# Developmental and Comparative Immunology A comparison of amphibian (Xenopus laevis) tadpole and adult frog macrophages --Manuscript Draft--

|                        | DCI-D-22-00307R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article Type:          | Short Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Section/Category:      | Vertebrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Keywords:              | macrophage; interleukin-34; colony-stimulating factor-1; amphibian; tadpole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Corresponding Author:  | Leon Grayfer George Washington University Washington, DC United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| First Author:          | Muhammad Riadul Haque Hossainey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Order of Authors:      | Muhammad Riadul Haque Hossainey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Amulya Yaparla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | Zarafsha Uzzaman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Tyler Moore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | Leon Grayfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Abstract:              | The amphibian declines are compounded by emerging pathogens that often preferentially target distinct amphibian developmental stages. While amphibian immune responses remain relatively unexplored, macrophage (Mφ)-lineage cells are believed to be important to both amphibian host defenses and to their pathogen infection strategies. As such, a greater understanding of tadpole and adult amphibian Mφ functionality is warranted. Mφ biology is interdependent of interleukin-34 (IL-34) and colony-stimulating factor-1 (CSF-1) cytokines and we previously showed that CSF-1- and IL-34-derived Mφs of the Xenopus laevis frog are morphologically, transcriptionally, and functionally distinct. Presently, we directly compared the cytology and transcriptomes of X. laevis tadpole and frog CSF-1- and IL-34-Mφs. Our results indicate that tadpole and frog CSF-1-Mφs possess greater non-specific esterase activity, typically associated with Mφ-lineage cells. By contrast, both tadpole and frog IL-34-Mφs have greater specific esterase activity, which is typically attributed to granulocyte-lineage cells. Our comparisons of tadpole CSF-1-Mφ transcriptomes with those of tadpole IL-34-Mφs indicate that the two tadpole populations possess significantly different transcriptional profiles of immune and non-immune genes. The frog CSF-1-Mφ gene expression profiles are likewise significantly disparate from those of frog IL-34-Mφs. Compared to their respective tadpole Mφ subtypes, frog CSF-1- and IL-34-Mφs exhibited greater expression of genes associated with antigen presentation. Conversely, compared to their frog Mφ counterparts, tadpole CSF-1- and IL-34-Mφs possessed greater levels of select Fc-like receptor genes. Presumably, these cytological and transcriptional differences manifest in distinct biological roles for these respective tadpole and frog Mφ subtypes. |
| Suggested Reviewers:   | Nguyen Vo<br>nvo@wlu.ca<br>Sarah Poynter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | spoynter@wlu.ca  Matthew Rise mrise@mun.ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Response to Reviewers: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



12/30/2022

Dear Dr. Dixon,

I am writing on behalf of all authors to re-submit to the journal of Developmental and Comparative Immunology our revised manuscript titled "A comparison of amphibian (*Xenopus laevis*) tadpole and adult frog macrophages" by Muhammad Riadul Haque Hossainey, Amulya Yaparla, Zarafsha Uzzaman, Tyler Moore and Leon Grayfer, to be considered for possible publication.

Please find that in response to the reviewers' comments, we have revised our manuscript into a short communication. We feel that we have successfully addressed all reviewer concerns, thereby improving this work.

Many thanks for your further consideration.

Best wishes,

Leon Grayfer, PhD Associate Professor,

Dept. of Biological Sciences George Washington University

E-mail: <a href="mailto:leon\_grayfer@gwu.edu">leon\_grayfer@gwu.edu</a>

P: 1-202-994-8076

#### DCI-D-22-00307

We thank the reviewers for their helpful comments and suggestions. We feel that we have successfully addressed all reviewers' comments and incorporated all suggestions into our revised manuscript, thereby improving its content.

We agree with the reviewers' that the original version of our manuscript was not a complete story. Accordingly, please find that we have removed the microbial-challenge data and have revised the cytology and transcriptomic data of our original manuscript into a short communication.

Please find the point-by-point address of individual comments below.

Reviewer #1: In the manuscript (DCI-D-22-00307), the authors tried to do a comparison of macrophages from amphibian (Xenopus laevis) tadpole and adult frog by transcription analysis. However, the manuscript appears immature and has severe limitations. The following are major comments:

1. The topic of the manuscript is ambiguous. In this study, the authors did not use primary macrophages alone to do comparison analysis, whereas CSF-1- and IL-34-macrophages were used as cell models. However, the manuscript did not introduce the necessary of treatment with CSF-1 and IL-34 to distinguish the macrophages from tadpole and adult frog. In other words, are the similarities and differences of macrophages from tadpole and adult frog subjected to CSF-1 and IL-34 stimulation or treatment? Moreover, bacterial challenge experiments did not explain the immune significance of amphibian macrophages at distinct growth stages.

We thank the reviewer for their comments and opinion regarding our manuscript. Please note that since there is no established method for culturing tadpole macrophages *in vitro*, we instead used a previously published approach of enriching peritoneal tadpole macrophages with recombinant growth factors (rCSF1 or rIL34) before isolating these respective cell subsets by lavage. To directly compare the tadpole macrophages to their adult counterparts, we used the same peritoneal macrophage enrichment and lavage approach to derive adult CSF1- and IL34-macrophages. Please note that we used this approach in several previous publications and have characterized and optimized the utility of deriving polarized tadpole and froglet CSF1- and IL34-differentiated macrophages through these means.

Grayfer, L. and J. Robert, Divergent antiviral roles of amphibian (*Xenopus laevis*) macrophages elicited by colony-stimulating factor-1 and interleukin-34. J Leukoc Biol, 2014. 96(6): p. 1143-53.

Grayfer, L. and J. Robert, Distinct functional roles of amphibian (*Xenopus laevis*) colony-stimulating factor-1- and interleukin-34-derived macrophages. J Leukoc Biol, 2015. 98(4): p. 641-9.

We used the peritonea-derived tadpole and froglet CSF1- and IL34-macrophages to directly compare the respective macrophage subtest between pre- and post-metamorphic animals. To do this, we performed transcriptomic and cytological studies. Because pre- and post-metamorphic

amphibians exhibit notoriously disparate immune efficacies, we felt that a direct comparison of the transcriptional and cytological differences would represent a means of focusing in on where these immune differences may be coming from.

Please find that we removed the microbial-challenge and corresponding immune gene expression data from our revised manuscript.

Please find that we have significantly revised our manuscript to highlight the experimental design, the motivation behind the experiments and the value of the findings.

2. The main results of the manuscript were gene expression profiles in Fig. 2-Fig. 6. However, the expression patterns at transcriptional level cannot provide any helpful information on functional role of the immune cells, which do not contribute anything new to our understanding of macrophage characterization from amphibian (Xenopus laevis) at different growth stages. In addition, the logical relationship among those target genes whose expression was detected in Fig.4-Fig. 6 is unclear.

We agree that it is often difficult to deduce functionality from complex transcriptional data such as ours. However, in our previous studies we established several notable functional differences between amphibian CSF1- and IL34-macrophages. Our present transcriptional comparisons drastically corroborate these previous findings, as they indicate that tadpole CSF1-macrophages are significantly different from tadpole IL34-macrophages and the same is true of the adult macrophage counterparts. Moreover, our comparisons of tadpole CSF1-macrophages with adult CSF1-macrophages and tadpole IL34-macrophages with the adult counterparts reveal notable differences in antigen presentation and chemotaxes genes, inferring functional differences between the tadpole and adult macrophage subsets.

Please find that we have highlighted these differences in the revised highlights, abstract and results & discussion sections of our revised (short communication) manuscript.

Please find that we have revised our manuscript to better explain the impetus behind our experimental design.

Please find that we removed Figures 4-6 of our original manuscript, combined the transcriptomic data into one paper and one supplemental figure and revised our manuscript into a short communication.

3. The highlights in the manuscript were confusing. In detail, no data in this study supported the conclusion "Macrophage biology depends on IL-34 and CSF-1"; It is odd that "We compared tadpole and frog IL-34- and CSF-1-macrophages" was regarded as a highlight; It is expected that "Tadpole and frog macrophages have different transcriptional profiles", which did not provide any new information on amphibian macrophages; "Tadpole and frog macrophages possess similar gene expression responses to pathogens" did not contribute new to our understanding of immune response in amphibian macrophages.

Please see the above comments and note that we have revised our highlights section accordingly.

4. There were originally many subtypes of macrophages induced by rCSF-1-and rIL-34, but the authors did not described which subtype was detected in the manuscript. Unexpectedly, the authors did not introduce how to isolate peritonea-derived macrophages, especially in tadpole.

Please find that in our revised manuscript, we acknowledge that as we previously noted, CSF1- and IL34 macrophages likely comprise of heterogenous populations. As discussed in our revised manuscript, the paucity of *X. laevis*-specific antibodies has prevented us from exploring this possible heterogeneity further.

Please find that our description of macrophage isolation is described in the methods section of our revised manuscript.

5. The obvious morphological difference between CSF-1- and IL-34-Macrophages (see Fig.1B) is impressed. This finding should be explained and discussed.

Please find that we have expanded on these results in our revised manuscript.

Reviewer #2: This manuscript deals with an interesting dataset which could be 'exploited' better than currently the case. At present the manuscript is highly descriptive without a clear research question. Also, at the end of the introduction (L65) please make more clear what is the aim of the current study, how does it add to and what is new in comparison to the previous work. The full RNAseq datasets should be made available.

We thank the reviewer for their kind and encouraging words and helpful suggestions. Please find that we have revised our manuscript to better highlight the questions being posed.

Please also find that we have revised this work into a short communication, focusing on the cytology and transcriptomics of tadpole and frog macrophage populations.

Please find that we have also made the full RNAseq dataset available as a supplemental file.

The 'highlights' should be rephrased and more specific, e.g. 'macrophage biology depends on IL-34 and CSF-1' is too broad. The last conclusion in the abstract at L38-42, is formulated too one-dimensional, please rephrase.

Please find that we have changed the highlights to be more informative of our manuscript's content.

Please re-read and double-check the phrasing in the Introduction section and the complete manuscript, e.g.; i) L48 The first sentence does not at appear to be correct, ii) the word 'these' in sentence 2 does not refer to anything obvious in the previous sentence, etc.

Thank you. Please find that we have revised our introduction section.

Introduction: reference to inos and tnfa for M1 and il10 and arginase-1 for M2 is too simplified and debatable. Please check the current opinion on markers for polarized macrophages and include comparative reference to work in e.g. chickens and fish. For example, in the latter, arginase-2 rather than arginase-1 has been discussed as M2 marker.

Please find that we removed the content of the introduction dealing with M1/M2 types in our revised short communication.

M&M: L87-104 Bacteria are grown at three different temperatures (20, 25, 30 oC) and heat killed, but also used alive shown in the Results, which is not clear from the M&M section. How do these bacteria grown at different temperatures behave at the same (?) and if so, which one (L111, temperature not specified) temperature used to grow the cells? I assume the dynamics of live bacteria will be very different under such different circumstances, how does this influence comparisons. All primers were validated prior to use (L130); this is a nice but meaningless statement with further details.

Please find that all data pertaining to microbial challenge and the corresponding immune gene expression analyses has been removed from what is now a short communication.

In the results and discussion section datasets are compared; transcripts of macrophages from tadpoles, with transcripts of macrophages from adults, collected after injection of csf, or injection of il-34. Also compared are macrophage transcripts of csf-injected, or il-34-injected animals, between tadpoles, or between adults. The questions addressed are very different (tadpole versus adult, or csf-versus il-34), and the results should be discussed separately and (more) clearly.

We thank the reviewer for this suggestion. Please find that we have revised our manuscript accordingly.

For the results, the authors frequently make a difference between 'transcriptionally unique' and 'transcriptionally different', this requires further specification. The discussion should be aligned with a clear research question defined at the end of the introduction.

We thank the reviewer for noting this. Please find that we have gone through our manuscript and reinforced such statements and framed our results within more concrete research questions.

Cytology and transcriptomics of tadpole & frog CSF-1- & IL-34-M\$\phi\$s were compared

Tadpole & frog CSF-1-M\$\phi\$s are larger & have greater non-specific esterase activity

Tadpole & frog IL-34-M\$\phi\$s are smaller & have greater specific esterase activity

Tadpole & frog CSF-1- & IL-34-M\$\phi\$s differ in their immune gene expression

Frog CSF-1- & IL-34-M\$\phi\$s express more antigen presentation genes than tadpole counterparts

Tadpole CSF-1- & IL-34-M\$\phi\$s express greater levels of some Fc-like receptor genes

| 1  | A comparison of amphibian (Xenopus laevis) tadpole and adult frog macrophages                                                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                            |
| 3  | Muhammad Riadul Haque Hossainey <sup>1+</sup> , Amulya Yaparla <sup>1+</sup> , Zarafsha Uzzaman <sup>1+</sup> , Tyler Moore <sup>1</sup> , |
| 4  | Leon Grayfer <sup>1*</sup>                                                                                                                 |
| 5  |                                                                                                                                            |
| 6  | <sup>1</sup> Department of Biological Sciences, George Washington University, Washington, DC 20052,                                        |
| 7  | USA                                                                                                                                        |
| 8  | + these authors contributed equally to this work                                                                                           |
| 9  |                                                                                                                                            |
| 10 |                                                                                                                                            |
| 11 |                                                                                                                                            |
| 12 |                                                                                                                                            |
| 13 |                                                                                                                                            |
| 14 |                                                                                                                                            |
| 15 |                                                                                                                                            |
| 16 |                                                                                                                                            |
| 17 |                                                                                                                                            |
| 18 |                                                                                                                                            |
| 19 |                                                                                                                                            |
| 20 |                                                                                                                                            |
| 21 |                                                                                                                                            |
| 22 |                                                                                                                                            |
| 23 | *Correspondence: <u>leon_grayfer@gwu.edu</u>                                                                                               |

#### **Abstract**

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

The amphibian declines are compounded by emerging pathogens that often preferentially target distinct amphibian developmental stages. While amphibian immune responses remain relatively unexplored, macrophage (M $\phi$ )-lineage cells are believed to be important to both amphibian host defenses and to their pathogen infection strategies. As such, a greater understanding of tadpole and adult amphibian Mφ functionality is warranted. Mφ biology is interdependent of interleukin-34 (IL-34) and colony-stimulating factor-1 (CSF-1) cytokines and we previously showed that CSF-1- and IL-34-derived Mos of the *Xenopus laevis* frog are morphologically, transcriptionally, and functionally distinct. Presently, we directly compared the cytology and transcriptomes of X. laevis tadpole and frog CSF-1- and IL-34-M\u03c4s. Our results indicate that tadpole and frog CSF-1-M\u03c4s possess greater non-specific esterase activity, typically associated with M $\phi$ -lineage cells. By contrast, both tadpole and frog IL-34-Mos have greater specific esterase activity, which is typically attributed to granulocyte-lineage cells. Our comparisons of tadpole CSF-1-M\phi transcriptomes with those of tadpole IL-34-M\psi indicate that the two tadpole populations possess significantly different transcriptional profiles of immune and non-immune genes. The frog CSF-1-M\phi gene expression profiles are likewise significantly disparate from those of frog IL-34-M\u03c4s. Compared to their respective tadpole M\phi subtypes, frog CSF-1- and IL-34-M\phis exhibited greater expression of genes associated with antigen presentation. Conversely, compared to their frog M\phi counterparts, tadpole CSF-1- and IL-34-Mos possessed greater levels of select Fc-like receptor genes. Presumably, these cytological and transcriptional differences manifest in distinct biological roles for these respective tadpole and frog Mφ subtypes.

45

46 47

48

49

50

51

Key words: macrophage, interleukin-34, colony-stimulating factor-1, amphibian, tadpole

## Introduction

Macrophage (Mφ) lineage cells are indispensable to the physiology and immunity of all vertebrates, including amphibians [1]. While Mφ polarization is highly dynamic [2, 3], the differentiation and functionality of all vertebrate Mφs depend on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by CSF-1 and interleukin-34 cytokines [4]. Our recent work indicates that the *X. laevis* tadpole and adult Mφs differentiated by recombinant (r)CSF-1 and rIL-34 possess markedly distinct capacities to recognize and respond to various pathogens [5-8]. Our past studies indicate that IL-34-derived Mφs of both tadpoles and adult frogs are considerably more resistant to viral infections than tadpole and adult CSF-1-Mφs [5, 6, 9]. Our work also suggests that tadpole and adult IL-34-Mφs share the expression of some immune genes while differing in the expression of others, as is the case with tadpole and adult CSF-1-Mφs [5, 6]. However, these tadpole and adult frog counterpart Mφ subsets have hitherto not been directly compared. To reconcile possible differences in tadpole and adult frog Mφs, here we compare tadpole and adult frog CSF-1- and IL-34-Mφ cytology and transcriptional profiles.

# **Materials and Methods**

Animals and cell culture conditions

Outbred, Nieuwkoop and Faber (NF) stage -54 tadpoles and approximately 1 years-old adult *X. laevis* were purchased from Xenopus1 (Dexter, MI), housed, and handled under strict laboratory regulations of Animal Research Facility at the George Washington University (GWU) and as per the GWU Institutional Animal Care and Use Committee regulations (Approval number 15-024). All cell cultures were established in amphibian serum-free medium supplemented with 10%

fetal bovine serum, 0.25% X. laevis serum, 10 µg/ml gentamycin (Thermo Fisher Scientific), 100

U/ml penicillin, 100 μg/ml streptomycin (Gibco). Amphibian phosphate buffered saline (APBS)
 that was used while isolating the cells has been previously described [8].

*X. laevis* rCSF-1 and rIL-34 were produced using an insect expression system by a previously described methods [8].

# Peritoneal macrophage isolation and cytology

Tadpoles (stage NF 54) and adult frogs (1-2 years-old) were injected intraperitoneally with 2.5 $\mu$ g/g body weight of rCSF-1 or rIL-34 (5-6 animals per treatment, N=5-6). Three days later (based on our previous results [5, 6]) animals were lavaged with APBS and the isolated M $\phi$ s were enumerated using trypan blue live/dead exclusion. Cells were either used in RNAseq studies or spun onto glass slides using a cytocentrifuge, fixed with 10% neutral buffered formalin (VWR) and stained with Naphthol AS-D Chloroacetate (Specific Esterase; Sigma) or  $\alpha$ -Naphthyl Acetate (Non-Specific Esterase; Sigma) according to the manufacturer's instructions.

#### RNA sequencing and analyses

Towards RNA sequencing analysis, total RNA was isolated from tadpole and frog CSF-1- and IL-34-Mφs, as described above and submitted to University of Maryland Genomic Resource Center for library preparation, sequencing, and analysis. RNA libraries were prepared by using poly A selection and paired-end sequencing was performed using Illumina. Reads were mapped to the *X. laevis* v9.1 genome (Xenbase, http:// www.xenba se. org/ entry/). The alignments were generated by HISAT2 and Samtools was used to generate alignment statistics. The read counts for each transcript were generated by HTSeq and the reads were either normalized as CPM (count per million reads), or RPKM (Reads Per Kilobase Million).

The raw counts generated by HTSeq were used as input for differential expression analysis using DESeq2 Bioconductor packages. The number of differentially expressed genes for each comparison of interest with significance were defined using a P-adjusted (padj) value cutoff of <=0.05 and a log2 fold change (LFC)  $\geq$  [1]. For each comparison, volcano plots were created to visualize the relationship of the LFC in expression of each gene between the two conditions against the padj value of the gene.

The complete dataset of the differentially expressed genes is provided as supplemental data.

#### **Results and Discussion**

Comparison of rCSF-1- and rIL-34-elicited tadpole and adult frog peritoneal macrophages

Akin to their mammalian counterparts, the *X. laevis* CSF-1 and IL-34 are chemo-attractive to Mφ progenitors and derived populations [5, 6]. In past studies, we exploited this property of the respective growth factors to inject tadpoles [5] and adult *X. laevis* [6] intraperitoneally (ip) with recombinant (r)CSF-1 or rIL-34, thereby accumulating Mφs into the animal peritonea and differentiating them towards CSF-1- or IL-34-Mφ biases, respectively. To directly compare tadpole and adult frog CSF-1- and IL-34-Mφs, in the present study we administered rCSF-1 and rIL-34 (2.5μg/g body weight) into tadpole and adult frog peritonea and three days later isolated the recruited Mφs by lavage. Notably, while tadpoles possess considerably fewer total leukocytes compared to adult frogs [10], we observed comparable per μl numbers of CSF-1- or IL-34-Mφs accumulating in tadpole and adult frogs following the respective cytokine administrations (Fig. 1A). Notably, rIL-34 resulted in greater accumulation of tadpole peritoneal Mφs than elicited by rCSF-1, whereas the opposite effect was seen in adult frogs (Fig. 1A). The mammalian CSF-1 and

IL-34 exhibit distinct interactions with the CSF-1R [11], with the mammalian IL-34 possessing greater affinity for the receptor than CSF-1 [12, 13]. Moreover, IL-34 also ligates receptor protein tyrosine phosphatase- $\zeta$  (PTPR $\zeta$ ), which in mammals is expressed by neuronal progenitor cells [14]. While our expression studies indicate that frog macrophages do not express PTPR $\zeta$  (unpublished observation), possibly the frog IL-34 and/or CSF-1 ligate additional M $\phi$ /progenitor-expressed receptors and/or have unique interactions with the frog CSF-1R, explaining the observed differences in tadpole and adult frog peritoneal M $\phi$  accumulation (Fig. 1A) and our previously observed disparate functionalities of these respective M $\phi$  subsets.

We previously showed that *X. laevis* bone marrow derived CSF-1- and IL-34-Mφs possess distinct enzymology [15]. Specifically, we found that IL-34-Mφs possessed greater specific esterase (SE) activity whereas CSF-1-Mφs had greater non-specific esterase (NSE) staining. We found the same to be true of the tadpole and adult frog CSF-1- and IL-34-Mφs, wherein both tadpole and adult IL-34-Mφs had greater SE activity whereas the tadpole and adult CSF-1-Mφs showed greater NSE staining (Fig. 1B). Across vertebrates, SE activity is associated with granulocyte-lineage cells [16], whereas mononuclear phagocytes are known for their NSE activity [16-18]. Our past studies suggest that amphibian IL-34-Mφs share many features with granulocytes [19], which is corroborated by the observation that both tadpole and frog IL-34-Mφs possessed greater SE activity. Moreover, the morphology of tadpole and adult CSF-1-Mφs more closely resembled 'classical' mammalian Mφ morphology and perhaps the greater NSE activity of these cells reflects their differentiation towards what has been more traditionally thought of as a Mφ. Indeed, both tadpole and adult CSF-1-Mφs tended to be larger and possess more ruffled membranes than the counterpart IL-34-Mφs (Fig. 1B). Together, these findings indicate that not

only do CSF-1 and IL-34 result in morphologically and enzymatically distinct X. *laevis* M $\phi$  subsets, but that these differences appear to be consistent across developmental stages.

Our previous studies suggest that peritonea-derived IL-34- and CSF-1-M $\phi$ s are each likely comprised of heterogenous M $\phi$  subtypes [6]. While our ongoing work, including the present studies, has helped to delineate differences between amphibian CSF-1- and IL-34-M $\phi$  subsets, the paucity of *X. laevis*-specific antibodies has prevented us from exploring the possible heterogeneity within each of these M $\phi$  populations further.

Tadpole and frog CSF-1- and IL-34-M\psis differ in their transcriptional profiles

To get a better sense of the differences between tadpole and adult frog CSF-1 and IL-34-Mφs, we performed RNA sequencing analyses of these cell subsets (Fig. 2A&B, Fig. S1A&B). Our results indicated that tadpole IL-34-Mφs are very transcriptionally distinct from tadpole CSF-1-Mφs (Fig. 2A, Fig. S1A) and that the same was true for adult frog IL-34- and CSF-1-Mφs (Fig. 2B, Fig. S1B).

Amongst the highest expressing genes in tadpole CSF-1-Mφs were the gene encoding the CXCL2 chemokine, which is involved in immunoregulatory and inflammatory processes [20-22], the gene encoding for hepcidin-1 (*hepc*), which is important for Mφ recycling of iron [23], and the gene encoding secreted protein acidic and cysteine rich (*sparc*), which is involved in tissue remodeling, cell matrix cross-talk [24], (Fig. 2A, Fig. S1A). Conversely, tadpole IL-34-Mφs possessed higher transcript levels for sialic acid binding Ig like lectin 10 (*siglec10*), which regulates immune cell function during various immune events [25] and may be utilized as a marker of this Mφ subset in the future; two genes the products of which are involved in DNA repair

165 (*rrm2b*, [26] and *rad54*, [27]); and a gene involved in Wnt signaling and associated with fibrosis (*sfrp4*, [28]).

While primarily associated with T cells, Mφs have been shown to produce lytic perforin molecules [29], which is consistent with frog CSF-1-Mφs possessing greater expression levels of perforin-1 (*prf1*) genes (Fig. 2B, Fig. S1B).

Frog IL-34-Mφs had greater expression levels of an interleukin-4 induced protein (*il4i1*), which has been shown to dictate macrophage differentiation [30] (Fig. 2B, Fig. S1B). Macrophages have also been shown to respond to interleukin-2 [29], which coincides with adult frog IL-34-Mφs possessing elevated levels of the IL-2 receptor beta (*il2rb*; Fig. 2B, Fig. S1B).

Our previous studies collectively indicate that both tadpole and adult frog IL-34-M\$\phi\$ are functionally distinct from the respective tadpole and frog CSF-1-M\$\phi\$ [5, 6, 9], and this is substantiated by the marked transcriptional differences between tadpole IL-34- and CSF-1-M\$\phi\$ and between the corresponding frog M\$\phi\$ types. Our comparisons of exclusively differentially expressed immune genes between tadpole CSF-1- and IL-34-M\$\phi\$ and between frog CSF-1- and IL-34-M\$\phi\$ echo these past observations, as both tadpole and frog CSF-1-and IL-34-M\$\phi\$ possess distinct expression profiles of putative cell surface markers, antimicrobial genes and genes encoding cytokine and chemokine ligands and receptors (Tables S1 & S2, respectively). Notably, both tadpole and adult frog IL-34-M\$\phi\$\$ also expressed genes typically associated with granulocytes, such as trypsin and chymotrypsin (tadpole IL-34-M\$\phi\$s) as well as neutrophil cytosolic factor (frog IL-34-M\$\phi\$s; Tables S1 & S2, respectively). This is consistent with our previous findings that frog IL-34-M\$\phi\$s share many features with frog granulocytes [15] and our

current observations that tadpole and frog IL-34-Mφs possess robust SE activity (Fig. 1B), which is typically seen in granulocytes [16].

Tadpole  $M\phi$  subtypes are transcriptionally different from the frog  $M\phi$  counterparts

To gain insight into possible differences between pre- and post-metamorphic Mφ subsets, we compared the transcriptomes of tadpole IL-34-Mφs with frog IL-34-Mφs and tadpole CSF-1-Mφs with the frog CSF-1-derived counterparts (Fig. 2C&D, Fig. S1C&D). In a comparison of tadpole and adult frog IL-34-Mφs, some of the more notable genes broadly expressed in the adult IL-34-Mφs included major histocompatibility complex (*mhc*) 2a and *mhc2b*, colony stimulating factor-2 receptor alpha (*csf2ra*) and *cxcl8b* (Fig. 2C, Fig. S1C). Conversely, some notable genes expressed at greater levels by tadpole IL-34-Mφs compared to the adult counterparts include an Fc-receptor like gene-5 (*fcrl5*), macrophage stimulating receptor 1 (*mst1r*) and perforin-1 (*prf1*; Fig. 2C, Fig. S1C).

When comparing the tadpole and adult frog CSF-1-M\$\phi\$s, the notable genes expressed more broadly in frog CSF-1-M\$\phi\$s included *mhc1a*, *mhc2a* and the chimeric chemokine-like receptor 1 (*cmklr1*; Fig. 2D, Fig. S1D). By contrast, the notable immune genes expressed at greater levels by tadpole CSF-1-M\$\phi\$s included phospholipase a2 (*pla2*) and cathepsin k (*catk*; Fig. 2D, Fig. S1D).

Together these analyses support previous reports that *X. laevis* tadpole leukocytes express lower MHC class I and II [31]. The robust differences in the transcriptional profiles of each of the examined Mφ subtypes suggest that tadpole and adult CSF-1- and IL-34-Mφs likely have many non-overlapping functional differences.

Comparisons of exclusively immune genes that were differentially expressed between tadpole and adult IL-34-M\$\phi\$s or between tadpole and frog CSF-1-M\$\phi\$s (Tables S3 & S4, respectively),

revealed far longer lists of differentially expressed genes than those seen when comparing tadpole or frog Mφ subsets (Tables S1 & S2, respectively). This suggests that there are far more immune differences between the same or similar Mφ subsets from pre- and post-metamorphic animals than there are between the tadpole CSF-1- and IL-34-Mφs or between frog CSF-1- and IL-34-Mφs. These differences include much greater numbers of differentially expressed cell surface marker genes, antimicrobial genes as well as genes encoding cytokines/chemokine ligands and receptors (Tables S3 & S4, respectively). Not surprisingly and as described above, frog IL-34- and CSF-1-Mφs possessed greater expression levels of antigen presentation genes (Tables S3 & S4), corroborating the previously established notion that post-metamorphic frogs have greater antigen presentation capacities [10]. However, it was notable that tadpole IL-34- and CSF-1-Mφs expressed greater levels of Fc-like receptor genes (Tables S3 & S4), possibly reflecting an as-of-yet undefined link between tadpole Mφs and their adaptive immune responses.

## Concluding remarks

Future studies of tadpole and adult frog Mφs that consider other variables such as the respective developmental stage physiologies, hematopoiesis strategies and microbiomes, will undoubtedly grant more clarity to why and under what conditions amphibian tadpoles and adult frogs utilize conserved and diverged immune mechanisms. Because Mφ-lineage cells are so important to vertebrate physiology and immunity, we believe that future studies that contrast Mφ subsets during different tadpole and adult frog immune and physiological processes will be important to elucidating the biological reasons governing these similarities and differences.

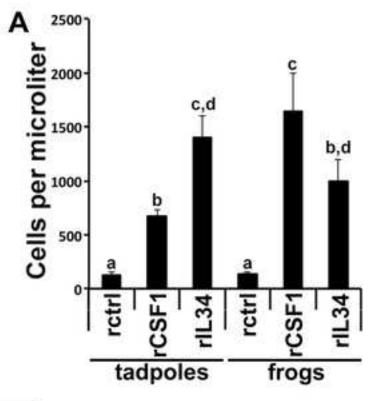
## Acknowledgments

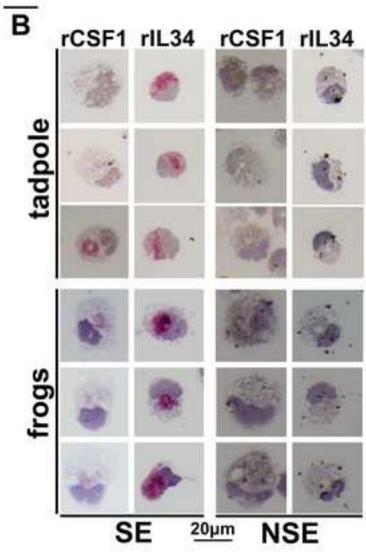
MRHH, AY and ZU thank the Wilbur V. Harlan endowment for summer research support. This work was supported by a grant from National Science Foundation-IOS:1749427 to LG. We thank the anonymous reviewers whose helpful comments and suggestions improved the scope of this communication. 

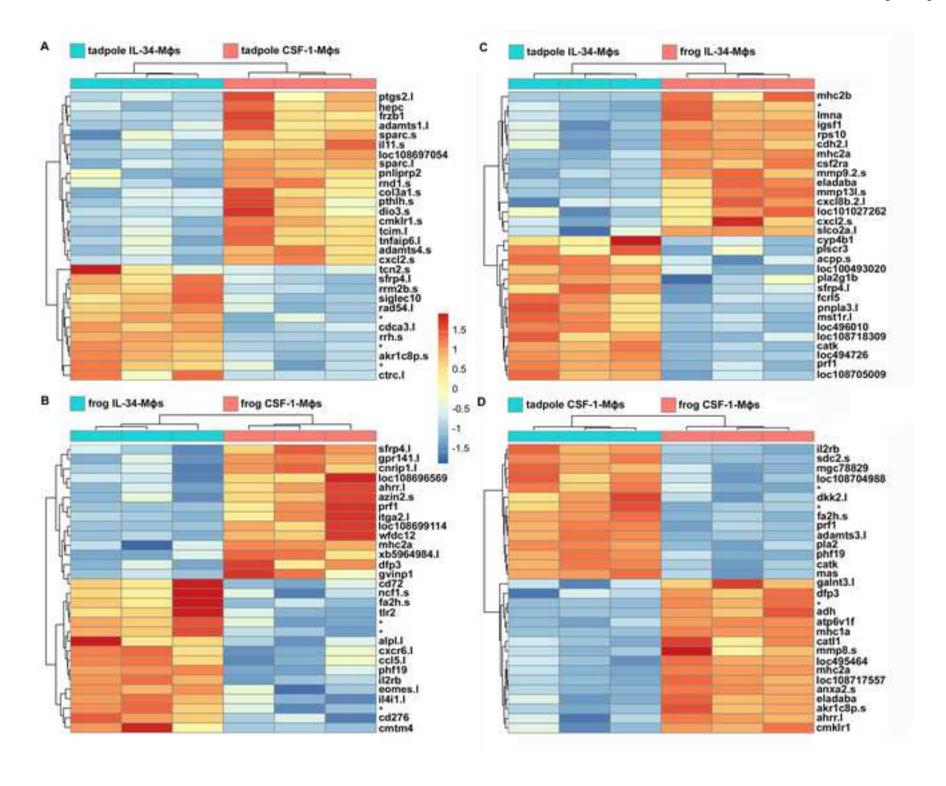
## 255 References:

- Grayfer, L. and J. Robert, *Amphibian macrophage development and antiviral defenses*.
   Dev Comp Immunol, 2016. 58: p. 60-67.
- Guiducci, C., et al., *Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection.* Cancer Res, 2005. 65(8): p. 3437-46.
- Saccani, A., et al., p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res, 2006. 66(23): p. 11432-40.
- Stanley, E.R., et al., *Biology and action of colony--stimulating factor-1*. Mol Reprod Dev,
   1997. 46(1): p. 4-10.
- Grayfer, L. and J. Robert, Divergent antiviral roles of amphibian (Xenopus laevis)
   macrophages elicited by colony-stimulating factor-1 and interleukin-34. J Leukoc Biol,
   2014. 96(6): p. 1143-53.
- Grayfer, L. and J. Robert, Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1- and interleukin-34-derived macrophages. J Leukoc Biol, 2015.
   98(4): p. 641-9.
- Yaparla, A., et al., Amphibian (Xenopus laevis) macrophages differentiated by colony-stimulating factor-1 and interleukin-34 possess distinct pathogen recognition capacities.
   Cytokine, 2018. in review.
- Yaparla, A., M. Popovic, and L. Grayfer, *Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages.* J Biochem, 2018. 293(5): p. 1736-1744.
- Yaparla, A., M. Popovic, and L. Grayfer, *Differentiation-dependent antiviral capacities* of amphibian (Xenopus laevis) macrophages. J Biol Chem, 2018. 293(5): p. 1736-1744.
- 278 10. Robert, J. and Y. Ohta, *Comparative and developmental study of the immune system in Xenopus*. Dev Dyn, 2009. 238(6): p. 1249-70.
- Nakamichi, Y., N. Udagawa, and N. Takahashi, *IL-34 and CSF-1: similarities and differences.* J Bone Miner Metab, 2013. 31(5): p. 486-95.
- 282 12. Bain, C.C., et al., Resident and pro-inflammatory macrophages in the colon represent 283 alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal 284 Immunol, 2013. 6(3): p. 498-510.
- Wei, S., et al., Functional overlap but differential expression of CSF-1 and IL-34 in their
   CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol, 2010. 88(3): p. 495 505.
- Nandi, S., et al., *Receptor-type protein-tyrosine phosphatase zeta is a functional receptor* for interleukin-34. J Biol Chem, 2013. 288(30): p. 21972-86.
- Yaparla, A., et al., *Exploring the relationships between amphibian (Xenopus laevis)*myeloid cell subsets. Dev Comp Immunol, 2020. 113: p. 103798.
- 292 16. Rindler, R., et al., *Naphthol AS-D chloroacetate esterases in granule extracts from human neutrophil leukocytes*. Blut, 1971. 23(4): p. 223-7.
- Neumann, N.F., D.R. Barreda, and M. Belosevic, Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures. Fish Shellfish Immunol, 2000. 10(1): p. 1-20.
- Yourno, J., et al., *Monocyte nonspecific esterase. Enzymologic characterization of a neutral serine esterase associated with myeloid cells.* J Histochem Cytochem, 1986. 34(6): p. 727-33.

- 300 19. Yaparla, A., E.S. Wendel, and L. Grayfer, *The unique myelopoiesis strategy of the amphibian Xenopus laevis*. Dev Comp Immunol, 2016. 63: p. 136-43.
- 302 20. Belperio, J.A., et al., *CXCR2/CXCR2 ligand biology during lung transplant ischemia-* 303 reperfusion injury. J Immunol, 2005. 175(10): p. 6931-9.
- Sekido, N., et al., *Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8.* Nature, 1993. 365(6447): p. 654-7.
- Souza, D.G., et al., Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits
   inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br J
   Pharmacol, 2004. 143(1): p. 132-42.
- 309 23. Sullivan, J.L., *Macrophage iron, hepcidin, and atherosclerotic plaque stability*. Exp Biol Med (Maywood), 2007. 232(8): p. 1014-20.
- Termine, J.D., et al., *Osteonectin, a bone-specific protein linking mineral to collagen.*Cell, 1981. 26(1 Pt 1): p. 99-105.
- Macauley, M.S., P.R. Crocker, and J.C. Paulson, *Siglec-mediated regulation of immune cell function in disease*. Nat Rev Immunol, 2014. 14(10): p. 653-66.
- 315 26. Iqbal, W., et al., RRM2B Is Frequently Amplified Across Multiple Tumor Types:
- 316 Implications for DNA Repair, Cellular Survival, and Cancer Therapy. Front Genet, 2021.
   317 12: p. 628758.
- 318 27. Maranon, D.G., et al., *NUCKS1 promotes RAD54 activity in homologous recombination DNA repair.* J Cell Biol, 2020. 219(10).
- 320 28. Tinazzi, I., et al., SFRP4 Expression Is Linked to Immune-Driven Fibrotic Conditions, Correlates with Skin and Lung Fibrosis in SSc and a Potential EMT Biomarker. J Clin
- 322 Med, 2021. 10(24).


- 29. Li, H., et al., Macrophage precursor cells produce perforin and perform Yac-1 lytic activity in response to stimulation with interleukin-2. J Leukoc Biol, 1994. 56(2): p. 117-23.
- 326 30. Yue, Y., et al., IL4II Is a Novel Regulator of M2 Macrophage Polarization That Can
   327 Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production.
   328 PLoS One, 2015. 10(11): p. e0142979.
- 329 31. Rollins-Smith, L.A., et al., *Involvement of thyroid hormones in the expression of MHC class I antigens during ontogeny in Xenopus*. Dev Immunol, 1997. 5(2): p. 133-44.


# Figure legends


**Figure 1.** Peritonea-derived tadpole and adult frog CSF-1- and IL-34-Mφs possess disparate enzymology. *X. laevis* tadpole (N.F.=54) and adult frogs (~1 year-old) were intraperitoneally injected with recombinant control (r-ctrl) or 2.5μg of rCSF-1 or rIL-34 and harvested by lavage with 0.5 ml of APBS, 3 days later. The cells were (A) enumerated and (B) cytologically examined following staining with NASDCl-specific esterase (SE; left panel) or α-Naphthyl Acetate (non-specific esterase; NSE; right panel) stains. The results in (A) are means  $\pm$  SE for cells derived from 6 individual animals (*N*=6), per treatment group. The results in (B) are representative of peritoneal cells derived from 6 individual, per treatment group. The letters above head bars indicate statistical groups, with each letter representing a distinct statistical grouping, p < 0.05.

**Figure 2.** Transcriptional differences between tadpole CSF-1- and IL-34-Mφs, frog CSF-1- and IL-34-Mφs, tadpole and frog IL-34-Mφs and tadpole and frog CSF-1-Mφs. Comparisons of differentially expressed genes between *X. laevis* tadpole and adult frog Mφ subsets were performed by using DESeq2. The heatmaps depict top 30 significantly differentially expressed genes between (A) tadpole CSF1-Mφs and IL-34-Mφs, (B) frog CSF1-Mφs and IL-34-Mφs, (C) tadpole and frog IL-34-Mφs, and (D) tadpole and frog CSF1-Mφs. Each cell type was derived from 3 individual animals (*N*=3/cell type). Gene names that contain '.s' or '.l' suffixes, indicate transcripts from short or long arms of *X. laevis* chromosomes, respectively. Sequences without annotations were listed as model IDs starting with 'loc' and without significant hits were marked with asterisk (\*) sign(s). All heatmaps were visualized using 'pheatmap' package in R (4.0.2 version).

**Supplemental Figure 1.** Transcriptional differences between tadpole CSF-1- and IL-34-Mφs, frog CSF-1- and IL-34-Mφs, tadpole and frog IL-34-Mφs and tadpole and frog CSF-1-Mφs. The volcano plots show the global transcriptional change between (A) tadpole CSF1-Mφs and IL-34-Mφs, (B) frog CSF1-Mφs and IL-34-Mφs, (C) tadpole and frog IL-34-Mφs, and (D) tadpole and frog CSF1-Mφs. Each cell type was derived from 3 individual animals (*N*=3/cell type). For the volcano plots, the x-axis represents the log2 fold change of each gene and the y-axis represents the log10 of its adjusted p-value. Genes with a padj value of less than 0.05 and a log2 fold change >1 are the upregulated genes and indicated by red dots while genes with a padj value of less than 0.05 and a log2 fold change <-1 are called downregulated genes and indicated by blue dots. The grey dots represent statistically non-significant genes. Gene names that contain '.s' or '.l' suffixes, indicate transcripts from short or long arms of *X. laevis* chromosomes, respectively.







Supplementary Material

Click here to access/download **Supplementary Material**Supplemental Figure 1.tif

Supplementary Material

Click here to access/download **Supplementary Material**Supplemental Tables.docx

Click here to access/download

Supplementary Material

DEGs\_frog CSF-1\_vs\_frog IL-34-Macs.xlsx

Click here to access/download

Supplementary Material

DEGs\_frog CSF-1\_vs\_tadpole CSF-1-Macs.xlsx

Click here to access/download **Supplementary Material**DEGs\_frog IL-34\_vs\_tadpole IL34-Macs.xlsx

Click here to access/download **Supplementary Material**DEGs\_tadpole CSF-1\_vs\_tadpole IL-34-Macs.xlsx