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SUMMARY

Atomistic resolution is the standard for high-resolution biomolecular structures, but experimental structural
data are often at lower resolution. Coarse-grained models are also used extensively in computational studies
to reach biologically relevant spatial and temporal scales. This study explores the use of advanced machine
learning networks for reconstructing atomistic models from reduced representations. The main finding is that
a single bead per amino acid residue allows construction of accurate and stereochemically realistic all-atom
structures with minimal loss of information. This suggests that lower resolution representations of proteins
may be sufficient for many applications when combined with a machine learning framework that encodes
knowledge from known structures. Practical applications include the rapid addition of atomistic detail to
low-resolution structures from experiment or computational coarse-grained models. The application of
rapid, deterministic all-atom reconstruction within multi-scale frameworks is further demonstrated with a
rapid protocol for the generation of accurate models from cryo-EM densities close to experimental

structures.

INTRODUCTION

Proteins play central roles in biological processes, and their
behavior is often studied at the molecular level to understand
biological function. Structural resolution at an atomistic level
is the gold standard for experiments and computation alike.
Experimental methods such as X-ray crystallography,’? nu-
clear magnetic resonance,® and cryogenic electron microscopy
(cryo-EM)* allow the construction of structural models in atom-
istic detail, but achieving such high resolution requires signifi-
cant effort.>® Computational modeling and simulations also
typically require all-atom representations of the protein to
achieve maximum accuracy and to gain detailed mechanistic
insights.”*® Atomistic modeling remains computationally expen-
sive, though, limiting practical applications,® even with the lat-
est high-performance computing platforms and simulation ac-
celerators (e.g., Anton or CUDA).'® Similarly, it is also very
demanding to train machine-learning-based methods for
directly predicting atomistic models''™'® and conformational
ensembles.’*'®

Coarse graining (CG) of protein structures is a common
strategy to overcome various challenges.” When interpreting
experimental data, reduced representations may be a natural
fit to match lower experimental resolutions. In computational
applications, CG models greatly increase efficiency by
reducing the number of particles. CG representations may
range from single beads per protein'®'” to residue-based
models'®'® and multiple sites per amino acid residue.?’2*

Lower resolution models of experimental data often default
to Ca traces. In computational applications, the choice of res-
olution may depend on the questions that are being investi-
gated as model accuracy and transferability depend on the
degree of CG.”?°

While the coordinate mapping from atomistic levels to CG rep-
resentations is straightforward, the reverse mapping is in princi-
ple ill-defined because of dynamics in degrees of freedom that
are not reflected in a reduced representation. For example,
side chains may fluctuate for the same set of Ca coordinates.
However, the reverse mapping is better defined when the goal
is to map CG models to an atomistic coordinate representation
of the ensemble-averaged dominant state, essentially akin to
how most experimental structures of proteins are meant to be
interpreted.

To recover atomistic information from CG models, all-atom
reconstruction algorithms have been developed with different
strategies depending on the CG representation. For a united-
atom model, which omits only hydrogen atoms, missing hydro-
gens can be placed using their pre-defined local geometries.?®
An all-atom structure can still be generated relatively accurately
and quickly from higher resolution CG models such as
PRIMO or MARTINI, based on geometry-based reconstruction
rules.?*” The reconstruction of all-atom structures from
coarser representations such as Co-traces is more complex.
Methods such as PULCHRA?® and REMO?° convert Ca-traces
to all-atom structures by first rebuilding the backbone atoms
before predicting side-chain orientations. There is also an
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Figure 1. Architecture of coarse-grained to all-atom structure conversion model

See also Figures S1 and S2.

additional set of methods that focus only on rebuilding side
chains given a protein backbone.*® These methods typically
rely on pre-defined backbone fragment libraries, side-chain ro-
tamer libraries,**®' or other empirical information derived from
known structures. In most cases, extensive optimization is then
required to avoid clashes and find energetically optimal struc-
tures.®? Most recent methods also adopted machine learning
approaches for rebuilding side chains without rotamer Ili-
braries.®*** Nevertheless, the resulting reconstructions may
retain significant deviations from correct all-atom structures
when only Ca. atoms are available as input. The reconstructions
may also vary from one run to another if they depend on sto-
chastic optimization techniques. The relatively poor accuracy
when reconstructing atomistic coordinates from lower resolu-
tions has limited the full interpretation of experimental data
that do not directly provide atomistic details and hindered
effective implementations of multi-scale sampling methods
that are both efficient and thermodynamically consistent with
sampling at all-atom levels.®°>%¢

In the meantime, the recent success of accurate structure
prediction via machine learning methods''™"®> has demon-
strated that deep neural network models can effectively learn
from the large amount of known structures how to generate
atomistic models just from amino acid sequences. This sug-
gests that it should also be possible using similar approaches
to reconstruct atomistic coordinates at high resolution if
lower resolution structural information is available as additional
input.

Inspired by AlphaFold2,"" we trained an SE(3)-equivariant
graph neural network model for reconstructing all-atom detail
from lower representations. Like AF2, the model utilizes rigid-
body blocks for generating 3D structures from predicted fea-
tures, but the model was extended to better describe hydrogen
atoms and secondary structure dependencies. The network
learned structural features of backbone and side-chain atoms
from known protein conformations, but also incorporates phys-
ical constraints necessary to produce realistic all-atom struc-
tures. The model is applicable to a range of CG models such
as Co-traces, traces of residue center-of-mass model, and
MARTINI models.?® It provides all-atom reconstructions at
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much higher accuracy than with previous methods, better than
1 A for heavy atoms from only Ca. atoms and better than 0.5 A
with a single site at residue centers of mass. This suggests
that structural details of proteins at a resolution close to experi-
mental accuracy can be captured essentially with a single site
per residue if the current knowledge of protein structures is taken
advantage of via machine learning.

The all-atom reconstruction via the machine learning frame-
work is fast and deterministic, and since gradients are available
via back propagation, it is straightforward to map energies and
constraints at the all-atom level directly to the CG representa-
tion. It is therefore possible to sample a residue-based model
guided directly by all-atom forces via backmapping through
the all-atom reconstruction network. As a proof of principle, we
demonstrate practical value in the rapid refinement of all-atom
coordinates against intermediate- and low-resolution cryo-EM
densities. The protocol achieves comparable accuracy to tradi-
tional all-atom simulation-based approaches but with much
reduced computational effort.

RESULTS

Accurate reconstruction of all-atom structures from
coarse-grained representations

We trained SE(3)-equivariant machine learning models, called
cg?2all, to reconstruct all-atom structures of proteins from CG
representations (cf. STAR methods section). The network archi-
tecture is shown in Figure 1. The initialization module processes
input features (Figure S1; and Table S1) to encode a protein
structure in a CG representation and the corresponding resi-
due-type information (Methods S1, and Algorithm S1). An inter-
action module based on SE(3)-Transformers®’ exchanges scalar
and vector encodings between residues to infer inter-residue re-
lationships (Methods S1, and Algorithm S2). The model adopts a
rigid-body block-based all-atom structure building method,
analogous to the method used for AlphaFold2 structure build-
ing.”" A structure module predicts values for the rigid-body
block-based structure building method: translation and rotation
of backbone rigid-body blocks consisting of N, Ca, and C atoms
and torsion angles to place the remaining atoms of residues
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(Methods S1, and Algorithm S3). The model was trained using
5,690 structures (PDB 6k set) or 28,914 structures (PDB 29k
set) for 300 and 120 epochs, respectively, using an Adam opti-
mizer with learning rates of 0.01 for parameters for torsion angle
predictions and 0.001 for the others (cf. STAR Methods). The
target loss function combines a target-dependent loss to mini-
mize differences between the target structure and a reconstruc-
tion and a data-independent loss to reduce physically unrealistic
structural features (e.g., atomic clashes and rotamer outliers) (cf.
STAR Methods). Model variations with different hyperpara-
meters were explored to determine the optimal model architec-
ture (cf. STAR Methods). An ablation study was further carried
out to determine optimal input features and loss function compo-
nents. Only results with the optimized architecture are described
subsequently.

The progress in learning protein structural features by the Co.--
trace model proceeded in the order of distance from the Co. atom
(Figure S2). When progress in the recovery of structural features
was tracked for every 10 epochs, we observed that backbone-
related features such as the Ramachandran angle, the result of
translation and three-dimensional rotation of backbone rigid-
body blocks, were saturated during the earlier epochs of the
training. At epoch 10, the Ramachandran map already resem-
bled that from experimental structures, and it changed little after-
ward. On the other hand, learning side-chain torsion angles
required many more epochs. At epoch 20, predictions of 4 an-
gles became reasonably accurate, and the model started to
learn 2 angles and a little bit of 3 angles. At epoch 60, more
states of - angles were captured, and there was progress in
%3 angle predictions. At the end of the training at epoch 120,
learning of most structural features converged. Many structural
features were learnt by the model; however, a few torsion angles
such as those for Arg/Lys 4 angles could not be learnt in the
end. Consequently, the loss in structural information upon the
conversion from all-atom structure to Ca-trace was most signif-
icant for structural features that were far from the Ca atom.
Consequently, backbone features could be learnt quickly, while
torsion angles farther from the Ca. atoms were slow and some-
times incomplete. In contrast, the learning progress with the res-
idue center-of-mass model, which contains richer input informa-
tion, was much faster overall and more complete than that with
the Ca-trace model (Figure S2). Most structural features started
to converge at epoch 20 and were almost completed at
epoch 60.

Models were generated for the reconstruction from Ca. atoms,
from all backbone atoms, from a single particle at the center of
mass of an amino acid residue or at the center of the side chain,
from the MARTINI model with several beads per residue,® and
from the higher resolution CG model PRIMO.?' The generated
all-atom models were evaluated on a test set in terms of root-
mean-square deviations (RMSDs) and side-chain torsion accu-
racy with respect to the original reference structures as well as
MolProbity®® scores to check stereochemical quality (Table 1).
Because the machine learning model estimates internal param-
eters that are then used to reconstruct all-atom detail via rigid
body reconstruction,’’ using the parameters from the experi-
mental all-atom structures as input for the rigid body reconstruc-
tion provides an upper limit on the accuracy that can be achieved
theoretically. Because of the reduced degree of freedom using
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rigid-body blocks, it was not possible to reproduce the exact dis-
tribution of the bonded geometries. (Figure S3) Thus, this ideal
rigid body reconstruction resulted in slight deviations of atomic
coordinates (heavy-atom RMSDs of 0.16 /&) and increase in
MolProbity scores to 1.81 (Table 1), but both are still within
experimental accuracy of about 0.2 A RMSD for coordinates in
X-ray structures of proteins whereas MolProbity scores below
2 are expected for structures derived from data at better than
2 A resolution.*®*! The reconstruction from the highest resolu-
tion CG model, PRIMO, reaches the theoretical maximum accu-
racy and even lower MolProbity scores are obtained with slightly
fewer clashes (Table 1). That may be expected since PRIMO was
designed to retain maximum information from all-atom represen-
tations. However, even with lower resolution models, it is still
possible to recover accurate all-atom structures. Reconstruction
from MARTINI models resulted only in a slight loss of accuracy
(0.31 A RMSD) and only slightly increased MolProbity scores.
Remarkably, even a single bead per residue, located at the cen-
ter of a residue or at the side-chain center, still allows accurate
reconstruction of all-atom details (<0.5 A RMSD) without signif-
icant compromise of stereochemical quality. If the CG site is
located at the Ca position, as is common in many CG represen-
tations, the loss of accuracy is greater with the average heavy-
atom RMSD approaching 1 A RMSD. The reason is that it be-
comes more difficult to accurately position side chains if only
backbone atoms are given, especially side chains on the surface
that are inherently free to sample different rotamer states (Fig-
ure 2A). On the other hand, residue center-of-mass models
contain information about the location of the side-chain position
and therefore side chains can be placed more accurately, even
on the surface (Figure 2B). In our approach, we allowed the co-
ordinates of the input low-resolution model to vary during the
all-atom reconstruction so that small errors at the CG level could
be corrected automatically. For reduced models based on
experimental structures, this made little difference when
compared to a protocol where initial CG coordinates remained
fixed (Table 1).

A more detailed analysis on the models reconstructed from
Cua-traces and residue center-of-mass models shows that back-
bone and side-chain torsion angles are closely matched (Fig-
ure S4). The backbone angles (Ca—C-N and C-N-Ca) are also
closely matched (Figure S3), but the peptide bond (C-N) showed
a somewhat larger standard deviation of 0.027 A around the
average distance of 1.322 A in the reconstructed all-atom struc-
tures from Ca-traces (or 1.330 = 0.048 A from residue center-of-
mass models) compared to a standard deviation of 0.008 A
around an average of 1.331 Ain the experimental structures.
The greater variation in the only flexible backbone bond distance
in the rigid-body reconstruction procedure likely compensated
for keeping all other bonds rigid. However, one should also
note that all but the very highest resolution experimental struc-
tures are solved using molecular modeling programs that bias
experimental structures toward expected bond lengths.*? This
likely results in apparently reduced variations of such bonds.
Finally, cis-peptide w torsion angles were not produced for
non-pre-proline residues (Figure S3).

The machine-learning-based all-atom reconstruction via
cg?all performed significantly better than most of the previously
proposed all-atom reconstruction schemes across all metrics

Structure 32, 1-15, January 4, 2024 3
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Table 1. Performance of conversion to all-atom structures from CG models with cg2all

RMSD? y-angle accuracy®®  MolProbity?

Maximum number of . Heavyo Clash Rama Rotamer
CG representation  beads per residue Backbone [A] atom [A] %1 [%0] %142 [%0]  Score score favor [%] outlier [%]
Experimental - - - - - 1.25(0.34) 3.2 (2.4) 97.9(1.2) 1.4(1.2)
structure
Rigid body - 0.03 (0.01) 0.16 (0.03) - - 1.81(0.29) 12.2(4.8) 97.4(1.3) 1.4(1.2)
reconstruction®
Ca. 1 0.18 (0.05) 0.96 (0.12) 86.2(3.0) 71.4(4.8) 2.07 (0.21) 31.2(9.5) 97.9(1.1) 0.8(0.7)
Ca. (fixed)" 1 0.17 (0.05) 0.93(0.12) 86.5(3.0) 71.8(4.7) 2.13(0.21) 34.2(10.3) 98.0(1.1) 1.0(0.7)
N, Ca, C 3 0.07 (0.02) 0.83(0.11) 89.3(2.8) 75.7 (4.5) 2.09(0.23) 27.6(8.5) 97.5(1.3) 1.1(0.7)
N, Ca, C (fixed)" 3 0.06 (0.02) 0.82 (0.11) 89.4(2.7) 75.8(4.5) 2.07(0.22) 27.8(8.6) 97.9(1.2) 1.1(0.7)
N, Ca, C, O 4 0.04 (0.01) 0.82 (0.11) 89.6(2.8) 75.6 (4.7) 2.08(0.22) 26.9(8.3) 97.4(1.3) 1.0(0.8)
N, Ca, C, O (fixed) ¢ 4 0.00 (0.00) 0.82 (0.11) 89.7(2.8) 75.7 (4.6) 2.05(0.22) 27.3(8.3) 97.9(1.2) 1.1(0.8)
CMm*® 1 0.22 (0.05) 0.46 (0.06) 95.4(1.9) 85.9(3.9) 2.00(0.23) 20.6(6.2) 97.3(1.4) 1.1(0.7)
scf 1 0.29 (0.07) 0.49 (0.06) 92.8(2.4) 85.6 (4.1) 2.13(0.28) 22.9(7.1) 97.0(1.5) 1.5(1.0)
Co + CM® 2 0.11 (0.03) 0.39 (0.05) 98.0(1.3) 88.7(3.6) 1.97(0.20) 22.7(6.8) 97.7(1.2) 0.8(0.7)
Co + CME© (fixed) ¢ 2 0.10 (0.03) 0.39 (0.05) 98.0(1.3) 88.8(3.5 1.99(0.21) 23.6(6.9) 97.7(1.2) 0.8(0.7)
Co. + SC' 2 0.13 (0.04) 0.40 (0.04) 95.2(1.9) 88.9(3.4) 1.93(0.21) 20.1(6.2) 97.7(1.2) (O 7)
Ca + SC' (fixed) ¢ 2 0.12 (0.04) 0.39 (0.04) 95.1(1.9) 89.1(3.4) 1.96(0.21) 21.4(6.3) 97.6(1.2) 0.9(0.7)
MARTINI 5) 0.08 (0.02) 0.31(0.05) 98.8(1.0) 93.1(2.8) 1.88(0.21) 17.2(5.4) 97.5(1.2) (0 7)
PRIMO 8 0.04 (0.01) 0.18(0.03) 99.9(0.2) 99.7 (0.5) 1.72(0.27) 10.7(4.2) 97.5(1.3) 1.1(0.9)

See also Figures S3 and S4.

2The average reconstruction accuracy measures for the test set protein structures (n = 720) are given with their standard deviations in the parentheses.
bSide-chain -angles were considered accurate when deviations from experimental values were less than 30°.

°Experimental structures were reconstructed with the rigid body blocks using residue orientations and torsion angles from the experimental structures.
9The atomic coordinates in the input files were preserved, while the original method does not. For instance, cg2all model for “Co. (fixed)” generates
output structures with the exact same Ca. coordinates of the input structures. On the other hand, the original cg2all model generates slightly altered Co.

coordinates.
°A bead located at the center-of-mass of an amino acid.

A bead located at the center-of-mass of side-chain atoms. For glycine, it is located at the position of Ca. atom.

(Table 2). No other method achieved significantly better than 1 A
RMSD for heavy atoms, when reconstructing from a Ca-trace or
a residue center-of-mass model, and even the higher resolution
MARTINI model.?” The other older methods for those CG repre-
sentations also produced structures with significant clashes and
higher MolProbity scores, despite energy-guided optimization to
avoid clashes. We furthermore tested the widely used rotamer-
based method SCRWL4*° for placing side chains in combination
with backbone atoms generated with cg2all or other methods.
Using SCWRL, MolProbity scores were generally improved,
even slightly over cg2all, but the accuracy decreased compared
to cg?2all, especially for MARTINI and center-of-mass-based re-
constructions. The reason is that SCWRL'’s side-chain modeling
only uses backbone coordinates as input and is based strictly on
a rotamer library that, by design, prevents outliers that are occa-
sionally found in experimental structures.

In comparison with other side-chain prediction methods,
where the input is a complete protein backbone, cg2all per-
formed similar or slightly better than other methods in terms of
accuracy. In comparison with SCWRL, cg2all showed better
reconstruction accuracy in terms of heavy-atom RMSD, y4 and
%1+2 angle accuracies. However, SCWRL generates almost
no rotamer outliers as it relies on a rotamer library where
outliers are prevented by design. However, this might limit
the reconstruction accuracy because real structures do contain
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outliers. A state-of-the-art machine-learning-based method,
AttnPacker,® reconstructed side-chain structures with high ac-
curacy in terms of heavy-atom RMSD. However, when using
their method, we found that the reconstructed models had
not just numerous rotamer outliers but also highly unrealistic
side-chain bond lengths and angles. (Figure S5); thus, they
required additional local energy minimization to correct poor
stereochemistry.

Because all-atom reconstruction via cg2all is achieved with a
single forward pass without any iterative optimization, the
computational cost is low, on the order of seconds (Table 3;
and Figure S6). To better understand the computational perfor-
mance, some additional analysis is necessary. A reconstruction
run with cg2all consists of (1) loading Python libraries, (2) loading
a PyTorch model, (3) reading an input PDB file followed by pre-
processing, (4) a forward pass through the model, and (5) writing
an output PDB file. Loading the PyTorch model takes around 2.7
s, limited by I/O speed. The computational cost for the remaining
steps is linearly dependent on the number of residues of the sys-
tem, with an average of less than 4 s for the test set with a single
CPU thread and less time when multiple threads or a GPU was
used. Using a GPU, incurred additional overhead and is not effi-
cient for a single average-size reconstruction, but there is a sig-
nificant benefit for very large systems or when processing many
snapshots with alternate conformations that can be processed
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simultaneously on a GPU. For a single reconstruction on a single
thread, only PULCHRA was faster than cg2all. REMO took about
the same total time, whereas other methods required much more
time. For reconstruction of side-chain atoms from protein main-
chain structures, cg2all and SCWRL were comparably fast. On
the other hand, the neural network method AttnPacker required
significantly more computational cost as its network has two or-
ders of magnitude more parameters (208 M vs. 4.05 M), whereas
the necessary local energy minimization step took additional
computational time.

Accurate all-atom reconstruction from simulation
models

The reconstruction of all-atom detail from reduced representa-
tions of experimental structures, as described in the previous
section, may be considered an ideal scenario. We further tested
how well all-atom resolution can be recovered from models
generated via simulations. Two sets of models were considered.
The first set consisted of snapshots that were extracted from all-
atom molecular dynamics (MD) simulations; in the second set,
the MD-based snapshots were further energy-minimized struc-
tures using a residue-based CG model, COCOMO.® Here, the
all-atom MD snapshots serve as the reference for determining
accuracy of the reconstruction protocol. All-atom reconstruction
from Ca-traces of MD simulation snapshots was still accurate,
but the accuracy became slightly worse than for experimental
structures, with higher RMSD values of 1.18 A for heavy atoms
and lower side-chain torsion accuracies (Table 4). Once the
snapshots were minimized with COCOMO at the CG level, the
all-atom reconstruction RMSD further increased to 1.34 A (Ta-
ble 4) with respect to the initial all-atom MD snapshots. However,
that may be expected because the CG minimization by itself re-
sulted in deviations of 0.30 A for the Co. positions from the initial
all-atom MD snapshots. In either case, the reconstructed all-
atom models had again low clash scores and very low rotamer
outliers and were much closer to the reference atomistic struc-
tural models than those generated with other methods (Table 4;
and Figure 2C). Thermal fluctuations in the simulations led to
broadened bond geometry distributions (Figure S7) and more ro-
tamer outliers compared to experimental structures. However,
since cg2all was trained to generate experimental structure-
like conformations, the broader distributions were not

Structure

completely reproduced (Figure S7). This explains at least in
part the slightly lower reconstruction accuracy for simulation-
based models.

A related practical question is whether the reconstructed
models from cg2all are more suitable for starting atomistic sim-
ulations. The reconstructed all-atom structure was suitable for
further usages such as all-atom MD simulations. Larger sys-
tems require extensive computational cost to get their equili-
brated system or systems in desired states via all-atom MD
simulations. Alternatively, one may attempt to reach an equilib-
rium state such as liquid-liquid phase separation formation
described in Figure 2D using CG simulations'® and continue
atomistic simulations from the state. We briefly examined the
approach by performing atomistic MD simulations starting
from reconstructed all-atom structures (Figure 3). We carried
out an atomistic MD simulation for 50 ns and minimized the
conformation from the last snapshot using the CG model
COCOMO as a hypothetical CG simulation result for which
the atomistic MD snapshot serves as a reference. The
COCOMO-minimized structure was converted to an all-atom
structure using our method or PULCHRA,?® respectively.
Then, the converted structures were equilibrated again and
continued atomistic simulations. The simulation results were
compared with another set of simulations that simply continued
simulations from the last snapshot. We hypothesized that the
protein structure would quickly show instabilities at the begin-
ning of the simulation if the conversion was not producing
models of sufficient quality. After conversion with cg2all, the
protein structure remained stable and well-folded during the
first 10 ns, as the continued simulation did. The average
Ca-RMSD to the initial conformation was 1.98 A after 10 ns
(cf. 1.35 A for the simulations from the last shapshot). On the
other hand, with the reconstructed structure by PULCHRA,
due to steric clashes, conformations deviated from the initial
conformation significantly, starting at early stages of the simu-
lations (2.94 A Ca-RMSD with respect to the initial conforma-
tion on average after 10 ns). Consequently, residue-wise fluctu-
ations throughout the atomistic simulation were very similar
between the sets of simulations from the last snapshot and
the model by our method, while an initial model from
PULCHRA resulted in significantly higher fluctuations due to
initial destabilization caused by steric clashes.

Figure 2. Examples of conversion from CG models to all-atom models

(A-C) Recovery of all-atom structure from Ca-trace (A), residue center-of-mass model (B), and a Ca-trace of snapshot of all-atom MD simulation after mini-
mization with COCOMO (C). The CG model and recovered structure are shown as rainbow-colored cartoon and stick representation (from blue to red for N- to C
termini). Their reference structures, an X-ray crystal structure (PDB ID: 1vjw®) for (A and B) and an all-atom MD snapshot (C) are shown in gray.

(D) Conversion of a COCOMO'® simulation snapshot from a simulation of liquid-liquid phase separation (LLPS) of LAF-1 RGG peptides at 0.042 mM.®® Each
peptide consisted of 168 residues, and there were 84 monomers (14,112 residues in total). They are shown in different colors. The phase-separated particles at
the CG level and a local region after the conversion are magnified to present detailed structure information (black boxes). The conversion took 33.5 s using 16 CPU
threads.

(E) Building an all-atom model from a medium-resolution cryo-EM Ca-trace (PDB ID: 3iyg,*® EMDB ID: 5148, resolution: 4.0 A). Each chainis depicted in a different
color, and the electron density is overlaid as transparent gray voxels. The density map correlation with the all-atom model was 0.723 (vs. 0.647 with the Ca-trace).
The conversion of the 4,134-residue protein took 11.9 s using 16 CPU threads.

(F) Conversion of a CG MD simulation trajectory of folded proteins using COCOMO. There are 24 ubiquitins (1,824 residues in total) in the simulation box (shown in
red) with a width of 10.76 nm, which resulted in a concentration of 32 mM (274.1 g/L). Each monomer is shown in a different color. A local region after the
conversion is zoomed in to show atomistic details of interactions between proteins (black boxes). The conversion of 10,000 frames took 1,774 s in total using the
“cuda” environment with a batch size of 4 (0.15 s/frame for the forward pass only).

(G) Models generated by idpGAN'* for an intrinsically disordered protein (UniProt ID: QOEP54, 27 residues). The conversion of 25,000 models took 64.6 s in total
using the “cuda” environment with a batch size of 250 (1.3 ms/model for the forward pass only). Hydrogens were reconstructed but are omitted for clarity.
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Table 2. Comparison of all-atom reconstruction accuracies with different methods

RMSD? y-angle accuracy®®  MolProbity?
. . Rotamer
Input Method Backbone [A] Heavy atom [A] 1 [%] Y142 [%]  Score Clash score Rama favor [%] outlier [%]
Co. cg2all 0.18 (0.05) 0.96 (0.12) 86.2 (3.0) 71.4(4.8) 2.07 (0.21) 31.2(9.5) 97.9 (1.1) 0.8 (0.7)
w/SCRWL® 1.06 (0.14) 83.2(3.6) 70.1(5.2) 2.00(0.18) 28.6(8.1) 97.9 (1.1) 0.0 (0.1)
cg2all (fixed)® 0.17 (0.05) 0.93 (0.12) 86.5 71.8(4.7) 2.13(0.21) 34.2(10.3) 98.0 (1.1) 1.0(0.7)
3.0)
PULCHRA® 0.47 (0.11) 1.57 (0.14) 59.2 (4.0) 39.6(4.5) 3.79(0.23) 164.4(28.5) 86.4(3.9) 4.9(1.7)
w/SCWRL® 1.36 (0.14) 73.0(4.3) 58.4(5.6) 2.90(0.20) 67.4(17.8) 86.4(3.9) 0.1(0.2)
REMO®f 0.81(0.42) 2.09 (0.41) 43.6 (4.3) 28.5(5.4) 4.37(0.21) 200.2(36.8) 78.4(7.2) 14.8 (3.8)
w/SCWRL® 1.74 (0.52) 68.5 (6.5) 53.8(7.5) 3.15(0.25) 95.7 (43.6) 78.4(7.2) 0.2 (0.3)
ModRefiner®’  0.66 (0.20) 1.51 (0.21) 71.8(4.1) 55.1(5.6) 2.38(0.24) 56.5(19.6) 97.0(1.7) 0.6 (0.5)
MODELLER  0.97 (0.88) 2.12 (0.76) 42.8(4.0) 25.4(4.00 3.63(0.19) 93.3(15.7) 86.4(3.4) 6.0 (1.8)
CM cg2all 0.22 (0.05) 0.46 (0.06) 95.4 (1.9) 85.9(3.9) 2.00(0.23) 20.6 (6.2) 97.3 (1.4) 1(0.7)
w/SCWRL® 1.00 (0.14) 83.9(3.6) 70.9(5.2) 2.01(0.20) 25.5(7.3) 97.3 (1.4) 0.0 (0 1)
PULCHRA® 1.08 (0.08) 1.91 (0.12) 46.6 (4.0) 29.0(4.1) 4.49(0.13) 291.6(36.2) 72.9(4.4) 10.5 (2.3)
w/SCWRL® 1.08 (0.08) 1.84 (0.12) 55.3 (4.0) 36.3(4.5) 3.51(0.11) 176.2 (27.6) 72.9 (4.4) 0.2 (0.3)
MODELLER ¢ 1.63 (1.03) 2.38 (0.94) 43.7(3.9) 25.5(3.8) 3.80(0.18) 123.6(19.9) 81.8(3.4) 5.5(1.8)
N, Ca, C, O cg2all 0.04 (0.01) 0.82 (0.11) 89.6 (2.8) 75.6(4.7) 2.08(0.22) 26.9(8.3) 97.4 (1.3) 1.0 (0.8)
cg2all (fixed)® - 0.82 (0.11) 89.7 (2.8) 75.7(4.6) 2.05(0.22) 27.3(8.3) 97.9 (1.2) 1.1(0.8)
SCWRL - 0.97 (0.13) 85.6 (3.4) 73.0(5.00 1.97 (0.19) 26.7(7.8) 97.9 (1.2) 0.0 (0.1)
AttnPacker - 0.61 (0.11) 90.9 (2.9) 73.3(5.4) 2.32(0.25) 22.8(7.7) 97.9 (1.2) 3.8(1.5)
+local min. - 0.67 (0.11) 92.4(2.8) 80.6 (4.9 1.86(0.28) 11.9 (3.9 97.9(1.2) 2.0(1.1)
MARTINI cg2all 0.08 (0.02) 0.31 (0.05) 98.8(1.0) 93.1(2.8) 1.88(0.21) 17.2(5.4) 97.5(1.2) 0.9 (0.7)
w/SCWRL® 0.98 (0.13) 85.2(3.6) 72.6(5.2) 2.00(0.19) 26.1(7.5) 97.5(1.2) 0.0 (0.1)
Backward? 0.84 (0.07) 1.06 (0.08) 60.9 (5.8) 46.1(7.2) 2.71(0.29) 4.5(1.7) 86.7 (4.5) 15.9 (3.9)
w/SCWRL® 1.64 (0.16) 64.5(5.5) 50.4(6.6) 2.93(0.22) 74.4(21.4) 86.7 (4.5) 0.1(0.2)

See also Figures S3-S5.

#The average reconstruction accuracy measures for the test set protein structures (n = 720) are given with their standard deviations in the parentheses.
bSide-chain -angles were considered accurate when their deviations from experimental values were less than 30°.

°Side chains were reconstructed using SCWRL4 after building a backbone structure using other methods (e.g., cg2all, PULCHRA, and REMO).
%The atomic coordinates in the input files were preserved, while the original method does not. For instance, cg2all model for “Ce. (fixed)” generates
output structures with the exact same Ca coordinates of the input structures. On the other hand, the original cg2all model generates slightly altered Co

coordinates.

®Chains in multi-chain targets were separately converted to all-atom structures and superposed onto the original Ca-trace.
Conversions of several structures failed because they cannot handle short peptides or were not completed within a reasonable time frame (12 h). Suc-

cessful conversions for REMO: 684/720; for ModRefiner: 714/720.

9Conversion of one structure failed because short peptides (<3 residues) cannot be handled.

Addition of all-atom structural details to low-resolution
models
The analysis so far shows that all-atom details can be captured
essentially within experimental uncertainties at much reduced
representations, up to a single bead at the center of mass of
an amino acid. This is possible by drawing on the vast knowledge
about protein structures via state-of-the-art machine learning. In
turn, this means that all-atom structural details can be provided
with high confidence for models that are initially only available at
a CG level. Examples where cg2all may be used in practice are
shown in Figure 2 and discussed more in the following.
Low-resolution cryo-EM structures are often reported only at the
Ca. level. All-atom detail can be reconstructed quickly via cg2all
(Figure 2E). For a cryo-EM experimental structure (PDB ID: 3iyg*®)
with a resolution of 4.0 A, the all-atom structure with 4,134 residues
or 64,192 atoms was generated within 11.9 s, fast enough to be

done on-demand when working with such structures. The gener-
ated structure had a higher density map correlation of 0.723 than
that of the original Ca-trace, 0.647, but there were some clashes
in the atomistic model, presumably because Co. atoms for some
residues were packed too tightly in the original structure. Therefore,
it may be possible to use the all-atom reconstruction as an indicator
of issues with the low-resolution model itself.

We note that low-resolution cryo-EM density maps may make
it challenging to trace all residues correctly,** especially at flex-
ible regions.*® If residues are missing, cg2all treats residues
before and after chain breaks as C- and N termini to produce
reasonable reconstructions for the residues that are resolved
since cg2all can only produce atomistic coordinates for residues
for which coarse-grained beads are available as input. However,
for short segments, initial coarse-grained bead positions could
be guessed via interpolation and subsequently refined against
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Table 3. Average timing for all-atom reconstruction with
different methods

b

Input Method Device? Time [s]
Ca cg2all CPU (1) 6.4 (3.6)
CPU (4) 4.4 (1.6)
CPU (16) 3.9 (1.1)
CUDA 8.7 (1.7)
Apple Silicon 3.2(1.8)
cg2all+SCWRL*® CPU (1) 13.0
PULCHRA CPU (1) 0.4
REMO CPU (1) 6.1
ModRefiner CPU (1) 5211
MODELLER CPU (1) 98.5
N, Ca, C, O cg2all CPU (1) 8.2 (4.4)
SCWRL CPU (1) 7.0
AttnPacker CPU (1) 197.5 (191.6)
+local min. 231.4
MARTINI cg2all CPU (1) 7.4 (4.4)
Backward CPU (1) 33.8

See also Figure S6.

@Each method was run on an Intel Xeon Silver 4214 CPUs (2.2 GHz) under
Linux with 128 GB of RAM unless noted. The number of threads is given in
parentheses. “CUDA” was run on the same machine but using an NVIDIA
GeForce RTX 2080 Ti GPU card (11 GB of VRAM). Apple Silicon refers to
an Apple Silicon M1 Pro chip with 8-core CPU, 14-core GPU, and 16 GB
RAM, but only one CPU thread was used for the inference.

®The number of residues of the test set proteins (n = 720) ranged from 50
to 1,176 with an average and a standard deviation of 376 and 242,
respectively. For cg2all, the average inference time after loading a Py-
Torch model is shown in parentheses.

°Side chains were reconstructed using SCWRL4 after building a back-
bone structure using cg2all.

the cryo-EM density using for example the rapid cryo-EM refine-
ment protocol using cg2all (refer to multi-scale sampling for
rapid cryo-EM refinement). On the other hand, if longer residue
stretches are missing or if the connectivity is incorrect, additional
modeling would be needed outside the scope of what cg2all is
designed to do in order to generate at least correct coarse-
grained models consistent with given experimental data.

Residue-level CG models, such as COCOMO, are increasingly
being used to simulate very large systems over long time scales,
for example to study protein-protein interactions or liquid-liquid
phase separation. Again, cg2all can provide atomistic coordi-
nates from the CG models (Figures 2C, 2D, and 2F). Using this
approach, we could obtain an all-atom structure from a snapshot
of a CG model of a condensate formed by IDPs. In the example, a
14,112-residue CG system was converted to an all-atom struc-
ture with 183,624 atoms in just 33.5 s. This rendered detailed
atomic interactions between peptides (e.g., salt bridges between
charged side chains) inside the condensate. We note that a fully
atomistic simulation of the condensation process is so farimpos-
sible to carry out.

Machine-learning-based conformational ensemble genera-
tors such as FoldingDiff*® or idpGAN'* may be limited to output
consisting of Ca traces due to resource constraints, but all-atom
models can be obtained rapidly via post-processing by cg2all
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(Figure 2G). Using a GPU with a large batch size allowed us to
convert 25,000 IDP conformations generated via idpGAN to
all-atom detail in just 64.6 s. Consequently, a practical strategy
for the rapid generation of conformational ensemble via machine
learning may be to focus on generating ensembles only at the CG
level and leave it up to an all-atom reconstruction scheme as pre-
sented here to obtain atomistic ensembles.

Finally, since cg2all can efficiently parallelize all-atom recon-
structions on GPUs, entire CG MD simulation trajectories could
be rapidly converted to atomistic detail. For example, the conver-
sion of 10,000 frames of a 1,824-residue systemtakes 1,774sona
GPU with a batch size of 4 (Video S1). This allows not just the
consideration of all-atom detail when sampling with CG models,
but also, vice versa, suggests that CG models could be used for
lossy data compression. This has been proposed before based
on the higher resolution CG model PRIMO,*” but much greater
compression can be achieved if only a single particle per residue
is used. For example, a 3.4 GB all-atom trajectory in the DCD
format could be compressed into a 210 MB trajectory with single
beads, such as Ca or center-of-mass, resulting in a 94% compres-
sion ratio. Such high degree of compression could greatly facilitate
the public sharing of extensive atomistic trajectories that otherwise
remains a significant resource challenge.*®*°

Multi-scale sampling for rapid cryo-EM refinement

To further demonstrate the potential of cg2all, we turn to the refine-
ment of models against cryo-EM densities. A typical challenge in-
volves the flexible fitting of initial models from crystallography or
structure prediction to intermediate- to low-resolution density
maps, for which direct atomistic model building is difficult due to
insufficient information.®® A number of protocols are commonly
used such as Coot,”" Isolde,* and Direx.”® The most effective
methods to date employ sampling via atomistic simulations,
such as the molecular dynamics flexible fitting (MDFF) protocol.>*
This approach is successful but may take on the order of hours to
days because of the computational cost of the simulations. Here,
we explore the sampling of CG models guided by a density map
correlation energy function based on reconstructed all-atom rep-
resentations that is possible with cg2all. Sampling at the CG level
avoids the Kkinetic barriers that hinder sampling at the atomistic
level, whereas using an energy penalty based on atomistic coordi-
nate reconstructions ensures that the optimized CG model is
maximally compatible with the experimental data.

The multi-scale approach based on cg2all outperformed local
optimization protocols such as energy minimization at the all-
atom representation using an atomistic energy function or energy
minimization at the CG level using a CG energy function alone
across the entire range of map resolutions (Figure 4). With a
high-resolution (3 A) electron density map, local energy minimiza-
tion of an all-atom model or a CG model is trapped in a local en-
ergy minimum because of a rugged energy landscape. Further-
more, local energy minimization of a CG model cannot exploit
the high-resolution information from the electron density map.
However, our multi-scale approach effectively optimizes struc-
tures by minimizing at the CG level where kinetic barriers are
low or absent while still targeting the high-resolution data via all-
atom reconstruction. During the minimization process, the
gradient resulting from the discrepancy between an all-atom
model and the target electron density map is backpropagated
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Table 4. Performance of conversion to all-atom structures from Ca-traces of simulation snapshots

RMSD? y-angle accuracy®®  MolProbity?
. . Rama Rotamer
Input Method Backbone [A] Heavy atom [A] 4 [%] %142 [%0]  Score Clash score favor [%] outlier [%]
Ca. from all-atom MD snapshots 1.45 (0.23) 0.8 (0.5) 93.5(2.1) 2.7(1.2)
MD snapshots
cg2all 0.25 (0.04) 1.18(0.12) 77.7 (3.4) 58.7 (4.6) 2.31(0.23) 37.1(9.8) 96.4 (1.5) 1.0(0.7)
w/SCRWL® 1.27 (0.14) 76.2 (3.6) 58.1(4.8) 2.20(0.19) 32.5(8.0) 96.4 (1.5) 0.0 (0.1)
cg2all (fixed)®  0.25 (0.04) 1.15(0.12) 77.9 (3.4) 58.8(4.6) 2.42(0.24) 41.0(10.1) 96.3(1.5) 1.4(0.8)
PULCHRA® 0.52 (0.16) 1.70 (0.14) 54.2 (4.0) 32.1(3.9) 3.84(0.20) 162.7 (25.5) 85.1(3.8) 5.2 (1.6)
w/SCWRL® 1.51(0.15) 68.0 (4.2) 49.7 (4.8) 2.93(0.17) 67.1(15.5) 85.1(3.8) 0.1(0.2)
REMO® 0.94 (0.47) 2.21(0.46) 44.5 (4.5) 26.4 (4.8) 4.42(0.21) 197.5(37.2) 75.1(7.9) 15.6(3.9)
w/SCWRL® 1.95 (0.53) 63.5(5.9) 45.5(6.5) 3.22(0.24) 102.4 (45.0) 75.1(7.9) 0.2 (0.3)
Ca after minimization cg2all 0.43 (0.13) 1.34 (0.19) 73.7 (4.2) 54.8(5.1) 2.55(0.23) 44.5(12.5) 94.4(1.9) 1.1(0.8)
with COCOMO?
w/SCWRL® 1.43 (0.19) 72.3 (4.1) 53.5(5.2) 2.38(0.18) 36.1(10.2) 94.4(1.9) 0.1(0.1)
cg2all (fixed)® 0.42 (0.13) 1.32(0.19) 73.3(4.3) 54.3(5.0) 2.70(0.24) 50.1(13.3) 94.1(2.00 1.7(0.9)
PULCHRA® 0.61 (0.18) 1.79 (0.18) 52.5(4.1) 31.0(4.1) 3.87(0.19) 156.8 (25.3) 83.5(3.9) 5.6 (1.7)
w/SCWRL® 1.62 (0.19) 65.8 (4.4) 47.1(5.1) 2.95(0.15) 65.1(15.3) 83.5(3.9) 0.1(0.2)
REMO® 1.16 (0.49) 2.40 (0.53) 43.3 (4.7) 25.7 (4.8) 4.50(0.22) 194.5(40.1) 69.9(9.5) 17.4 (4.3
w/SCWRL® 2.23 (0.59) 59.4 (6.1) 41.3(6.6) 3.33(0.25) 116.1 (48.2) 69.9 (9.5) 0.2(0.3)

See also Figure S7.

3The average reconstruction accuracy measures for the test set protein structures (n = 720) are given with their standard deviations in the parentheses.
bSide-chain -angles were considered accurate when deviations from experimental values were less than 30°.

°Side chains were reconstructed using SCWRL4 after building a backbone structure using other methods (e.g., cg2all, PULCHRA, and REMO).
%The atomic coordinates in the input files were preserved, while the original method does not. For instance, cg2all model for “Cu. (fixed)” generates
output structures with the exact same Ca. coordinates of the input structures. On the other hand, the original cg2all model generates slightly altered Co.

coordinates.

°Multi-chain targets were converted chain-by-chain to all-atom structures and superposed onto the original Ca-trace.
Conversions of several structures failed because short peptides could not be handled.
9All-atom MD simulation snapshots were considered as the ground truth. The average structure change in Ca-RMSD after minimization using

COCOMO model was 0.30 A.

to the CG level through the cg2all network. This enables the utili-
zation of high-resolution information from the electron density
map at the CG level. Because all-atom models are compared
with the high-resolution map, CG beads are less likely to become
trapped in a local minimum where a correct all-atom structure
could not be generated, as the gradient arising from the discrep-
ancy at the all-atom resolution would guide the CG beads away
from such a local minimum toward the correct positions. We
believe that this multi-scale approach conceptually retains the ac-
curacy of all-atom representation while achieving better perfor-
mance by moving on a smooth landscape during minimization
at the CG level. Here, accuracy refers to comparisons of the
generated models with the experimental reference structures
and agreement with EM maps. The optimized structures obtained
via the cg2all-based multi-scale approach reached comparable
Ca-RMSD values to the full MDFF protocol (0.36 vs. 0.35 A),
slightly lower cross-correlation coefficients (CCC, 0.866 vs.
0.881) and slightly larger heavy-atom RMSD values (0.88 vs.
0.74 A). Importantly, the similar accuracy with cg2all vs. MDFF
is achieved in much shorter time (minutes vs. hours). An example
for the high model accuracy that can be achieved with cg2all is
shown in Figure 5. In the example, several regions in the initial
AlphaFold2 model located outside of the 5 A resolution electron
density (indicated by red arrows) with a heavy-atom RMSD of

2.26AandaCCC 0f0.829. Using the MDFF protocol with the elec-
tron density map, the model was optimized to a heavy-atom
RMSD of 0.80 A and has a higher CCC of 0.941. Our multi-scale
approach optimized the model to a comparable accuracy, a
heavy-atom RMSD of 0.85 A, and a CCC of 0.936, even though
it performed the actual optimization at the CG level. We note
that our multi-scale approach achieved the comparable accuracy
in 8.9 min, while the MDFF protocol took 8.8 h.

When the electron density map has much lower resolution, such
as 10 A, optimization at the all-atom level becomes less effective,
even using MDFF, whereas the CG-based-optimized refinement,
via cg2all, still allows structure refinement, and still within minutes.
This opens up the possibility for high-throughput model refinement
of many lower resolution maps, for example to fit models to maps
of dynamics conformational ensembles captured via cryo-EM.

In this proof-of-concept demonstration, we employed a naive
CG energy function that only prevents severe clashes between
CG beads. Distance restraints between CG beads were applied
to keep the protein structure folded; however, this also limited
the potential for improvement as it prohibited partial structure
unfolding and refolding.®° In future work, this will be addressed
by introducing a more sophisticated CG energy function that is
capable of not only maintaining folded structures but also allow-
ing significant structural changes.
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DISCUSSION

The results presented here show that all-atom details of proteins
can be captured essentially within experimental uncertainties
with only a single bead per amino acid, especially when placed
at the residue center of mass, but perhaps also with a more tradi-
tional Ca-trace representation. This is possible now because of
advances in machine learning that allow vast information from
known structures in the PDB, to be applied toward different ob-
jectives, in this case, the accurate reconstruction of all-atom fea-
tures from low-resolution models. We focus here on reconstruc-
tions from widely used low-resolution representations as they
are of significant practical relevance, but note that the corre-
spondence between reduced and atomistic coordinate repre-
sentations could also be improved by optimizing the CG repre-
sentation itself.>’

It should be reiterated, that the all-atom reconstructions ob-
tained here focus on finding a chemically realistic representative
structure for the most likely time- and ensemble-averaged
conformation. Conformational dynamics in degrees of freedoms
that are not captured in the reduced representation are effec-
tively averaged out. The resulting structures are therefore exper-
iment-like structures where dynamics may be described only in
the form of B-factors. We do not predict B-factors here for the
reconstructed structures, but note that other methods are avail-
able for estimating B-factors from given atomistic structures.®

The approach taken here was initially motivated by recent ad-
vances in protein structure prediction methods, but it is different
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Figure 3. Stability of all-atom MD simulations
continued from reconstructed all-atom
models

(A) The last snapshot of a dimeric protein (PDB ID:
2ibd) all-atom simulation was locally minimized us-
ing COCOMO model, and the minimized Ca-trace
was converted to an all-atom model using cg2all
and PULCHRA. Then, eight replicas of all-atom
simulations were performed starting from the re-
constructed all-atom models after an equilibration
step. (A) Ca-RMSD trajectories with respect to their
starting model. Each trajectory is colored differently.
(B) Residue-wise root-mean-square-fluctuation
(RMSF) for the last snapshot, cg2all, and PULCHRA
model are shown in black, blue, and red lines.
Standard errors of the value are shown with trans-
parent shades. For the RMSF evaluation, the first
10 ns was discarded as the equilibration process.
(C) Ensemble of structures after 10 ns of all-atom
simulations  (transparent rainbow colors) are
compared with their starting structure (black).
Highly deviated regions in the PULCHRA simula-
tions are indicated by black arrows.

in terms of input as well as the final objec-
tive. Sequence alignments or template li-
braries are not used here; instead, a lower
resolution model serves as input. On the
other hand, even although the ultimate
goal of providing physically realistic, accu-
rate atomistic structures is essentially the
same, structure prediction methods aim
at providing the best model for the likely native state whereas
the method introduced here aims at generating atomistic coordi-
nates for any conformation, whether energetically favorable or
not. This suggests that recent advances in machine learning
have broad implications for structural biology that reach far
beyond just the prediction of native structures from sequence.
There are immediate applications in adding accurate atomistic
coordinates to CG representations. Low-resolution protein
structure models based on experiments as well as CG models
from simulations can thus be interpreted in atomistic detail.
This is especially relevant for the generation of structures and en-
sembles via machine learning where the addition of atomistic
detail often presents a significant burden during model training.
An important feature is that deterministic neural network archi-
tectures are not just very efficient but also allow gradients to be
backpropagated all the way from the final output (i.e., atomistic
conformations) to the input (i.e., CG conformations). In essence,
this provides an avenue for tightly coupled bidirectional multi-
scaling. This approach again neglects the full dynamics at the
atomistic level and instead emphasizes ensemble-averaged
conformations as the representative atomistic states. Therefore,
this framework is most suitable for interpreting time- and en-
sembled-averaged experimental data, especially data at lower
resolutions. As one important application, we highlight the
refinement of models against cryo-EM densities based on sam-
pling at a CG level but with energy penalty functions evaluated at
the atomistic level from reconstructed all-atom conformations.
Finally, we recognize that it is necessary to consider
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Figure 4. Refinement of initial models against cryo-EM density maps

(A and B) Initial models were obtained via AlphaFold2 (A) or ESM-Fold (B). Model quality in terms of cross-correlation coefficient (CCC) against target cryo-EM
density maps, Ca. and heavy atom RMSDs were analyzed as a function of computation time for several protocols: (1) optimizations using cg2all models for residue
center-of-mass model (blue circles) and Ca-trace (cyan circles) followed by all-atom energy minimization, (2) optimization at the residue center-of-mass (brown
triangles) or Ca-trace representation (orange triangles) followed by all-atom energy minimization, (3) all-atom energy minimization only (red star), and (4) MDFF
samplings (magenta “+”). The initial model qualities are shown as black dashed lines. The average values (n = 9 for AlphaFold2 models and n = 6 for ESM-Fold
models) for each metric and computation time are shown. Shaded background indicates standard errors of the mean.
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® No new data has been generated in this study.

@ The source code and model parameter files of the cg2all method are available at https://github.com/huhlim/cg2all.®® It can be
locally installed using a PIP command, “pip install git+ http://github.com/huhlim/cg2all”. The list of PDB IDs and the corre-
sponding PDB files (both cleaned up and side chain conformation augmented structure files) are available at https://
zenodo.org/record/8273739%°

@ Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Experimental datasets

Two sets of experimental structures were clustered with a maximum mutual sequence identity of 70%, and one structure for each
cluster was left. The original Top80007° and the PISCES" sets consisted of a single chain per Protein DataBank (PDB) entry, how-
ever, we used all protein chains in each PDB entry instead. PDB entries with more than 1,200 residues were excluded. As a result,
there were 7,130 and 30,354 entries in PDB 6k and 29k sets, respectively. To have common subsets for model validation and test, 720
entries were randomly selected among the common entries for each validation and test sets. The remaining 5,690 and 28,914 struc-
tures were used as PDB 6k and 29k training sets, respectively.

The Top8000 structures were further analyzed to obtain statistics of bonded geometries for building secondary structure-depen-
dent rigid body (SS-dep) blocks. Three-state secondary structure for every residue was assigned by the DSSP algorithm’? using the
MDTraj Python library package.”® Bond lengths, angles, and improper dihedral angles defined by amino acid topologies of the
CHARMM36m force field”* were calculated. Their averaged values for each secondary structure type were then used to build SS-
dep blocks.

Simulation datasets

We sampled an ensemble of structures by performing all-atom molecular dynamics (MD) simulations using OpenMM.”® A protein
structure was placed at the center of a periodic rectangular box with at least 10 A distance from any protein atom to any dimension
of the box edges. The remaining space in the simulation box was filled with the CHARMM version of TIP3P water molecules.”® Some
water molecules were randomly replaced with sodium or chloride ions to neutralize the system and achieve a total ion concentration
of 0.015 M. The CHARMM36m force field”* was applied to describe the system throughout the series of simulations. The system was
locally minimized with the I-BFGS-b algorithm’” in the presence of harmonic positional restraints on every Co. atom with a force con-
stant of 0.5 kcal/mol/A2. Then, the systems were gradually heated to 298.15 K and equilibrated via Langevin dynamics simulations for
1 ns with a friction coefficient of 0.01/ps and a 2-fs integration time step. The NVT ensemble and the NpT ensemble at 1 bar with a
Monte Carlo barostat were applied during the heating and equilibration steps, respectively. An ensemble of protein conformations
was sampled from a 50 ns-long Langevin dynamics simulation with a friction coefficient of 1/ps and a 2-fs integration time step at
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298.15 K and 1 bar. Five snapshots of protein conformations were picked up for further tests by selecting frames for every 10 ns. In
total, 3,600 all-atom conformations were generated for 720 test set structures for further tests.

During minimization with COCOMO, '® harmonic positional restraints were applied to every bead of the CG model with a force con-
stant of 1.0 kcal/mol/A? to keep the original all-atom conformations as the respective ground truth conformations. Upon minimization,
the conformations were distorted from their all-atom structures by 0.30 A on average.

Input features

Input features extracted from a CG model are summarized in Table S1. In total, 57 (17 from the local geometries and 40 from the
residue type embedding) scalar and four (or more for multiple site CG models) vector node features and three scalar edge features
were used as input features. Pseudo-bond angles and -torsion angles were encoded using cosine and sine functions to account for
periodicity. The number of neighboring nodes (e.g., <10 A) and the presence of a previous or next residue (to distinguish terminal
residues and chain breaks) were added as scalar features. The residue type was converted to 40 scalars via a trainable embedding
layer and concatenated with the scalar features. For vector features, unit bond vectors as illustrated in Figure S1 were used for con-
version from multiple site coarse-grained models such as a MARTINI model,?° vectors from a BB bead to SC beads were additionally
used to incorporate side chain information. The edge connection type (connection via a peptide bond, an inter-residue contact
through space, or a disulfide bond) were used via one-hot encoding as edge features.

Neural network model
At the core of SE(3)-equivalent neural network model, the SE(3)-Transformers architecture®” was adopted. The input node features
were processed via N (=4 for the baseline model) linear layer blocks to produce hidden features of 64 scalar and 32 vector values.
(Methods S1, and Algorithm S1) A LayerNorm”® and an exponential linear unit (ELU) activation function’® were used to normalize the
norm of features for each degree, while keeping their phase. (NormSE3) The first linear layer without bias terms (LinearNoBias) pro-
jects the input features to hidden features with the numbers of channels of 64 and 32 for scalars and vectors, respectively. The linear
layer blocks consisting of a LayerNorm, an ELU activation function, and a linear layer without bias terms are repeated N-1 times, while
the numbers of channels for each degree of features are maintained. Until this step, interactions between nodes are not considered
yet, and features are processed for each node and each degree. In the interaction module, we facilitated the original SE(3)-
Transformers architecture with M (=4 for the baseline model) SE(3)-Transformers blocks with a LayerNorm and an ELU activation
function for radial profiles (AttentionBlockSE3) to communicate between nodes through edges and evaluate tensor products be-
tween different degrees of hidden features. (Methods S1 and Algorithm S2) For an AttentionBlockSES3, we used eight attention heads
and 32 hidden channels of scalars (/ = 0), vectors (/ = 1), and rank-two tensors (/ = 2). A normalization layer (NormSE3) was followed by
to stabilize the training. At the end of the interaction module, an SE(3)-equivariant convolutional layer with a LayerNorm and an ELU
activation function for radial profiles (ConvSE3) was used to produce the output of the module. Throughout the module, the number of
channels for each degree of hidden features were maintained between blocks: 64 for scalars and 32 for vectors. Finally, the input
representations of the module were added to the output representations for a skip connection.®°

We used four linear layers and four SE(3)-Transformers blocks for the baseline model. Alternatively, fewer and greater numbers of
blocks were examined to evaluate performance dependencies in the model size. We adopted ELU activation functions as replace-
ments of rectified linear unit (ReLU) functions,®" which were used for the original SE(3)-Transformers work.®” For hidden features of
the SE(3)-Transformers blocks, features up to the degree of 2 were passed within a block, and a lower value (1) was also tested. For a
protein structure, we used a subgraph with a crop size of 256 residues as the baseline and tested if a larger crop (384 residues) could
improve the performance. Secondary structure-dependent rigid-body blocks were not used for the baseline, but they were adopted
as optional features.

Structure module

The structure module further processed the output of the interaction module to predict values for building all-atom structures via N
(=4 for the baseline model) linear layer blocks. (Methods S1 and Algorithm S3) It was analogous to the initialization module but pro-
jected hidden features with greater numbers of channels to predict 16 scalar (or 20 if SS-dependent rigid body blocks were used) and
3 vector values for the followed all-atom structure building. An all-atom structure was built using the predicted values. For this pro-
cess, a similar procedure that is used by AlphaFold2 was adopted.'" AlphaFold2 used rigid-body blocks of backbone atoms (N, Ca,
and C atoms), the backbone oxygen atom, and side chain heavy atoms that were segmented by rotatable torsion angles. During the
step of structure building, backbone rigid-body blocks for residues were oriented first using predicted translations (t) and three-
dimensional rotations (R). The remaining blocks were placed in the order of the bond connectivity from the backbone block to the
tip of each side chain by rotating them by predicted torsion angles (¢, ¥, and s). In our work, we extended the procedure to build
all-atoms including hydrogen atoms. Thus, 16 predicted scalar values were used as sine and cosine values of the torsion angles (¢, Vs,
4 s, and 2 hydrogen atom-only torsion angles) to construct rotation matrices. In addition, secondary structure-dependent rigid body
blocks were used as we found that some blocks have distinguished bonded geometries (bond lengths and angles and improper di-
hedrals) depending on the secondary structure. Thus, secondary structure prediction (SS) was also made by the module. Four pre-
dicted scalar values determined which rigid body blocks to use among blocks for helix, sheet, coil, or SS-independent blocks. One
output vector predicted a translation vector (t), which places the Ca. atom from the representative bead for a residue. We note that we
used a 6D representation®® using the remaining two predicted vectors, which describes three-dimensional rotation using two unit
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vectors and the Gram-Schmidt process, instead of the quaternion-based approach used by AlphaFold2, as it gave better perfor-
mance in terms of accuracy and convergence during training for many SO(3) prediction tasks because of continuity in the rotation
representations.®? For the final step, both N- and C-termini were patched by replacing backbone hydrogen (HN) and oxygen
(O) with the terminal amino (NH3-) and carboxyl (-COQO") groups, respectively, using the predicted position of the atoms.

Model training

Each model was trained for 300 and 120 epochs with the PDB 6k and 29k training sets, respectively, using a batch size of 4. This
corresponds to 426,600 and 867,360 total training steps. An input data graph with more than 256 nodes for training was randomly
cropped to a consecutive 256 residue graph by obtaining its subgraph. An Adam optimizer was used with learning rates of 0.01 for
parameters for scalar features of the structure module and 0.001 for the others. The learning rates were linearly increased for the first
ten epochs and then exponentially decreased with a multiplicative factor of 0.995. Clipping was used to prevent extreme gradients,
and gradient checkpointing reduced memory consumption. Models were implemented in PyTorch, and they were trained using Py-
Torch Lightning.®® The training of models was carried out on two NVIDIA GeForce RTX 2080 Ti GPU cards (11 GB of VRAM) with
Distributed Data Parallel (DDP) to use multiple GPUs and eight CPU threads. We trained three models for each model variant to obtain
statistics.

We fine-tuned the trained models for an additional 10 epochs to obtain variants where coordinates of the input coarse-grained
structures are forced to remain unchanged. This allowed us to compare with other methods that maintain coordinates in the input
structures. For example, sidechain prediction methods such as SCWRL4* and AttnPacker®® only predict sidechain conformations,
leaving the backbone structures unchanged. It also allowed us to test to what degree cg2all may be able to correct for slight errors in
the reduced representations.

Loss function
Models were trained with a loss function (Equation 1) that consisted of training data-dependent loss functions and data-independent
(physics-based) loss functions:

5-0LFAF’E,Ca +1 -OLBB +1 OLR +1 -OLbackbone geometry ( + O1L33) (Data — dependent)
L= +5.0Lorsion +1.0L,,,
+ 5-0Latomic clash + 0-1Ltorsion energy +1 ~0Lside chain geometry (P h,V sics — based)

(Equation 1)

The FAPE, Ca loss (Lrape c.) Was first introduced by AlphaFold2,"" and we used a variant that uses only Ca atoms for its evaluation
with a distance clamp value of 10 A. (Methods S1 and Algorithm S4) The backbone loss (Lgg) also contributed to correctly placing
backbone rigid bodies (Equation 2).

truth

Les(rgg") = |res — rag (Equation 2)

—_— —_——
T truth e truth
| + )1 —UcaHNOUCa_,N‘+’1 — Uca—cC OUCa_,C‘

where U represents a unit vector. The loss function for three-dimensional rotation representation consisted of the similarity of two
vectors for the 6D representation® against their truths and an auxiliary term that ensures their vector sizes close to 1. (Equation 3)

La(Ro. Ry [RE™REF) = | (Ro — RE™) + (R — Re™) | +0.01(|IR0 - 1| + I 1-1]) (Equation 3)

where R_()) and ?1) are vectors for the 6D representation. A loss function helped the model having correct bonded geometries for
backbone atoms (Equation 4). It penalized deviations of peptide bond distances (b¢c ,n) and peptide bond including bond angles
(Oca,c+n @nd Oc N +Ca)-

(Equation 4)

Htruth

1 truth
+§ (‘ﬁca.c‘w — Ocacin — 0

+ ‘ €C.+N.+Ca C,+N,+Ca

truth  ptruth truth truth
Lbackbone geometry (bC.+N~, 0Ca.C.+N7 0C.+N,+sz bC,+Ns HCD(,C,+N7 €C.+N.+Cm> = ‘bCA-N - bC‘+N

When the secondary structure-dependent rigid body blocks were used, a cross entropy loss for secondary structure prediction was
additionally used.
Moreover, there were two loss functions for correctly reconstructing side chain atoms. The torsion angle loss tried to reduce dis-

crepancies between the predicted torsion angles ({0 }) and their truth values ({#“""}) (Equation 5).

Liorsion ({0} [ {047, 64" }) = > (1 —max(cos (b — 6;"),cos (b — 6,“"))) (Equation 5)

O is defined

Some side chain torsion angles that have periodicity: %, angles of Phe and Tyr, methyl groups in Ala, lle, Leu, Met, Thr, and Val, the
side chain amino group in Lys, and the side chain carboxyl groups in Asp and Glu. For those torsion angles, alternative truth values
({6?;’”””5"“S 1) due to their periodicity were considered for the calculation. Furthermore, solvent-exposed side chains can have multiple
valid conformations, while their experimental structures usually presented only one of them. For the training of models that convert
from a Ca-based model, putative side chain conformations were generated prior to the training and used as additional {H,t[“""a"s}. The
procedure for putative side chain conformation generation is described in more detail below. The other loss function for side chain
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atoms depended on vectors from the Ca atom to the center of mass of a residue (vcntr). Their deviation in their vector size to their truth
values and their cosine similarity was used to learn side chain orientations at a lower resolution.

truth 'V truth T truth :
LVcntr (Vcntr ) = ‘HVCNWH - chntr H ’ + ’1 — Ucntr ® Uepy (Equatlon 6)

In addition to these data-dependent loss functions, three physics-based terms were introduced to improve the geometric properties
of the reconstructed models. These terms relied on the CHARMM36m force field.”* As two atoms rarely overlapped within the sum of
their atomic radii, atomic clashes were penalized (Equation 7).

Latomic ciasn(r) = > Y > VEagp X (Min(0,dap — 02— 0p))° (Equation 7)

i<jri< 14A @€ ibe j excludel — 2,3 4pairs

where ¢ and ¢ are the depth of the potential and the distance at which the potential becomes zero in the Lennard-Jones potential.
Torsion energy terms (Ltorsion energy) Of the force field was applied to penalize disfavored torsion angles (Equation 8). Torsion angles
that can be defined within a residue were considered for evaluation, thus, torsion angles that span two consecutive residues (e.g., Vs,
¢, and w angles) were not subjected to the loss functions. In order to preserve torsion angle distributions, a torsion energy clamp

(ESEme. energy) Was used with a value of 0.6 kcal/mol.
— min clamp .
Liorsion energy ({0k}) = Z max(O,Emrsion energy (Ok) — Efprion ene,gy(ﬁk) — E e energy> (Equation 8)
Ok is defined

The final physical loss term was applied for two types of bonds that connect rigid body blocks in special ways, namely for proline
ring closure and disulfide bonds. For these bonds, equilibrium bond lengths of 1.455 and 2.029 A, respectively, were targeted
(Equation 9).

o o i
Lside chain geometry (bPro.N.CD~,bSSBOND) = bPro,NCD - bPro,N,CD’ + |bSSBOND - bSSBOND‘ (Equatlon 9)

Augmentation of putative side chain conformations

Alternative possible side chain conformations were generated prior to the training using first SCWRL4,° followed by REDUCE?® and
local energy minimization using the CHARMM36m force field.”* Experimental structures, especially those determined by X-ray crys-
tallography, have only one conformation in PDB in most of the entries even though there can be alternative coordinates. However, as
proteins are not static molecules, they can have diverse conformation especially for solvent-exposed side chains. As such, recon-
struction to those alternative conformations should not be penalized unless they are unfavorable. Because we aimed to reconstruct
an all-atom conformation including side chains for a given Ca-trace of a protein, we generated putative side chain conformation. For a
protein structure, side chain structures were predicted on the protein’s backbone using SCWRL4, which uses a rotamer library and
optimizes combinations of rotamer states. Then, all hydrogens were attached to the predicted structure with an optimization of tor-
sion angles for the side chain amide groups in Asn and GiIn and the imidazole ring in His. Finally, the structures were subjected to
energy minimization using the I-BFGS-b algorithm for up to 1,000 steps with the CHARMM36m force field using OpenMM.”® To pre-
vent extensive deviation of backbone positions, harmonic positional restraints were applied on every N, Ca, C, O, and C3 atoms with
a force constant of 1.0 kcal/mol/A2. Torsion angles from the energy minimized structure were used as an additional set of {6}{“”’”“}
for the torsion angle loss (Equation 5).

Hyperparameter optimization and ablation studies

Several features were introduced in our neural network models and their training, and their contributions were evaluated via ablation
studies. (Figure S8) First of all, we used a hybrid loss function that consisted of data-dependent and -independent (or physics-based)
loss functions (Equation 1). The physics-based loss functions were introduced to learn the characteristics of a protein molecule more
efficiently and to complement insufficient data points. The atomic clash loss penalized inter-atomic clashes and effectively lowered
the clash score. Side chain modeling as rotamer outliers could be suppressed by introducing the torsion energy loss function (Fig-
ure S9). Without the torsion energy loss function, side chain rotamer states could not be clearly separated, and some inferences re-
sulted in rotamer outliers. Average MolProbity scores®® by models with and without those physics-based loss functions were
different by 0.254 (2.292 vs. 2.546). Furthermore, side chain conformations were augmented prior to the model training to account
for their putative heterogenic conformations due to their conformational flexibility. Because some side chains (especially solvent-
exposed ones) can have alternative conformations in addition to the experimentally resolved one, both conformations should not
be penalized unless there are atomic clashes. This side chain augmentation additionally helped suppress generating rotamer outliers
(Figure S9). If there were side chains with very similar input features but in different rotamer states in the training set, models could be
trained to predict in the average of the rotamer states unless the side chain augmentation was used, and this could result in the infer-
ence of rotamer outliers. For example, for a homodimer with pseudo-C, symmetry, some side chain conformations may vary in
different monomers, while overall Ca-traces were almost identical. As illustrated in Figure S9B, if an Arginine from a monomer has
a1 angle of —180°, while the other Arginine in the symmetry has a 1 angle of —60°, training with these data would result in predicting
their averaged value, —120°, which is a rotamer outlier. It is because the averaged torsion angle loss has a minimum at the value. With
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the consideration of both possible conformations in the torsion angle loss function via the side chain augmentation, the loss function
has multiple minima (e.g., —180 and —60° in this example), and the inference of rotamer outliers is diminished.

We tested two neural network parameters that were related to the amount of information passed between layers: 1) the choice of
the activation function (ELU vs. ReLU); and 2) the maximum degree for the SE(3)-Transformers (/ = 2 vs. 1). When the ELU activation
function was replaced with the ReLU function, which was originally used in SE(3)-Transformers, the overall quality of reconstructed
models dropped slightly. It was probably because the use of ReLU function deactivated some neurons, which is known as the “dying
ReLU problem”,®* and the neurons could not be efficiently utilized. Regarding the maximum degree for the SE(3)-Transformers,” it
was beneficial to use up to the degree of 2 features, even although the input and output features utilized only features up to a degree
of 1 (scalars and vectors). Fuchs et al. observed that there was big improvement when they switched the maximum degree from 1 to
2.37 We observed a similar trend especially in features for which relationships between other residues were important such as atomic
clashes or side chain angle accuracies. On the other hand, Ramachandran angles and rotamer outlier ratios were not affected as
much since they could be predicted well with only localized information. Presumably, the use of higher degree hidden features pro-
vided inter-residue information, and this resulted in better predictions.

Finally, we examined if more training data, larger model, and secondary structure-dependent rigid body blocks (SS-dep blocks)
could improve the performance. When we increased the training dataset size from 5,690 (6k) to 28,914 (29k) with the baseline model,
there was marginal improvement. Presumably, the baseline model did not have enough capacity for learning with the bigger training
data. Larger models with more layers showed comparable results to the baseline model with the smaller training dataset. (Figure S8)
However, the performance with smaller models dropped significantly. We observed that training of models with eight linear layer
blocks was unstable and occasionally resulted in poor performance. When larger models were trained using the bigger training data-
set, the bigger data could be learned by larger models as they had enough capacity to learn them. They outperformed in terms of
clash score and side chain torsion accuracies. Similarly, the use of larger crops (384 residues) slightly improved the MolProbity score.
The use of SS-dep blocks contributed to accurately model backbone bonded geometries including bond lengths, angles, and Ram-
achandran angles. The best performance was achieved by aggregating all these components.

Structure refinement against cryo-EM density map via the cg2all network

The cg2all network enabled local optimization of a CG representation using scoring functions at both the CG and atomistic repre-
sentations. (Methods S1, and Algorithm S5) In the algorithm, an atomistic structure is generated from a CG structure via a cg2all
network for the CG representation. An objective function can be defined as a function of both atomistic and the CG representation.
Once the objective function is evaluated, the score is backpropagated to get derivatives of the CG structure. Then, the CG structure is
updated using the derivative. We applied this algorithm to optimize incorrect protein model structures against cryo-EM density maps
as an example usage. Nine protein structures were arbitrarily selected from the test set, and their biological assemblies were set as
target structures: 1kq1%° (369 residues, 6-mer), 1vim®® (760 residues, 4-mer), 1920°” (786 residues, 3-mer), 2ibp®® (814 residues,
2-mer), 1a2z%° (880 residues, 4-mer), 1s57°° (906 residues, 6-mer), 3isr®* (1,149 residues, 4-mer), 1joh®" (1,176 residues, 2-mer),
and 1wur® (1,848 residues, 10-mer). For those experimental structures, synthetic electron density maps were generated using “mol-
map” command in UCSF Chimera® that employs EMAN2’s “pdb2mrc” program® at resolutions of 3, 4, 5, 6, 8, and 10 A. Initial
models for local optimization against the electron density maps were predicted by AIphaFoId-MuItimer67 with multiple sequence
alignments from the ColabFold API%® and without structural templates using ESMFold."® We tested our local optimization protocol
that utilized an objective function based on both CG and atomistic representations and compared with alternative protocols,
including local optimizations at either CG or atomistic representations and molecular dynamics flexible fitting (MDFF) protocol.**

The objective function for local optimization against electron density map consisted of four objective functions in either atomistic or
the CG representation. The first one was the electron density map potential taken from MDFF (Equation 10):

(I)<X/> - (I)thr
ugxy) =S wmax|1,1 - —~2 Equation 10
(XN =2 N w— (Eq )

where ®(x;) refers to the values of the density map.

For this test, we set @y, to zero and w; to corresponding atom’s atomic mass. The potential was evaluated at the atomistic rep-
resentation using predicted coordinates from a Ca-trace using the cg2all model network. The second one was backbone bonded
potential at the atomistic representation (Equation 4) The third one was a simple CG potential that evaluated pseudo-bond length
and angle potential energies (Equation 11) and soft-core van der Waals potential energy (Equation 12).

bCafca' - bCDt*Ctx>2+ (HCa—Ca—Ca - 0Cu—Ca—C(x>2
U(bCafcoz) U(eca—Ca—Ca)

Ubonded = ( (Equation 11)

Uyaw = Z(min(o>dij — di/:min))2 (Equation 12)
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Parameters for the potential functions were obtained from a statistical analysis on the Top8000 structure. As the final one, Ca-Ca
distance restraints were applied to residue pairs for which the distances in the initial model were closer than 10 A. For this experiment,
we set relative weights to 1:1:0.1:100.

Initial protein model structures were locally optimized at either residue center-of-mass or Ca-trace representations using a cg2all
network-based optimization algorithm (Methods S1 and Algorithm S1). For this test, we superposed the initial structures onto their
target experimental structures using MM-align® as initial fits to electron density maps, and the superposition was iteratively updated
as well by optimizing the overall structural translation and rotation against the density maps. A structure was optimized using the
Adam optimizer®® for 1,000 or 2,500 steps for AlphaFold and ESMFold models, respectively, and intermediate snapshots were re-
corded for every 100 steps. The learning rate was updated every step using a cosine annealing scheduler,”® which changed the
learning rate from 0.005 to 0.0005 for 200 steps. From the snapshots, a structure with the highest cross-correlation coefficients
(CCC) to the target density map was selected as an optimized structure. As alternatives, we performed local optimization with a
CG representation using only CG-level objective functions. For the electron density map potential, we used the total mass of a residue
as w; instead. Optimization at a CG representation was carried out in the same way. Then, atomistic structures were generated from
Ca-traces using the cg2all network, and the highest CCC structure was selected as an optimized structure using the CG represen-
tation. For the local optimization protocol at atomistic resolution, we took the initial minimization step of MDFF protocol implemented
by CHARMM-GUI®” and modified it not to use positional restraints. It performed local energy minimization for 1,000 steps in vacuum
using the CHARMM36m force field using NAMD, 8 the MDFF electron density map potential, and restraints for secondary structure
elements, chirality, and for fixing cis-peptide bonds. We also applied the local optimization protocol at atomistic representation to
optimized structures from cg2all network-based optimization and optimization at the CG representations for better agreement of sol-
vent exposed sidechains. As the final option, we carried out the full MDFF protocol implemented by CHARMM-GUI.®”

QUANTIFICATION AND STATISTICAL ANALYSIS

The performance of the machine-learning model was assessed by analyzing its performance on independent test sets that are
distinct from training and validation sets as described in the method details section. Performance metrics reported in Tables 1, 2,
3, and 4 as well as additional results shown in Figures S2-S9 were averaged over test sets consisting of 720 structures. Standard
deviations are reported in Tables 1, 2, 3, and 4 to indicate the statistical variation of each metric. In addition, the results from the abla-
tion study in Figure S8 are averaged over three independent training runs. CryoEM refinement results were averaged over nine and six
different structures for AlphaFold2 and ESMFold models, respectively. To assess uncertainties, standard errors of the mean were
calculated are indicated in Figure 4. We did not perform optimization of ESMFold models for 1wur (ESMFold could not model a struc-
ture due to its large size), 1j0h and 1s57 (very poor initial model quality; Ca-RMSDs of 56.1 and 46.0 A, respectively). We performed
statistical analysis using in-house Python scripts based on functions from the NumPy package. Details of the experiments can be
found in the figure legends and table footnotes.

ADDITIONAL RESOURCES
cg2all is demonstrated at https://huggingface.co/spaces/huhlim/cg2all and https://colab.research.google.com/github/huhlim/

cg2all/blob/main/cg2all.ipynb. A Google Colab notebook for local optimization with cryo-EM density map is available at https://
colab.research.google.com/github/huhlim/cg2all/blob/main/cryo_em_minimizer.ipynb.
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