. The linear
spectrum for this example features three large band-gaps, each containing one edge state for the selected
phase intersection (¢ = 0.47) as illustrated in figure 3(d). The eigenvalue branches of the edge states all
experience a shift towards higher frequencies, with the higher frequency modes experiencing a larger shift.
Therefore, the edge state branch in the first gap (mode I) exhibits the smallest frequency shift and remains
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within the gap, while its mode shape remains localized at the left boundary (figure 7(b)). The edge state
branch in the second gap (mode II) exhibits a larger frequency shift and tangentially approaches the
non-linear band above the gap, which causes a de-localization transition of its right-localized mode shape
(figure 7(c)). The same occurs for the edge state branch in the third gap (mode V), however the frequency
shift is even larger due to its higher frequency, and the de-localization transition happens at a lower
amplitude level (figure 7(f)). Similarly to the periodic case, mode branches which detach from the collective
of the lattice bulk modes experience a localization transition and become discrete breathers localized in one
or more regions of the lattice. These transitions are highlighted for modes (III) and (IV), which form discrete
breathers localized in one and two regions (figures 7(d) and (e)), and for modes (VI-VIII), which form
discrete breathers localized in one, two and three regions (figures 7(g)—(i)).

These results highlight the features of the amplitude-induced modal transitions that generically occur for
the non-linear modulated lattices, with different choices of 6 and ¢ defining different starting points for the
linear regime solutions, which may exhibit different number of bandgaps and edge states, but still feature
similar modal transitions. In general, the eigenfrequencies will experience a shift towards higher or lower
frequencies for positive and negative cubic nonlinearities, respectively. In the case of the edge states, they will
remain localized if the frequency shift is not enough to veer its branch close to a non-linear bulk band.
Otherwise, a de-localization transition occurs as its eigenvalue branch approaches the non-linear bulk band.
In addition, all the linear modes at the edges of the bulk bands have a tendency to detach and transition into
discrete breathers. These transitions occur faster (with respect to the amplitude) for higher frequency modes,
which usually experience the larger frequency shifts. We also observe an orderly hierarchy in the nature of
such localized solutions; the first mode which detaches from the bulk band becomes localized in a single
region, while the second becomes localized in two sub-regions, the third in three sub-regions, and so on. This
behavior was shown to be consistent across periodic lattices of different sizes and also for the quasiperiodic
case presented here. Indeed, we remark that our results did not evidence a clear distinction between the
nonlinear behavior of periodic and quasiperiodic lattices, other than the fact that different 6 values define
different intersections of the linear spectrum, and therefore define different starting points in terms of band
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Figure 8. Phase space representation plot (u, () vs i1,(¢)) illustrating the free evolution of the lattice motion characterized by
periodic orbits, for different imposed initial conditions. Panels (a) and (b) are obtained by enforcing as initial conditions the first
and last amplitudes of branch VI in figure 4, illustrating the localization transition to a discrete breather localized at the center of
the lattice. Similarly, panels (c) and (d) illustrate the de-localization transition from low (c) to high (d) amplitudes experienced by
the edge state (mode III of figure 4).

gaps and linear edge states. While their behavior can be understood under the same general framework, the
analysis of quasiperiodic lattices is not supported by underlying non-linear Bloch analysis calculations, which
is a current limitation that should be explored in future studies.

4.3. Numerical verification of modal transitions through transient response

The behavior predicted above is verified through direct time domain simulations. The existence of the modes
is confirmed by first specifying the Harmonic Balance solutions as initial conditions to the finite lattice, and
then simulating its free response for a total of N, = 30 periods of oscillation through numerical integration
using Matlab’s ode45 routine. We chose a duration of 30 periods as it is sufficiently large to identify if the
periodic solutions persist, but not large enough to generate stability issues (which are out of the scope of the
present work). A few examples are illustrated in figure 8 using a phase space representation plot of u,,(f) vs
i1, (t) for each mass 7 in the lattice. Panels (a) and (b) show results for the discrete breather identified by
branch VI of figure 4(a), when the smallest and highest amplitudes of the branch are respectively imposed as
initial conditions. The figures illustrate how the imposed solution persists and define periodic orbits for each
mass in the phase space, with non-localized (a) or localized (b) character as predicted by their mode shapes,
and further confirming the localization transition inducing the discrete breather localized at the center of the
lattice. Similarly, panels (c) and (d) illustrate another example obtained by enforcing the first and last points
belonging to branch III of figure 4 as initial conditions. In this case, the de-localization transition
experienced by the edge state from low (c) to high (d) amplitude is clearly evidenced.

These simulations are repeated for each branch highlighted in figure 4(b) by sweeping through the
amplitude A, with results summarized for the 6 modes of interest in figure 9. Each subfigure displays the
results for one mode; the bottom panel presents the Fourier Transform (FT) of the time response averaged
along the entire lattice as a function of imposed amplitude A. On the top panel, the root mean square (RMS)
of the time history for each mass is displayed as a function of amplitude. Similarly to the eigenmode plots,
and for better visualization, for each individual amplitude A the results are normalized to the maximum
displacement along the lattice. The results confirm the amplitude-frequency content through the FTs, which
exhibits good agreement with the super-imposed eigenvalue branch of the corresponding mode (dashed red
lines). The RMS results in the top panels also confirm the predicted localization and de-localization
transitions as a function of amplitude experienced by the modes. Another set of results for § = 1/3 and
~v = —0.1 is displayed for three selected modes in figure 10 (the two edge states and the discrete breather of
branch III), which also confirm the predicted transitions. Similarly, our simulations also confirmed the
predicted behavior for the other cases in figures 6 and 7, which are omitted for brevity. Although these results
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Figure 10. Verification of amplitude-dependent behavior through time domain simulations for periodic trimer lattice with

0 =1/3, N =42 masses, ¢ = 0.357 and v = —0.1. The bottom panels display the FT of the transient response averaged across
the lattice as a function of amplitude A, confirming the frequency-amplitude content for each mode of interest. The top panels
illustrate the RMS of the time history for each mass as a function of amplitude, confirming the predicted localization and

de-localization transitions.

are not formal proof of stability [49, 59], an important task to be carried out in future studies, they
undoubtedly confirm the existence of the predicted modes as possible periodic solutions for the non-linear

equations of the lattice motion.
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5. Conclusions

In this paper, we investigate the amplitude-dependent behavior of nonlinear modulated phononic lattices.
Our results illustrate a series of amplitude-induced localization and de-localization transitions of edge states
and discrete breathers, further advancing the understanding of the nature of localized modes in nonlinear
lattices. In contrast to the linear regime, where modes inside gaps are always localized at an edge (or
interface), nonlinearities produce localized modes in multiple regions of the lattice, that emerge as
continuations of the linear bulk modes. For periodic lattices, the mode transitions are further elucidated by
including the analysis of the amplitude-dependent non-linear dispersion bands, revealing that localization or
de-localization transitions respectively occur as the finite lattice modes detach or approach the regions of the
non-linear bands. These amplitude-induced modal transitions are then shown to generically occur also for
quasiperiodic lattices, and signal a generic feature of the family of modulated lattices.

We emphasize that our results provide a framework that utilizes the linear regime solutions as a starting
point, as we then observe transitions induced by increasing amplitude within the non-linear regime.
Therefore, the topological properties of the edge states (i.e. Chern numbers) are still restricted to the linear
regime, and a rigorous understanding or extension to the non-linear regime is still warranted, which perhaps
may explain the observed de-localization transitions. We also note that while our analysis concentrated on a
continuation of linear eigenmodes, other types of modes that are not continuation of linear modes may exist
in non-linear lattices [73].

Beyond the results presented herein, multiple opportunities are identified for future studies such as
stability analyses [49, 59], the forced response behavior, and possibilities for localization transitions between
edge states and discrete breathers induced by the amplitude of motion. Additionally, the extension of these
concepts to continuous non-linear elastic metamaterials [74] may define a fruitful endeavor, leading towards
experimental studies [75].
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Appendix. Multiple time scales approach for nonlinear Bloch waves

The dispersion of infinite lattices with nonlinear interactions is here investigated by conducting a multiple
time scales analysis. The procedure described here is essentially the same as described in [62—64], applied to
the modulated lattices. We start by writing the equations of motion for a unit cell with ¢ masses in matrix
form (obtained for rational = p/q):

m 0 ... 0 1','{17]' ky +kq —k; 0 Uy
0 m ... 0 1./.[27]' —k1 kl + k2 —k2 0 Mz’j
0 0 0 m i"‘q,j 0 e —kq_1 kq—l + kq lzlqﬂ‘
0o 0 ... *kq 1/[17]'_1 0 0 0 1/[17]‘_;,_1
0o 0 ... 0 1/[27]'_1 0 0 0 1/[27]‘_;,_1
+ . . + 1 . . .
00 0 0] |uy. —k, 0 0 0] lugin
3 3
kl (uluj - Mz,j) + kq (ulrj - Uq’jfl) 0
3 3
ky (2 —usj)” +ki () —w 0
oo Rl ek ) |G .

kq (“qyj - “1,j+1)3 + kg—1 (“qyj - “qfl,j)S
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where j denotes the index of that unit cell, and € = ~ is the strength of the cubic nonlinear interactions, now
considered as a small parameter. In compact notation, we may write

Mii; + Koy + K1y t1 + K1 + of™ (w151, 541) = 0. (8)
First, time scales of successively slower evolution are defined:
T, =¢€"t — To=t, Ti=c¢t, T,=¢t ... 9)
Next, a series solution for the displacements is considered

u—= u]‘(O) (To,T],Tz,. ) + eu]-(l) (To,Tl,Tz,. . ) + €2u]-(2) (To, T],Tz, . ) +.... (10)

Note that time derivatives can be re-written as
()=Do()+€eDy () + €Dy () + ... (11)
() = D2 () 4 2eDyD; () + €D? () + 262 DyD5 () + .. (12)

where D, () = () /0T, The equation of motion then becomes

0 0 0 0
DéMuj( ) +K(0)uj( ) J'_K(*l)uj(f)l —&-K(l)uj(Jr)l
+ ¢ (D3mu" + 200D Mu” + Kooyl + Kyl + Kyl + ) +0(€) =0, (13)

We can now separate the first two ordered equations

O (60) : D(Z)Muj(o) +K(0)u;0) + K(_l)u]@l + K(l)u](_?_)l =0 (14)
O(c"):  DiMul" +Keyu!" + K_pu, + Koyu'}, = 200D Mu” — . (15)

The zeroth-order equation admits a Bloch wave solution

uj(O) _ A (Zl) ,l/}ei(uj—ij(u)Tg) +cc (16)
where c.c denotes complex conjugate, A(T}) is the amplitude of the Bloch mode that is only a function of T,
(therefore it evolves slowly), 4 is the Bloch mode shape and ij (1) is the linear dispersion for the specified
mode. Substitution of the Bloch ansatz into the zeroth-order equation yields the eigenproblem

woMyp = K (1) %, K (1) = Ko + K-ye ™ + Kpye (17)

whose solution gives the linear dispersion with g branches and corresponding eigenvectors (note that this is
the same eigenvalue problem obtained by directly enforcing Bloch conditions in the linear case). Since the
O(€') equation has the same linear kernel, we may also assume a solution in the form of

u]_(l) _ gi/’ei(“j_wf(”m) +ec. (18)

In this case, the amplitude B of the wave is constant since we are not carrying out O(e*) and T, terms. To
identify secular terms, it is helpful to introduce modal coordinates for both the 1 and the u(V) solutions,
since the linear kernel of €” and €' equations can be decoupled by the Bloch modes. Hence, we define

u]‘(o) = q)Z}O)ei“f tecc uj(l) = ‘I>Z;1)ei“j +cc (19)

where @ (1) is the matrix of Bloch eigenvectors, and

in ==y (20)
B .
2) = fe*'wf To (21)

with the relation wJL( ) already defined as the dispersion obtained from solving the linear eigenvalue

problem. Using this transformation, the O(e!) equation becomes

(DéMi’zj(l) +K (1) @2 +2D,D,M®2") + FNL> - (22)
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while noting that the nonlinear terms may be generally written as f'" = F¥'¢i* 4 c.c. For non-trivial
solutions, the terms multiplying ¢/ must be zero, hence we get

D@M@z]“) +K(p) <I’z]-(1) — —2D0D1M<I’z].(°) — P, (23)
Next, we pre-multiply by +", yielding
DipiiMaz") + yllK (1) @2 = —29/ DD, M2 — PV (24)

Assuming the elgenvectors are normalized as ¥4,

= 0,m> and that all masses on the chain have a constant
mass m, we get that 1’ M® = m and " K(1)® = (wk)?

m. The updated €' equation becomes

1

Dizf,) + (wr) 2], = —2DoDif) — 4yl (25)
To identify secular terms, we re-write the right hand side as
1 ; 1 ;
DI + ()50 = (kg (1) - sl ) % (B ) eBin g
i i m m

where the prime ()’ denotes D; and noting that for cubic nonlinearities FN' can be written as
L o L .
PV = pNLe—iw, To 4 pyNLp—i3w, Ty Introducing a polar form for A,

Ay (Ty) = o, (Ty) e Pn(T) (27)
where a,(T}), 8,(T1) are real variables, and removing secular terms gives
iwkm(a) —ia,B]) e P = N, (28)

(0)

At this point one must specify initial conditions for the u;"* solution that will determine the coefficients of

the F™" term. For simplicity, we assume that a single wave mode is imposed, as more complicated initial
conditions would require treatment of wave—wave 1nteract10ns that will not be conducted here. In particular,
for the = p/q = 1/3 trimer lattice, evaluation of 1! F; N gives

3 . .
B = gone™ e () (29)
where ¢, (1) is expressed as

& (1) = = 2ksthrhs (Juor |2+ [s]2) € + sty “93e™ 2 4 keyths e
— 2ksthsin (|0 * + [0s]?) €% + (ki + ks) [ |* + (ki + k) [o]*
+ (4ky 1o |* 4 4ks |13 * — 2ky (V102 + athn) ) [ + (ko + Ks) [43]* (30)
+ (4ko|03]* = 2ky o102 — (2k11by + 2kat3) ¥ — 2kathaths ) 4o
— 2k; (Va3 + 312 |3 |* + kﬂﬁlzqﬁ% + (ki + kat3) b+ k215321/}§-

We note that through symbolic manipulation c,(x) is confirmed to be a purely real quantity. Considering the
real and imaginary parts of equation (28) yields the two evolution equations

R — wmﬂfgancn(u) (31)
S = wma! =o0. (32)

The amplitude v, is constant with T and the evolution of 3, can be obtained by simple integration

3 o}
Bn(T1) = g@cn () Ty (33)
The uj(o) solution can now be recomposed as
u” = by cos (1 — wi (1)1) (34)
where W) (1) is the non-linear compensated dispersion relation given by
3 ol
NL L n
= - 35
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