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u u
bit complex behavior and play signifi-
cant roles in many biological phenomena.
Understanding the communication with-

in and between bacterial species can

u | |
illuminate the how, as well as the why
of numerous interactions that enable |
their collective behavior. In this position

paper, we first discuss bacterial molecular

communication in multihop settings.
We address this concept in the context
of local and global quorum sensing

(QS) within a colony and then consider

MICROBIAL COMMUNITIES EXHI-

induced QS at a distance between dif- gy
ferent, spatially separated communities.
We then investigate 4ow the information
is shared between cells when forming
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a quorum, particularly the intertwined
relationship between cells” observa-
tions, actions, and the state of their
surrounding environment. Lastly, we
extend to multi-species systems where
all species coexist and interact, leverag-
ing concepts from multiple-input-mul-
tiple-output (MIMO) communications.
Community robustness and resiliency is
also explored.

INTRODUCTION

Bacteria are single-celled organisms that
constitute some of the earliest forms of
life (over three billion years old) [1] and
have an aggregate biomass that is at least
an order of magnitude larger than all
animals combined [2]. Although bacteria
are considered one of the simplest forms
of life, they typically live in communi-
ties that contain hundreds or thousands
of species, which represent a genetic
complexity 1000-fold greater than the
human genome. These microbial com-
munities are essential to all life on Earth.
They direct biogeochemical cycles that
influence climate change, soil health,
and water quality. Microbial communi-
ties determine the health of their plant
and animal hosts (e.g., gut biome) and
are responsible for food fermentation.
Accurate modeling of bacterial popula-
tions could enable the design of efficient
microbial fuel cells or bacterial infec-
tion prevention without the need for
antibiotics [3].

Interactions among members of
bacterial communities are governed by
the interchange of chemicals, includ-
ing small organic molecules and ions.
From a communications engineering
perspective, these interactions can be
considered as examples of molecular com-
munication (MC) [4], [5], which refers
to natural or synthetic systems that con-
vey information using chemical signals.
As an example, one outcome of signal-
ing can be the formation of a guorum
in which a community expresses new
genes which enable new collective behav-
ior [6], [7]. Inspired by recent theoreti-
cal advancements in modeling bacterial
MC [8], [9], [10], as well as experimental
studies to exploit and engineer micro-
bial interactions [11], [12], [13], this
position paper

Bacteria are single-celled organisms that constitute
some of the earliest forms of life (over three billion
years old) and have an aggregate biomass that

is at least an order of magnitude larger than

1) presents theoretical abstractions of
modeling cell- or colony-level bacte-
rial communities,

2) introduces new experimental setups
for spatially separated bacterial com-
munication systems,

3) and discusses relevant applications of’
these methods to study communities.

The rest of the paper is organized as
follows: The “Multihopped Signaling”
Section discusses spatially constrained
and unconstrained settings that leverage
multihop MC among bacterial colonies
to induce quorum sensing at a distance.
The “Many-to-One Networks” Section
considers microbial communities with a
different underlying topology; in partic-
ular, from a modeling perspective, many-
to-one networks are considered and the
community is considered to be a decen-
tralized decision-making system. The
“Multi-Species Communities” Section
focuses on populations with heteroge-
neous species or strains and by grouping
each species into a virtual user, maps the
signaling framework to that of a multi-
input/multi-output (MIMO) commu-
nication channel. The “Conclusion”
Section concludes the paper. Within each
section, we specifically examine how
these communities engage in actions to
promote resiliency of the community.

MULTIHOPPED SIGNALING

Communication systems in which signals
are transmitted via repeaters, or mul-
tihopped communications, have been
continually studied since the 1950s. A
seminal piece of work in this area is the
PhD dissertation of Charles Desoer [14],
whose analysis of cascaded channels
includes the result that the capacity of
a multi-hopped channel is that of the

all animals combined.

worst-case single-hop link. Microbial sys-
tems, as well as engineered wireless sys-
tems, use multi-hopped communications
to overcome a common challenge: sig-
nal degradation. Many microbes employ
the diffusion of molecules to signal.
Each emitted molecule exhibits Brown-
ian motion in the channel [4], which
causes its arrival time at the receiver to
be stochastic [15]. Molecular exchange
via diffusion is limited by the scaling of
distance traveled over time, with distance
proportional to time squared. Diffusive
signal exchange becomes ineffective over
reasonable times when the colonies are
separated by several millimeters. Finally,
in the parlance of communications engi-
neering, diffusive communication chan-
nels experience inter-symbol interference,
much like their radio-based counterparts.

In this section, we examine micro-
bial multi-hopped communications for
inducing quorum sensing across distance.
Experiments were applied in the context
of free-space interaction as well as the
more spatially constrained environments
of microfluidics devices. There are some
key contrasts in signaling mechanisms
to consider when comparing wireless to
microbial repeater systems: positive feed-
back, leakage, and relatively longer pro-
cessing delays at each node due to slow
biochemical reactions. A key distinguish-
ing property of many of the microbial
strains we have investigated is the abil-
ity to achieve a “quorum.” In quorum
sensing, when the concentration of a
compound or molecule produced by the
bacteria within the population exceeds a
threshold, the bacteria express a suite of
genes leading to new population behav-
ior such as luminescence or infection of a
host [6], [7]. With sufficient such expres-
sion, the community achieves a guorum.
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A question of interest is whether one can interpret
these vesicles as packets in a communications
system which typically employ local error correction
to ensure the fidelity of the packet.

UNCONSTRAINED MULTIHOPPED
MICROBIAL SIGNALING

The main mechanism exploited by
microbial colony repeaters (i.c., relay
nodes) when inducing quorum sensing
over a distance is positive feedback of
signal (molecule) production. Cells in
environments with low signal concentra-
tion produce signal at a low, basal rate.
However, as signal accumulates to high-
er concentrations, eventually exceeding
the threshold concentration for cells to
strongly detect and respond to the signal,
the rate of signal production increases
for each “activated” cell. This positive
feedback on signal production enables
cells to coordinate activity over distances
much longer than the length scale of dif-
tusion [16]. This way, cells in an adjacent
colony, once activated, amplify the signal
production, allowing the now combined
signaling gradient from both colonies to
extend further at shorter times.

This concept of spatially separated
colonies increasing the rate at which sig-
nal spreads over long distances was dem-
onstrated in numerical simulations of
quorum sensing [17]. We deem this envi-
ronment as unconstrained as the loca-
tions of the bacteria were not specified.
This will be in contrast to the microflu-
idic relay system we discuss in the next
subsection. As a large single colony of

cells was broken up into multiple smaller
colonies dispersed at random positions,
the region of space with concentration
of signal that is above the threshold
significantly increased. As the colonies
grew smaller and more dispersed, activa-
tion at each colony involved signal from
multiple adjacent colonies combining to
exceed the signal threshold concentra-
tions. This transition from local quorum
sensing to global quorum sensing enables
small, adjacent colonies to activate over
large spatial ranges. We observe that the
ability to transition imbues the popula-
tion with robustness as the colony does
not need to be uniformly and densely
spaced to achieve a quorum.

The method of signal delivery may
spatial
dynamics of signal exchange and quorum

influence  the distance and
sensing activation [18]. Recent work has
shown that signal is not only exchanged
by release of individual molecules into the
environment, but that signal can also be
packaged into and exchanged via extra-
cellular vesicles. Bacterial extracellular
vesicles are thought to be produced by all
bacteria and are approximately 100nm
[19].

the molecular composition of vesicles

in diameter Upon formation,
includes bacterial membrane, proteins,
genetic material, and other molecules
from inside the cell [20]. Many signal-
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(a) Depiction of a 3-hop bacterial relay theoretical system model.
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FIGURE 1 Alinear and multihop MC system of spatially separated bacterial communities.

ing molecules, especially hydrophobic
signals that tend to partition into mem-
branes, are often incorporated into ves-
icles. Combining signal-loaded vesicles
with cells can lead to quorum sensing
activation, as vesicles create a chemical
environment separated from external
conditions, potentially protecting signal
from degradation during transport. For
environments with high rates of signal
degradation, free signals can only be
exchanged over short distances. Vesicles
protect signals and enable long dis-
tance exchange. A question of interest is
whether one can interpret these vesicles
as packets in a communications system
which typically employ local error correc-
tion to ensure the fidelity of the packet.

A second advantage of loading signal
in vesicles is that the vesicle potentially
keeps packets of signal together during
transport. Free signal spreads out dur-
ing transport, but a diffusing vesicle
could maintain a constant signal cargo.
Vesicles made in locations with high sig-
nal concentrations would make vesicles
loaded with a high concentration of
signal. These vesicles can then diffuse
and deliver concentrated packets of sig-
nal to distant cells. Given that threshold
concentrations of signal are often only
10-100 molecules of signal per cell,
long distance delivery of a single vesicle
could result in quorum-sensing activa-
tion in the receiving cell.

CONSTRAINED MICROFLUIDIC
MICROBIAL RELAY SYSTEMS

In this subsection, we consider a more
controlled environment wherein micro-
bial repeater communities are isolated
via microfluidic systems. An important
feature is that the distance between

(b) A node in an n-hop experimental relay device.
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microbes (or collections of microbes) is
pre-determined. Modeling of such sys-
tems using stochastic theory was under-
taken in [21] using classical queuing
theory. In particular, electron transfer
between bacteria in cables was mod-
eled by developing queueing models for
biological processes such as adenosine
triphosphate (ATP) production. These
models were further leveraged to
compute the channel capacity of such
a system in [22].

In our previous system design
(FATIRY [13]), each node of the relay
was constructed as a spatially distinct
chamber containing immobilized popu-
lations of bacteria. The initial node con-
tained a transmitter (sender) microbial
strain while the rest contained a receiv-
er (repeater)
between nodes was achieved through

strain. Communication
metabolic production and exchange of an
acyl homoserine lactone (AHL), which is
a microbial quorum sensing molecule.
Briefly, both strains harbor an induc-
ible promoter that regulates production
of AHL. Induction within the sender is
driven by arabinose (a small molecule),
while induction within the repeater
is driven by AHL. In addition to the
input signal intensity, the output AHL
level of a node is also a function of its
colony fitness and population size [23],
[24]. Furthermore, AHL being both the
input and output of the repeater strain
leads to a positive self-feedback loop of
AHL production. The positive feedback
loop serves to amplify the traversing sig-
nal and promote switch-like activation
of repeater nodes. Since the system used
in [13] was closed, i.e., batch culture,
propagation of the signal proceeds until
the cells exhaust their energy supply.

A challenge in the modeling and
analysis of microbial signaling systems is
understanding what the metric of inter-
est should be. Providing quantitative
measures for “biological fitness,” for
example, has been elusive. To this end,
we assumed that minimizing the end-to-
end delay for activation, 7, would be
a goal of interest in the microbial relay
system. In our prior work [10], we pro-
vided a model for bacterial relay signal-
ing for an » -hop system. Therein, T, is
defined as the time between the initial

In contrast with batch culture relay systems, flow
cell microfluidics permits continuous microbial
growth through perfusion of rich media, as well as
temporal control over input signals.

stimulus of the transmitter node (Nj)
and the activation time of the receiver
node (N,,_;) and is considered as a met-
ric to be optimized. The work consid-
ers a 1D diffusive channel where there
is transmitter (TX), receiver (RX), and
n—1 relay nodes, with all nodes as fully
passive receivers [15]. The positive self-
feedback is characterized by a parameter
B, which denotes the portion of the sig-
nal at each node being trapped by the
node itself. A representative figure of an
expanded version of the model consid-
ered in [10] is presented in Figure 1(a).
In this subsection, we focus on a
novel colony-based relay system, which
we have devised in a microfluidic for-
mat. Henceforth, we refer to our setup
herein as Signal Propagation Across Cel-
lular Encapsulations (SPACE). The goal
of SPACE is to permit relay signaling
on time scales longer than typical batch
culture allows. To accomplish this, we
implemented SPACE in a traditional
flow-cell style, where perfusion of fresh
media promotes continuous growth
of the colonies. A challenge associated
with spatial patterning of microbes in
flow cell designs is fabrication of cellular
barriers that are permissive to molecu-
lar exchange. Since the effective size of
a bacterial cell is approximately 1 um,
these barrier features must be fabricated
on a sub-micron scale. While possible,
fabrication at this scale requires high
performance equipment that is not avail-
able to most. Our approach to solving
this problem was to encapsulate cells in
hydrogel beads, which increases the size
of the working biological unit from a sin-
gle micron to tens of microns. A simple
channel connecting adjacent nodes can
then be designed to exclude the much
larger beads rather than individual cells.
This can be achieved when the minimum
dimension of the channel opening is

roughly no greater than half of the bead
diameter. For our system, we used a bead
diameter of 70 um and a diffusion chan-
nel depth of 5 pm.

In contrast with batch culture relay
systems, flow cell microfluidics permits
continuous microbial growth through
perfusion of rich media, as well as tempo-
ral control over input signals. In addition
to our considerations herein, we note
that these benefits could support addi-
tional studies where bits of information
are transmitted by periodically switch-
ing the sender on and off, equivalent
to the concentration shift keying (CSK)
modulation commonly used in MC [5].
In such a setup (with CSK), as each relay
node would introduce an additional vari-
ance when processing its input signal, a
relay-aided bacterial MC setup is poten-
tially prone to error propagation from
one hop to the next. Furthermore, previ-
ous work suggests that the signal-to-noise
ratio actually improves with distance
above some critical input frequency [11]
(potentially due to the frequency domains
of intra- and extracellular noise). These
two phenomena jointly imply that, con-
trary to intuition, utilizing relay nodes
for high-data rate bacterial MC systems
may actually hurt communication fidelity.
This gives rise to an interesting trade-off
between fidelity and delay and suggests
that the number of relays might be an
optimization variable in device design.
We pose designing low error rate digital
MC systems under such a constraint as
a possible open research direction, and
focus solely on end-to-end delay as the
metric of interest in the remainder of the
subsection.

In [10], the self-feedback-induced sig-
nal intensity increase is modeled to halt
at a certain maximum saturation limit.
When modeling delay associated with
SPACE, we follow a purely data-driven
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FIGURE 2 Regression for a 10-hop relay system using (1) on the SPACE device (see Figure 1).

approach herein (as opposed to a para-
metric characterization done in [10]),
thus imposing no such hard limit.! Fur-
thermore, in [10], each colony is modeled
as tully passive receivers. However, in wet-
lab experimental setups where the major-
ity of the chamber is filled with bacteria
such as in SPACE (see Figure 1(b)), the
physical obstruction caused by the cells
and their surroundings call for modeling
the receivers as partially absorbing entities
with leakage. Thus, a portion of the sig-
nal might still permeate the colony in our
model herein, which is denoted by (1 - p)
in the model of Figure 1(a).

With a fully absorbing receiver (p = 1),
and with the assumption that each link
was identical, the end-to-end delay is
expected to be well approximated as

T, ~b+nxT, (1)

where T is the single hop delay, and
b captures the initial delay due to
metabolic adaptation of the colonies.
Note that (1) can be written for each
hop’s activation time as T, ; & +ixT
which is affine in ¢ and allows for a
linear regression on experimental data
to fit for & and T, which we will do in
the sequel. Generalizing the argument
for p < 1, T}, ; would be different than
that for p =1, as i) the leaked /permeated
signal reduces input to a colony, but ii)
the leaked signal propagates towards the

However, it should be noted that in experi-
mental settings, it is expected that colonies
may exhibit a similar self-regulation to avoid
extra metabolic burden of over-production.

next colony, starting its activation. This
phenomenon can be accounted for by
incorporating an additional, learnable
function f'(¢), yielding

1,=T,,~b+nxT+ f(n) (2)

Note that the leaked signal’s decrease in
node ¢ would be expected to be larger
than the increase at node 7+1, as the
latter also necessitates diffusive propaga-
tion and absorption at node 7+ 1. Thus,
imperfect absorption and non-zero perme-
ability is expected to increase delays, and
f(2) is expected to be positive for p< 1.

Herein, we focus on the particular
case, where £(¢) = 0in (2), and regress for
band T over three sets of experiments on
the described SPACE setup with # =10.
Two out of three experiments were used
for training for & and T, whereas the
third one is used for testing. Each node’s
readout (GFD intensity, as a surrogate
for AHL production) is normalized with
respect to its own maximum value, and
1, ; is sclected as the time it takes to
reach half-maximum [13]. The overall
results of Figure 2 suggests that setting
f()=0 provides reasonable accuracy,
given the modest amount of experimen-
tal data. In addition to providing trac-
tability, this phenomenon implies that
considering each colony as a fully absorb-
ing entity is a plausible consideration for
the system of interest.

ON THE RESILIENCE OF MOLECULE
PROCESSING MICROBIAL NODES

As also mentioned under the self-feed-
back discussion in prior sections, microbes

exhibit tight regulation over catabolic
pathways to avoid extraneous resource
allocation and metabolic burden [25],
[26]. This can be a result of negative
self-feedback loops that regulate out-
put intensity, as well as changes in gene
expressions [27], [28], [29]. Our prior
work [30] models each node as a molecule
“processing” unit, akin to a packet/job
scheduler in a wireless communication/
resource allocation system. The theoreti-
cal findings in [30] suggest that under
temporally varying input signal condi-
tions, such negative feedback-induced out-
put intensity balancing can indeed bring
significant improvement in energy cost
reduction and improve fitness, in cases
with or without signal loss due to molecu-
lar degradation [11], [31]. In particular,
in cases where increasing output intensity
yields a convex increase in metabolic ener-
gy cost, balancing the output rate as much
as possible is the provably optimal strat-
egy. That said, the theoretical findings
of [30] rely on non-causal information
on arrival intensity, which limits its one-
to-one applicability to biological settings.
Our future path therein includes alleviat-
ing this assumption, as well as introduc-
ing additional bio-compatible costs and
constraints to proceed our model towards
more accurately abstracting real-time
bacterial relay communication.

MANY-TO-ONE NETWORKS

Many-to-one communication and signal-
ing systems are commonplace in wire-
less communications as seen in sensor
networks, multiple-access channels, and
many Internet-of-Things deployments. It
is natural to consider such a framework
for modeling microbial systems with
some key differences. The environmental
state, which can be more complex than
simply the interference present, strongly
influences microbial behavior. As such,
there is significant coupling in microbial
systems as they interact and change their
environment. Such feedback mechanisms
must be carefully described. The engine
of such coupling can often be captured
via signaling. Message exchange between
nodes is also a feature of engineered
networks, with consensus signaling in
an ad hoc network as a prime example.
However, in such systems, signal mixing
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FIGURE 3 Depiction of coupling model for
a decision-making microbial network.

is intentional in order to learn a global
function of the network. Elucidating the
behaviors or states of individual bacteria
in a microbial community from mixed
signals is much more challenging. An
opportunity that arises from mixed sig-
naling is learning information about the
entire community or a neighborhood of
bacteria.

A feature to integrate in the future is
that of time-varying network topologies;
these have been considered in wireless
sensor networks, the rate of change for
biological systems is different. There is
limited mobility, but perhaps more dis-
tinctive is the loss of “agents” as bacte-
ria do die. Thus, the number of nodes/
bacteria in a network is governed by a
birth-death process. Several modern net-
works of interest share this phenomenon,
e.g. social networks and other human-
decision-making networks. The system
model of Figure 3, endeavors to capture
these features through the notion of
agent and network states.

COLONIES AS LEARNING
ENVIRONMENTS

In our modeling we consider an omni-
scient agent receiving the signaling from
multiple decentralized agents. We have
also considered more general scenarios
without the centralized agent. In par-
ticular, population growth in quorum
sensing is modeled using the queuing
approach of [21] in [3]. Therein, there
is an excellent match between predict-
ed population sizes and experimental
data. However, a challenge is that the
decision-making of each agent is not
explicitly considered. A control and

A feature to integrate in the future is that of time-
varying network topologies; these have been
considered in wireless sensor networks, the rate
of change for biological systems is different.

decision-theoretic approach is consid-
ered in [32] for the discrete-time case.
It can be shown that for noiseless obser-
vations, the optimal decision structure
is threshold based (an individual cell
expresses new genes when the level of
autoinducer in the environment exceeds
a threshold). Moreover, building off of
the model presented in [3], the observa-
tion (autoinducer molecules) seen by an
individual cell is modeled as a Poisson
random variable

with parameter A > 0. Then, the work
in [32] finds the optimal activation
thresholds that maximize the colony fit-
ness and verifies the theoretical find-
ings with experimental data. In [12], the
problem is framed as a continuous-time
sequential optimization problem where
each cell in the colony decides at each
time instant whether to activate — acti-
vation is costly — in order to maximize
the future population size. A surprising
observation from our analysis is that the
community must consider both current
and future payoffs. This observation is
also reflected in the experimental data
which is well modeled by our theoretical
approach. However, these models still
lack a detailed interaction model to cap-
ture the coupling between the agents/
bacteria and the environment.

Thus, our recent focus has been on
capturing this coupling, which will
also impact the analysis of social learn-
ing mechanisms. In particular, previous
decentralized inference theory adopts a
key conditional independence assump-
tion for tractabililty without the assump-
tion, determining optimal detection
rules becomes NP-hard. Denote U; as
cell #’s behavior and H as the true state

of nature. We have the following coupled
equations:

H:g(U]aUZV-'aUn)
Ui :f(UI)U27"'7Un)H)¢f(H)

The inequality shows the resulting
decoupling if the conditional indepen-
dence assumption is invoked. We have
shown [33] how to obviate this strong
assumption through the introduction
of the notion of a cell’s state, X; which
acts as a “summary” for the behavior of
the other cells and circumvents the N-
hardness of microbial interactions.

Ui=f(U1’U2""’UnaH)zf(Xi’H)' (4)

In [33], the asymptotic learning rate is
characterized, and it shown that each
agent employing a common decision
strategy is also asymptotically opti-
mal (although not optimal in the small
number of cells regime). The ability to
consider a common strategy across all
bacteria significantly simplifies the analy-
sis of asymptotically large colonies. In
particular, [33] provides an important
first step towards the analysis of multi-
species colonies where the interaction
models are species-dependent.

ON THE RESILIENCE

OF MICROBIAL NETWORKS

While microbial systems are inherently
complex, we see that stochastic methods
have the capability of capturing intricate
coupled behavior. In particular, stochas-
tic modeling can capture the effects of
variations across cells as well as unmod-
eled effects that can be appropriate as
noise. Particular to the decentralized
agent modeling, we see that threshold-
based decision rules which have been the
conventional wisdom for such behav-
iors as quorum sensing can be math-
ematically justified [32] motivating our
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Communities appear to self-regulate to limit
outlier behavior as that it is in the community’s

current framework. Our ultimate goal
is to understand the optimal trade-off
between population growth and colony
fitness and to leverage experimental out-
comes to enable the design and under-
standing of such microbial communities.
We see from [33] and [34] that there are
optimal operating regimes which suggest
that inherent self-regulation is benefi-
cial to the colony. This self-regulation,
to improve colony fitness, was observed
experimentally in [12]. Furthermore,
both [33] and [34] mathematically show
that while individual decision rules for
individual bacterium may be optimal for
small populations, despite single-cell het-
erogeneity, common decision rules ben-
efit the community.

Communities appear to self-regulate
to limit outlier behavior as that it is in
the community’s longer term best inter-
ests. In contrast to many pure engineer-
ing system where “greedy is good,” that
is not necessarily what is seen in modeled
systems that directly take biological con-
straints into consideration [12], [21].

MULTI-SPECIES COMMUNITIES

In the previous section, we focused on
the signal coupling that is inherent to
microbial signaling; herein, we intro-
duce other unique features of microbial
interaction which suggest that modified
multiple-input, multiple-output (MIMO)
models provide a useful perspective for
analysis. We summarize recent develop-
ments in modeling microbial signaling
through MIMO systems, as this area of
research is rapidly expanding. Wireless
MIMO systems have a rich history [35],
[36] and have had broad impact in engi-
neering applications. We have previously
underscored the impact of signaling via
diffusion which can introduce time-vari-
ation and uncertainty to timing as well
as network topology. In our discussion
of relay-systems we have also discussed

longer term best interests.

the presence of self-interference and feed-
back. This feedback mechanism within a
single cluster of cells can result in behavior
that is seemingly independent of the over-
all colony as seen in recent experimental
work [17]. The main reason why we will
examine MIMO models in this context is
to consider the self-signaling and to pro-
vide models which capture intra-species
interaction in multi-species environments.
Up to now, we have only considered single
strains of bacteria. As will be seen, multi-
species environments can lead to addition-
al degrees of freedom when it comes to
interaction and coupling, in particular, dif-
ferent strains can influence the transmitted
signals of other strains in the community.
Thus, new MIMO modeling and analysis
is needed, as illustrated by the Microbial
MIMO system given in Figure 4.

MICROBIAL SYSTEMS

AS MIMO CHANNELS

Bacteria, as simple, single-cell organ-
isms, can enable complex behaviors such
as infection, bioluminescence, and bio-
film production. Given the prevalence
of bacteria and their role in animal and
environmental health, it is important to
understand these behaviors and the asso-
ciated complicated interactions. These
interactions are governed by signaling
molecules and associated genetic expres-
sions. Our prior models for quorum
sensing and coupled interaction via a
decentralized decision-making frame-
work were in the context of a single spe-
cies (“Many-to-One Networks” Section).
We next generalize the problem envi-
ronment by considering the presence of
multiple bacterial strains, each capable
of producing distinct autoinducer mol-
ecules. Considering heterogeneous spe-
cies further challenges analysis due to
increased coupling and interaction. Fur-
thermore, each cell generates associated
receptors for the different molecules. In

FIGURE 4 Microbial MIMO system. Cells
send chemical signals into the environment
and receive chemical signals consisting of
a mixture of other cells’ chemical signals.

fact, most quorum sensing signals inter-
act with many receptors? and impact the
downstream cellular response to the sig-
nal, a phenomenon commonly referred
to as crosstalk [38]. Thus, in cross-talk,
the wrong molecule binds to an unin-
tended receptor. Crosstalk can have a
stimulatory or inhibitory effect on cellu-
lar activation. The MIMO model enables
the clean description of self-signaling in
the multi-strain microbial environment.

MULTI-STRAIN/MULTI-SPECIES
SIGNALING

Recently, in [39], an important concep-
tual advancement in the understanding
of microbial quorum sensing networks
is made by demonstrating that quorum
sensing networks can be represented as
Hopfield networks [40]. Each strain cor-
responds to a particular node whose state
represents whether the strain is activated
or not. Each strain has its own autoin-
ducer molecule. Activation is based on
the multiple signaling inputs which are
linearly combined with different weights
and fed into a non-linear function (usual-
ly sigmoidal). Thus, each strain responds
to all the different quorum-sensing mole-
cules in the community as input. In [39],
the optimal number of strains needed to
maximize the capacity of the network
as described by the Boltzmann entropy
is determined. Furthermore, this num-
ber is consistent with patterns of diver-
sification of the quorum sensing system
of the microbial species Staphylococcus
aureus, suggesting a possible selective

2Microbial cells can also express so-called,
orphan receptors, for which the associated
cognate signal has not been identified [37].
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evolutionary constraint in quorum
sensing networks.

The MIMO neural network model
was further employed to study the hetero-
geneous spatial structure within a micro-
bial community via reaction-diffusion
models [17]. Colony dispersals are var-
ied and it is shown that at low dispersal,
which corresponds to a community state
in which most cells are located in a small
number of highly clustered colonies, the
quorum sensing systems are dominated
by the localized signal. However, as the
community state transitions to higher
dispersal, individual colonies are unable
to self-activate and thereby become
dependent on the global quorum sens-
ing signal to active. The neural network
model is used to explicitly explore cross-
talk within a microbial community [41].
Five different strains of Bacillus subtilis
were employed. Once the weights of acti-
vation/inhibition of each quorum sens-
ing molecule were established for each
node, the neural network model was used
to accurately predict community-level
signaling states in the community that
are an integration of all signal present in
the community at a given time point.

Cells that belong to different geno-
types can interact with each other in
highly complex ways. To illustrate this,
a recent experiment arrayed colonies of
different Bacillus species. Many of the
Bacillus isolates are capable of producing
biofilms. Bacillus can release compounds
that inhibit the growth of other species.
For example, B. subtilis (right colony) and
B. mojavensis display a negative interac-
tion. In comparison, some Bacillus strains
are more friendly’ towards other Bacillus
such that two biofilms can merge. For
example, B. atrophaecus and B. subtilis
(right colony) display a neutral or poten-
tially positive interaction. The presence
of other species can also induce B. sub-
tilis motility. In summary, interactions
between different species of bacteria gen-
erate collective behaviors. The results of
this experiment can be seen in Figure 5.

To begin modeling signaling among
different species, we analyzed a model
community, THOR, that includes three
species that are normally found in close
proximity to plant roots (the hitchik-
ers of the rizhosphere, THOR) [42].

Bacteria, as simple, single-cell organisms,
can enable complex behaviors such as infection,
bioluminescence, and biofilm production.

To accommodate this model system,
we examined the scenario [34] where
agents’ observations depend not only
on the underlying state of nature, but
also on the empirical distribution of the
genetic expressions of the colony. Hence,
the statistical dependencies of agents’
observations are global, as opposed to
local in [33]. The model allows for agents
in different classes to have distinct cou-
pling with agents from another class,
which is inherent to THOR. There are
three strains of interest: Flavobacterium,
Bacillus, and Psendomonas. This model
reduces the complexity of the natu-
ral community from over 1,000 spe-
cies to three. Our work shows that the
three species greatly affect each others’
patterns of gene expression, including
genes involved in the synthesis of sig-
naling molecules. In particular, When
grown in isolation, Bacillus produces a
biofilm which can be modeled by the
methods in [33]. When grown together
with Flavobacterium, the Bacillus strain
is eradicated by an antibiotic produced

a
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B. subtilis BSnS B. pumilus
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by the Flavobacterium, and no biofilm
is produced. However, when all three
strains coexist, Pseudomonas produces
a chemical signal that shields Bacil-
lus from Flavobacterium. In addition,
not only is Bacillus protected from the
harmful effects of Flavobacterium, but
Bacillus produced more biofilm when
all three strains are present. THOR con-
tains a total of 17,000 genes and around
100 pathways that may generate signals.
Through use of a mutant affected in one
small molecule and genetic analysis, we
found that one molecule was responsible
for changes in the expression of thou-
sands of genes in the other community
members [43], [44]. A systematic genetic
analysis of all pathways for synthesis of
small molecules in all three members will
generate a network model that accounts
for the impact of ecach signal on gene
expression in the other members.

Now, work is being done to bridge
the gap between microbiology and
statisti-

experimental findings with

cal modeling. We have extended our

Inhibition zone

Swarming Touching

Inhibition zone

Touching

FIGURE 5 Biofilm interactions among the various Bacillus wild-type isolates.
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FIGURE 6 Community learning rate for a theoretical, two species microbial colony. Signal
interference between species is measured by a. The ratio of population 1 to a fixed size for
population 2 is described by 7. The optimal ratio is indicated by a star.

prior [33] to the more general setting
in [34]. Specifically, systems in which
the behavior is governed by both the
underlying hypothesis (individual state
of the microbe), as well as an underlying
empirical distribution on the network
state (environmental state) is consid-
ered. Thus, there is significant coupling
between the interim decisions of the
agents and the signals they transmit.
The performance of collective decision-
making is asymptotically analyzed. Opti-
mal ratios of species are computed in the
context of both signal enhancement or
jamming (as experienced in THOR). The
results of the consideration of a two spe-
cies scenario can be seen in Figure 6. The
two species interact through the constant
a, and the learning rate as a function of
the population ratio for various values of
a, as well as the optimal ratio are shown.
These results show the sensitivity of not
only the optimal ratio to o but also the
functional dependence of the learning
rate on population ratios. Currently, we
are examining THOR data in order to
tune and validate these models against
experimental data. The goal is to deter-
mine signal parameter values and to eval-
uate the predictive value of the model.

MULTI-SPECIES COMMUNITY
ROBUSTNESS

As seen in the multiple experimen-
tal results discussed, the interaction of

multiple strains or species within a com-
munity leads to complex signaling and col-
lective behaviors. The presence or absence
of one strain/species can have an enor-
mous impact. A goal of our engineering
models is to determine optimal commu-
nity operating points and see whether such
operating points exist in nature or can
be induced in engineered environments.
The effectiveness of these analytical frame-
works, such as the Hopfield network, to
predict community behavior will have a
significant impact on the understanding
and design of microbial communities. Of
particular interest is understanding what
molecules and control mechanisms lead to
microbial community resilience.

CONCLUSION

In this position paper, we examine micro-
bial populations through the lens of sig-
naling and sensing networks. The goal
Wwas to use communication, signal process-
ing, and information theories to model
and understand community behaviors.
As the modeling efforts were strongly
informed by microbiology and experi-
mental findings, new experimental sys-
tems and data were presented. Theoretical
abstractions to employ when modeling
signaling and decision-making in bacterial
communities were provided. In particu-
lar, we presented SPACE, a microfluid-
ic-based multi-hop bacterial molecular
communication testbed, and character-

ized the communication delay associated
with it. In contrast to SPACE’s spatially
constrained structure, we discussed the
effects of multihop signaling to achieve
quicker quorum sensing in spatially
“unconstrained” systems. Furthermore,
we have explored the effects of signifi-
cant coupling between cells in a micro-
bial community and their surrounding
environment, as well as coupling between
cells, when reaching a common quorum
decision akin to a decentralized detection
system. Behaviors from microbial com-
munities and interaction were presented
and drove the modeling approach. Finally,
we leverage the existing understanding
on MIMO communication to describe
microbial behavior in multi-species envi-
ronments. As multi-species communi-
ties can engage in novel interactions and
reflect real-environments, this scenario is
of strong interest. The impact of difter-
ent signaling molecules from different,
heterogeneous species in a community
environment is still not fully understood.
The ultimate goal is to use modeling to
better understand and potentially design
or control microbial communities.
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