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SUMMARY

Atomistic resolution is the standard for high-resolution biomolecular structures, but experimental structural
data are often at lower resolution. Coarse-grainedmodels are also used extensively in computational studies
to reach biologically relevant spatial and temporal scales. This study explores the use of advanced machine
learning networks for reconstructing atomisticmodels from reduced representations. Themain finding is that
a single bead per amino acid residue allows construction of accurate and stereochemically realistic all-atom
structures with minimal loss of information. This suggests that lower resolution representations of proteins
may be sufficient for many applications when combined with a machine learning framework that encodes
knowledge from known structures. Practical applications include the rapid addition of atomistic detail to
low-resolution structures from experiment or computational coarse-grained models. The application of
rapid, deterministic all-atom reconstruction within multi-scale frameworks is further demonstrated with a
rapid protocol for the generation of accurate models from cryo-EM densities close to experimental
structures.

INTRODUCTION

Proteins play central roles in biological processes, and their

behavior is often studied at the molecular level to understand

biological function. Structural resolution at an atomistic level

is the gold standard for experiments and computation alike.

Experimental methods such as X-ray crystallography,1,2 nu-

clear magnetic resonance,3 and cryogenic electron microscopy

(cryo-EM)4 allow the construction of structural models in atom-

istic detail, but achieving such high resolution requires signifi-

cant effort.5,6 Computational modeling and simulations also

typically require all-atom representations of the protein to

achieve maximum accuracy and to gain detailed mechanistic

insights.7,8 Atomistic modeling remains computationally expen-

sive, though, limiting practical applications,9 even with the lat-

est high-performance computing platforms and simulation ac-

celerators (e.g., Anton or CUDA).10 Similarly, it is also very

demanding to train machine-learning-based methods for

directly predicting atomistic models11–13 and conformational

ensembles.14,15

Coarse graining (CG) of protein structures is a common

strategy to overcome various challenges.7 When interpreting

experimental data, reduced representations may be a natural

fit to match lower experimental resolutions. In computational

applications, CG models greatly increase efficiency by

reducing the number of particles. CG representations may

range from single beads per protein16,17 to residue-based

models18,19 and multiple sites per amino acid residue.20–24

Lower resolution models of experimental data often default

to Ca traces. In computational applications, the choice of res-

olution may depend on the questions that are being investi-

gated as model accuracy and transferability depend on the

degree of CG.7,25

While the coordinate mapping from atomistic levels to CG rep-

resentations is straightforward, the reverse mapping is in princi-

ple ill-defined because of dynamics in degrees of freedom that

are not reflected in a reduced representation. For example,

side chains may fluctuate for the same set of Ca coordinates.

However, the reverse mapping is better defined when the goal

is to map CG models to an atomistic coordinate representation

of the ensemble-averaged dominant state, essentially akin to

how most experimental structures of proteins are meant to be

interpreted.

To recover atomistic information from CG models, all-atom

reconstruction algorithms have been developed with different

strategies depending on the CG representation. For a united-

atom model, which omits only hydrogen atoms, missing hydro-

gens can be placed using their pre-defined local geometries.26

An all-atom structure can still be generated relatively accurately

and quickly from higher resolution CG models such as

PRIMO or MARTINI, based on geometry-based reconstruction

rules.21,27 The reconstruction of all-atom structures from

coarser representations such as Ca-traces is more complex.

Methods such as PULCHRA28 and REMO29 convert Ca-traces

to all-atom structures by first rebuilding the backbone atoms

before predicting side-chain orientations. There is also an
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additional set of methods that focus only on rebuilding side

chains given a protein backbone.30 These methods typically

rely on pre-defined backbone fragment libraries, side-chain ro-

tamer libraries,30,31 or other empirical information derived from

known structures. In most cases, extensive optimization is then

required to avoid clashes and find energetically optimal struc-

tures.32 Most recent methods also adopted machine learning

approaches for rebuilding side chains without rotamer li-

braries.33,34 Nevertheless, the resulting reconstructions may

retain significant deviations from correct all-atom structures

when only Ca atoms are available as input. The reconstructions

may also vary from one run to another if they depend on sto-

chastic optimization techniques. The relatively poor accuracy

when reconstructing atomistic coordinates from lower resolu-

tions has limited the full interpretation of experimental data

that do not directly provide atomistic details and hindered

effective implementations of multi-scale sampling methods

that are both efficient and thermodynamically consistent with

sampling at all-atom levels.8,35,36

In the meantime, the recent success of accurate structure

prediction via machine learning methods11–13 has demon-

strated that deep neural network models can effectively learn

from the large amount of known structures how to generate

atomistic models just from amino acid sequences. This sug-

gests that it should also be possible using similar approaches

to reconstruct atomistic coordinates at high resolution if

lower resolution structural information is available as additional

input.

Inspired by AlphaFold2,11 we trained an SE(3)-equivariant

graph neural network model for reconstructing all-atom detail

from lower representations. Like AF2, the model utilizes rigid-

body blocks for generating 3D structures from predicted fea-

tures, but the model was extended to better describe hydrogen

atoms and secondary structure dependencies. The network

learned structural features of backbone and side-chain atoms

from known protein conformations, but also incorporates phys-

ical constraints necessary to produce realistic all-atom struc-

tures. The model is applicable to a range of CG models such

as Ca-traces, traces of residue center-of-mass model, and

MARTINI models.20 It provides all-atom reconstructions at

much higher accuracy than with previous methods, better than

1 Å for heavy atoms from only Ca atoms and better than 0.5 Å

with a single site at residue centers of mass. This suggests

that structural details of proteins at a resolution close to experi-

mental accuracy can be captured essentially with a single site

per residue if the current knowledge of protein structures is taken

advantage of via machine learning.

The all-atom reconstruction via the machine learning frame-

work is fast and deterministic, and since gradients are available

via back propagation, it is straightforward to map energies and

constraints at the all-atom level directly to the CG representa-

tion. It is therefore possible to sample a residue-based model

guided directly by all-atom forces via backmapping through

the all-atom reconstruction network. As a proof of principle, we

demonstrate practical value in the rapid refinement of all-atom

coordinates against intermediate- and low-resolution cryo-EM

densities. The protocol achieves comparable accuracy to tradi-

tional all-atom simulation-based approaches but with much

reduced computational effort.

RESULTS

Accurate reconstruction of all-atom structures from
coarse-grained representations
We trained SE(3)-equivariant machine learning models, called

cg2all, to reconstruct all-atom structures of proteins from CG

representations (cf. STAR methods section). The network archi-

tecture is shown in Figure 1. The initialization module processes

input features (Figure S1; and Table S1) to encode a protein

structure in a CG representation and the corresponding resi-

due-type information (Methods S1, and Algorithm S1). An inter-

action module based on SE(3)-Transformers37 exchanges scalar

and vector encodings between residues to infer inter-residue re-

lationships (Methods S1, and Algorithm S2). The model adopts a

rigid-body block-based all-atom structure building method,

analogous to the method used for AlphaFold2 structure build-

ing.11 A structure module predicts values for the rigid-body

block-based structure building method: translation and rotation

of backbone rigid-body blocks consisting of N, Ca, and C atoms

and torsion angles to place the remaining atoms of residues

Figure 1. Architecture of coarse-grained to all-atom structure conversion model

See also Figures S1 and S2.
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(Methods S1, and Algorithm S3). The model was trained using

5,690 structures (PDB 6k set) or 28,914 structures (PDB 29k

set) for 300 and 120 epochs, respectively, using an Adam opti-

mizer with learning rates of 0.01 for parameters for torsion angle

predictions and 0.001 for the others (cf. STAR Methods). The

target loss function combines a target-dependent loss to mini-

mize differences between the target structure and a reconstruc-

tion and a data-independent loss to reduce physically unrealistic

structural features (e.g., atomic clashes and rotamer outliers) (cf.

STAR Methods). Model variations with different hyperpara-

meters were explored to determine the optimal model architec-

ture (cf. STAR Methods). An ablation study was further carried

out to determine optimal input features and loss function compo-

nents. Only results with the optimized architecture are described

subsequently.

The progress in learning protein structural features by the Ca--

tracemodel proceeded in the order of distance from the Ca atom

(Figure S2). When progress in the recovery of structural features

was tracked for every 10 epochs, we observed that backbone-

related features such as the Ramachandran angle, the result of

translation and three-dimensional rotation of backbone rigid-

body blocks, were saturated during the earlier epochs of the

training. At epoch 10, the Ramachandran map already resem-

bled that from experimental structures, and it changed little after-

ward. On the other hand, learning side-chain torsion angles

required many more epochs. At epoch 20, predictions of c1 an-

gles became reasonably accurate, and the model started to

learn c2 angles and a little bit of c3 angles. At epoch 60, more

states of c2 angles were captured, and there was progress in

c3 angle predictions. At the end of the training at epoch 120,

learning of most structural features converged. Many structural

features were learnt by the model; however, a few torsion angles

such as those for Arg/Lys c4 angles could not be learnt in the

end. Consequently, the loss in structural information upon the

conversion from all-atom structure to Ca-trace was most signif-

icant for structural features that were far from the Ca atom.

Consequently, backbone features could be learnt quickly, while

torsion angles farther from the Ca atoms were slow and some-

times incomplete. In contrast, the learning progress with the res-

idue center-of-mass model, which contains richer input informa-

tion, was much faster overall and more complete than that with

the Ca-trace model (Figure S2). Most structural features started

to converge at epoch 20 and were almost completed at

epoch 60.

Models were generated for the reconstruction from Ca atoms,

from all backbone atoms, from a single particle at the center of

mass of an amino acid residue or at the center of the side chain,

from the MARTINI model with several beads per residue,20 and

from the higher resolution CG model PRIMO.21 The generated

all-atom models were evaluated on a test set in terms of root-

mean-square deviations (RMSDs) and side-chain torsion accu-

racy with respect to the original reference structures as well as

MolProbity38 scores to check stereochemical quality (Table 1).

Because the machine learning model estimates internal param-

eters that are then used to reconstruct all-atom detail via rigid

body reconstruction,11 using the parameters from the experi-

mental all-atom structures as input for the rigid body reconstruc-

tion provides an upper limit on the accuracy that can be achieved

theoretically. Because of the reduced degree of freedom using

rigid-body blocks, it was not possible to reproduce the exact dis-

tribution of the bonded geometries. (Figure S3) Thus, this ideal

rigid body reconstruction resulted in slight deviations of atomic

coordinates (heavy-atom RMSDs of 0.16 Å) and increase in

MolProbity scores to 1.81 (Table 1), but both are still within

experimental accuracy of about 0.2 Å RMSD for coordinates in

X-ray structures of proteins whereas MolProbity scores below

2 are expected for structures derived from data at better than

2 Å resolution.38–41 The reconstruction from the highest resolu-

tion CG model, PRIMO, reaches the theoretical maximum accu-

racy and even lower MolProbity scores are obtained with slightly

fewer clashes (Table 1). That may be expected since PRIMOwas

designed to retainmaximum information from all-atom represen-

tations. However, even with lower resolution models, it is still

possible to recover accurate all-atom structures. Reconstruction

from MARTINI models resulted only in a slight loss of accuracy

(0.31 Å RMSD) and only slightly increased MolProbity scores.

Remarkably, even a single bead per residue, located at the cen-

ter of a residue or at the side-chain center, still allows accurate

reconstruction of all-atom details (<0.5 Å RMSD) without signif-

icant compromise of stereochemical quality. If the CG site is

located at the Ca position, as is common in many CG represen-

tations, the loss of accuracy is greater with the average heavy-

atom RMSD approaching 1 Å RMSD. The reason is that it be-

comes more difficult to accurately position side chains if only

backbone atoms are given, especially side chains on the surface

that are inherently free to sample different rotamer states (Fig-

ure 2A). On the other hand, residue center-of-mass models

contain information about the location of the side-chain position

and therefore side chains can be placed more accurately, even

on the surface (Figure 2B). In our approach, we allowed the co-

ordinates of the input low-resolution model to vary during the

all-atom reconstruction so that small errors at the CG level could

be corrected automatically. For reduced models based on

experimental structures, this made little difference when

compared to a protocol where initial CG coordinates remained

fixed (Table 1).

A more detailed analysis on the models reconstructed from

Ca-traces and residue center-of-mass models shows that back-

bone and side-chain torsion angles are closely matched (Fig-

ure S4). The backbone angles (Ca–C–N and C–N–Ca) are also

closely matched (Figure S3), but the peptide bond (C–N) showed

a somewhat larger standard deviation of 0.027 Å around the

average distance of 1.322 Å in the reconstructed all-atom struc-

tures from Ca-traces (or 1.330 ± 0.048 Å from residue center-of-

mass models) compared to a standard deviation of 0.008 Å

around an average of 1.331 Å in the experimental structures.

The greater variation in the only flexible backbone bond distance

in the rigid-body reconstruction procedure likely compensated

for keeping all other bonds rigid. However, one should also

note that all but the very highest resolution experimental struc-

tures are solved using molecular modeling programs that bias

experimental structures toward expected bond lengths.42 This

likely results in apparently reduced variations of such bonds.

Finally, cis-peptide u torsion angles were not produced for

non-pre-proline residues (Figure S3).

The machine-learning-based all-atom reconstruction via

cg2all performed significantly better than most of the previously

proposed all-atom reconstruction schemes across all metrics
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(Table 2). No other method achieved significantly better than 1 Å

RMSD for heavy atoms, when reconstructing from a Ca-trace or

a residue center-of-mass model, and even the higher resolution

MARTINI model.27 The other older methods for those CG repre-

sentations also produced structures with significant clashes and

higher MolProbity scores, despite energy-guided optimization to

avoid clashes. We furthermore tested the widely used rotamer-

basedmethod SCRWL430 for placing side chains in combination

with backbone atoms generated with cg2all or other methods.

Using SCWRL, MolProbity scores were generally improved,

even slightly over cg2all, but the accuracy decreased compared

to cg2all, especially for MARTINI and center-of-mass-based re-

constructions. The reason is that SCWRL’s side-chain modeling

only uses backbone coordinates as input and is based strictly on

a rotamer library that, by design, prevents outliers that are occa-

sionally found in experimental structures.

In comparison with other side-chain prediction methods,

where the input is a complete protein backbone, cg2all per-

formed similar or slightly better than other methods in terms of

accuracy. In comparison with SCWRL, cg2all showed better

reconstruction accuracy in terms of heavy-atom RMSD, c1 and

c1+2 angle accuracies. However, SCWRL generates almost

no rotamer outliers as it relies on a rotamer library where

outliers are prevented by design. However, this might limit

the reconstruction accuracy because real structures do contain

outliers. A state-of-the-art machine-learning-based method,

AttnPacker,33 reconstructed side-chain structures with high ac-

curacy in terms of heavy-atom RMSD. However, when using

their method, we found that the reconstructed models had

not just numerous rotamer outliers but also highly unrealistic

side-chain bond lengths and angles. (Figure S5); thus, they

required additional local energy minimization to correct poor

stereochemistry.

Because all-atom reconstruction via cg2all is achieved with a

single forward pass without any iterative optimization, the

computational cost is low, on the order of seconds (Table 3;

and Figure S6). To better understand the computational perfor-

mance, some additional analysis is necessary. A reconstruction

run with cg2all consists of (1) loading Python libraries, (2) loading

a PyTorch model, (3) reading an input PDB file followed by pre-

processing, (4) a forward pass through the model, and (5) writing

an output PDB file. Loading the PyTorch model takes around 2.7

s, limited by I/O speed. The computational cost for the remaining

steps is linearly dependent on the number of residues of the sys-

tem, with an average of less than 4 s for the test set with a single

CPU thread and less time when multiple threads or a GPU was

used. Using a GPU, incurred additional overhead and is not effi-

cient for a single average-size reconstruction, but there is a sig-

nificant benefit for very large systems or when processing many

snapshots with alternate conformations that can be processed

Table 1. Performance of conversion to all-atom structures from CG models with cg2all

CG representation

Maximum number of

beads per residue

RMSDa c-angle accuracya,b MolProbitya

Backbone [Å]

Heavy

atom [Å] c1 [%] c1+2 [%] Score

Clash

score

Rama

favor [%]

Rotamer

outlier [%]

Experimental

structure

– – – – – 1.25 (0.34) 3.2 (2.4) 97.9 (1.2) 1.4 (1.2)

Rigid body

reconstructionc
– 0.03 (0.01) 0.16 (0.03) – – 1.81 (0.29) 12.2 (4.8) 97.4 (1.3) 1.4 (1.2)

Ca 1 0.18 (0.05) 0.96 (0.12) 86.2 (3.0) 71.4 (4.8) 2.07 (0.21) 31.2 (9.5) 97.9 (1.1) 0.8 (0.7)

Ca (fixed)d 1 0.17 (0.05) 0.93 (0.12) 86.5 (3.0) 71.8 (4.7) 2.13 (0.21) 34.2 (10.3) 98.0 (1.1) 1.0 (0.7)

N, Ca, C 3 0.07 (0.02) 0.83 (0.11) 89.3 (2.8) 75.7 (4.5) 2.09 (0.23) 27.6 (8.5) 97.5 (1.3) 1.1 (0.7)

N, Ca, C (fixed)d 3 0.06 (0.02) 0.82 (0.11) 89.4 (2.7) 75.8 (4.5) 2.07 (0.22) 27.8 (8.6) 97.9 (1.2) 1.1 (0.7)

N, Ca, C, O 4 0.04 (0.01) 0.82 (0.11) 89.6 (2.8) 75.6 (4.7) 2.08 (0.22) 26.9 (8.3) 97.4 (1.3) 1.0 (0.8)

N, Ca, C, O (fixed) d 4 0.00 (0.00) 0.82 (0.11) 89.7 (2.8) 75.7 (4.6) 2.05 (0.22) 27.3 (8.3) 97.9 (1.2) 1.1 (0.8)

CMe 1 0.22 (0.05) 0.46 (0.06) 95.4 (1.9) 85.9 (3.9) 2.00 (0.23) 20.6 (6.2) 97.3 (1.4) 1.1 (0.7)

SCf 1 0.29 (0.07) 0.49 (0.06) 92.8 (2.4) 85.6 (4.1) 2.13 (0.28) 22.9 (7.1) 97.0 (1.5) 1.5 (1.0)

Ca + CMe 2 0.11 (0.03) 0.39 (0.05) 98.0 (1.3) 88.7 (3.6) 1.97 (0.20) 22.7 (6.8) 97.7 (1.2) 0.8 (0.7)

Ca + CMe (fixed) d 2 0.10 (0.03) 0.39 (0.05) 98.0 (1.3) 88.8 (3.5) 1.99 (0.21) 23.6 (6.9) 97.7 (1.2) 0.8 (0.7)

Ca + SCf 2 0.13 (0.04) 0.40 (0.04) 95.2 (1.9) 88.9 (3.4) 1.93 (0.21) 20.1 (6.2) 97.7 (1.2) 0.9 (0.7)

Ca + SCf (fixed) d 2 0.12 (0.04) 0.39 (0.04) 95.1 (1.9) 89.1 (3.4) 1.96 (0.21) 21.4 (6.3) 97.6 (1.2) 0.9 (0.7)

MARTINI 5 0.08 (0.02) 0.31 (0.05) 98.8 (1.0) 93.1 (2.8) 1.88 (0.21) 17.2 (5.4) 97.5 (1.2) 0.9 (0.7)

PRIMO 8 0.04 (0.01) 0.18 (0.03) 99.9 (0.2) 99.7 (0.5) 1.72 (0.27) 10.7 (4.2) 97.5 (1.3) 1.1 (0.9)

See also Figures S3 and S4.
aThe average reconstruction accuracymeasures for the test set protein structures (n = 720) are given with their standard deviations in the parentheses.
bSide-chain c-angles were considered accurate when deviations from experimental values were less than 30�.
cExperimental structures were reconstructedwith the rigid body blocks using residue orientations and torsion angles from the experimental structures.
dThe atomic coordinates in the input files were preserved, while the original method does not. For instance, cg2all model for ‘‘Ca (fixed)’’ generates

output structures with the exact same Ca coordinates of the input structures. On the other hand, the original cg2all model generates slightly altered Ca

coordinates.
eA bead located at the center-of-mass of an amino acid.
fA bead located at the center-of-mass of side-chain atoms. For glycine, it is located at the position of Ca atom.
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simultaneously on a GPU. For a single reconstruction on a single

thread, only PULCHRAwas faster than cg2all. REMO took about

the same total time, whereas other methods requiredmuchmore

time. For reconstruction of side-chain atoms from protein main-

chain structures, cg2all and SCWRL were comparably fast. On

the other hand, the neural network method AttnPacker required

significantly more computational cost as its network has two or-

ders of magnitude more parameters (208M vs. 4.05M), whereas

the necessary local energy minimization step took additional

computational time.

Accurate all-atom reconstruction from simulation
models
The reconstruction of all-atom detail from reduced representa-

tions of experimental structures, as described in the previous

section, may be considered an ideal scenario. We further tested

how well all-atom resolution can be recovered from models

generated via simulations. Two sets of models were considered.

The first set consisted of snapshots that were extracted from all-

atom molecular dynamics (MD) simulations; in the second set,

the MD-based snapshots were further energy-minimized struc-

tures using a residue-based CG model, COCOMO.18 Here, the

all-atom MD snapshots serve as the reference for determining

accuracy of the reconstruction protocol. All-atom reconstruction

from Ca-traces of MD simulation snapshots was still accurate,

but the accuracy became slightly worse than for experimental

structures, with higher RMSD values of 1.18 Å for heavy atoms

and lower side-chain torsion accuracies (Table 4). Once the

snapshots were minimized with COCOMO at the CG level, the

all-atom reconstruction RMSD further increased to 1.34 Å (Ta-

ble 4) with respect to the initial all-atomMD snapshots. However,

that may be expected because the CG minimization by itself re-

sulted in deviations of 0.30 Å for the Ca positions from the initial

all-atom MD snapshots. In either case, the reconstructed all-

atom models had again low clash scores and very low rotamer

outliers and were much closer to the reference atomistic struc-

tural models than those generated with other methods (Table 4;

and Figure 2C). Thermal fluctuations in the simulations led to

broadened bond geometry distributions (Figure S7) andmore ro-

tamer outliers compared to experimental structures. However,

since cg2all was trained to generate experimental structure-

like conformations, the broader distributions were not

completely reproduced (Figure S7). This explains at least in

part the slightly lower reconstruction accuracy for simulation-

based models.

A related practical question is whether the reconstructed

models from cg2all are more suitable for starting atomistic sim-

ulations. The reconstructed all-atom structure was suitable for

further usages such as all-atom MD simulations. Larger sys-

tems require extensive computational cost to get their equili-

brated system or systems in desired states via all-atom MD

simulations. Alternatively, one may attempt to reach an equilib-

rium state such as liquid-liquid phase separation formation

described in Figure 2D using CG simulations18 and continue

atomistic simulations from the state. We briefly examined the

approach by performing atomistic MD simulations starting

from reconstructed all-atom structures (Figure 3). We carried

out an atomistic MD simulation for 50 ns and minimized the

conformation from the last snapshot using the CG model

COCOMO as a hypothetical CG simulation result for which

the atomistic MD snapshot serves as a reference. The

COCOMO-minimized structure was converted to an all-atom

structure using our method or PULCHRA,28 respectively.

Then, the converted structures were equilibrated again and

continued atomistic simulations. The simulation results were

compared with another set of simulations that simply continued

simulations from the last snapshot. We hypothesized that the

protein structure would quickly show instabilities at the begin-

ning of the simulation if the conversion was not producing

models of sufficient quality. After conversion with cg2all, the

protein structure remained stable and well-folded during the

first 10 ns, as the continued simulation did. The average

Ca-RMSD to the initial conformation was 1.98 Å after 10 ns

(cf. 1.35 Å for the simulations from the last snapshot). On the

other hand, with the reconstructed structure by PULCHRA,

due to steric clashes, conformations deviated from the initial

conformation significantly, starting at early stages of the simu-

lations (2.94 Å Ca-RMSD with respect to the initial conforma-

tion on average after 10 ns). Consequently, residue-wise fluctu-

ations throughout the atomistic simulation were very similar

between the sets of simulations from the last snapshot and

the model by our method, while an initial model from

PULCHRA resulted in significantly higher fluctuations due to

initial destabilization caused by steric clashes.

Figure 2. Examples of conversion from CG models to all-atom models

(A–C) Recovery of all-atom structure from Ca-trace (A), residue center-of-mass model (B), and a Ca-trace of snapshot of all-atom MD simulation after mini-

mization with COCOMO (C). The CGmodel and recovered structure are shown as rainbow-colored cartoon and stick representation (from blue to red for N- to C

termini). Their reference structures, an X-ray crystal structure (PDB ID: 1vjw62) for (A and B) and an all-atom MD snapshot (C) are shown in gray.

(D) Conversion of a COCOMO18 simulation snapshot from a simulation of liquid-liquid phase separation (LLPS) of LAF-1 RGG peptides at 0.042 mM.63 Each

peptide consisted of 168 residues, and there were 84 monomers (14,112 residues in total). They are shown in different colors. The phase-separated particles at

the CG level and a local region after the conversion aremagnified to present detailed structure information (black boxes). The conversion took 33.5 s using 16CPU

threads.

(E) Building an all-atommodel from amedium-resolution cryo-EMCa-trace (PDB ID: 3iyg,43 EMDB ID: 5148, resolution: 4.0 Å). Each chain is depicted in a different

color, and the electron density is overlaid as transparent gray voxels. The density map correlation with the all-atommodel was 0.723 (vs. 0.647 with the Ca-trace).

The conversion of the 4,134-residue protein took 11.9 s using 16 CPU threads.

(F) Conversion of a CGMD simulation trajectory of folded proteins using COCOMO. There are 24 ubiquitins (1,824 residues in total) in the simulation box (shown in

red) with a width of 10.76 nm, which resulted in a concentration of 32 mM (274.1 g/L). Each monomer is shown in a different color. A local region after the

conversion is zoomed in to show atomistic details of interactions between proteins (black boxes). The conversion of 10,000 frames took 1,774 s in total using the

‘‘cuda’’ environment with a batch size of 4 (0.15 s/frame for the forward pass only).

(G) Models generated by idpGAN14 for an intrinsically disordered protein (UniProt ID: Q9EP54, 27 residues). The conversion of 25,000 models took 64.6 s in total

using the ‘‘cuda’’ environment with a batch size of 250 (1.3 ms/model for the forward pass only). Hydrogens were reconstructed but are omitted for clarity.
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Addition of all-atom structural details to low-resolution
models
The analysis so far shows that all-atom details can be captured

essentially within experimental uncertainties at much reduced

representations, up to a single bead at the center of mass of

an amino acid. This is possible by drawing on the vast knowledge

about protein structures via state-of-the-art machine learning. In

turn, this means that all-atom structural details can be provided

with high confidence for models that are initially only available at

a CG level. Examples where cg2all may be used in practice are

shown in Figure 2 and discussed more in the following.

Low-resolution cryo-EM structures are often reported only at the

Ca level. All-atom detail can be reconstructed quickly via cg2all

(Figure 2E). For a cryo-EM experimental structure (PDB ID: 3iyg43)

with a resolution of 4.0 Å, the all-atom structurewith 4,134 residues

or 64,192 atoms was generated within 11.9 s, fast enough to be

done on-demand when working with such structures. The gener-

ated structure had a higher density map correlation of 0.723 than

that of the original Ca-trace, 0.647, but there were some clashes

in the atomistic model, presumably because Ca atoms for some

residueswerepacked too tightly in the original structure. Therefore,

itmaybepossible to use the all-atom reconstruction as an indicator

of issues with the low-resolution model itself.

We note that low-resolution cryo-EM density maps may make

it challenging to trace all residues correctly,44 especially at flex-

ible regions.45 If residues are missing, cg2all treats residues

before and after chain breaks as C- and N termini to produce

reasonable reconstructions for the residues that are resolved

since cg2all can only produce atomistic coordinates for residues

for which coarse-grained beads are available as input. However,

for short segments, initial coarse-grained bead positions could

be guessed via interpolation and subsequently refined against

Table 2. Comparison of all-atom reconstruction accuracies with different methods

Input Method

RMSDa c-angle accuracya,b MolProbitya

Backbone [Å] Heavy atom [Å] c1 [%] c1+2 [%] Score Clash score Rama favor [%]

Rotamer

outlier [%]

Ca cg2all 0.18 (0.05) 0.96 (0.12) 86.2 (3.0) 71.4 (4.8) 2.07 (0.21) 31.2 (9.5) 97.9 (1.1) 0.8 (0.7)

w/SCRWLc 1.06 (0.14) 83.2 (3.6) 70.1 (5.2) 2.00 (0.18) 28.6 (8.1) 97.9 (1.1) 0.0 (0.1)

cg2all (fixed)d 0.17 (0.05) 0.93 (0.12) 86.5

(3.0)

71.8 (4.7) 2.13 (0.21) 34.2 (10.3) 98.0 (1.1) 1.0 (0.7)

PULCHRAe 0.47 (0.11) 1.57 (0.14) 59.2 (4.0) 39.6 (4.5) 3.79 (0.23) 164.4 (28.5) 86.4 (3.9) 4.9 (1.7)

w/SCWRLc 1.36 (0.14) 73.0 (4.3) 58.4 (5.6) 2.90 (0.20) 67.4 (17.8) 86.4 (3.9) 0.1 (0.2)

REMOe,f 0.81 (0.42) 2.09 (0.41) 43.6 (4.3) 28.5 (5.4) 4.37 (0.21) 200.2 (36.8) 78.4 (7.2) 14.8 (3.8)

w/SCWRLc 1.74 (0.52) 68.5 (6.5) 53.8 (7.5) 3.15 (0.25) 95.7 (43.6) 78.4 (7.2) 0.2 (0.3)

ModRefinere,f 0.66 (0.20) 1.51 (0.21) 71.8 (4.1) 55.1 (5.6) 2.38 (0.24) 56.5 (19.6) 97.0 (1.7) 0.6 (0.5)

MODELLER 0.97 (0.88) 2.12 (0.76) 42.8 (4.0) 25.4 (4.0) 3.63 (0.19) 93.3 (15.7) 86.4 (3.4) 6.0 (1.8)

CM cg2all 0.22 (0.05) 0.46 (0.06) 95.4 (1.9) 85.9 (3.9) 2.00 (0.23) 20.6 (6.2) 97.3 (1.4) 1.1 (0.7)

w/SCWRLc 1.00 (0.14) 83.9 (3.6) 70.9 (5.2) 2.01 (0.20) 25.5 (7.3) 97.3 (1.4) 0.0 (0.1)

PULCHRAe 1.08 (0.08) 1.91 (0.12) 46.6 (4.0) 29.0 (4.1) 4.49 (0.13) 291.6 (36.2) 72.9 (4.4) 10.5 (2.3)

w/SCWRLc 1.08 (0.08) 1.84 (0.12) 55.3 (4.0) 36.3 (4.5) 3.51 (0.11) 176.2 (27.6) 72.9 (4.4) 0.2 (0.3)

MODELLER e 1.63 (1.03) 2.38 (0.94) 43.7 (3.9) 25.5 (3.8) 3.80 (0.18) 123.6 (19.9) 81.8 (3.4) 5.5 (1.8)

N, Ca, C, O cg2all 0.04 (0.01) 0.82 (0.11) 89.6 (2.8) 75.6 (4.7) 2.08 (0.22) 26.9 (8.3) 97.4 (1.3) 1.0 (0.8)

cg2all (fixed)d – 0.82 (0.11) 89.7 (2.8) 75.7 (4.6) 2.05 (0.22) 27.3 (8.3) 97.9 (1.2) 1.1 (0.8)

SCWRL – 0.97 (0.13) 85.6 (3.4) 73.0 (5.0) 1.97 (0.19) 26.7 (7.8) 97.9 (1.2) 0.0 (0.1)

AttnPacker – 0.61 (0.11) 90.9 (2.9) 73.3 (5.4) 2.32 (0.25) 22.8 (7.7) 97.9 (1.2) 3.8 (1.5)

+local min. – 0.67 (0.11) 92.4 (2.8) 80.6 (4.9) 1.86 (0.28) 11.9 (3.9) 97.9 (1.2) 2.0 (1.1)

MARTINI cg2all 0.08 (0.02) 0.31 (0.05) 98.8 (1.0) 93.1 (2.8) 1.88 (0.21) 17.2 (5.4) 97.5 (1.2) 0.9 (0.7)

w/SCWRLc 0.98 (0.13) 85.2 (3.6) 72.6 (5.2) 2.00 (0.19) 26.1 (7.5) 97.5 (1.2) 0.0 (0.1)

Backwardg 0.84 (0.07) 1.06 (0.08) 60.9 (5.8) 46.1 (7.2) 2.71 (0.29) 4.5 (1.7) 86.7 (4.5) 15.9 (3.8)

w/SCWRLc 1.64 (0.16) 64.5 (5.5) 50.4 (6.6) 2.93 (0.22) 74.4 (21.4) 86.7 (4.5) 0.1 (0.2)

See also Figures S3–S5.
aThe average reconstruction accuracy measures for the test set protein structures (n = 720) are given with their standard deviations in the parentheses.
bSide-chain c-angles were considered accurate when their deviations from experimental values were less than 30�.
cSide chains were reconstructed using SCWRL4 after building a backbone structure using other methods (e.g., cg2all, PULCHRA, and REMO).
dThe atomic coordinates in the input files were preserved, while the original method does not. For instance, cg2all model for ‘‘Ca (fixed)’’ generates

output structures with the exact same Ca coordinates of the input structures. On the other hand, the original cg2all model generates slightly altered Ca

coordinates.
eChains in multi-chain targets were separately converted to all-atom structures and superposed onto the original Ca-trace.
fConversions of several structures failed because they cannot handle short peptides or were not completed within a reasonable time frame (12 h). Suc-

cessful conversions for REMO: 684/720; for ModRefiner: 714/720.
gConversion of one structure failed because short peptides (<3 residues) cannot be handled.
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the cryo-EM density using for example the rapid cryo-EM refine-

ment protocol using cg2all (refer to multi-scale sampling for

rapid cryo-EM refinement). On the other hand, if longer residue

stretches aremissing or if the connectivity is incorrect, additional

modeling would be needed outside the scope of what cg2all is

designed to do in order to generate at least correct coarse-

grained models consistent with given experimental data.

Residue-level CGmodels, such as COCOMO, are increasingly

being used to simulate very large systems over long time scales,

for example to study protein-protein interactions or liquid-liquid

phase separation. Again, cg2all can provide atomistic coordi-

nates from the CG models (Figures 2C, 2D, and 2F). Using this

approach, we could obtain an all-atom structure from a snapshot

of a CGmodel of a condensate formed by IDPs. In the example, a

14,112-residue CG system was converted to an all-atom struc-

ture with 183,624 atoms in just 33.5 s. This rendered detailed

atomic interactions between peptides (e.g., salt bridges between

charged side chains) inside the condensate. We note that a fully

atomistic simulation of the condensation process is so far impos-

sible to carry out.

Machine-learning-based conformational ensemble genera-

tors such as FoldingDiff46 or idpGAN14 may be limited to output

consisting of Ca traces due to resource constraints, but all-atom

models can be obtained rapidly via post-processing by cg2all

(Figure 2G). Using a GPU with a large batch size allowed us to

convert 25,000 IDP conformations generated via idpGAN to

all-atom detail in just 64.6 s. Consequently, a practical strategy

for the rapid generation of conformational ensemble via machine

learningmay be to focus on generating ensembles only at theCG

level and leave it up to an all-atom reconstruction scheme as pre-

sented here to obtain atomistic ensembles.

Finally, since cg2all can efficiently parallelize all-atom recon-

structions on GPUs, entire CG MD simulation trajectories could

be rapidly converted to atomistic detail. For example, the conver-

sionof 10,000 framesof a 1,824-residue system takes 1,774 s ona

GPU with a batch size of 4 (Video S1). This allows not just the

consideration of all-atom detail when sampling with CG models,

but also, vice versa, suggests that CG models could be used for

lossy data compression. This has been proposed before based

on the higher resolution CG model PRIMO,47 but much greater

compression can be achieved if only a single particle per residue

is used. For example, a 3.4 GB all-atom trajectory in the DCD

format could be compressed into a 210 MB trajectory with single

beads, suchasCaorcenter-of-mass, resulting in a94%compres-

sion ratio. Suchhighdegreeof compression could greatly facilitate

thepublic sharingofextensive atomistic trajectories thatotherwise

remains a significant resource challenge.48,49

Multi-scale sampling for rapid cryo-EM refinement
To furtherdemonstrate thepotential of cg2all,we turn to the refine-

ment of models against cryo-EM densities. A typical challenge in-

volves the flexible fitting of initial models from crystallography or

structure prediction to intermediate- to low-resolution density

maps, for which direct atomistic model building is difficult due to

insufficient information.50 A number of protocols are commonly

used such as Coot,51 Isolde,52 and Direx.53 The most effective

methods to date employ sampling via atomistic simulations,

such as the molecular dynamics flexible fitting (MDFF) protocol.54

This approach is successful but may take on the order of hours to

days because of the computational cost of the simulations. Here,

we explore the sampling of CG models guided by a density map

correlation energy function based on reconstructed all-atom rep-

resentations that is possible with cg2all. Sampling at the CG level

avoids the kinetic barriers that hinder sampling at the atomistic

level, whereasusing an energy penalty based onatomistic coordi-

nate reconstructions ensures that the optimized CG model is

maximally compatible with the experimental data.

The multi-scale approach based on cg2all outperformed local

optimization protocols such as energy minimization at the all-

atom representation using an atomistic energy function or energy

minimization at the CG level using a CG energy function alone

across the entire range of map resolutions (Figure 4). With a

high-resolution (3 Å) electron densitymap, local energyminimiza-

tion of an all-atom model or a CG model is trapped in a local en-

ergy minimum because of a rugged energy landscape. Further-

more, local energy minimization of a CG model cannot exploit

the high-resolution information from the electron density map.

However, our multi-scale approach effectively optimizes struc-

tures by minimizing at the CG level where kinetic barriers are

low or absent while still targeting the high-resolution data via all-

atom reconstruction. During the minimization process, the

gradient resulting from the discrepancy between an all-atom

model and the target electron density map is backpropagated

Table 3. Average timing for all-atom reconstruction with

different methods

Input Method Devicea Time [s]b

Ca cg2all CPU (1) 6.4 (3.6)

CPU (4) 4.4 (1.6)

CPU (16) 3.9 (1.1)

CUDA 8.7 (1.7)

Apple Silicon 3.2 (1.8)

cg2all+SCWRLc CPU (1) 13.0

PULCHRA CPU (1) 0.4

REMO CPU (1) 6.1

ModRefiner CPU (1) 5211

MODELLER CPU (1) 98.5

N, Ca, C, O cg2all CPU (1) 8.2 (4.4)

SCWRL CPU (1) 7.0

AttnPacker CPU (1) 197.5 (191.6)

+local min. 231.4

MARTINI cg2all CPU (1) 7.4 (4.4)

Backward CPU (1) 33.8

See also Figure S6.
aEachmethod was run on an Intel Xeon Silver 4214 CPUs (2.2 GHz) under

Linux with 128GB of RAMunless noted. The number of threads is given in

parentheses. ‘‘CUDA’’ was run on the samemachine but using an NVIDIA

GeForce RTX 2080 Ti GPU card (11 GB of VRAM). Apple Silicon refers to

an Apple Silicon M1 Pro chip with 8-core CPU, 14-core GPU, and 16 GB

RAM, but only one CPU thread was used for the inference.
bThe number of residues of the test set proteins (n = 720) ranged from 50

to 1,176 with an average and a standard deviation of 376 and 242,

respectively. For cg2all, the average inference time after loading a Py-

Torch model is shown in parentheses.
cSide chains were reconstructed using SCWRL4 after building a back-

bone structure using cg2all.
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to the CG level through the cg2all network. This enables the utili-

zation of high-resolution information from the electron density

map at the CG level. Because all-atom models are compared

with the high-resolutionmap, CG beads are less likely to become

trapped in a local minimum where a correct all-atom structure

could not be generated, as the gradient arising from the discrep-

ancy at the all-atom resolution would guide the CG beads away

from such a local minimum toward the correct positions. We

believe that thismulti-scale approachconceptually retains theac-

curacy of all-atom representation while achieving better perfor-

mance by moving on a smooth landscape during minimization

at the CG level. Here, accuracy refers to comparisons of the

generated models with the experimental reference structures

andagreementwithEMmaps. The optimized structures obtained

via the cg2all-based multi-scale approach reached comparable

C⍺-RMSD values to the full MDFF protocol (0.36 vs. 0.35 Å),

slightly lower cross-correlation coefficients (CCC, 0.866 vs.

0.881) and slightly larger heavy-atom RMSD values (0.88 vs.

0.74 Å). Importantly, the similar accuracy with cg2all vs. MDFF

is achieved in much shorter time (minutes vs. hours). An example

for the high model accuracy that can be achieved with cg2all is

shown in Figure 5. In the example, several regions in the initial

AlphaFold2 model located outside of the 5 Å resolution electron

density (indicated by red arrows) with a heavy-atom RMSD of

2.26 Å andaCCCof0.829.Using theMDFFprotocolwith theelec-

tron density map, the model was optimized to a heavy-atom

RMSD of 0.80 Å and has a higher CCC of 0.941. Our multi-scale

approach optimized the model to a comparable accuracy, a

heavy-atom RMSD of 0.85 Å, and a CCC of 0.936, even though

it performed the actual optimization at the CG level. We note

that ourmulti-scale approach achieved the comparable accuracy

in 8.9 min, while the MDFF protocol took 8.8 h.

When the electrondensitymaphasmuch lower resolution, such

as 10 Å, optimization at the all-atom level becomes less effective,

even using MDFF, whereas the CG-based-optimized refinement,

via cg2all, still allows structure refinement, and still withinminutes.

Thisopensup thepossibility for high-throughputmodel refinement

of many lower resolution maps, for example to fit models to maps

of dynamics conformational ensembles captured via cryo-EM.

In this proof-of-concept demonstration, we employed a naive

CG energy function that only prevents severe clashes between

CG beads. Distance restraints between CG beads were applied

to keep the protein structure folded; however, this also limited

the potential for improvement as it prohibited partial structure

unfolding and refolding.55,56 In futurework, this will be addressed

by introducing a more sophisticated CG energy function that is

capable of not only maintaining folded structures but also allow-

ing significant structural changes.

Table 4. Performance of conversion to all-atom structures from Ca-traces of simulation snapshots

Input Method

RMSDa c-angle accuracya,b MolProbitya

Backbone [Å] Heavy atom [Å] c1 [%] c1+2 [%] Score Clash score

Rama

favor [%]

Rotamer

outlier [%]

Ca from all-atom

MD snapshots

MD snapshots 1.45 (0.23) 0.8 (0.5) 93.5 (2.1) 2.7 (1.2)

cg2all 0.25 (0.04) 1.18 (0.12) 77.7 (3.4) 58.7 (4.6) 2.31 (0.23) 37.1 (9.8) 96.4 (1.5) 1.0 (0.7)

w/SCRWLc 1.27 (0.14) 76.2 (3.6) 58.1 (4.8) 2.20 (0.19) 32.5 (8.0) 96.4 (1.5) 0.0 (0.1)

cg2all (fixed)d 0.25 (0.04) 1.15 (0.12) 77.9 (3.4) 58.8 (4.6) 2.42 (0.24) 41.0 (10.1) 96.3 (1.5) 1.4 (0.8)

PULCHRAe 0.52 (0.16) 1.70 (0.14) 54.2 (4.0) 32.1 (3.9) 3.84 (0.20) 162.7 (25.5) 85.1 (3.8) 5.2 (1.6)

w/SCWRLc 1.51 (0.15) 68.0 (4.2) 49.7 (4.8) 2.93 (0.17) 67.1 (15.5) 85.1 (3.8) 0.1 (0.2)

REMOe,f 0.94 (0.47) 2.21 (0.46) 44.5 (4.5) 26.4 (4.8) 4.42 (0.21) 197.5 (37.2) 75.1 (7.9) 15.6 (3.9)

w/SCWRLc 1.95 (0.53) 63.5 (5.9) 45.5 (6.5) 3.22 (0.24) 102.4 (45.0) 75.1 (7.9) 0.2 (0.3)

Ca after minimization

with COCOMOg

cg2all 0.43 (0.13) 1.34 (0.19) 73.7 (4.2) 54.8 (5.1) 2.55 (0.23) 44.5 (12.5) 94.4 (1.9) 1.1 (0.8)

w/SCWRLc 1.43 (0.19) 72.3 (4.1) 53.5 (5.2) 2.38 (0.18) 36.1 (10.2) 94.4 (1.9) 0.1 (0.1)

cg2all (fixed)d 0.42 (0.13) 1.32 (0.19) 73.3 (4.3) 54.3 (5.0) 2.70 (0.24) 50.1 (13.3) 94.1 (2.0) 1.7 (0.9)

PULCHRAe 0.61 (0.18) 1.79 (0.18) 52.5 (4.1) 31.0 (4.1) 3.87 (0.19) 156.8 (25.3) 83.5 (3.9) 5.6 (1.7)

w/SCWRLc 1.62 (0.19) 65.8 (4.4) 47.1 (5.1) 2.95 (0.15) 65.1 (15.3) 83.5 (3.9) 0.1 (0.2)

REMOe,f 1.16 (0.49) 2.40 (0.53) 43.3 (4.7) 25.7 (4.8) 4.50 (0.22) 194.5 (40.1) 69.9 (9.5) 17.4 (4.3)

w/SCWRLc 2.23 (0.59) 59.4 (6.1) 41.3 (6.6) 3.33 (0.25) 116.1 (48.2) 69.9 (9.5) 0.2 (0.3)

See also Figure S7.
aThe average reconstruction accuracy measures for the test set protein structures (n = 720) are given with their standard deviations in the parentheses.
bSide-chain c-angles were considered accurate when deviations from experimental values were less than 30�.
cSide chains were reconstructed using SCWRL4 after building a backbone structure using other methods (e.g., cg2all, PULCHRA, and REMO).
dThe atomic coordinates in the input files were preserved, while the original method does not. For instance, cg2all model for ‘‘Ca (fixed)’’ generates

output structures with the exact same Ca coordinates of the input structures. On the other hand, the original cg2all model generates slightly altered Ca

coordinates.
eMulti-chain targets were converted chain-by-chain to all-atom structures and superposed onto the original Ca-trace.
fConversions of several structures failed because short peptides could not be handled.
gAll-atom MD simulation snapshots were considered as the ground truth. The average structure change in Ca-RMSD after minimization using

COCOMO model was 0.30 Å.
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DISCUSSION

The results presented here show that all-atom details of proteins

can be captured essentially within experimental uncertainties

with only a single bead per amino acid, especially when placed

at the residue center of mass, but perhaps also with amore tradi-

tional Ca-trace representation. This is possible now because of

advances in machine learning that allow vast information from

known structures in the PDB, to be applied toward different ob-

jectives, in this case, the accurate reconstruction of all-atom fea-

tures from low-resolution models. We focus here on reconstruc-

tions from widely used low-resolution representations as they

are of significant practical relevance, but note that the corre-

spondence between reduced and atomistic coordinate repre-

sentations could also be improved by optimizing the CG repre-

sentation itself.57

It should be reiterated, that the all-atom reconstructions ob-

tained here focus on finding a chemically realistic representative

structure for the most likely time- and ensemble-averaged

conformation. Conformational dynamics in degrees of freedoms

that are not captured in the reduced representation are effec-

tively averaged out. The resulting structures are therefore exper-

iment-like structures where dynamics may be described only in

the form of B-factors. We do not predict B-factors here for the

reconstructed structures, but note that other methods are avail-

able for estimating B-factors from given atomistic structures.58

The approach taken here was initially motivated by recent ad-

vances in protein structure prediction methods, but it is different

Figure 3. Stability of all-atomMD simulations

continued from reconstructed all-atom

models

(A) The last snapshot of a dimeric protein (PDB ID:

2ibd) all-atom simulation was locally minimized us-

ing COCOMO model, and the minimized Ca-trace

was converted to an all-atom model using cg2all

and PULCHRA. Then, eight replicas of all-atom

simulations were performed starting from the re-

constructed all-atom models after an equilibration

step. (A) Ca-RMSD trajectories with respect to their

startingmodel. Each trajectory is colored differently.

(B) Residue-wise root-mean-square-fluctuation

(RMSF) for the last snapshot, cg2all, and PULCHRA

model are shown in black, blue, and red lines.

Standard errors of the value are shown with trans-

parent shades. For the RMSF evaluation, the first

10 ns was discarded as the equilibration process.

(C) Ensemble of structures after 10 ns of all-atom

simulations (transparent rainbow colors) are

compared with their starting structure (black).

Highly deviated regions in the PULCHRA simula-

tions are indicated by black arrows.

in terms of input as well as the final objec-

tive. Sequence alignments or template li-

braries are not used here; instead, a lower

resolution model serves as input. On the

other hand, even although the ultimate

goal of providing physically realistic, accu-

rate atomistic structures is essentially the

same, structure prediction methods aim

at providing the best model for the likely native state whereas

themethod introduced here aims at generating atomistic coordi-

nates for any conformation, whether energetically favorable or

not. This suggests that recent advances in machine learning

have broad implications for structural biology that reach far

beyond just the prediction of native structures from sequence.

There are immediate applications in adding accurate atomistic

coordinates to CG representations. Low-resolution protein

structure models based on experiments as well as CG models

from simulations can thus be interpreted in atomistic detail.

This is especially relevant for the generation of structures and en-

sembles via machine learning where the addition of atomistic

detail often presents a significant burden during model training.

An important feature is that deterministic neural network archi-

tectures are not just very efficient but also allow gradients to be

backpropagated all the way from the final output (i.e., atomistic

conformations) to the input (i.e., CG conformations). In essence,

this provides an avenue for tightly coupled bidirectional multi-

scaling. This approach again neglects the full dynamics at the

atomistic level and instead emphasizes ensemble-averaged

conformations as the representative atomistic states. Therefore,

this framework is most suitable for interpreting time- and en-

sembled-averaged experimental data, especially data at lower

resolutions. As one important application, we highlight the

refinement of models against cryo-EM densities based on sam-

pling at a CG level but with energy penalty functions evaluated at

the atomistic level from reconstructed all-atom conformations.

Finally, we recognize that it is necessary to consider
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conformational sampling of all degrees of freedom, e.g., via

traditional simulations59,60 or machine learning approaches57,61

to achieve full thermodynamic consistency across different

levels of resolution. Therefore, it will be ultimately necessary to

learn how to generate not just a single ensemble-averaged struc-

ture, but entire conformational ensembles that are consistent

with a given CG representation.57
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Figure 4. Refinement of initial models against cryo-EM density maps

(A and B) Initial models were obtained via AlphaFold2 (A) or ESM-Fold (B). Model quality in terms of cross-correlation coefficient (CCC) against target cryo-EM

densitymaps, Ca and heavy atomRMSDswere analyzed as a function of computation time for several protocols: (1) optimizations using cg2all models for residue

center-of-mass model (blue circles) and Ca-trace (cyan circles) followed by all-atom energy minimization, (2) optimization at the residue center-of-mass (brown

triangles) or Ca-trace representation (orange triangles) followed by all-atom energy minimization, (3) all-atom energy minimization only (red star), and (4) MDFF

samplings (magenta ‘‘+’’). The initial model qualities are shown as black dashed lines. The average values (n = 9 for AlphaFold2 models and n = 6 for ESM-Fold

models) for each metric and computation time are shown. Shaded background indicates standard errors of the mean.
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olution using ‘‘molmap’’ command in UCSC

Chimera,65 which is based on EMAN2’s pdb2mrc

program,66 and depicted as transparent gray sur-

face at a density level of 0.3. The initial model

structure generated by AlphaFold-Multimer67 (A), its

optimized structure using cg2all model for Ca-trace

and followed by all-atom minimization (B), and

another optimized model via all-atom minimization

using MDFF (C) are shown in black, blue, and red.

Overall tetrameric structures are shown in the top

panels, and they are gradually zoomed in (red boxes)

to highlight a region where significant deviations

(indicated by red arrows) were optimized in the

middle and bottom panels.

ll
Resource

12 Structure 32, 1–15, January 4, 2024

Please cite this article in press as: Heo and Feig, One bead per residue can describe all-atom protein structures, Structure (2023), https://doi.org/
10.1016/j.str.2023.10.013



13. Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R.,

Kabeli, O., Shmueli, Y., et al. (2023). Evolutionary-scale prediction of

atomic-level protein structure with a language model. Science 379,

1123–1130. https://doi.org/10.1126/science.ade2574.

14. Janson, G., Valdes-Garcia, G., Heo, L., and Feig, M. (2023). Direct gener-

ation of protein conformational ensembles via machine learning. Nat.

Commun. 14, 774. https://doi.org/10.1038/s41467-023-36443-x.
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Experimental datasets
Two sets of experimental structures were clustered with a maximum mutual sequence identity of 70%, and one structure for each

cluster was left. The original Top800070 and the PISCES71 sets consisted of a single chain per Protein DataBank (PDB) entry, how-

ever, we used all protein chains in each PDB entry instead. PDB entries with more than 1,200 residues were excluded. As a result,

therewere 7,130 and 30,354 entries in PDB 6k and 29k sets, respectively. To have common subsets formodel validation and test, 720

entries were randomly selected among the common entries for each validation and test sets. The remaining 5,690 and 28,914 struc-

tures were used as PDB 6k and 29k training sets, respectively.

The Top8000 structures were further analyzed to obtain statistics of bonded geometries for building secondary structure-depen-

dent rigid body (SS-dep) blocks. Three-state secondary structure for every residue was assigned by the DSSP algorithm72 using the

MDTraj Python library package.73 Bond lengths, angles, and improper dihedral angles defined by amino acid topologies of the

CHARMM36m force field74 were calculated. Their averaged values for each secondary structure type were then used to build SS-

dep blocks.

Simulation datasets
We sampled an ensemble of structures by performing all-atom molecular dynamics (MD) simulations using OpenMM.75 A protein

structure was placed at the center of a periodic rectangular box with at least 10 Å distance from any protein atom to any dimension

of the box edges. The remaining space in the simulation box was filled with the CHARMM version of TIP3P water molecules.76 Some

water molecules were randomly replaced with sodium or chloride ions to neutralize the system and achieve a total ion concentration

of 0.015M. The CHARMM36m force field74 was applied to describe the system throughout the series of simulations. The systemwas

locally minimized with the l-BFGS-b algorithm77 in the presence of harmonic positional restraints on every Ca atom with a force con-

stant of 0.5 kcal/mol/Å2. Then, the systemswere gradually heated to 298.15 K and equilibrated via Langevin dynamics simulations for

1 ns with a friction coefficient of 0.01/ps and a 2-fs integration time step. The NVT ensemble and the NpT ensemble at 1 bar with a

Monte Carlo barostat were applied during the heating and equilibration steps, respectively. An ensemble of protein conformations

was sampled from a 50 ns-long Langevin dynamics simulation with a friction coefficient of 1/ps and a 2-fs integration time step at
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298.15 K and 1 bar. Five snapshots of protein conformations were picked up for further tests by selecting frames for every 10 ns. In

total, 3,600 all-atom conformations were generated for 720 test set structures for further tests.

During minimization with COCOMO,18 harmonic positional restraints were applied to every bead of the CGmodel with a force con-

stant of 1.0 kcal/mol/Å2 to keep the original all-atom conformations as the respective ground truth conformations. Uponminimization,

the conformations were distorted from their all-atom structures by 0.30 Å on average.

Input features
Input features extracted from a CG model are summarized in Table S1. In total, 57 (17 from the local geometries and 40 from the

residue type embedding) scalar and four (or more for multiple site CG models) vector node features and three scalar edge features

were used as input features. Pseudo-bond angles and -torsion angles were encoded using cosine and sine functions to account for

periodicity. The number of neighboring nodes (e.g., <10 Å) and the presence of a previous or next residue (to distinguish terminal

residues and chain breaks) were added as scalar features. The residue type was converted to 40 scalars via a trainable embedding

layer and concatenated with the scalar features. For vector features, unit bond vectors as illustrated in Figure S1 were used for con-

version frommultiple site coarse-grained models such as aMARTINI model,20 vectors from a BB bead to SC beads were additionally

used to incorporate side chain information. The edge connection type (connection via a peptide bond, an inter-residue contact

through space, or a disulfide bond) were used via one-hot encoding as edge features.

Neural network model
At the core of SE(3)-equivalent neural network model, the SE(3)-Transformers architecture37 was adopted. The input node features

were processed via N (=4 for the baseline model) linear layer blocks to produce hidden features of 64 scalar and 32 vector values.

(Methods S1, and Algorithm S1) A LayerNorm78 and an exponential linear unit (ELU) activation function79 were used to normalize the

norm of features for each degree, while keeping their phase. (NormSE3) The first linear layer without bias terms (LinearNoBias) pro-

jects the input features to hidden features with the numbers of channels of 64 and 32 for scalars and vectors, respectively. The linear

layer blocks consisting of a LayerNorm, an ELU activation function, and a linear layer without bias terms are repeated N-1 times, while

the numbers of channels for each degree of features are maintained. Until this step, interactions between nodes are not considered

yet, and features are processed for each node and each degree. In the interaction module, we facilitated the original SE(3)-

Transformers architecture with M (=4 for the baseline model) SE(3)-Transformers blocks with a LayerNorm and an ELU activation

function for radial profiles (AttentionBlockSE3) to communicate between nodes through edges and evaluate tensor products be-

tween different degrees of hidden features. (Methods S1 and Algorithm S2) For an AttentionBlockSE3, we used eight attention heads

and 32 hidden channels of scalars (l = 0), vectors (l = 1), and rank-two tensors (l = 2). A normalization layer (NormSE3) was followed by

to stabilize the training. At the end of the interaction module, an SE(3)-equivariant convolutional layer with a LayerNorm and an ELU

activation function for radial profiles (ConvSE3) was used to produce the output of themodule. Throughout themodule, the number of

channels for each degree of hidden features were maintained between blocks: 64 for scalars and 32 for vectors. Finally, the input

representations of the module were added to the output representations for a skip connection.80

We used four linear layers and four SE(3)-Transformers blocks for the baseline model. Alternatively, fewer and greater numbers of

blocks were examined to evaluate performance dependencies in the model size. We adopted ELU activation functions as replace-

ments of rectified linear unit (ReLU) functions,81 which were used for the original SE(3)-Transformers work.37 For hidden features of

the SE(3)-Transformers blocks, features up to the degree of 2 were passed within a block, and a lower value (1) was also tested. For a

protein structure, we used a subgraph with a crop size of 256 residues as the baseline and tested if a larger crop (384 residues) could

improve the performance. Secondary structure-dependent rigid-body blocks were not used for the baseline, but they were adopted

as optional features.

Structure module
The structure module further processed the output of the interaction module to predict values for building all-atom structures via N

(=4 for the baseline model) linear layer blocks. (Methods S1 and Algorithm S3) It was analogous to the initialization module but pro-

jected hidden features with greater numbers of channels to predict 16 scalar (or 20 if SS-dependent rigid body blocks were used) and

3 vector values for the followed all-atom structure building. An all-atom structure was built using the predicted values. For this pro-

cess, a similar procedure that is used by AlphaFold2 was adopted.11 AlphaFold2 used rigid-body blocks of backbone atoms (N, Ca,

and C atoms), the backbone oxygen atom, and side chain heavy atoms that were segmented by rotatable torsion angles. During the

step of structure building, backbone rigid-body blocks for residues were oriented first using predicted translations (t) and three-

dimensional rotations (R). The remaining blocks were placed in the order of the bond connectivity from the backbone block to the

tip of each side chain by rotating them by predicted torsion angles (4, c, and cs). In our work, we extended the procedure to build

all-atoms including hydrogen atoms. Thus, 16 predicted scalar values were used as sine and cosine values of the torsion angles (4, c,

4 cs, and 2 hydrogen atom-only torsion angles) to construct rotationmatrices. In addition, secondary structure-dependent rigid body

blocks were used as we found that some blocks have distinguished bonded geometries (bond lengths and angles and improper di-

hedrals) depending on the secondary structure. Thus, secondary structure prediction (SS) was also made by the module. Four pre-

dicted scalar values determined which rigid body blocks to use among blocks for helix, sheet, coil, or SS-independent blocks. One

output vector predicted a translation vector (t), which places the Ca atom from the representative bead for a residue.We note that we

used a 6D representation82 using the remaining two predicted vectors, which describes three-dimensional rotation using two unit
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vectors and the Gram-Schmidt process, instead of the quaternion-based approach used by AlphaFold2, as it gave better perfor-

mance in terms of accuracy and convergence during training for many SO(3) prediction tasks because of continuity in the rotation

representations.82 For the final step, both N- and C-termini were patched by replacing backbone hydrogen (HN) and oxygen

(O) with the terminal amino (NH3-) and carboxyl (-COO-) groups, respectively, using the predicted position of the atoms.

Model training
Each model was trained for 300 and 120 epochs with the PDB 6k and 29k training sets, respectively, using a batch size of 4. This

corresponds to 426,600 and 867,360 total training steps. An input data graph with more than 256 nodes for training was randomly

cropped to a consecutive 256 residue graph by obtaining its subgraph. An Adam optimizer was used with learning rates of 0.01 for

parameters for scalar features of the structure module and 0.001 for the others. The learning rates were linearly increased for the first

ten epochs and then exponentially decreased with a multiplicative factor of 0.995. Clipping was used to prevent extreme gradients,

and gradient checkpointing reduced memory consumption. Models were implemented in PyTorch, and they were trained using Py-

Torch Lightning.83 The training of models was carried out on two NVIDIA GeForce RTX 2080 Ti GPU cards (11 GB of VRAM) with

Distributed Data Parallel (DDP) to usemultiple GPUs and eight CPU threads.We trained threemodels for eachmodel variant to obtain

statistics.

We fine-tuned the trained models for an additional 10 epochs to obtain variants where coordinates of the input coarse-grained

structures are forced to remain unchanged. This allowed us to compare with other methods that maintain coordinates in the input

structures. For example, sidechain prediction methods such as SCWRL430 and AttnPacker33 only predict sidechain conformations,

leaving the backbone structures unchanged. It also allowed us to test to what degree cg2all may be able to correct for slight errors in

the reduced representations.

Loss function
Models were trained with a loss function (Equation 1) that consisted of training data-dependent loss functions and data-independent

(physics-based) loss functions:

L =
5:0LFAPE;Ca + 1:0LBB + 1:0LR + 1:0Lbackbone geometry ð+ 0:1LSSÞ ðData � dependentÞ

+ 5:0Ltorsion + 1:0Lvcntr

+ 5:0Latomic clash + 0:1Ltorsion energy + 1:0Lside chain geometry ðPhysics � basedÞ
(Equation 1)

The FAPE, Ca loss (LFAPE;Ca) was first introduced by AlphaFold2,11 and we used a variant that uses only Ca atoms for its evaluation

with a distance clamp value of 10 Å. (Methods S1 and Algorithm S4) The backbone loss (LBB) also contributed to correctly placing

backbone rigid bodies (Equation 2).

LBB

�
rtruthBB

�
=

��rBB � rtruthBB

�� + ���1 � uCa/N
����!� utruth

Ca/N

����!���+ ���1 � uCa/C
����!� utruth

Ca/C

����!��� (Equation 2)

where u! represents a unit vector. The loss function for three-dimensional rotation representation consisted of the similarity of two

vectors for the 6D representation82 against their truths and an auxiliary term that ensures their vector sizes close to 1. (Equation 3)

LR

�
R0

�!
; R1

�!���Rtruth
0

���!
;Rtruth

1

���!�
=

����R0

�! � Rtruth
0

���!�
+
�
R1

�! � Rtruth
1

���!����+ 0:01
����k R0

�!k� 1
��� + ���kR1

�!k�1
���� (Equation 3)

where R0
�!

and R1
�!

are vectors for the 6D representation. A loss function helped the model having correct bonded geometries for

backbone atoms (Equation 4). It penalized deviations of peptide bond distances (bC;+N) and peptide bond including bond angles

(qCa;C;+N and qC;+N;+Ca).

Lbackbone geometry

�
bC;+N; qCa;C;+N; qC;+N;+Ca

���btruth
C;+N; q

truth
Ca;C;+N; q

truth
C;+N;+Ca

�
=

���bC;+N � btruth
C;+N

���+ 1

2

����qCa;C;+N � qtruthCa;C;+N

��� + ���qC;+N;+Ca � qtruthC;+N;+Ca

����
(Equation 4)

When the secondary structure-dependent rigid body blocks were used, a cross entropy loss for secondary structure prediction was

additionally used.

Moreover, there were two loss functions for correctly reconstructing side chain atoms. The torsion angle loss tried to reduce dis-

crepancies between the predicted torsion angles (fqkg) and their truth values (fqtruthk g) (Equation 5).

Ltorsion

�fqkg���qtruthk ; qtruth;altsk

	�
=

X
qk is defined

�
1 �max

�
cos

�
qk � qtruthk

�
; cos

�
qk � q

truth;alts
k

���
(Equation 5)

Some side chain torsion angles that have periodicity: c2 angles of Phe and Tyr, methyl groups in Ala, Ile, Leu, Met, Thr, and Val, the

side chain amino group in Lys, and the side chain carboxyl groups in Asp and Glu. For those torsion angles, alternative truth values

(fqtruth;altsk g) due to their periodicity were considered for the calculation. Furthermore, solvent-exposed side chains can have multiple

valid conformations, while their experimental structures usually presented only one of them. For the training of models that convert

from aCa-basedmodel, putative side chain conformations were generated prior to the training and used as additional fqtruth;altsk g. The
procedure for putative side chain conformation generation is described in more detail below. The other loss function for side chain
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atoms depended on vectors from the Ca atom to the center of mass of a residue (vcntr
��!). Their deviation in their vector size to their truth

values and their cosine similarity was used to learn side chain orientations at a lower resolution.

Lvcntr

�
vtruthcntr

��!�
=

���kvcntr��!k � kvtruthcntr

��!k
���+ ���1 � ucntr

��!� utruth
cntr

��!��� (Equation 6)

In addition to these data-dependent loss functions, three physics-based terms were introduced to improve the geometric properties

of the reconstructed models. These terms relied on the CHARMM36m force field.74 As two atoms rarely overlapped within the sum of

their atomic radii, atomic clashes were penalized (Equation 7).

Latomic clashðrÞ =
X

i < j;rij< 14�A

X
a˛ i

X
b˛ j exclude1� 2;3;4pairs

ffiffiffiffiffiffiffiffiffi
εaεb

p
3 ðminð0;dab � sa� sbÞÞ2 (Equation 7)

where ε and s are the depth of the potential and the distance at which the potential becomes zero in the Lennard-Jones potential.

Torsion energy terms (Ltorsion energy ) of the force field was applied to penalize disfavored torsion angles (Equation 8). Torsion angles

that can be defined within a residue were considered for evaluation, thus, torsion angles that span two consecutive residues (e.g., c,

4, and u angles) were not subjected to the loss functions. In order to preserve torsion angle distributions, a torsion energy clamp

(Eclamp
torsion energy ) was used with a value of 0.6 kcal/mol.

Ltorsion energy ðfqkgÞ =
X

qk is defined

max
�
0;Etorsion energyðqkÞ � Emin

torsion energyðqkÞ � Eclamp
torsion energy

�
(Equation 8)

The final physical loss term was applied for two types of bonds that connect rigid body blocks in special ways, namely for proline

ring closure and disulfide bonds. For these bonds, equilibrium bond lengths of 1.455 and 2.029 Å, respectively, were targeted

(Equation 9).

Lside chain geometry ðbPro;N;CD;bSSBONDÞ =
���bPro;N;CD � bo

Pro;N;CD

���+ ��bSSBOND � bo
SSBOND

�� (Equation 9)

Augmentation of putative side chain conformations
Alternative possible side chain conformations were generated prior to the training using first SCWRL4,30 followed by REDUCE26 and

local energy minimization using the CHARMM36m force field.74 Experimental structures, especially those determined by X-ray crys-

tallography, have only one conformation in PDB in most of the entries even though there can be alternative coordinates. However, as

proteins are not static molecules, they can have diverse conformation especially for solvent-exposed side chains. As such, recon-

struction to those alternative conformations should not be penalized unless they are unfavorable. Because we aimed to reconstruct

an all-atom conformation including side chains for a given Ca-trace of a protein, we generated putative side chain conformation. For a

protein structure, side chain structures were predicted on the protein’s backbone using SCWRL4, which uses a rotamer library and

optimizes combinations of rotamer states. Then, all hydrogens were attached to the predicted structure with an optimization of tor-

sion angles for the side chain amide groups in Asn and Gln and the imidazole ring in His. Finally, the structures were subjected to

energy minimization using the l-BFGS-b algorithm for up to 1,000 steps with the CHARMM36m force field using OpenMM.75 To pre-

vent extensive deviation of backbone positions, harmonic positional restraints were applied on every N, Ca, C, O, and Cb atoms with

a force constant of 1.0 kcal/mol/Å2. Torsion angles from the energy minimized structure were used as an additional set of fqtruth;altsk g
for the torsion angle loss (Equation 5).

Hyperparameter optimization and ablation studies
Several features were introduced in our neural network models and their training, and their contributions were evaluated via ablation

studies. (Figure S8) First of all, we used a hybrid loss function that consisted of data-dependent and -independent (or physics-based)

loss functions (Equation 1). The physics-based loss functions were introduced to learn the characteristics of a protein molecule more

efficiently and to complement insufficient data points. The atomic clash loss penalized inter-atomic clashes and effectively lowered

the clash score. Side chain modeling as rotamer outliers could be suppressed by introducing the torsion energy loss function (Fig-

ure S9). Without the torsion energy loss function, side chain rotamer states could not be clearly separated, and some inferences re-

sulted in rotamer outliers. Average MolProbity scores38 by models with and without those physics-based loss functions were

different by 0.254 (2.292 vs. 2.546). Furthermore, side chain conformations were augmented prior to the model training to account

for their putative heterogenic conformations due to their conformational flexibility. Because some side chains (especially solvent-

exposed ones) can have alternative conformations in addition to the experimentally resolved one, both conformations should not

be penalized unless there are atomic clashes. This side chain augmentation additionally helped suppress generating rotamer outliers

(Figure S9). If there were side chains with very similar input features but in different rotamer states in the training set, models could be

trained to predict in the average of the rotamer states unless the side chain augmentation was used, and this could result in the infer-

ence of rotamer outliers. For example, for a homodimer with pseudo-C2 symmetry, some side chain conformations may vary in

different monomers, while overall Ca-traces were almost identical. As illustrated in Figure S9B, if an Arginine from a monomer has

ac1 angle of�180�, while the other Arginine in the symmetry has a c1 angle of�60�, training with these data would result in predicting

their averaged value,�120�, which is a rotamer outlier. It is because the averaged torsion angle loss has aminimum at the value. With
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the consideration of both possible conformations in the torsion angle loss function via the side chain augmentation, the loss function

has multiple minima (e.g., �180 and �60� in this example), and the inference of rotamer outliers is diminished.

We tested two neural network parameters that were related to the amount of information passed between layers: 1) the choice of

the activation function (ELU vs. ReLU); and 2) the maximum degree for the SE(3)-Transformers (l = 2 vs. 1). When the ELU activation

function was replaced with the ReLU function, which was originally used in SE(3)-Transformers, the overall quality of reconstructed

models dropped slightly. It was probably because the use of ReLU function deactivated some neurons, which is known as the ‘‘dying

ReLU problem’’,84 and the neurons could not be efficiently utilized. Regarding the maximum degree for the SE(3)-Transformers,37 it

was beneficial to use up to the degree of 2 features, even although the input and output features utilized only features up to a degree

of 1 (scalars and vectors). Fuchs et al. observed that there was big improvement when they switched the maximum degree from 1 to

2.37 We observed a similar trend especially in features for which relationships between other residues were important such as atomic

clashes or side chain angle accuracies. On the other hand, Ramachandran angles and rotamer outlier ratios were not affected as

much since they could be predicted well with only localized information. Presumably, the use of higher degree hidden features pro-

vided inter-residue information, and this resulted in better predictions.

Finally, we examined if more training data, larger model, and secondary structure-dependent rigid body blocks (SS-dep blocks)

could improve the performance. When we increased the training dataset size from 5,690 (6k) to 28,914 (29k) with the baseline model,

there was marginal improvement. Presumably, the baseline model did not have enough capacity for learning with the bigger training

data. Larger models with more layers showed comparable results to the baseline model with the smaller training dataset. (Figure S8)

However, the performance with smaller models dropped significantly. We observed that training of models with eight linear layer

blocks was unstable and occasionally resulted in poor performance. When larger models were trained using the bigger training data-

set, the bigger data could be learned by larger models as they had enough capacity to learn them. They outperformed in terms of

clash score and side chain torsion accuracies. Similarly, the use of larger crops (384 residues) slightly improved theMolProbity score.

The use of SS-dep blocks contributed to accurately model backbone bonded geometries including bond lengths, angles, and Ram-

achandran angles. The best performance was achieved by aggregating all these components.

Structure refinement against cryo-EM density map via the cg2all network

The cg2all network enabled local optimization of a CG representation using scoring functions at both the CG and atomistic repre-

sentations. (Methods S1, and Algorithm S5) In the algorithm, an atomistic structure is generated from a CG structure via a cg2all

network for the CG representation. An objective function can be defined as a function of both atomistic and the CG representation.

Once the objective function is evaluated, the score is backpropagated to get derivatives of theCG structure. Then, theCG structure is

updated using the derivative. We applied this algorithm to optimize incorrect protein model structures against cryo-EM density maps

as an example usage. Nine protein structures were arbitrarily selected from the test set, and their biological assemblies were set as

target structures: 1kq185 (369 residues, 6-mer), 1vim86 (760 residues, 4-mer), 1g2o87 (786 residues, 3-mer), 2ibp88 (814 residues,

2-mer), 1a2z89 (880 residues, 4-mer), 1s5790 (906 residues, 6-mer), 3isr64 (1,149 residues, 4-mer), 1j0h91 (1,176 residues, 2-mer),

and 1wur92 (1,848 residues, 10-mer). For those experimental structures, synthetic electron density maps were generated using ‘‘mol-

map’’ command in UCSF Chimera65 that employs EMAN2’s ‘‘pdb2mrc’’ program66 at resolutions of 3, 4, 5, 6, 8, and 10 Å. Initial

models for local optimization against the electron density maps were predicted by AlphaFold-Multimer67 with multiple sequence

alignments from the ColabFold API93 and without structural templates using ESMFold.13 We tested our local optimization protocol

that utilized an objective function based on both CG and atomistic representations and compared with alternative protocols,

including local optimizations at either CG or atomistic representations and molecular dynamics flexible fitting (MDFF) protocol.54

The objective function for local optimization against electron density map consisted of four objective functions in either atomistic or

the CG representation. The first one was the electron density map potential taken from MDFF (Equation 10):

Uðf x!gÞ =
X
i

wi max

0
BB@1;1 �

F

�
x!i

�
� Fthr

Fmax � Fthr

1
CCA (Equation 10)

where F(xi) refers to the values of the density map.

For this test, we set Fthr to zero and wi to corresponding atom’s atomic mass. The potential was evaluated at the atomistic rep-

resentation using predicted coordinates from a Ca-trace using the cg2all model network. The second one was backbone bonded

potential at the atomistic representation (Equation 4) The third one was a simple CG potential that evaluated pseudo-bond length

and angle potential energies (Equation 11) and soft-core van der Waals potential energy (Equation 12).

Ubonded =

�
bCa�Ca � bCa�Ca

sðbCa�CaÞ
�2

+

�
qCa�Ca�Ca � qCa�Ca�Ca

sðqCa�Ca�CaÞ
�2

(Equation 11)

UvdW =
X
ij

ðminð0;dij � dij;minÞÞ2 (Equation 12)
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Parameters for the potential functions were obtained from a statistical analysis on the Top8000 structure. As the final one, Ca-Ca

distance restraints were applied to residue pairs for which the distances in the initial model were closer than 10 Å. For this experiment,

we set relative weights to 1:1:0.1:100.

Initial protein model structures were locally optimized at either residue center-of-mass or Ca-trace representations using a cg2all

network-based optimization algorithm (Methods S1 and Algorithm S1). For this test, we superposed the initial structures onto their

target experimental structures using MM-align94 as initial fits to electron density maps, and the superposition was iteratively updated

as well by optimizing the overall structural translation and rotation against the density maps. A structure was optimized using the

Adam optimizer95 for 1,000 or 2,500 steps for AlphaFold and ESMFold models, respectively, and intermediate snapshots were re-

corded for every 100 steps. The learning rate was updated every step using a cosine annealing scheduler,96 which changed the

learning rate from 0.005 to 0.0005 for 200 steps. From the snapshots, a structure with the highest cross-correlation coefficients

(CCC) to the target density map was selected as an optimized structure. As alternatives, we performed local optimization with a

CG representation using only CG-level objective functions. For the electron densitymap potential, we used the total mass of a residue

aswi instead. Optimization at a CG representation was carried out in the same way. Then, atomistic structures were generated from

Ca-traces using the cg2all network, and the highest CCC structure was selected as an optimized structure using the CG represen-

tation. For the local optimization protocol at atomistic resolution, we took the initial minimization step of MDFF protocol implemented

by CHARMM-GUI97 and modified it not to use positional restraints. It performed local energy minimization for 1,000 steps in vacuum

using the CHARMM36m force field using NAMD,98 the MDFF electron density map potential, and restraints for secondary structure

elements, chirality, and for fixing cis-peptide bonds. We also applied the local optimization protocol at atomistic representation to

optimized structures from cg2all network-based optimization and optimization at the CG representations for better agreement of sol-

vent exposed sidechains. As the final option, we carried out the full MDFF protocol implemented by CHARMM-GUI.97

QUANTIFICATION AND STATISTICAL ANALYSIS

The performance of the machine-learning model was assessed by analyzing its performance on independent test sets that are

distinct from training and validation sets as described in the method details section. Performance metrics reported in Tables 1, 2,

3, and 4 as well as additional results shown in Figures S2–S9 were averaged over test sets consisting of 720 structures. Standard

deviations are reported in Tables 1, 2, 3, and 4 to indicate the statistical variation of eachmetric. In addition, the results from the abla-

tion study in Figure S8 are averaged over three independent training runs. CryoEM refinement results were averaged over nine and six

different structures for AlphaFold2 and ESMFold models, respectively. To assess uncertainties, standard errors of the mean were

calculated are indicated in Figure 4. We did not perform optimization of ESMFoldmodels for 1wur (ESMFold could not model a struc-

ture due to its large size), 1j0h and 1s57 (very poor initial model quality; Cɑ-RMSDs of 56.1 and 46.0 Å, respectively). We performed

statistical analysis using in-house Python scripts based on functions from the NumPy package. Details of the experiments can be

found in the figure legends and table footnotes.

ADDITIONAL RESOURCES

cg2all is demonstrated at https://huggingface.co/spaces/huhlim/cg2all and https://colab.research.google.com/github/huhlim/

cg2all/blob/main/cg2all.ipynb. A Google Colab notebook for local optimization with cryo-EM density map is available at https://

colab.research.google.com/github/huhlim/cg2all/blob/main/cryo_em_minimizer.ipynb.
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