
Modeling Concentration-dependent Phase Separation Processes
Involving Peptides and RNA via Residue-Based Coarse-Graining

Gilberto Valdes-Garcia, Lim Heo, Lisa J. Lapidus, and Michael Feig*
Cite This: J. Chem. Theory Comput. 2023, 19, 669−678 Read Online

���
  ��
 !"# $ �% � & 
!"'� (�"%))�*+,
!%*# *sı -.//% 
!*0 1*2% ),
!%*

ABSTRACT: Biomolecular condensation, especially liquid−liquid phase
separation, is an important physical process with relevance for a number of
different aspects of biological functions. Key questions of what drives such
condensation, especially in terms of molecular composition, can be addressed
via computer simulations, but the development of computationally efficient
yet physically realistic models has been challenging. Here, the coarse-grained
model COCOMO is introduced that balances the polymer behavior of
peptides and RNA chains with their propensity to phase separate as a
function of composition and concentration. COCOMO is a residue-based
model that combines bonded terms with short- and long-range terms,
including a Debye−Hückel solvation term. The model is highly predictive of
experimental data on phase-separating model systems. It is also computationally efficient and can reach the spatial and temporal
scales on which biomolecular condensation is observed with moderate computational resources.

■ INTRODUCTION

Liquid−liquid phase separation (LLPS) is gaining importance
in understanding membrane-less subcellular organization. In
the cell, liquid condensation is mediated by polymers, mainly
proteins and RNA.1 The first membrane-less compartment
observed was within the nucleus of neuronal cells in the 1830s,
later termed the nucleolus.2 Today, many other compartments
that are not delimited by membranes are also known. Examples
include the Cajal bodies,3−5 PML bodies,3 and nuclear
speckles6,7 in the nucleus, as well as the stress granules,8,9 P-
bodies,10 and germ granules11 in the cytoplasm. More recent
studies indicate that biomolecular condensation may be much
more ubiquitous than these well-known cellular components.12
Despite differences in composition, location, and function, the
condensates share similarities in shape, dynamics, and
assembly mechanisms.13
Many biophysical techniques, including microscopy and

structural and compositional analysis, have been applied to
study phase separation (PS).14 On the theoretical side,
analytical approaches based on polymer theories have been
applied.15,16 Finally, computer simulations have been used to
explain the interactions that stabilize PS, with the most detailed
insight derived from atomistic simulations.17−19 However,
atomistic simulations are challenged20 by the significant
computational resources required to reach the time scales
(μs−ms) and spatial scales (>100 nm) on which LLPS is
observed experimentally. Coarse-grained (CG) models are a
computationally more efficient alternative21,22 and they have
been used successfully to study PS via simulation.23 Earlier
studies stem from the colloid field, with more limited
applicability to specific biological systems.24 More recently,

biology-focused models at different resolution levels have been
developed, ranging from models representing proteins/RNA at
the molecule level as single particles25 to patchy particles,26

residue-based models,23,27−33 and higher-resolution models
with multiple particles per residues.34−36

Residue-based, sequence-dependent models have become
very popular for studying PS as they combine computational
efficiency with an ability to retain key physicochemical features
of specific biological systems. Many rely on a hydrophobicity
scale (HPS) using an Ashbaugh−Hatch modified Lennard-
Jones potential37 to describe shortrange interactions.23,27−29,33

In some cases, the HPS are implemented without further
optimization,23 while other models apply machine learning and
Bayesian parameter-learning procedures for optimization.27,29

Further HPS optimizations have focused on cation−π
interactions given its importance in PS.31,32 These CG models
have been able to reproduce some experimental data
reasonably well. One limitation of the existing models, as will
be shown below, is that concentration-dependent PS is not
reproduced well, which limits their predictive ability since
concentration is a key factor governing phase behavior.38

Moreover, most models focus on describing only protein
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systems without a compatible nucleic acid model, preventing
studies of increasingly important peptide-RNA condensates.
Here, we propose a new residue-based CG model, termed

COCOMO (Concentration-dependent Condensation Model)
to describe PS in peptide-only and peptide-RNA systems. Our
goal was to develop a simple yet accurate model for describing
coacervation in systems containing only peptides or mixtures
of peptides and RNA in a concentration-dependent manner.
The model was designed to minimize the number of necessary
parameters to maintain as much general applicability as
possible, and it introduces a term to account for solvation
effects at the residue level. We demonstrate that our model can
accurately reproduce experimental PS data, including in
systems that were not included in the parameterization while
maintaining a balanced description of individual polymer
properties of peptides and RNA molecules.

■ METHODS

Coarse-Grained Model. In COCOMO, each residue,
either a protein amino acid or an RNA nucleotide, is
represented as a single spherical particle. The total interaction
energy is given by:

= + + +U U U U Utotal bond angle short range electrostatic (1)

where Ubond is the harmonic potential for chain connectivity:
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where li,i+1 is the distance between two neighboring residues,
kbond is the spring constant, and l0 the equilibrium bond length.
We choose kbond = 4184 kJ/mol•nm2, which is a softer value
than in all-atom potentials; for proteins, l0 = 0.38 nm, from the
average Cα−Cα distance, and, for nucleotides, l0 = 0.5 nm,
corresponding to the average distance between backbones for
single-stranded nucleic acids.39
Uangle is the angle potential between three neighboring

particles to account for chain stiffness
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where θi,i+1,i+2 is the angle between three neighboring beads,
with the angle constant, kangle, equal to 4.184 kJ/mol·rad2 for
proteins and 5.021 kJ/mol·rad2 for nucleic acids. The target
angle was set to θ0 = 180°.
Nonbonded pairwise interactions consist of a short-range

10−5 Lennard-Jones potential, Ushort‑range, and a long-range
Debye−Hückel potential, Uelectrostatic, as follows:
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where ri,j is the interparticle distance, σi,j is the distance at
which the potential is zero, ε is the depth of the potential well,
εcation−π is added to augment cation−π interactions, Ai,j = Ai ×
Aj describes attractive or repulsive long-range interactions, A0i,j
= A0i + A0j reflects the effective repulsion between polar

residues due to solvation effects, and κ is the Debye−Hückel
screening length.
Optimized nonbonded parameters values are as follows:

εpolarresidues = 0.4 kJ/mol and εnon‑polarresidues = 0.41 kJ/mol. Arg,
Asn, Asp, Cys, Gln, Glu, His, Lys, Ser, and Thr were
considered polar residues; Ala, Gly, Ile, Leu, Met, Phe, Pro,
Trp, Tyr, and Val were considered nonpolar. For nucleotides,
we used εnucleotides = 0.41 kJ/mol. We further adjusted for
cation−π interactions by adding = 0.3 kJ/molR/K F/Y/W for
interactions within proteins and εR/K−nucleic = 0.2 kJ/mol for
protein-RNA cation−π interactions. The effective radii σi = 2ri
× 2−1/6 were set from the radius, ri, of a sphere with equivalent
volume of a given residue. Ai was calculated from residues
charge (qi) + 1 for Arg/Lys, −1 Asp/Glu and nucleotides, and
0 for the rest according to | |q qsign( ) 0.75i i as proposed
previously.25A0 was set to 0.05 for polar residues and
nucleotides, it was set to 0 for nonpolar residues. Finally, κ =
1 nm, except when noted, corresponding to an ionic strength
of ∼100 mM. Table S1 reports all residue-specific parameters
employed in the model.

Molecular Dynamics Simulations. The model was
simulated by molecular dynamics simulations using OpenMM
7.7.0.40 Langevin dynamics was applied with a friction
coefficient of 0.01 ps−1. Initially, a 5,000 step steepest descent
minimization was performed followed by 20,000 steps of MD
with a time step of 0.01 ps. After that, systems were run for
production using a time step of 0.02 ps. Nonbonded
interactions were calculated using periodic boundary con-
ditions and truncated at a cutoff distance of 3 nm. We also
tested the use of force switching according to Steinbach and
Brooks (eq 10 in that work)41 with ron = 2.9 nm and roff = 3.1
nm and found little difference for selected systems (Figure
S13). However, the simulations slowed down by 20%.
Therefore, we continued to use truncated potentials in the
remainder of this work. The cutoff was chosen long enough for
the potentials to approximately reach zero. However, the cutoff
distance remains a model parameter and may affect model
performance as other recent work has shown. Residues
separated by one bond were excluded from nonbonded
interactions energy calculation.
Individual protein and RNA chains were simulated in a cubic

box with a side length of 300 nm at 298 K. For systems
described here, five replicates were run over 500 ns, saving
coordinates every 200 ps for each system. This was long
enough to establish converged ensembles from which average
radii of gyration and persistence length could be extracted. The
first 100 ns of each trajectory were excluded from the analysis.
An initial random conformation for each chain was obtained
using a custom python script. Topology files were generated
with the MMTSB Tool Set42 and CHARMM v44b2.43 Using a
GeForce RTX 2080 Ti GPU card, we could simulate 100 ns of
a 100-residue protein in 5 min.
Polymer properties were calculated and averaged from the

five replicates. For protein sequences we calculated the radius
of gyration using MDTraj library.44 For RNA chains we also
determined the end-to-end distance and the orientational
correlation factor (OCF) as a function of separation along the
chain |i − j|, calculated according to:

| | = = •i j r rOCF( ) cos i j i j, (6)

where ri and rj are normalized vectors between any i,i + 1 and
j,j + 1 bonded residues in the chain, respectively.
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Systems consisting of multiple chains, either proteins or
protein-RNA mixtures, were simulated in boxes of side length
ranging from 100 to 200 nm to match different concentrations
for different systems (see below). Multiple-chain systems were
assembled as follows: (i) short simulations were carried out for
each of the system components, as described above, (ii)
representative conformations were obtained as cluster centers
from RMSD-based clustering using the MiniBatchKMedoids
method implemented in MSMBuilder,45 (iii) conformations
were randomly picked and placed in the simulation box at
random positions and with random orientations, but avoiding
any two beads between different molecules to be closer than 5
nm, using a custom python script, until the desired
concentration was reached, (iv) topology files were generated
for the assembled systems using the MMTSB Tool Set42 and
CHARMM v44b2.43 For all systems, one replicate was run for
20 μs, with coordinates saved every 500 ps. This was
considered long enough to determine the ability to form
condensates, as typical times for nucleating condensate
formation were on the order of microseconds. In the
concentrated systems, we evaluated the ability of our model
to reproduce heterotypic and homotypic PS in a concen-
tration-dependent manner. In addition, temperature phase
diagrams were constructed for some systems by running
simulations at fixed initial concentrations at temperatures
ranging from 250 to 310 K. Using a GeForce RTX 2080 Ti
GPU card, we could simulate 100 ns of a 30,000-residue
system in 15 min.
Clustering analysis on multichain systems was performed via

contact-based criteria. Using an in-house Python script, we
calculated pairwise distances between residues. Two residues
were considered in contact if they were closer than the cutoff
distance of 0.9 nm, and two chains were considered part of the
same cluster if they have at least one contact between any of
their residues. We computed the largest cluster size along
simulation time and cluster size distribution in terms of the
number of members.
To characterize the protein−protein and protein-RNA

aggregates formed in different systems, we calculated the
mass concentration radially from the cluster’s center of mass
(COM) to a distance equal to half of the box side length. The
results were fitted to a sigmoid curve:

=
+

+f x
L
e

c( )
1 a x b( ) (7)

where L, a, b, and c are fitting parameters. Conveniently, b is
the distance where the concentration drops to half the value
from cluster COM and allowed us to determine the cluster
dimension. We calculated the density of condensed and diluted
phases as the average density at distances ≤ b/2 and ≥ 2b,
respectively.
To characterize the dynamic of the cluster, we determined

the translational diffusion, Dtr, from the mean square
displacement (MSD) of the chains between time t and (t +
τ) for a given lag time, τ. Then, Dtr is calculated from the linear
fitting MSD(τ) versus τ

=D
MSD( )

6tr (8)

The analysis was performed over 4 μs of trajectory. Fitting
was made up to τ = 10 ns. We also calculate the cluster

residence time, as the average time the molecules remain in the
dense phase over the last 4 μs of the trajectory.
All figures from simulations were prepared using PyMOL.46

A Jupyter notebook illustrating how to run the model via
OpenMM along with sample analysis is available on github at:
https://github.com/feiglab/cocomo.

Model Parametrization and Test Systems. To para-
metrize the model, we considered a set of 45 intrinsically
disordered or unfolded proteins ranging from 8 to 198 residues
in length (Table S2), primarily to reproduce the experimentally
measured radii of gyration (Table S3). We note that some of
the systems are true disordered peptides, while for others
disorder was induced by denaturants. A number of studies
measuring intramolecular FRET of Trp−Cys quenching have
observed that foldable proteins in high denaturant are
significantly more expanded and dynamic than in low or no
denaturant, but the effect of denaturant is much less
pronounced for intrinsically disordered proteins, which have
similar polymer properties to denatured proteins47−49 Since
this model is primarily concerned with modeling the polymeric
properties of intrinsically disordered proteins, we consider
both types of systems a good parameterization set. A second
set of 26 intrinsically disordered proteins not included in the
set used for parameterization (Tables S4 and S5) was used for
validation. PolyAde-30, polyUra-30, and polyUra-40 were used
to parametrize RNA single chain stiffness (Table S6). In
addition, parameterization focused on reproducing the
concentration-dependent homotypic PS for FUS LCD and
LAF-1 RGG peptides (Table S7). The model was then
validated for predicting PS in three additional homotypic
systems (A1 LCD, hTau40-k18, and Ddx4, Table S7), for
heterotypic protein systems (FUS LCD with FUS RGG3 or
[RGRGG]5, Table S8) and protein-RNA systems for which PS
has been reported experimentally (Table S9).
To comparatively assess the performance of COCOMO, we

ran simulations with different residue-based models published
recently. For protein only systems we compared with the
models developed by Dignon et al. 2018,23 Dannenhoffer et al.
2021,27 Regy et al. 2021,28 and the M3 parameters set from
Tesei et al. 2021.29 On the other hand, systems involving also
RNA were simulated using the model by Regy et al. 2020.33
Simulations using other models were done as described in their
original papers, that is all force field parameters and simulation
parameters were applied as published.

■ RESULTS AND DISCUSSION

Model Parametrization. The bonded and nonbonded
terms in the COCOMO model were parametrized mainly via
iterative parameter scans. The main goal was to maximize the
agreement with experimental radii of gyration (Rg) based on χ2
values for the IDP systems given in Tables S2 and S3,
reproduce RNA polymer parameters given in Table S6, and
reproduce PS at the concentrations given from experiment for
FUS LCD and LAF-1 RGG peptides.
The bonded terms are comprised of bond and angle

potentials. The bond length was based on geometry and a kbond
value “softer” than those from an all-atom potential was
chosen. Our chosen value was in the range of other residue-
based models published previously,23,27−29 and it was not
optimized further. For the angle potential, we parametrized
kangle to reproduce Rg distributions for intrinsically disordered
proteins (IDPs) (Figure 1), reproduce Rg, and persistence
length values for RNA (Figure 2). We note that other recently
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proposed residue-based models for IDPs do not have an angle
term.23,27−29

Nonbonded interactions affect both polymer properties and
PS behavior, so both properties were considered together
during optimization. For shortrange interactions, we initially
started with a single value of ε for all interactions, but we found
slightly better performance when separating ε values between
polar and nonpolar residues, although the final optimized
values that are very similar. It was more important to account

explicitly for cation−π interactions that contribute significantly
to PS50−54 by increasing ε values for protein/protein,
R/K F/Y/W , and protein/RNA, εR/K−nucleic, interactions
involving interactions between basic amino acids and aromatic
moieties. Long-range interactions were mostly determined by
nominal charges of amino acids and/or RNA bases, but an
additional correction term, A0, was applied to polar residues to
effectively account for solvation effects by creating weak
repulsion relative to interactions between hydrophobic
residues.
The sensitivity of the model to each of the finally chosen

parameters is illustrated with the analysis shown in Figures S1
and S2.

Sampling of Intrinsically Disordered Proteins (IDPs).
The performance of COCOMO on the training (Table S2)
and validation (Table S4) sets in terms of reproducing
experimental Rg values is shown in Figure 1. For comparison,
we also ran individual protein chains with four recently
published residue-based coarse-grained models.23,27−29 The
results of our model are similar to the top performing models
among those we tried (Figure 1A) based on χ2 values of 3.69
for the training set and 0.4 for the validation set. For the
majority of proteins, the simulated Rg fall within 25 and 10% of
the experimental values in the parametrization and test set,
respectively (Figure 1, dotted lines). The agreement between
simulation and experiment is generally good, but as with most
other models, our model also shows systematic deviations
where smaller systems tend to be less compact, whereas larger
systems are more compact than suggested by the experimental
values.
To test how Rg is affected by the parameters of our model,

we systematically varied one parameter after another while
keeping all other values at their final optimized values and
repeated simulations (Figure S1). Our results show that
variations of A0, εpolar, and εnon‑polar have a strong effect on Rg,
kangle has a moderate effect, and εcation−π and kbond have minimal
effects (Figure S1). This analysis shows that slightly more
optimal parameters could be found if the goal is only to
reproduce the experimental Rg values. However, with those
values, the concentration-dependent PS behavior in concen-
trated systems is not reproduced correctly (see below).

Sampling of RNA. Experimental data on polymer
properties is available for polyAde-30, polyUra-30, and
polyUra-40. Individual chains of these polynucleotides were
simulated using COCOMO and compared with the RNA bead
model developed by Regy et al. 2020.33 The results show good
agreement with the experimental measurements of Rg, end-to-
end distances, and persistence lengths (Plength) (Figure
2A,C,D,F). We also calculated the orientation correlation
function (OCF) to quantify the directional persistence of the
chain. The correlation decreases with chain distances (Figure
2B,E) similar to experimental values. However, short-range
interactions due to base stacking55 between bases separated by
3−5 bases that give rise to a dip in the correlation function in
the experiment, especially for polyAde-30 are not reproduced
because our model does not include beads to represent side
chains.
In the simulations a Debye-Hückel, term was used to treat

electrostatic screening of charge interactions by ions in
solution. Therefore, a variation in ionic strength could be
modeled by changing the screening length, κ. This treatment of
electrostatics has been successful in reproducing the ionic
strength dependance of polyelectrolyte macromolecules’

Figure 1. Experimental vs simulated radius of gyration. Scatter plots
of the parametrization set with 45 proteins (A) and the validation set
consisting of 26 proteins (B) are shown for COCOMO (red circles)
and results obtained by us using the models by Regy et al. 202128
(blue triangle), Tesei et al. 202129 (tan square), Dignon et al. 201823
(green filled plus), and Dannenhoffer et al. 202127 (purple star). Error
bars indicate standard errors from variations between five replicates.
Deviations between simulated ensembles and experimental values

according to = =i
N R R

R
2

1
( )g i g i

g i

,exp ,sim
2

,exp
were 3.69, 3.39, 3.50, 7.92,

and 6.45 in the parametrization set (A), and 0.40, 0.95, 0.10, 0.81, and
3.1 in the validation set (B), respectively, for COCOMO, and the
other models in the order listed above. As a guide to the eye, a dashed
line indicates the identity function, and a dotted line shows 25% (A)
and 10% (B) deviations from the experimental Rg values.

Figure 2. Polymer properties of short RNA sequences. Effect of
charge screening on the radius of gyration (Rg) of polyAde-30 (A),
and polyUra-30 (D), end-to-end distance of polyUra-40 (C), and
persistence length of polyUra-40 (F). The orientational correlation
factor (OCF) for polyAde-30 (B), and polyU-30 (E) at 100 mM salt
concentration is also shown. Results are shown in red circles, blue
squares, and black triangles for COCOMO, the Regy et al. 202033
model, and experimental values,55,57 respectively. Different salt
concentrations were reflected by varying the Debye length, κ, in eq
5, as they can be related according to = D k T cN q( /2 )i A eo B

2 1/2,
where D is the dielectric constant equal to 80, εo is the permittivity of
free space, kB is Boltzmann’s constant, T is the temperature, ci is the
salt concentration, NA is Avogadro’s constant, and qe is the charge of
an electron.
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association in similar models.56 We also find here that the
experimental trends are well-reproduced with a decrease of Rg
and Plength values at higher salt concentration as in the
experiments (Figure 2A,D,F). Best agreement is observed
around 100 mM salt concentration (κ = 1 nm), which was the
condition chosen for our simulations.
Compared to the Regy et al. 202033 model, COCOMO

agrees similarly well with the experimental data, but while the
Regy et al. model generates polymers that are slightly less
compact than in experiment, COCOMO generates conforma-
tions that are slightly more compact.
The sensitivity of RNA simulations to the value of

parameters was also evaluated. As observed for proteins, the
Rg and Plength values are most sensitive to the choice of A0 and
εnon‑polar values, while the choice of kangle and kbond showed
much smaller effects (Figure S2).
Protein Homotypic Phase Separation. The main focus

of COCOMO is on modeling PS phenomena with a model
that also maintains realistic polymer behavior of individual
molecules. We begin by describing the performance of
homotypic systems. We parameterized the model using data
from the FUS LCD and LAF-1RGG proteins and then tested it
with hTau40-k18 and A1 LCD. Detailed information on the
simulated homotypic systems is given in Table S7 and results
are summarized in Figure 3. We observe PS dependent on the
concentration for all systems in good agreement with
experimental thresholds (Figure 3, dashed lines).58−61 For
comparison, we ran the same protein system using previously
published models.23,27−29 With those other models, the PS
behavior was inconsistent among different protein systems. For
FUS LCD, with the Tesei et al. 202129 and Dignon et al.
201823 models PS occurred at all of the concentrations tested
here, while concentration dependence was seen for the Regy et
al. 202128 model and no PS when simulating with the
Dannenhoffer et al. 202127 model (Figures 3 and S3). For
systems containing LAF-1RGG and A1 LCD, no PS was
observed at any tested concentration for the four models.
Finally, the Tesei et al. 202129 model was the only one
showing PS in A1 LCD simulations. This suggests that the
Regy et al. 202128 and Tesei et al. 202129 models may be able
to at least qualitatively describe concentration-dependent PS,

but with the concentration threshold shifted to higher and
lower values, respectively.
Analysis of the trajectories showed that the largest cluster

size generally stabilizes by 10 μs and increasing concentration
accelerates the time necessary to form clusters (Figures S4 and
S5). In the case where condensates were not observed, it is in
principle possible that condensates did not form due to slow
nucleation near the condensation concentration threshold. To
test for this possibility, we performed additional simulations for
the FUS LCD system starting from the final snapshot at 0.22
mM, with a formed condensate, but then increased the box
sizes to lower the concentrations to 0.12 to 0.20 mM, where PS
was not observed when starting from randomly distributed
polymers. The initial condensate melted at all concentrations
except for 0.20 mM (Figure S6), indicating that there is only
slight hysteresis around the reported concentration thresholds
due to slow nucleation kinetics when forming or melting
condensates near the critical concentration.
In some cases, all the proteins in the box became part of the

condensate by the end of the simulations, while in other cases,
there was coexistence between the dilute and condensed
phases. For all the systems, the cluster size increased with
concentration, mainly due to more material being available to
condense while the density of the dense phase remained the
same (Figure S7). Condensates of FUS LCD in simulations
with the Tesei et al. 202129 and Dignon et al. 2018 models23

were larger and denser than the clusters in our model (Figure
S7). The smaller condensate size with COCOMO is a result of
a fraction of proteins remaining in the dilute phase, whereas
the higher density in the other models may suggest
overpacking of the chains during condensate formation.
We further tested our model by constructing phase diagrams

as a function of temperature. Starting from a box with FUS
LCD at 0.26 mM, we simulated the system at temperatures
ranging from 260 to 310 K. A temperature-concentration phase
diagram was constructed based on the densities in the dilute
and condensed phases (Figure 4). We obtained very good
agreement with the experimental coexistence densities
reported for FUS LCD.62 On the other hand, results for
Ddx4 indicate that COCOMO may result in overpacking in
the dense phase with respect to the experimental values
(Figure 4).63 We note that, Regy et al.28 were able to

Figure 3. Protein homotypic phase separation. Cluster sizes as a function of concentration and simulation snapshots are shown for FUS LCD
(A), LAF-1RGG (B), hTau40-k18 (C), and A1 LCD (D). Cluster sizes were averaged over the last 4 μs of the simulation. Results with COCOMO
(red circles) are compared with results using models from Regy et al. 202128 (blue triangle), Tesei et al. 202129 (tan square), Dignon et al. 201823
(green filled plus), and Dannenhoffer et al. 202127 (purple star). Experimental LLPS concentration thresholds58−61 are shown as dashed lines. The
final frames of simulations using our model (lower panels) are shown for concentrations below (left) and above (right) the experimental LLPS
threshold for each system. Coloring is used to indicate different chains. The size bar represents 20 nm.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00856
J. Chem. Theory Comput. 2023, 19, 669−678

673



reproduce experimental densities for this protein, and it will
require further investigation to what extent correct packing can
be reproduced accurately with a residue-based CG model.
Recently, Tejedor et al.64 described a positive correlation

between the critical temperature, Tc, above which no LLPS is
observed with the experimental saturation concentration for
various phase-separating proteins, using the model developed
by Dignon et al. (used in this work for comparison as well)
with an additional reparameterization to include cation−π
interactions.31 With COCOMO, we also find such a
correlation among the proteins used in the homotypic PS
studies (Figure 4). The experimental protein saturation

thresholds reported are 0.013, 0.024, 0.050, and 0.24 mM
for A1 LCD, LAF-1RGG, hTau40-k18, and FUS LCD,
respectively.58−61 The order of the experimental concentration
thresholds (FUS LCD > hTau40-k18 > LAF-1RGG > A1 LCD)
matched the order of critical temperatures, as evident from the
phase diagrams (Figure 4). We note that the phase diagrams
and Tc values were very similar between LAF-1RGG and A1
LCD. This may be expected since the experimental saturation
concentration values of these two proteins are the lowest and
close to each other.
We observed cluster densities between 500 and 800 g/L

depending on the system. Water was not included explicitly in
the COCOMO model, but from the densities, one can
estimate the water fraction of 50−20% since water has a
density of 1000 mg/mL. We note that for such systems, a wide
range of water content is reported in experimental studies.65,66

Protein Heterotypic Phase Separation. We further
evaluated COCOMO with systems containing more than one
protein, as those systems can also lead to PS.58,67,68 We
focused on heterotypic protein PS of FUS LCD at increasing
amounts of [RGRGG]5 and FUS LCDRGG3 peptides because
these proteins have been well studied both experimentally and
computationally.17,28,50,58,67 Details about the simulated
systems for heterotypic PS can be found in Table S7. Results
shown in Figure 5 indicate that COCOMO reproduces
concentration-dependent PS upon addition of the peptides.
As for homotypic PS, the models from Tesei et al. 202129 and
Dignon et al. 201823 also resulted in condensation and are
independent of the FUS LCD/peptide ratio. No condensation
was observed with the models of Regy et al. 202128 and
Dannenhoffer et al. 202127 at any concentration (Figures 5 and
S8). In all cases where condensates were observed, an increase

Figure 4. Temperature phase diagram. Simulation densities at
different temperature (T) for a system starting at 4.6 mg/mL FUS
LCD (red), hTau40-k18 (black), LAF-1RGG (green), A1 LCD
(orange), and at 5 mg/mL for Ddx4 (blue). Open circles indicate
the lowest temperature where no PS was observed in the set,
corresponding to Tc. Note that LAF-1RGG (green) and A1 LCD
(orange) traces are almost completely overlapped. The data shown
are the averaged values over the last 4 μs of the trajectory.
Experimental coexistence densities for FUS LCD62 and Ddx463 are
shown using star symbols.

Figure 5. Protein heterotypic phase separation. Results are shown for FUS LCD 0.175 mM (A) and FUS LCD 0.150 mM (B) at increasing
concentrations of the [RGRGG]5 peptide and FUS LCD 0.175 mM (C) and FUS LCD 0.120 mM (D) at increasing concentrations of the FUS
LCDRGG3 peptide. Results obtained with COCOMO (red circle) are compared with other models: Regy et al. 202128 (blue triangle), Tesei et al.
202129 (tan square), Dignon et al. 201823 (green filled plus), and Dannenhoffer et al. 202127 (purple star). Cluster sizes were averaged over the last
4 μs of the simulations. The experimental LLPS concentration threshold for the addition of the peptide is shown as a dashed line.58 Final frames of
the simulations with COCOMO are shown for the lowest (left) and highest (right) concentrations added of peptide in each case. FUS LCD and
peptide chains were colored in green and blue, respectively. The size bar represents 20 nm. A two-dimensional concentration-dependent phase
diagram for FUS LCD as a function of different concentration ratios of [RGRGG]5 (C) or FUS LCDRGG3 (F) is shown based on COCOMO
simulations. Markers show the presence (green circles) or absence (gray crosses) of condensates during simulation. The shaded region is the
experimental PS regime estimated from experimental phase diagrams.58 The dashed line is an aid to the eye for the PS regime boundary in our
model.
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in peptide concentration was accompanied by faster cluster
growth and larger final clusters (Figures S9 and S10).
Multicomponent phase diagrams as a function of concen-

tration also show overall good agreement with experimental
data (Figure 5C,F). Qualitatively, the main features of the
experimental phase diagrams are reproduced well. Quantitative
agreement is also very good for the FUS LCD/FUS LCDRGG3

system (Figure 5F), but for the FUS LCD: [RGRGG]5 system,
the model predicts a shift to larger minimum FUS LCD
concentrations compared to the experimental data (Figure 5C,
shaded area vs dashed line). Finally, the morphology of the
coacervates in the simulations is also generally in agreement
with the experiments, as they are composed of both FUS LCD
and the peptide (Figures 5 and S9). We found that
condensates are enriched in FUS LCD over the peptide by
about tenfold, but there is no experimental data to validate the
model prediction. Otherwise, our results reproduce the
experimental observation that peptides enhance PS of FUS
LCD.58
ProteinRNA Phase Separation. Finally, we turn to

protein-RNA condensation. Experimental evidence has shown
that RNA can modulate the stability50,69,70 and kinetic
properties19,59 of protein condensates, and protein-RNA
condensation is receiving increasing attention. Therefore,
another goal of our model was to describe PS in systems
including proteins and nucleic acids. COCOMO was
successful in capturing the phase behavior of different
protein-RNA mixtures for which LLPS has been described
experimentally (Figure 6 and Table S9). Condensates were

composed of both proteins and RNA and were observed in all
systems that we studied. For comparison, we simulated the
same systems using the model by Regy et al. 2020.33 Using this
model, no PS was found except for polyAde-500(RGRGG)5,
where transient cluster formation was observed without clear
condensation into larger clusters (Figures 6, S11 and S12).
We analyzed the diffusion inside the clusters and the time

scales on which peptides or RNA exchange with the
environment (Table S10). In all cases, diffusion inside the
clusters is retarded, as expected, but liquid-like behavior

appears to be retained. Generally, polymers remain in the
condensates on μs time scales before exchanging with the
dilute phase, and the systems with longer peptides/RNA
displayed slower diffusion and larger residency times inside the
condensates. However, we note that due to the CG nature of
our model, the resulting dynamics is only qualitatively
meaningful and likely too fast since hydrodynamics is omitted
and molecular friction is underestimated.
We note that the choice of the value for the εR/K−nucleic

parameter affects the agreement with the experimental
data.50,51,58,71 Previous studies showed contrasting views on
this term, Das et al.31 argued that despite augmenting
εR/K−nucleic parameter, their model failed to capture the
experimental PS propensity, while other authors64 demon-
strated that increased cation−π interactions can reproduce the
experimental trend of their selected set of proteins. Here, we
find that with this interaction added explicitly, we can describe
PS between proteins and RNA in agreement with experiments.

■ CONCLUSIONS

In this work, we present a simple coarse-grained model that
can balance the polymer properties of disordered proteins and
RNA with their propensity to phase separate. Our model
differs from the other four used for comparison23,27−29 in
various key aspects, such as the presence of an angle term to
account for protein chain stiffness. Also, we describe short-
range interactions with a 5−10 Lennard-Jones potential,72
while the other potentials compared here use an Ashbaugh-
Hatch modified Lennard-Jones potential,37 with different
optimized scales, to described the hydrophobicity of protein/
RNA residues/nucleotides. For long-range interactions, instead
of using a regular Debye−Hückel potential, we used a
modification that allows the implicit description of solvation
effects along with salt-screened electrostatic interactions.
Finally, we added a term for cation−π interactions, as in
agreement with previous studies,26 this interaction is an
important aspect to consider in modeling LLPS systems.
Our model reproduces experimental Rg values for peptides

well and captures the dependency of RNA polymer properties
on salt concentration. At the same time, the model can
describe homotypic and heterotypic protein PS as well as PS
involving protein-RNA mixtures in agreement with various in
vitro experimental systems. Other models can also accurately
reproduce Rg values for different peptide sequences, and some
of those models can also describe PS. However, in those
models, concentration-dependent PS involves significantly
lower temperatures or higher concentrations than what is
reported in the experiments. Our results showed that only the
Regy et al. 202128 and Tesei et al. 202129 models may describe
the concentration-dependent PS and only in some systems.
However, it appears that these models continue to be
improved.73 Other improvements in angle and dihedral
terms have been proposed for the Regy et al. model to more
accurately reproduce structural features like helical propensity
of IDPs,74 but it is unclear how this may affect the prediction
of PS. The key strength of the model here is that experimental
behavior is reproduced at the level of single polymers as well as
for condensation at the same temperature and in a
concentration-dependent manner that matches experiments.
Therefore, the model is more predictive with respect to when
and under what conditions PS would be expected for systems
for which experimental data is not available.

Figure 6. RNAprotein phase separation. Results are shown for
using polyAde-21(RRLR)6-SSSGSS (A), polyUra-40FUS
LCDRGG3 (B), polyUra-10polyArg-50 (C), and polyAde-
500(RGRGG)5 (D) simulated at concentrations where PS was
observed experimentally50,51,58,71 (see details in Table S9). Results
with COCOMO (red circle) are compared with simulations using the
Regy et al. 202033 (gray cross) model. Cluster sizes were averaged
over the last 4 μs of the simulation. The final frames of simulations
using COCOMO are shown on the lower panels for each system.
RNA and protein chains are colored in red and blue, respectively, and
the size bar represents 20 nm.
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Even though the COCOMO CG model presented here
performs well when compared to experimental observations,
there are also significant limitations. The implicit description of
salt effects based on the Debye−Hückel formalism is only
approximate and does not capture changes in free energy of the
ions themselves as they condense along with the biopolymers.
COCOMO does not fully capture the entropic contributions
given by counterions a translational entropy,75 association and
dissociation,76 and their partitioning among dilute and
condensed phases77 that are important in LLPS. In addition,
the residue-level approximation neglects any shape-dependent
packing interactions during condensation and, more generally,
anisotropic or directional interactions, for example, due to
aromatic stacking or hydrogen bonding. Although this could be
addressed using higher-resolution models,78−80 they are
computationally more expensive to cover the range of
concentrations and scales of LLPS systems that we can
describe with COCOMO. The next steps to further improve
the model would be to convert the condensate models
generated by the COCOMO to higher-resolution representa-
tions and test their physical viability via simulation. For
example, atomistic simulations of reconstructed condensates
may inform how to improve the CG model without increasing
the computational complexity.
A physically realistic and computationally efficient CG

model that is predictive and can reach the time and spatial
scales on which biomolecular condensation is observed
experimentally opens up a wide range of applications. Despite
much experimental information obtained so far about
biomolecular condensates, many questions about how
condensation depends on molecular compositions remain
unclear. The model here allows such questions to be explored
not just for homo- and heterotypic peptide systems but also for
peptide-RNA mixtures. We expect that there will be many
applications where such simulations can interpret experimental
observations and suggest new hypotheses to be tested
experimentally. Furthermore, we think that the COCOMO
model is predictive for a wide variety of peptide sequences as
long as they remain largely disordered. Our model has not
been designed at this point to describe systems with more
structured peptides or folded proteins. However, a possibility is
to follow a similar strategy, as described in the Rizuan et al.74
paper, or adding elastic internal restraints to preserve the fold,
respectively. This remains an interesting direction for future
work.
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