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Practical verification protocols for analog quantum simulators
Ryan Shaffer 1✉, Eli Megidish1, Joseph Broz1, Wei-Ting Chen1 and Hartmut Häffner 1

Analog quantum simulation is expected to be a significant application of near-term quantum devices. Verification of these devices
without comparison to known simulation results will be an important task as the system size grows beyond the regime that can be
simulated classically. We introduce a set of experimentally-motivated verification protocols for analog quantum simulators,
discussing their sensitivity to a variety of error sources and their scalability to larger system sizes. We demonstrate these protocols
experimentally using a two-qubit trapped-ion analog quantum simulator and numerically using models of up to five qubits.
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INTRODUCTION
Quantum simulation has long been proposed as a primary
application of quantum information processing1. In particular,
analog quantum simulation, in which the Hamiltonian evolution of
a particular quantum system is directly implemented in an
experimental device, is projected to be an important application
of near-term quantum devices2, with the goal of providing
solutions to problems that are infeasible for any classical
computer in existence. Because the obtained solutions to these
problems cannot always be checked against known results, a key
requirement for these devices will be the ability to verify that the
desired interactions are being carried out faithfully3–5. If a trusted
analog quantum simulator is available, then one can certify the
behavior of an untrusted analog quantum simulator6. But in the
absence of a trusted device, provable verification is essentially
intractable for systems of interest that are too large to simulate
classically3. Therefore, in the near-term, we see a need to develop
pragmatic techniques to verify these devices and thus increase
confidence in the results obtained.
Many experimental platforms have been used to perform

analog quantum simulations of varying types, including devices
based on neutral atoms7–9, trapped ions10–12, photons13, and
superconducting circuits14. In such works, validation of simulation
results is typically performed by comparison to results calculated
analytically or numerically in the regime where such calculation is
possible. In addition, a technique for self-verification has been
proposed and demonstrated12 which measures the variance of the
energy to confirm that the system has reached an eigenstate of
the Hamiltonian. However, this technique does not verify whether
the desired Hamiltonian has been implemented faithfully.
One method which has been proposed for analog simulation

verification is to run the dynamics forward and backward for equal
amounts of time3, commonly known as a Loschmidt echo15,16,
which ideally returns the system to its initial state. Such a method
is not able to provide confidence that the parameters of the
simulation are correct, nor can it detect some common sources of
experimental error such as slow environmental fluctuations or
crosstalk between various regions of the physical device. However,
it is naturally scalable and is straightforward to implement
experimentally, provided that a time-reversed version of the
analog simulation can be implemented. An extension of this
method similar to randomized benchmarking has also been
proposed17, although this suffers from the same shortcomings just
mentioned.

Another natural candidate for verification of analog simula-
tions is to build multiple devices capable of running the same
simulation and to compare the results across devices, which is a
technique that has been demonstrated for both gate-based
devices18 and analog simulators19. This technique has the
obvious difficulty of requiring access to additional hardware, in
addition to the fact that it may be difficult to perform the same
analog simulation across multiple types of experimental
platforms.
Experimentalists building analog quantum simulators are in

need of practical proposals for validating the performance of
these devices. Ideally such a protocol can be executed on a
single device, can provide confidence that the target Hamilto-
nian is correctly implemented, and can be scaled to large
systems. In this work, we aim to address these goals by
introducing a set of experimentally practical approaches to the
task of validating the performance of analog quantum
simulators.

RESULTS
Overview of verification protocols
The task of analog quantum simulation involves configuring a
quantum system in some initial state, allowing it to evolve
according to some target Hamiltonian for a particular time
duration, and then analyzing one or more observables of interest.
A verification protocol for this process should provide some
measure of how faithfully the device implements the target
Hamiltonian.
We claim that a useful protocol for verification of analog

quantum simulators should have the following attributes:

Independent of numerical calculations of the system dynamics. We
should not need to rely on comparison of the analog simulation
results to numerically-calculated dynamics of the full system, since
simulations of interest will be performed in regimes where
numerical calculation is infeasible.

Efficient to measure. Verification protocols should leave the
system in or near a basis state, rather than in some arbitrary
state. This allows characterization of the final state by making only
a small number of measurements. This allows us to circumvent the
need for more intensive procedures such as full state tomography,
which in turn reduces the experimental overhead.
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Sensitive to many experimental error sources. The main objective
of a verification protocol is to measure experimental imperfec-
tions. If a protocol is not sensitive to some potential sources of
experimental error in the simulation, it cannot give us maximal
confidence in the results.

Applicable to near-term analog quantum simulators. Unlike many
benchmarking protocols for digital, gate-based quantum compu-
ters, we are not seeking a protocol which can give fine-grained
information about the fidelity of a particular operation, but rather
an approach which can give us coarse-grained information about
the reliability of a noisy simulation.

Scalable to large systems. Many interesting near-term analog
quantum simulations will likely be performed in regimes where
the system size is relatively large (many tens or hundreds of
qubits). A useful verification protocol for such devices should be
efficiently scalable to these system sizes, given reasonable
assumptions.
In this work, we propose a set of three verification protocols for

analog quantum simulators which exhibit many of these
attributes. These are illustrated in Fig. 1. The overarching strategy
for each protocol, inspired by the Loschmidt echo procedure,
involves asking the simulator to evolve a system from some
known initial state through a closed loop in state space, eventually
returning to its initial state. By using a basis state as the initial (and
final) state, we can efficiently measure the success of this
procedure. A number of strategies exist to construct such a
closed loop, with varying pros and cons. We use a few of these
strategies to construct the proposed verification protocols. These
protocols are summarized in Table 1, including some types of
experimental noise to which each protocol is sensitive, the
hardware requirements for implementing each protocol, and the
scalability constraints of each protocol.
First, we propose a time-reversal analog verification protocol, in

which the simulation is run both forward and backward in time. As
illustrated in Fig. 1a, this approach simply performs a Loschmidt
echo to reverse the time dynamics of the simulation and then
verifies that the system has returned to its initial state. However,
because the system traverses the same path in state space in the

forward and backward directions, it is insensitive to many types of
experimental errors, including systematic errors such as miscali-
brations in the Hamiltonian parameters or crosstalk between sites.
To increase the susceptibility to systematic errors, we propose a

multi-basis analog verification protocol, as shown in Fig. 1b. This is
a variant of the time-reversal protocol in which a global rotation is
performed on the system after the completion of the forward
evolution, and the backward evolution is then performed in the
rotated basis. Because this requires a physical implementation of
the analog simulation in an additional basis, it will provide
sensitivity to any systematic errors that differ between the two
bases. For example, errors due to some types of shot-to-shot noise
may be enhanced and not cancel out as in the previous protocol.
However, we note that the previous two protocols may still be

insensitive to many types of errors, such as miscalibration or the
presence of unwanted constant interaction terms. To address this,
we introduce a randomized analog verification protocol, which
consists of running randomized analog sequences of subsets of
the target Hamiltonian terms, as depicted in Fig. 1c. In particular,
we choose a set of unitary operators consisting of short, discrete
time steps of each of the terms of the Hamiltonian to be
simulated, which may be in either the forward or backward
direction. We randomly generate long sequences of interactions,
each consisting of a subset of these unitary operators, which
evolves the system to some arbitrary state. We then use a Markov
chain Monte Carlo search technique to approximately compile an
inversion sequence using the same set of unitary operators, such
that after the completion of the sequence, the system is measured
to be in a basis state with high probability. This scheme is an
adaptation of traditional gate-based randomized benchmarking
techniques20,21 for use in characterizing an analog quantum
simulator. A key difference is that for a general set of Hamiltonian
terms, finding a non-trivial exact inversion of a random sequence
is difficult, which is why we instead find an approximate inversion
sequence. In principle, this approximation is a limitation on the
precision with which this protocol can be used to verify device
performance. However, in practice, the search technique can be
used to produce inversion sequences that return a large
percentage (e.g., 99% or more) of the population to a particular
basis state, which is enough for the protocol to be useful on noisy

Fig. 1 Illustration of verification protocols for analog quantum simulators. Various protocols yield information about the accuracy of a
quantum simulator by propagating a state along a closed loop and verifying to what degree the system returns to its original state, labeled
here as 0j i. The state ψj i denotes the state of the system after applying the dynamics of Hamiltonian H for a time τ, whereas the state ϕj i
denotes an arbitrary state. a Time-reversal analog verification: Running an analog simulation forward in time, followed by the same analog
simulation backward in time. b Multi-basis analog verification: Running an analog simulation forward in time, rotating the state, performing
the backward simulation by an analog version in the rotated basis, and finally rotating the state back. c Randomized analog verification:
Running a random sequence of subsets of the Hamiltonian terms (denoted as Hrand), followed by an inversion sequence of subsets of the
Hamiltonian terms which has been calculated to return the system approximately to a basis state.
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near-term devices, since even the most accurate analog quantum
simulations typically have fidelities that decay far below this
level22.
Each verification protocol can then be executed for varying

lengths of time, and the measurement results will provide the
success probability of each protocol as a function of time. For a
system that implements the target Hamiltonian perfectly, one
expects this probability to remain constant, with a small offset
from unity due to state preparation and measurement errors, as
well as the approximation error for the inversion sequence in the
randomized protocol. But if the system dynamics are not perfect,
one expects the success probability to decrease as a function
of time.
For standard randomized benchmarking protocols, the shape of

the decay curve provides additional information about the errors,
for example, allowing one to distinguish whether the dominant
error source affecting the dynamics is Markovian or non-
Markovian. For typical incoherent noise, one expects this to be
an exponential decay, but for noise that is non-Markovian23,24 or
low-frequency25, the decay curve may be non-exponential.
However, in general, we make no strong claim about the shape

of the decay curves resulting from the analog verification
protocols. In particular, randomized benchmarking requires that
the gate set must form an ϵ-approximate 2-design, which is true
not only of the Clifford group but also of any universal gate set,
given that the randomly generated sequences are long enough26.
However, the time-evolution operator generated by a fixed
Hamiltonian cannot approach a 2-design without adding a
disorder term17, which means that we cannot directly apply
randomized benchmarking theory for the time-reversal or multi-
basis analog verification protocols. And even the randomized
analog verification protocol, which is conceptually more similar to
randomized benchmarking, does not require that the Hamiltonian
terms actually generate a universal gate set or that the generated
sequences are long enough to approximate a unitary 2-design.
Nonetheless, the decay curves still contain potentially useful

information about the reliability of the analog quantum simulator.
The protocols could be used as a tool to assist in calibrating an
analog simulation by attempting to minimize the decay. Also,
since each protocol has different sensitivities to errors, comparing
decay curves from the various protocols may give clues to an
experimentalist about the types of errors that are present.
In this work, we treat noise sources in an analog quantum

simulation as modifications of the target Hamiltonian. Physically,
these could be caused by variations in quantities such as laser
intensity, microwave intensity, magnetic fields, or other terms
which could create undesired interactions with the system. We
can then represent the full Hamiltonian implemented by the
system as

~HðtÞ ¼ H þ δHðtÞ; (1)

where H is the target Hamiltonian to be simulated, which we

assume is time-independent, and

δHðtÞ ¼
X
k

λkðtÞ δHk (2)

represents any unwanted time-dependence and other miscalibra-
tions present in the physical system. We assume that each λk(t)
varies on some characteristic timescale tk. For example, if λk(t) is a
stationary Gaussian process, then tk may be the decay time of the
autocorrelation function RðtÞ ¼ λkð0ÞλkðtÞh i. We note that there
are several distinct regimes:

Miscalibrations. tk≫ Nτ, where N is the number of repetitions
performed in a quantum simulation experiment, and τ is the total
runtime of each repetition. This regime corresponds to miscalibra-
tions, unwanted interactions, and other noise that varies on a very
slow timescale.

Slow noise. Nτ > tk > τ. This corresponds to noise that causes
fluctuations from one run of the experiment to the next, but is
roughly constant over the course of a single experiment, i.e., shot-
to-shot noise.

Fast noise. tk≪ τ. This is the type of fluctuation that is most
commonly referred to as "noise”, i.e., fluctuations in parameters
that are much faster than the timescale of a single experiment.
We design verification protocols to detect different subsets of

these noise types: the time-reversal analog verification protocol
for detecting fast noise, the multi-basis analog verification
protocol for additionally detecting some types of slow noise,
and finally the randomized analog verification protocol for
detecting miscalibrations and other unwanted interactions. These
protocols are described and demonstrated in the remainder of
this work.

Time-reversal verification protocol
The time-reversal analog verification protocol consists of the
following steps, repeated for various values of τ, which should
range over the characteristic time scale of the simulation to be
tested:
Step 1. Initialize the system state to an arbitrarily-chosen basis

state ij i.
Step 2. Apply the analog simulation for time τ, that is, apply the

unitary operator e−iHτ, which ideally takes the system to the state
ψj i. (We use the convention �h= 1 here and throughout this work.)
Step 3. Apply the analog simulation with reversed time

dynamics for time τ, that is, apply the operator e+iHτ, which
ideally takes the system to the state ij i.
Step 4. Measure the final state in the computational basis.

Record the probability that the final state is measured to be ij i.

Table 1. Summary of characteristic error sensitivity, hardware requirements, and scalability limits for proposed verification protocols for analog
quantum simulators.

Protocol Error sensitivity Hardware requirements Scalability limits

Time-reversal analog
verification

Fast incoherent noise Implement time-reversed analog
simulation

None inherent

Multi-basis analog
verification

Fast incoherent noise, shot-to-shot
parameter fluctuation

Implement time-reversed analog
simulation in alternate basis and
single-qubit rotations

None inherent

Randomized analog
verification

Fast incoherent noise, shot-to-shot
parameter fluctuation, parameter
miscalibration, crosstalk

Implement time-reversed analog
simulation and ability to turn
Hamiltonian terms on/off
individually

Approximate inverse compilation procedure
requires simulation of dynamics; protocol must
be performed on subsets of larger systems
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After repeating these steps for various values of τ, a decay curve
can be plotted which indicates the success probability of finding
the system in the desired state as a function of simulation time.
We first note that this protocol does not provide validation of

the values of any time-independent Hamiltonian parameters,
because if ~H is time-independent, ei~Hτe�i~Hτ ¼ 1 regardless of
whether ~H is actually the desired Hamiltonian. It does, however,
provide sensitivity to fast, incoherent noise that affects the system
on a timescale shorter than the simulation time, and it also will
detect imperfections in the implementation of the time-reversal
itself.
More formally, the forward time-evolution operator from time 0

to τ can then be written explicitly in terms of a Dyson series as

Ufwdð0; τÞ ¼ T e�i
R τ

0
dtðHþδHðtÞÞ

; (3)

where T is the time-ordering operator. The reverse time-evolution
operator from time τ to 2τ is then

Urevðτ; 2τÞ ¼ T eþi
R 2τ

τ
dtðHþδHðtÞÞ

: (4)

It is apparent that if the noise terms in the Hamiltonian are
constant between times 0 and 2τ, i.e., if δH(t)= δH, then we have

Urevðτ; 2τÞ Ufwdð0; τÞ ¼ eþiτðHþδHÞ e�iτðHþδHÞ ¼ 1 (5)

and thus applying the forward and reverse time-evolution
operators will return the system to its initial state.
However, this is not true in general if the noise terms have time-

dependence. We can illustrate this by making a simplifying
assumption that the noise is piecewise constant between times 0
and 2τ as

δHðtÞ ¼
δH1 0 � t < τ

δH2 τ � t < 2τ

�
(6)

where δH1 and δH2 are non-commuting in general. We then
perform a first-order Baker–Campbell–Hausdorff approximation,
which shows that

Urevðτ; 2τÞ Ufwdð0; τÞ ¼ eþiτðHþδH2Þ e�iτðHþδH1Þ (7)

� eþiτðδH2�δH1þ½HþδH1;HþδH2�=2Þ: (8)

In the general case where δH1 ≠ δH2, this quantity will not be
equal to the identity. A similar argument also holds if the noise
terms vary on faster timescales. That is, if δH(t) contains one or
more noise terms such that λk(t) has a correlation time tk≪ τ, then
the product of the forward and reverse time-evolution operators
will not be equal to the identity in general, and the system will not
return to its initial state.
The time-reversal analog verification protocol requires only that

the analog quantum simulator is capable of implementing the
time-reversed dynamics of the desired simulation, that is, the
signs of each of the Hamiltonian terms can be negated. Because
there are no numerical calculations required, the protocol is
independent of the size of the system, and its scalability has no
inherent limitations, outside of any physical limitations involved in
implementing the analog simulation itself in both directions.

Multi-basis analog verification protocol
The multi-basis analog verification protocol consists of the
following steps, repeated for various values of τ, which should
range over the characteristic time scale of the simulation to be
tested:
Step 1. Initialize the system state to an arbitrarily-chosen basis

state ij i.
Step 2. Apply the analog simulation for time τ, that is, apply the

unitary operator e−iHτ, which ideally takes the system to the state
ψj i.

Step 3. Apply a basis transformation R to the system to take it to
the state R ψj i, with R chosen such that both R and the rotated
inverse Hamiltonian

H0 ¼ RHRy (9)

are implementable. For example, if the target Hamiltonian is

H ¼ σð1Þx σð2Þ
x ; (10)

one could choose

R ¼ ffiffiffiffiffi
σy

p ð1Þ þ ffiffiffiffiffi
σy

p ð2Þ (11)

if and only if the analog quantum simulator can physically
implement the interactions R, H, and

H0 ¼ RHRy ¼ σð1Þ
z σð2Þ

z : (12)

Step 4. Apply the analog simulation in the rotated basis and
with reversed time dynamics for time τ, that is, apply the operator
eþiH0τ , which ideally takes the system to the state R ij i.
Step 5. Apply the inverse of the rotation performed in Step 3,

that is, apply a global− π/2 rotation R† to the system, which
ideally takes the system back to the initial state ij i.
Step 6. Measure the final state in the computational basis.

Record the probability that the final state is measured to be ij i.
After repeating these steps for various values of τ, a decay curve

can be plotted which indicates the success probability of finding
the system in the desired state as a function of simulation time.
We note that this protocol will detect errors such as

miscalibrations or slow fluctuations if the strength of these errors
differs in the two bases. Specifically, if ~H and ~H0 are the
implementations in the two bases which contain noise terms δH
(t) and δH0ðtÞ, respectively, then the forward and reverse time-
evolution operators can be written as

Ufwdð0; τÞ ¼ T e�i
R τ

0
dtðHþδHðtÞÞ

; (13)

Urevðτ; 2τÞ ¼ T eþi
R 2τ

τ
dtðH0þδH0ðtÞÞ

: (14)

Then, even in the simplest case where we have time-independent
noise terms δH(t)= δH and δH0ðtÞ ¼ δH0, we see that applying the
forward and reverse time-evolution operators and the appropriate
basis-change operators R and R†, gives

Ry Urevðτ; 2τÞ R Ufwdð0; τÞ ¼ Ry eþiτðH0þδH0ÞR e�iτðHþδHÞ (15)

� eþiτðδH00�δHþ½HþδH;HþδH00 �=2Þ; (16)

where we have defined

δH00 ¼ Ry δH0 R (17)

as the rotation of δH0 into the original basis, and where we use the
fact from Eq. (9) that RyH0R ¼ H. We assume here for simplicity
that R and R† are implemented ideally.
We observe again that the resulting quantity is not equal to the

identity in the general case where δH ≠ δH″, as well as in the cases
where δH and δH″ are non-commuting with each other or with H.
So we can conclude that in the case that the noise terms δH(t) and
δH0ðtÞ vary independently of each other, even if their correlation
times are much longer than the timescale of a single experiment,
the system will not return to its initial state when these time-
evolution operators are applied.
The multi-basis analog verification protocol requires that the

analog quantum simulator implements the desired Hamiltonian in
at least two separate bases. For example, a trapped-ion quantum
simulator may implement a nearest-neighbor coupling term using
both a σxσx Mølmer–Sørensen interaction27 and a σzσz geometric
phase gate interaction28, which are equivalent up to a basis
change. Likewise, a simulator based on superconducting qubits
could implement entangling interactions in multiple bases, for
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example, bSWAP interactions using different phases of the
microwave drive29. (Alternatively, if the device cannot implement
the analog simulation in a different basis, but does implement a
full universal gate set for quantum computation, the Hamiltonian
may be implemented in a digital manner in an alternate basis via
Trotterization.)
In addition to the multi-basis requirement, the device must also

have the ability to perform single-qubit rotations in order to make
the necessary basis change. But there are no numerical calcula-
tions required in advance, and thus the protocol itself is
independent of the size of the system and has no inherent
scalability limitations, outside of any limitations in performing the
actual analog simulation in the two necessary bases.

Randomized analog verification protocol
It turns out that the previous two protocols cannot detect all types
of errors. Most notably, neither protocol verifies that the
simulation actually implements the target Hamiltonian H. Errors
due to parameter miscalibration or the presence of unwanted
constant interaction terms would not be detectable using these
schemes.
To address this, we introduce a third protocol, which consists of

running randomized analog sequences of subsets of the target
Hamiltonian terms. In particular, we choose a set of unitary
operators consisting of short, discrete time steps of each of the
terms of the Hamiltonian to be simulated. We randomly generate
long sequences of interactions, each consisting of a subset of
these unitary operators, which evolves the system to some
arbitrary state. We then use a stochastic search technique to
approximately compile the inverse of these sequences using the
same set of unitary operators, which produces another sequence
of interactions. When appended to the original sequence the
system returns to the initial state (or another basis state) with high
probability.
This protocol is inspired by randomized benchmarking (RB)

protocols, which are often used for characterization of gate-based
devices20,21,30–34. Most commonly, RB involves generating many
random sequences of Clifford gates and appending to each
sequence an inversion Clifford. Ideally, in the absence of errors,
the execution of each sequence should return all of the
population to a well-known basis state. Measuring the actual
population of the desired basis state after the execution of each
sequence allows one to calculate a metric related to the average
gate fidelity of the device, which can be used to compare the
performance of a wide variety of physical devices.

We note that traditional RB has limited scalability due to the
complexity of implementing multi-qubit Clifford gates, and has
been demonstrated only for up to three qubits35; however, RB-like
protocols have been demonstrated on larger systems36,37.
Figure 2 contains an illustration comparing the randomized

analog verification protocol with the traditional Clifford-based RB
protocol. We note that this protocol significantly differs from a
recently-proposed technique for benchmarking analog devices17

in that we construct the approximate inversion sequence
independently of the initial randomly-generated sequence, which
in general prevents miscalibrations and constant errors from
canceling out during the inversion step. We also implement the
protocol using subsets of the Hamiltonian terms, which lends itself
to scalability.
We write the target Hamiltonian as a sum of terms

H ¼
Xm
i¼1

Hi; (18)

where we assume that the simulator can enable both the forward
and time-reversed version of each Hi independently of the others.
We note that this protocol, in addition to being sensitive to
implementation errors in the time-reversal, will also be affected by
experimental errors in the enabling or disabling of the individual
Hamiltonian terms.
We then repeat the following steps for various values of τ, which is

the time scale on which the sequence will operate and should range
over the characteristic time scale of the simulation to be tested:
Step 1. Randomly choose an initial basis state ij i.
Step 2. Generate n random subsets (e.g., n= 100) of the terms of

the target Hamiltonian, and define

Hrand;k ¼
X

i 2 random subset of

f1; 2; :::; mg

Hi

(19)

as the sum of the terms in subset k. To increase the randomness of
the resulting path, choose also the direction (forward or time-
reversed) of each subset at random. Apply each of the resulting
unitary time-evolution operators, i.e.,

Uk ¼ e± iHrand;k2τ=n (20)

for k= 1 to n, to the initial state ij i, which evolves the system to an
intermediate state ϕj i.
Step 3. Calculate another sequence of these random unitaries

that will approximately invert the process and act on ϕj i to
produce a basis state fj i within some target fidelity, e.g., 0.99.

Random 

subset of 

Hi terms

for ±∆t

Random 

subset of 

Hi terms

for ±∆t

Random 

subset of 

Hi terms

for ±∆t

Approx-

imate 

inversion 

sequence

Randomized analog verification

Random 

Clifford

Random 

Clifford

Random 

Clifford

Inversion 

Clifford

Clifford randomized benchmarking

Fig. 2 High-level comparison of traditional randomized benchmarking and the randomized analog verification protocol. Both protocols
involve generating a sequence that starts and ends in a known basis state, which is denoted 0j i in this figure for simplicity, and proceed by
simply making a series of random choices. For traditional RB, the inversion Clifford is calculated deterministically based on the preceding
sequence of random Cliffords. For randomized analog verification, the inversion sequence is compiled approximately via a stochastic search
procedure.
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Apply the sequence, which ideally will take the system to the final
state fj i with probability of at least the desired target fidelity.
Step 4. Measure the final state in the computational basis.

Record the probability that the final state is measured to be fj i.
After repeating these steps for various values of τ, the resulting

decay curve indicates the success probability of finding the
system in the desired state after executing the randomized
sequences as a function of effective simulation time.
Calculating an appropriate inversion layer, using only small time

steps of the Hamiltonian terms as building blocks, is the most
computationally intensive part of this protocol. We cannot directly
reverse the random sequence generated, since this would simply
be a time-reversal, and errors such as miscalibrations or shot-to-
shot noise would cancel out. Instead, we generate a new
sequence by explicitly calculating the product of the random
sequence of unitaries and then building a sequence which
inverts it.
Since compiling an exact inversion layer (outside of simply

reversing the random sequence) is likely infeasible, we allow the
inversion layer to only approximately invert the original sequence,
such that we return nearly all of the population to a basis state. We
note that the approximate nature still allows us to assess the
quality of the simulation with the targeted precision using a single
measurement basis.

To construct the inversion layer, we use the STOQ protocol for
approximate compilation38, which is a stochastic Markov chain
Monte Carlo (MCMC) search technique using a Metropolis-like
algorithm. This is a randomized approach to compiling an
arbitrary unitary into a sequence of "gates” drawn from a finite
set of allowed unitaries, similar to the approach used in a
proposed technique for quantum-assisted quantum compiling39.
Specifically, since the set of allowed unitaries here consists of all

possible random subsets of the Hamiltonian terms, we have the
following procedure for approximately compiling the inversion
layer (illustrated in Fig. 3):

1. Generate n randomized layers, each of which determines a
unitary operation Uk, as defined in Eq. (20).

2. Calculate the state after applying all n of the randomized
layers to the initial state as

ϕj i ¼ UnUn�1 � � �U2U1 ij i: (21)

3. Build up a new sequence of layers, which will become the
inversion layer, by incrementally adding a randomized layer
or removing a layer from the beginning or end of the
sequence (such that we only have to perform one
multiplication per proposed step). Let the product of these
layers be Uinv.

4. For each proposed addition or removal, look at the basis
state of Uinv ϕj i with the largest population fraction to see if
it has increased or decreased from the prior state. If it has
increased, the system is closer to a basis state, and therefore
accept the proposed addition or removal. If it has decreased,
usually reject it, but sometimes accept it, based on the value
of the MCMC annealing parameter β.

5. Continue until the largest basis state population reaches
some desired threshold (e.g., 0.99), which determines the
population fraction in the final basis state after executing
the compiled sequence.

In order to increase the distinction between this compiled
inversion sequence and the original randomly-generated
sequence (which seems desirable in order to avoid potentially
canceling out any systematic errors), we initialize the MCMC
search algorithm with a large value of the annealing parameter β,
which increases the randomness in the early part of the compiled
sequence. Over time, we linearly decrease the value of β until the
process finally converges toward a basis state.
Notice that because this procedure simply takes us approxi-

mately to some basis state (not necessarily the initial state), a true
inversion sequence would require a final local rotation of the
appropriate qubits to take the system back to the initial state.
However, since the intention is simply to measure the resulting
state, this final rotation is unnecessary – we can just measure the

Calculate state 

after the randomly 

generated sequence

Randomly propose a change 

to the inversion layer

Left-multiply or 

right-multiply 

the inversion 

layer by a 

random subset of 

Hi terms for ±∆t

Remove the 

most recent 

term multiplied 

from the left or 

the rightDoes the proposed 

change bring us closer 

to a basis state?

Are we “close enough” 

to a basis state?

Accept the 
change

Reject the change
(with some probability 

which increases with the 

length of the search)

no

or

no

Done!

Fig. 3 Illustrative flowchart for the approximate unitary compilation procedure. The time duration ±Δt refers to the time and direction of
each individual step in the sequence, i.e., the desired total simulation time τ divided by n, the total number of steps in the sequence.

Fig. 4 Illustration of 6x6 2-D lattice with nearest-neighbor
coupling. Here the Hamiltonian is k-local with k= 2. Colored dashed
outlines show possible subsets of size s= 4, each of which is formed
from two (possibly distant) pairs of connected neighbors. The total
number of ways to choose such subsets from this lattice is 3540.
Running the randomized analog verification protocol on all such
subsets will test for errors associated with each interaction term in
the Hamiltonian, as well as errors that may be caused by unwanted
interaction (e.g., crosstalk) between any two pairs of sites in the
system.
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state and compare the result to the expected final basis state,
rather than comparing to the initial basis state.
Because this process is randomized, it is not guaranteed to

converge40. To account for this, in the implementation used for
this work, we launch many tens of MCMC search processes in
parallel, which in practice typically allows the search to succeed in
reasonable time. For example, in the five-qubit numerical
simulation described later in this section, when the original
sequence has ~100 random layers, one of the MCMC processes
will typically converge to the desired accuracy of 98% within a few
thousand steps.
The scalability of the randomized analog verification protocol is

limited by the approximate compilation of the inversion layer.
Performing this compilation requires many explicit multiplications
of unitary operators acting on the full Hilbert space of the system
being simulated, and thus has at least the same complexity as
actually simulating the dynamics of the system. Unless a reliable
quantum computer is available39, this must be done on a classical
computer, and so it is likely infeasible to apply this protocol
directly to systems with more than tens of qubits.
To apply this protocol to large-scale simulations, we can break

the full system into subsystems33,41 to reduce the exponential
scaling to polynomial scaling. Specifically, if the Hamiltonian is k-
local, we can decompose the system into subsystems of size s ≥ 2k
(see Fig. 4), and then run this protocol on every subsystem. This
will test every interaction term, as well as potential errors such as
crosstalk that may occur between any two distant interaction
terms in the system. The number of such subsystems grows only
polynomially with degree s, not exponentially. Since this is
equivalent to testing each subsystem of size s independently,
the downside of this approach is the loss of sensitivity to errors
that may occur only for subsystems of size larger than s; however,
in many systems, it is likely reasonable to assume that such errors
are small. Additional work will be needed to understand exactly
what claims one can make about the performance of the large-
scale analog simulation by characterizing the subsystems in this
way.

Experimental demonstration with trapped ions
To demonstrate the feasibility of implementing these verification
protocols experimentally, we choose a simple two-site Ising model
with transverse field

H ¼ � 1
2
b σð1Þ

y þ σð2Þ
y

� �
� 1
2
Jσð1Þ

x σð2Þ
x ; (22)

and we choose J= 2π × 139 Hz and b= 2π × 227 Hz. We imple-
ment this model in a trapped-ion analog quantum simulator
containing two 40Ca+ ions. We use the electronic S1/2 ground
orbital and D5/2 metastable excited orbital as the qubit states, and
we drive transitions between these states using a 729 nm laser42.
In particular, we choose gj i ¼ S1=2;mj ¼ �1=2

�� �
and ej i ¼

D5=2;mj ¼ �1=2
�� �

as the states of the two-level system.
We prepare the system in the state egj i or gej i by optically

pumping the ions to the state ggj i, using a π-pulse with a laser
beam localized to a single ion to prepare the state egj i, and then
optionally a π-pulse with a laser beam addressing both ions to
prepare the state gej i.
We then implement the Ising model by combining three tones

in a laser beam that addresses both ions equally. In particular, we
realize the transverse field interaction via a laser tone resonant
with the qubit transition frequency with Rabi frequency ΩC.
This creates the desired ðb=2Þðσð1Þ

y þ σ
ð2Þ
y Þ interaction with b=ΩC.

In addition, we implement the site-site coupling via a
Mølmer–Sørensen interaction27 via the axial stretch vibrational
mode with ωax ≈ 2π × 1.514 MHz, where we apply two laser tones
detuned from the qubit transition frequency by ±(ωax+ δMS), with
δMS= 2π × 80 kHz, and where each tone has Rabi frequency ΩMS.

This creates an effective ðJ=2Þσð1Þ
x σ

ð2Þ
x interaction with

J ¼ η2axΩ
2
MS=δMS, where ηax ≈ 0.08 is the Lamb–Dicke parameter

indicating the coupling of the laser beam to the axial mode of the
ion crystal, and we tune ΩMS to produce the desired value of the
coupling strength J.
In addition to designing the analog simulation itself, we must

also implement the time-reversed and rotated versions of the
simulation in order to implement the desired verification
protocols. For the time-reversal analog verification protocol, we
take H to −H by shifting the phase of the resonant tone by π,
which takes b to −b in the transverse field interaction, and by
changing the Mølmer-Sørensen detuning from δMS to− δMS (with
a small correction to account for a change in AC Stark shift), which
takes J to −J in the effective σ

ð1Þ
x σ

ð2Þ
x interaction.

For the multi-basis analog verification protocol, we choose the
basis rotation

R ¼ Rð1Þz ðπ=2Þ þ Rð2Þz ðπ=2Þ; (23)

which is a global π/2 rotation around the z-axis. We implement R
physically via a sequence of single-qubit carrier rotations, using
the fact that

Rzðπ=2Þ ¼ Ryð�π=2ÞRxðπ=2ÞRyðπ=2Þ: (24)

We then must implement RHR†, which is the Hamiltonian in the
rotated basis. For the transverse field term, we note that

Rðσð1Þ
y þ σð2Þ

y ÞRy ¼ σð1Þx þ σð2Þ
x ; (25)

which we implement by simply shifting the phase of the resonant
tone by π/2 as compared to the phase used to implement
σ
ð1Þ
y þ σ

ð2Þ
y . For the coupling term, we note that

Rσð1Þ
x σð2Þ

x Ry ¼ σð1Þy σð2Þ
y ; (26)

which we implement by shifting the phase of the blue-sideband
Mølmer–Sørensen tone by π with respect to the red-sideband
tone43.
Finally, for the randomized analog verification protocol, we

write the target Hamiltonian from Eq. (22) as

H ¼ H1 þ H2; (27)

where H1 and H2 are defined as

H1 ¼ � 1
2
bðσð1Þy þ σð2Þ

y Þ; (28)

H2 ¼ � 1
2
Jσð1Þ

x σð2Þx : (29)

We then generate 200 random sequences of subsets of these
Hamiltonian terms in either the forward or time-reversed
direction, such that each step of each sequence is selected from
the set

Hsteps ¼ fH1;H2;H1 þ H2;�H1;�H2;�H1 � H2g; (30)

and each sequence consists of 10 ≤ n ≤ 50 steps of length 8 μs ≤
tstep ≤ 290 μs. For each sequence, we then compile an approx-
imate inversion sequence consisting of steps from the same set
Hsteps. Each sequence has a randomly-chosen initial state from the
set f gej i; egj ig, and each full sequence ideally leaves the system in
some basis state with at least 98% probability. The terms in the set
Hsteps are implemented experimentally by enabling or disabling
the corresponding laser tones and by time-reversing the analog
simulation as necessary.
To test the behavior of each of these protocols, we execute the

time-reversal and multi-basis analog verification protocols for
varying simulation times and execute all 200 of the randomized
analog verification sequences. The results of these experimental
runs are shown in Fig. 5. To produce these results, we executed
each protocol under three different sets of experimentally-
motivated noise conditions:
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1. No injected noise: We execute each of the verification
protocols after calibrating the individual interactions to
approximately match the desired dynamics.

2. Slow noise injected: We introduce shot-to-shot fluctuations
by intentionally varying the intensity of each of the three
tones in the laser beam using parameters drawn from a
Gaussian distribution with relative standard deviation of
3 dB. The parameter variations in the original basis are
drawn independently from those in the rotated basis, which
emulates the case where the system has independent noise
sources in the two bases.

3. Parameter miscalibration: We intentionally miscalibrate the
Mølmer-Sørensen detuning to δMS= 2π × 60 kHz, which has
the effect of increasing the coupling strength J by a factor
of 1/3.

To provide more insight into the results of these protocols, in
Fig. 6 we plot the actual population dynamics of the analog
simulation in the absence of injected noise. We observe that the
implemented simulation diverges significantly from the ideal
simulation after only a few milliseconds, primarily due to
miscalibration and dephasing noise. We intentionally allow this
divergence as a test case for the various verification protocols,
since it is caused by errors that may be typical in experiments. The
miscalibration here is due to laser intensities and/or frequencies
that have not been optimized to produce the desired dynamics,
and the dephasing noise is likely caused by the presence of global
magnetic field fluctuations which cause the state to decohere
when leaving the subspace f gej i; egj ig, which is a decoherence-
free subspace with respect to the global magnetic field.
Also plotted in Fig. 6 is a curve showing the fidelity between an

ideal evolution of the system state and an approximation of the
system state obtained experimentally. For the ideal Hamiltonian H,
defined in Eq. (22), we use the target values (J= 2π × 139 Hz, b=
2π × 227 Hz) and perform unitary evolution under the
Schrödinger equation to obtain the dynamics of the ideal
state ρðtÞ ¼ ψðtÞj i ψðtÞh j, where ψðtÞj i ¼ e�iHt ψð0Þj i. For the
experimentally-miscalibrated Hamiltonian ~H, we use parameters
that approximately match the observed measurements (J= 2π ×
250 Hz, b= 2π × 102 Hz) with an appropriate dephasing rate (γϕ=
2π × 38 Hz). We then perform non-unitary evolution under the
Lindblad master equation, using the Lindblad operator L ¼ffiffiffiffiffiffiffiffiffiffi
γϕ=2

q
σz as the dephasing mechanism, to obtain the approx-

imate dynamics of the experimentally-obtained state ~ρðtÞ.

The approximate fidelity between the ideal state and the
experimentally-obtained state is then

~FðtÞ ¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtÞ

p
~ρðtÞ

ffiffiffiffiffiffiffiffi
ρðtÞ

pq� 	2
: (31)

The fidelity curve plotted in Fig. 6 is this approximate fidelity
function ~FðtÞ, and we observe that it decays to 50% in ~7ms.
Despite this fast decay of the fidelity, we note that in the

absence of additional injected noise, both the time-reversal and

Fig. 5 Experimental results of verification protocols. Results are for the two-site Ising model from Eq. (22), with J= 2π × 139 Hz and b= 2π ×
227 Hz. Each plot shows the experimentally-measured population in the expected final state after running each of the verification protocols
under the specified type of injected noise. Data points represent raw experimental results and include experimental errors due to state
preparation, measurement, and imperfect control. For the time-reversal and multi-basis analog verification protocols, each datapoint
represents the distribution of measured results over 200 independent runs. For the randomized analog verification protocol, each data point
represents the distribution of measured results of ten different randomly generated sequences, with each sequence executed 100 times. Error
bars indicate standard error of the mean.

Fig. 6 Experimentally-measured dynamics of the simulation as a
function of time. Each data point is the average of 100 independent
runs. Error bars indicate standard error of the mean. The dotted
curves represent the ideal dynamics of a perfectly-calibrated analog
simulation (J= 2π × 139 Hz, b= 2π × 227 Hz) in the absence of noise.
The solid curves represent the theoretical dynamics of a miscali-
brated analog simulation (J= 2π × 250 Hz, b= 2π × 102 Hz) with a
dephasing rate of γϕ= 2π × 38 Hz, where these parameters are
chosen empirically as a reasonable approximation of the observed
experimental data points. The dashed curve is the fidelity of the
state evolved according to the miscalibrated dynamics with the
state evolved according to the ideal dynamics, calculated using Eq.
(31).
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multi-basis analog verification protocols in Fig. 5(a) show decay
times on the order of tens of milliseconds. Because these
protocols are sensitive to fast, incoherent noise, we deduce that
the majority of the errors present in the experiment are slower
than the timescale of each experiment and are therefore canceled
out by these protocols.
Conversely, we consider the results of the randomized analog

verification protocol with no injected noise in Fig. 5(a). The success
probability decays in ~3 ms, which is slightly faster than the
fidelity decay observed in Fig. 6. This suggests that the
randomized protocol at least detects these experimental miscali-
brations or coherent errors that cause the actual simulation
dynamics to differ from the ideal dynamics. That is, the
randomized analog verification protocol helps to identify imper-
fections in the simulation with respect to the target Hamiltonian,
which is something that the other protocols are unable to do. In
addition, the faster decay of the randomized analog verification
results as compared to the approximate fidelity curve in Fig. 6
indicates that there are additional sources of experimental error
that are not captured by the population dynamics alone. For
example, the experimental procedure involves rapidly enabling
and disabling the various interaction terms, which may itself
introduce imperfections that cause the success probability to
decay more rapidly. Indeed, the difference between the rando-
mized analog verification protocol results with no injected noise in
Fig. 5a and with injected noise in Fig. 5b and c indicate that the
experimental errors in the simulation dwarf the errors caused by
the injected noise.
Finally, we note that a number of the experimental data series

in Fig. 5 show hints of oscillatory behavior, and that in general the
shape of each decay curve is non-exponential. This is evidence
supporting the claim that these protocols do not fully twirl
coherent errors into incoherent errors, and thus do not produce a
fully depolarizing channel that would produce an exponential
decay in these results.

Numerical demonstration under simulated noise conditions
To further test the sensitivity of each protocol to various types of
noise, we numerically simulated the dynamics of the verification

protocols using the five-site Heisenberg model

H ¼ � 1
2

P5
i¼1

bðiÞσðiÞ
z � 1

2

P4
i¼1

Jði;iþ1Þ
x σ

ðiÞ
x σ

ðiþ1Þ
x

�

þ Jði;iþ1Þ
y σ

ðiÞ
y σ

ðiþ1Þ
y þ Jði;iþ1Þ

z σ
ðiÞ
z σ

ðiþ1Þ
z

�
:

(32)

Nominally, we fix all parameter values as bðiÞ ¼ Jði;jÞx ¼
Jði;jÞy ¼ Jði;jÞz ¼ 2π ´ 1 kHz, but we vary each of these parameters
during the simulation according to several different types of
potential experimental noise. We simulated the dynamics of each
protocol under conditions with several classes of noise sources
present individually:

1. Fast incoherent noise: The b and J terms in the Hamiltonian
have fast noise, modeled as an Ornstein–Uhlenbeck process
with a correlation time on the order of τ/n, which is
approximately the duration of one step of the randomized
analog verification protocol.

2. Slow parameter fluctuations: The b and J terms in the
Hamiltonian have slow noise (modeled as a constant
miscalibration that varies from run to run with a Gaussian
distribution) that has a typical timescale longer than τ, but
shorter than the time between individual experiments.

3. Parameter miscalibration: Each of the b and J terms in the
Hamiltonian is miscalibrated from the desired value.

4. Idle crosstalk: Each of the interaction terms in the
Hamiltonian, when disabled, still drives the interaction with
some fraction of the intended strength. For example, during
steps of the randomized analog verification protocol in
which the σ

ð1Þ
y σ

ð2Þ
y interaction is intended to be turned off,

we still include a fraction of that term in the Hamiltonian
being simulated.

The numerical simulation results in Fig. 7 demonstrate that
certain types of noise, such as fast incoherent noise, can be
detected by any of the proposed verification protocols. We see
that the multi-basis analog verification protocol is also sensitive to
certain slow parameter fluctuations, whereas the randomized
analog verification protocol is additionally sensitive to errors such
as parameter miscalibration and crosstalk among the interaction
terms in the system. Such error sources may cancel out in the
forward and backward directions when using more systematic
protocols44,45, but when using a randomized protocol they are

Fig. 7 Numerical five-qubit simulation results of verification protocols under simulated noise conditions. Five-qubit numerical simulation
results showing the sensitivities of each of the three analog verification protocols to four different types of experimental error sources: fast
incoherent noise (~τ/n) in Hamiltonian parameters with 30% relative standard deviation (RSD), slow fluctuations (≫τ) in Hamiltonian
parameters with 15% RSD, constant miscalibration of Hamiltonian parameters with 10% RSD, and constant idle crosstalk affecting all sites with
10% RSD. The target Hamiltonian is the five-qubit Heisenberg model from Eq. (32), with bðiÞ ¼ Jði;jÞx ¼ Jði;jÞy ¼ Jði;jÞz ¼ 2π ´ 1 kHz. The "effective
simulation time'' is the average time for which each term of the Hamiltonian is enabled. Error bars indicate standard error of the mean. a Time-
reversal analog verification results. Each data point represents the distribution of results over 50 runs. b Multi-basis analog verification results.
Each data point represents the distribution of results over 50 runs. c Randomized analog verification results. Each data point represents the
distribution of 10 different randomly generated sequences with n= 150 steps, with each sequence simulated 20 times. d Actual fidelity of the
analog simulation under each type of noise.
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highly unlikely to cancel due to the randomized nature of the
sequence and its dependence on the exact parameters of the
Hamiltonian. In particular, we see in Fig. 7d that the actual fidelity
of the analog simulation is most severely impacted by the
parameter miscalibration and crosstalk errors, and only the
randomized analog verification protocol is able to detect
the presence of these errors.
To gain further insight into the behavior of the randomized

analog verification protocol, we also simulated the dynamics
under various types of noise using a pair of two-qubit
Hamiltonians. First, we use a one-dimensional Ising model with
transverse field

H ¼ � 1
2
ðbðσð1Þ

y þ σð2Þ
y Þ þ Jxσ

ð1Þ
x σð2Þ

x Þ; (33)

which is identical to Eq. (22), the Hamiltonian used for the
experiment. For the purposes of the randomized analog verifica-
tion protocol, we treat bðσð1Þy þ σ

ð2Þ
y Þ as a single term, as was also

done in the experiment.
Second, we use a one-dimensional Heisenberg model with

transverse field terms along each axis

H ¼ � 1
2 bσð1Þ

x þ bσð1Þ
y þ bσð1Þ

z

�

þ bσð2Þ
x þ bσð2Þ

y þ bσð2Þ
z

þ Jxσ
ð1Þ
x σ

ð2Þ
x þ Jyσ

ð1Þ
y σ

ð2Þ
y þ Jzσ

ð1Þ
z σ

ð2Þ
z

�
;

(34)

which is a simplified version of the five-qubit Hamiltonian in Eq.
(32) used for the earlier simulations.

Figure 8 contains the numerical simulation results of applying
the randomized analog verification protocol to these two
Hamiltonians under various types of noise, where we have chosen
b= Jx= Jy= Jz= 2π × 20 kHz such that the effective simulation
times are much longer than the timescale of the system dynamics.
We note that the shape of the decay differs significantly

between the two Hamiltonians. In particular, we observe that each
of the decay curves for the Heisenberg model in Fig. 8b appears to
be nearly exponential in shape and decays to ~0.25, which is the
expected result for a fully mixed two-qubit state. This is not the
case for some of the decay curves for the Ising model in Fig. 8a.
As discussed previously, randomized benchmarking protocols

produce exponential decay curves in cases where the noise is fully
depolarized by the randomized circuits. We note that the "native
gate set” obtained from the Heisenberg model in Eq. (34) is a
universal set of quantum gates, which forms an approximate 2-
design in the limit of long sequence length. Here we are in fact
operating in the limit of "long sequence length”, since the
dynamics occur at 20 kHz and the protocol is being performed for
an effective simulation time of a few milliseconds. So the nearly-
exponential shape of the decay curves in Fig. 8b is a good
indication that the various noise sources are indeed being
depolarized under these conditions.
In contrast, the behavior of the decay curves in Fig. 8a, which do

not decay to 0.25, can be explained by the fact that the
interactions do not fully explore the state space of the system.
We also observe non-monotonic behavior of these decay curves in
the presence of correlated errors such as miscalibration or
crosstalk, which suggests that such errors are not being fully

Fig. 8 Numerical two-qubit simulation results of verification protocols for two different Hamiltonians. Two-qubit numerical simulations
showing randomized analog verification results for two Hamiltonians under four different types of experimental error sources: fast incoherent
noise (~τ/n) in Hamiltonian parameters, slow fluctuations (≫τ) in Hamiltonian parameters, constant miscalibration of Hamiltonian parameters,
and constant idle crosstalk affecting all sites. The "effective simulation time'' is the average time for which each term of the Hamiltonian is
enabled. Each data point represents the distribution of ten different randomly generated sequences, with each sequence simulated 15 times.
Error bars indicate standard error of the mean. Dashed line added at y= 0.25 on each plot as a visual aid. a The target Hamiltonian is the one-
dimensional Ising model from Eq. (33) under fast incoherent noise with 12% relative standard deviation (RSD), slow parameter fluctuations
with 6% RSD, parameter miscalibration with 3% RSD, and idle crosstalk with 3% RSD. b The target Hamiltonian is the one-dimensional
Heisenberg model from Eq. (34) under fast incoherent noise with 4% RSD, slow parameter fluctuations with 2% RSD, parameter miscalibration
with 1% RSD, and idle crosstalk with 1% RSD. For both a and b, we choose b= Jx= Jy= Jz= 2π × 20 kHz. Note that larger relative errors are
used in a to compensate for the smaller number of Hamiltonian terms in this simulation, such that the decay times of the plots in a and b are
similar.
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depolarized. Such non-monotonic behavior is also observed in the
experimental data in Fig. 5.

DISCUSSION
The set of verification protocols for analog quantum simulators
introduced in this work are experimentally motivated, and we
have demonstrated the utility of these protocols both experimen-
tally and numerically. Most notably, we observe that the
randomized analog verification protocol is superior in terms of
the types of experimental errors to which it is sensitive, but that its
scalability to large system sizes requires additional assumptions,
such as the ability to verify subsets of the system independently,
due to the classical resources required to perform the approx-
imate inverse compilation during the generation of the rando-
mized sequences. We also observe that the randomized analog
verification protocol produces results similar to those from
traditional randomized benchmarking protocols in cases where
the Hamiltonian terms form a universal "native gate set” and
where the simulation time is long in comparison to the system
dynamics.
It is worth noting that implementing the time-reversed

Hamiltonian in the analog quantum simulation device, which is
required for all of the discussed verification protocols, is not
necessarily trivial for general Hamiltonians that may be simulated.
It turns out that the slow Mølmer–Sørensen interaction used to
implement the Ising model with trapped ions is easily time-
reversible, as demonstrated in the experimental results, which
allowed us to demonstrate each of the protocols here without
much additional effort. It is likely that many interactions of interest
on other physical platforms, such as neutral atoms or super-
conducting qubits, may have similarly simple physical mechan-
isms for time-reversing the dynamics.
Ideally, verification protocols are useful not only for verifying

the correct behavior of a system, but also for helping to diagnose
and fix errors. In particular, an experimentalist may wish to identify
not only the existence of errors in the system, but also the types
and locations of these errors. Simply running the dynamics of
the full simulation and checking the results may not provide the
information necessary to diagnose these details. However,
the protocols described in this work provide additional tools for
the experimentalist to help characterize the errors in the system.
For example, running each of the protocols and comparing the
relative decay curves could help to provide insight into whether
the system suffers from fast incoherent noise, slow parameter
fluctuations, parameter miscalibration, and/or crosstalk errors. In
addition, because each of the protocols can be run on arbitrary
subsets of the full system, running each on many different subsets
will help to isolate the problematic physical interactions.
One may also consider whether such protocols could have

application in the validation of gate-based quantum computers.
At present, and until error-corrected devices become a reality,
quantum computers are realized by carefully tuning the under-
lying analog interactions to implement quantum gates with the
highest fidelity possible. Because the underlying interactions are
analog, these analog verification protocols could be adapted for
use in verifying the behavior of gate-based devices as well. The
randomized analog verification protocol may be practically
scalable to larger numbers of qubits than traditional RB because
it directly uses the native interactions of the device, rather than
requiring compilation of arbitrary Clifford gates into native gates.
Most scalable variants of RB, such as direct RB36, require that the
native gate set be a generator of the Clifford group, or at least that
the native gate set is universal. Randomized analog verification
imposes no restriction on the types of interactions present in the
Hamiltonian, since it does not rely on properties of the gate set to
efficiently return the state to the measurement basis. Of course,
this is also a limitation of the randomized analog verification

protocol, since one cannot make strong claims on the shape or
meaning of the resulting decay curve without limitations on the
gate set.
An important feature of the randomized analog verification

protocol is the efficiency of executing the experiments on the
physical device. Because the protocol requires measurement only
in a single basis, the number of measurements required is not only
significantly fewer than performing full tomography, but it also
significantly fewer than sampling-based techniques such as cross-
entropy benchmarking46. This is enhanced by the fact that the
protocol measures the system when it is near a measurement
basis state, which minimizes the effect of quantum projection
noise47,48 and therefore reduces the number of measurements
required in order to achieve a desired level of accuracy in the
fidelity estimate. To check that the system is in a particular basis
state, only 100 repetitions would be required to verify a fidelity of
99% to within 1% error. But for an arbitrary state, the projection
noise scales as the inverse square root of the number of
measurements, which would require on the order of 10,000
measurements to achieve a similar level of precision.
This work has introduced three experimentally-motivated verifica-

tion protocols for validation of analog quantum simulators and has
demonstrated the feasibility of these protocols both numerically and
experimentally. Taken together, these techniques allow for pragmatic
evaluation of an analog quantum simulation device in a way that
builds confidence that the device is not only operating consistently,
but that it is also operating faithfully according to the desired target
Hamiltonian. The decay curves resulting from these protocols may
then provide some insight into the type and strength of errors
encountered. Such techniques can also be applied to subsets of a
larger system to allow an experimentalist to characterize and
diagnose the behavior in a scalable way. Future work should pursue
a more detailed analysis of the information that these protocols can
provide about the types of noise or errors present in the system, the
feasibility of applying the randomized analog verification protocol to
larger systems, and the application of similar techniques to gate-
based quantum computing devices. In addition, alternative protocols
should be explored that combine the ideas in these protocols with
existing techniques from the randomized benchmarking literature,
with the goal of producing a practical protocol which depolarizes
errors more fully and about which stronger theoretical claims can be
made with regard to noise sensitivity and the expected shape of the
decay curve.
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