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M Microbes as 
Communication &  
Decision-Making 

Networked 
Communities

MICROBIAL COMMUNITIES EXHI­
bit complex behavior and play signif i­
cant roles in many biological phenomena. 
Understanding the communication with­
in and between bacterial species can  
illuminate the how, as well as the why 
of numerous interactions that enable 
their collective behavior. In this position 
paper, we first discuss bacterial molecular 
communication in multihop settings. 
We address this concept in the context 
of local and global quorum sensing 
(QS) within a colony and then consider 
induced QS at a distance between dif­
ferent, spatially separated communities. 
We then investigate how the information 
is shared between cells when forming  
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a quorum, particularly the intertwined 
relationship between cells’ observa­
tions, actions, and the state of their 
surrounding environment. Lastly, we 
extend to multi-species systems where 
all species coexist and interact, leverag­
ing concepts from multiple-input-mul­
tiple-output (MIMO) communications. 
Community robustness and resiliency is  
also explored. 

INTRODUCTION
Bacteria are single-celled organisms that 
constitute some of the earliest forms of 
life (over three billion years old) [1] and 
have an aggregate biomass that is at least 
an order of magnitude larger than all 
animals combined [2]. Although bacteria 
are considered one of the simplest forms 
of life, they typically live in communi­
ties that contain hundreds or thousands 
of species, which represent a genetic 
complexity 1000-fold greater than the 
human genome. These microbial com­
munities are essential to all life on Earth. 
They direct biogeochemical cycles that 
inf luence climate change, soil health, 
and water quality. Microbial communi­
ties determine the health of their plant 
and animal hosts (e.g., gut biome) and 
are responsible for food fermentation. 
Accurate modeling of bacterial popula­
tions could enable the design of efficient 
microbial fuel cells or bacterial infec­
tion prevention without the need for  
antibiotics [3].

Interactions among members of 
bacterial communities are governed by 
the interchange of chemicals, includ­
ing small organic molecules and ions. 
From a communications engineering 
perspective, these interactions can be 
considered as examples of molecular com-
munication (MC)  [4], [5], which refers 
to natural or synthetic systems that con­
vey information using chemical signals. 
As an example, one outcome of signal­
ing can be the formation of a quorum 
in which a community expresses new 
genes which enable new collective behav­
ior [6], [7]. Inspired by recent theoreti­
cal advancements in modeling bacterial 
MC [8], [9], [10], as well as experimental 
studies to exploit and engineer micro­
bial interactions  [11], [12], [13], this  
position paper

1) � presents theoretical abstractions of 
modeling cell- or colony-level bacte­
rial communities,

2) � introduces new experimental setups 
for spatially separated bacterial com­
munication systems,

3) � and discusses relevant applications of 
these methods to study communities.

The rest of the paper is organized as 
follows: The “Multihopped Signaling” 
Section discusses spatially constrained 
and unconstrained settings that leverage 
multihop MC among bacterial colonies 
to induce quorum sensing at a distance. 
The “Many-to-One Networks” Section 
considers microbial communities with a 
different underlying topology; in partic­
ular, from a modeling perspective, many-
to-one networks are considered and the 
community is considered to be a decen­
tralized decision-making system. The 
“Multi-Species Communities” Section 
focuses on populations with heteroge­
neous species or strains and by grouping 
each species into a virtual user, maps the 
signaling framework to that of a multi-
input/multi-output (MIMO) commu­
nication channel. The “Conclusion” 
Section concludes the paper. Within each 
section, we specifically examine how 
these communities engage in actions to 
promote resiliency of the community.

MULTIHOPPED SIGNALING
Communication systems in which signals 
are transmitted via repeaters, or mul­
tihopped communications, have been 
continually studied since the 1950s. A 
seminal piece of work in this area is the 
PhD dissertation of Charles Desoer [14], 
whose analysis of cascaded channels 
includes the result that the capacity of 
a multi-hopped channel is that of the 

worst-case single-hop link. Microbial sys­
tems, as well as engineered wireless sys­
tems, use multi-hopped communications 
to overcome a common challenge: sig­
nal degradation. Many microbes employ 
the diffusion of molecules to signal. 
Each emitted molecule exhibits Brown­
ian motion in the channel  [4], which 
causes its arrival time at the receiver to 
be stochastic  [15]. Molecular exchange 
via diffusion is limited by the scaling of 
distance traveled over time, with distance 
proportional to time squared. Diffusive 
signal exchange becomes ineffective over 
reasonable times when the colonies are 
separated by several millimeters. Finally, 
in the parlance of communications engi­
neering, diffusive communication chan­
nels experience inter-symbol interference, 
much like their radio-based counterparts.

In this section, we examine micro­
bial multi-hopped communications for 
inducing quorum sensing across distance. 
Experiments were applied in the context 
of free-space interaction as well as the 
more spatially constrained environments 
of microfluidics devices. There are some 
key contrasts in signaling mechanisms 
to consider when comparing wireless to 
microbial repeater systems: positive feed­
back, leakage, and relatively longer pro­
cessing delays at each node due to slow 
biochemical reactions. A key distinguish­
ing property of many of the microbial 
strains we have investigated is the abil­
ity to achieve a “quorum.” In quorum 
sensing, when the concentration of a 
compound or molecule produced by the 
bacteria within the population exceeds a 
threshold, the bacteria express a suite of 
genes leading to new population behav­
ior such as luminescence or infection of a 
host [6], [7]. With sufficient such expres­
sion, the community achieves a quorum.

Bacteria are single-celled organisms that constitute 
some of the earliest forms of life (over three billion 

years old) and have an aggregate biomass that  
is at least an order of magnitude larger than  

all animals combined.
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UNCONSTRAINED MULTIHOPPED 
MICROBIAL SIGNALING
The main mechanism exploited by 
microbial colony repeaters (i.e., relay 
nodes) when inducing quorum sensing 
over a distance is positive feedback of 
signal (molecule) production. Cells in 
environments with low signal concentra­
tion produce signal at a low, basal rate. 
However, as signal accumulates to high­
er concentrations, eventually exceeding 
the threshold concentration for cells to 
strongly detect and respond to the signal, 
the rate of signal production increases 
for each “activated” cell. This positive 
feedback on signal production enables 
cells to coordinate activity over distances 
much longer than the length scale of dif­
fusion [16]. This way, cells in an adjacent 
colony, once activated, amplify the signal 
production, allowing the now combined 
signaling gradient from both colonies to 
extend further at shorter times.

This concept of spatially separated 
colonies increasing the rate at which sig­
nal spreads over long distances was dem­
onstrated in numerical simulations of 
quorum sensing [17]. We deem this envi­
ronment as unconstrained as the loca­
tions of the bacteria were not specified. 
This will be in contrast to the microflu­
idic relay system we discuss in the next 
subsection. As a large single colony of 

cells was broken up into multiple smaller 
colonies dispersed at random positions, 
the region of space with concentration 
of signal that is above the threshold 
significantly increased. As the colonies 
grew smaller and more dispersed, activa­
tion at each colony involved signal from 
multiple adjacent colonies combining to 
exceed the signal threshold concentra­
tions. This transition from local quorum 
sensing to global quorum sensing enables 
small, adjacent colonies to activate over 
large spatial ranges. We observe that the 
ability to transition imbues the popula­
tion with robustness as the colony does 
not need to be uniformly and densely 
spaced to achieve a quorum.

The method of signal delivery may 
influence the spatial distance and 
dynamics of signal exchange and quorum 
sensing activation [18]. Recent work has 
shown that signal is not only exchanged 
by release of individual molecules into the 
environment, but that signal can also be 
packaged into and exchanged via extra­
cellular vesicles. Bacterial extracellular 
vesicles are thought to be produced by all 
bacteria and are approximately 100nm 
in diameter  [19]. Upon formation, 
the molecular composition of vesicles 
includes bacterial membrane, proteins, 
genetic material, and other molecules 
from inside the cell  [20]. Many signal­

ing molecules, especially hydrophobic 
signals that tend to partition into mem­
branes, are often incorporated into ves­
icles. Combining signal-loaded vesicles 
with cells can lead to quorum sensing 
activation, as vesicles create a chemical 
environment separated from external 
conditions, potentially protecting signal 
from degradation during transport. For 
environments with high rates of signal 
degradation, free signals can only be 
exchanged over short distances. Vesicles 
protect signals and enable long dis­
tance exchange. A question of interest is 
whether one can interpret these vesicles 
as packets in a communications system 
which typically employ local error correc­
tion to ensure the fidelity of the packet.

A second advantage of loading signal 
in vesicles is that the vesicle potentially 
keeps packets of signal together during 
transport. Free signal spreads out dur­
ing transport, but a diffusing vesicle 
could maintain a constant signal cargo. 
Vesicles made in locations with high sig­
nal concentrations would make vesicles 
loaded with a high concentration of 
signal. These vesicles can then diffuse 
and deliver concentrated packets of sig­
nal to distant cells. Given that threshold 
concentrations of signal are often only 
10 100−  molecules of signal per cell, 
long distance delivery of a single vesicle 
could result in quorum-sensing activa­
tion in the receiving cell.

CONSTRAINED MICROFLUIDIC 
MICROBIAL RELAY SYSTEMS
In this subsection, we consider a more 
controlled environment wherein micro­
bial repeater communities are isolated 
via microfluidic systems. An important 
feature is that the distance between 

FIGURE 1  A linear and multihop MC system of spatially separated bacterial communities.

A question of interest is whether one can interpret 
these vesicles as packets in a communications 

system which typically employ local error correction 
to ensure the fidelity of the packet.
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microbes (or collections of microbes) is 
pre-determined. Modeling of such sys­
tems using stochastic theory was under­
taken in  [21] using classical queuing 
theory. In particular, electron transfer 
between bacteria in cables was mod­
eled by developing queueing models for 
biological processes such as adenosine 
triphosphate (ATP) production. These 
models were further leveraged to 
compute the channel capacity of such  
a system in [22].

In our previous system design 
(FAIRY  [13]), each node of the relay 
was constructed as a spatially distinct 
chamber containing immobilized popu­
lations of bacteria. The initial node con­
tained a transmitter (sender) microbial 
strain while the rest contained a receiv­
er (repeater) strain. Communication 
between nodes was achieved through 
metabolic production and exchange of an 
acyl homoserine lactone (AHL), which is 
a microbial quorum sensing molecule. 
Briefly, both strains harbor an induc­
ible promoter that regulates production 
of AHL. Induction within the sender is 
driven by arabinose (a small molecule), 
while induction within the repeater 
is driven by AHL. In addition to the 
input signal intensity, the output AHL 
level of a node is also a function of its 
colony fitness and population size  [23], 
[24]. Furthermore, AHL being both the 
input and output of the repeater strain 
leads to a positive self-feedback loop of 
AHL production. The positive feedback 
loop serves to amplify the traversing sig­
nal and promote switch-like activation 
of repeater nodes. Since the system used 
in  [13] was closed, i.e., batch culture, 
propagation of the signal proceeds until 
the cells exhaust their energy supply.

A challenge in the modeling and 
analysis of microbial signaling systems is 
understanding what the metric of inter­
est should be. Providing quantitative 
measures for “biological fitness,” for 
example, has been elusive. To this end, 
we assumed that minimizing the end-to-
end delay for activation, Ta, would be 
a goal of interest in the microbial relay 
system. In our prior work [10], we pro­
vided a model for bacterial relay signal­
ing for an n -hop system. Therein, Ta is 
defined as the time between the initial 

stimulus of the transmitter node (N0)  
and the activation time of the receiver 
node (Nn−1) and is considered as a met­
ric to be optimized. The work consid­
ers a 1D diffusive channel where there 
is transmitter (TX), receiver (RX), and 
n −1 relay nodes, with all nodes as fully 
passive receivers  [15]. The positive self-
feedback is characterized by a parameter 
β , which denotes the portion of the sig­
nal at each node being trapped by the 
node itself. A representative figure of an 
expanded version of the model consid­
ered in [10] is presented in Figure 1(a).

In this subsection, we focus on a 
novel colony-based relay system, which 
we have devised in a microfluidic for­
mat. Henceforth, we refer to our setup 
herein as Signal Propagation Across Cel­
lular Encapsulations (SPACE). The goal 
of SPACE is to permit relay signaling 
on time scales longer than typical batch 
culture allows. To accomplish this, we 
implemented SPACE in a traditional 
f low-cell style, where perfusion of fresh 
media promotes continuous growth 
of the colonies. A challenge associated 
with spatial patterning of microbes in 
flow cell designs is fabrication of cellular 
barriers that are permissive to molecu­
lar exchange. Since the effective size of 
a bacterial cell is approximately 1  µm, 
these barrier features must be fabricated 
on a sub-micron scale. While possible, 
fabrication at this scale requires high 
performance equipment that is not avail­
able to most. Our approach to solving 
this problem was to encapsulate cells in 
hydrogel beads, which increases the size 
of the working biological unit from a sin­
gle micron to tens of microns. A simple 
channel connecting adjacent nodes can 
then be designed to exclude the much 
larger beads rather than individual cells. 
This can be achieved when the minimum 
dimension of the channel opening is 

roughly no greater than half of the bead 
diameter. For our system, we used a bead 
diameter of 70 μm and a diffusion chan­
nel depth of 5 μm.

In contrast with batch culture relay 
systems, flow cell microfluidics permits 
continuous microbial growth through 
perfusion of rich media, as well as tempo­
ral control over input signals. In addition 
to our considerations herein, we note 
that these benefits could support addi­
tional studies where bits of information 
are transmitted by periodically switch­
ing the sender on and off, equivalent 
to the concentration shift keying (CSK) 
modulation commonly used in MC [5]. 
In such a setup (with CSK), as each relay 
node would introduce an additional vari­
ance when processing its input signal, a  
relay-aided bacterial MC setup is poten­
tially prone to error propagation from 
one hop to the next. Furthermore, previ­
ous work suggests that the signal-to-noise 
ratio actually improves with distance 
above some critical input frequency [11] 
(potentially due to the frequency domains 
of intra- and extracellular noise). These 
two phenomena jointly imply that, con­
trary to intuition, utilizing relay nodes 
for high-data rate bacterial MC systems 
may actually hurt communication fidelity. 
This gives rise to an interesting trade-off 
between fidelity and delay and suggests 
that the number of relays might be an 
optimization variable in device design. 
We pose designing low error rate digital 
MC systems under such a constraint as 
a possible open research direction, and 
focus solely on end-to-end delay as the 
metric of interest in the remainder of the 
subsection.

In [10], the self-feedback-induced sig­
nal intensity increase is modeled to halt 
at a certain maximum saturation limit. 
When modeling delay associated with 
SPACE, we follow a purely data-driven 

In contrast with batch culture relay systems, flow 
cell microfluidics permits continuous microbial 

growth through perfusion of rich media, as well as 
temporal control over input signals.
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approach herein (as opposed to a para­
metric characterization done in  [10]), 
thus imposing no such hard limit.1 Fur­
thermore, in [10], each colony is modeled 
as fully passive receivers. However, in wet-
lab experimental setups where the major­
ity of the chamber is filled with bacteria 
such as in SPACE (see Figure 1(b)), the 
physical obstruction caused by the cells 
and their surroundings call for modeling 
the receivers as partially absorbing entities 
with leakage. Thus, a portion of the sig­
nal might still permeate the colony in our 
model herein, which is denoted by ( )1− p  
in the model of Figure 1(a).

With a fully absorbing receiver ( )p = 1 ,  
and with the assumption that each link 
was identical, the end-to-end delay is 
expected to be well approximated as

T b n Ta � � � , � (1)

where T  is the single hop delay, and 
b  captures the init ial delay due to 
metabolic adaptation of the colonies. 
Note that (1) can be written for each 
hop’s activation time as T b i Ta i, � � �  
which is aff ine in i  and allows for a 
linear regression on experimental data 
to fit for b  and T , which we will do in 
the sequel. Generalizing the argument 
for p < 1, Ta i,  would be different than 
that for p = 1, as i) the leaked/permeated  
signal reduces input to a colony, but ii)  
the leaked signal propagates towards the  

next colony, starting its activation. This  
phenomenon can be accounted for by  
incorporating an additional, learnable 
function f i( ), yielding

T T b n T f na a n� � � � �, ( ). � (2)

Note that the leaked signal’s decrease in 
node i  would be expected to be larger 
than the increase at node i +1, as the 
latter also necessitates diffusive propaga­
tion and absorption at node i +1. Thus, 
imperfect absorption and non-zero perme­
ability is expected to increase delays, and 
f i( ) is expected to be positive for p < 1.

Herein, we focus on the particular 
case, where f i( ) = 0 in (2), and regress for 
b  and T  over three sets of experiments on 
the described SPACE setup with n = 10.  
Two out of three experiments were used 
for training for b  and T , whereas the 
third one is used for testing. Each node’s 
readout (GFP intensity, as a surrogate 
for AHL production) is normalized with 
respect to its own maximum value, and 
Ta i,  is selected as the time it takes to 
reach half-maximum  [13]. The overall 
results of Figure 2 suggests that setting 
f i( ) ≈ 0 provides reasonable accuracy, 
given the modest amount of experimen­
tal data. In addition to providing trac­
tability, this phenomenon implies that 
considering each colony as a fully absorb­
ing entity is a plausible consideration for 
the system of interest.

ON THE RESILIENCE OF MOLECULE 
PROCESSING MICROBIAL NODES
As also mentioned under the self-feed­
back discussion in prior sections, microbes 

exhibit tight regulation over catabolic 
pathways to avoid extraneous resource 
allocation and metabolic burden  [25], 
[26]. This can be a result of negative 
self-feedback loops that regulate out­
put intensity, as well as changes in gene 
expressions  [27], [28], [29]. Our prior 
work [30] models each node as a molecule 
“processing” unit, akin to a packet/job 
scheduler in a wireless communication/
resource allocation system. The theoreti­
cal findings in  [30] suggest that under 
temporally varying input signal condi­
tions, such negative feedback-induced out­
put intensity balancing can indeed bring 
significant improvement in energy cost 
reduction and improve fitness, in cases 
with or without signal loss due to molecu­
lar degradation [11], [31]. In particular, 
in cases where increasing output intensity 
yields a convex increase in metabolic ener­
gy cost, balancing the output rate as much 
as possible is the provably optimal strat­
egy. That said, the theoretical findings 
of  [30] rely on non-causal information 
on arrival intensity, which limits its one-
to-one applicability to biological settings. 
Our future path therein includes alleviat­
ing this assumption, as well as introduc­
ing additional bio-compatible costs and 
constraints to proceed our model towards 
more accurately abstracting real-time  
bacterial relay communication.

MANY-TO-ONE NETWORKS
Many-to-one communication and signal­
ing systems are commonplace in wire­
less communications as seen in sensor 
networks, multiple-access channels, and 
many Internet-of-Things deployments. It 
is natural to consider such a framework 
for modeling microbial systems with 
some key differences. The environmental 
state, which can be more complex than 
simply the interference present, strongly 
influences microbial behavior. As such, 
there is significant coupling in microbial 
systems as they interact and change their 
environment. Such feedback mechanisms 
must be carefully described. The engine 
of such coupling can often be captured 
via signaling. Message exchange between 
nodes is also a feature of engineered 
networks, with consensus signaling in 
an ad hoc network as a prime example. 
However, in such systems, signal mixing 

FIGURE 2  Regression for a 10-hop relay system using (1) on the SPACE device (see Figure 1).

1However, it should be noted that in experi­
mental settings, it is expected that colonies 
may exhibit a similar self-regulation to avoid 
extra metabolic burden of over-production.
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is intentional in order to learn a global 
function of the network. Elucidating the 
behaviors or states of individual bacteria 
in a microbial community from mixed 
signals is much more challenging. An 
opportunity that arises from mixed sig­
naling is learning information about the 
entire community or a neighborhood of 
bacteria.

A feature to integrate in the future is 
that of time-varying network topologies; 
these have been considered in wireless 
sensor networks, the rate of change for 
biological systems is different. There is 
limited mobility, but perhaps more dis­
tinctive is the loss of “agents” as bacte­
ria do die. Thus, the number of nodes/
bacteria in a network is governed by a 
birth-death process. Several modern net­
works of interest share this phenomenon, 
e.g. social networks and other human-
decision-making networks. The system 
model of Figure 3, endeavors to capture 
these features through the notion of 
agent and network states.

COLONIES AS LEARNING 
ENVIRONMENTS
In our modeling we consider an omni­
scient agent receiving the signaling from 
multiple decentralized agents. We have 
also considered more general scenarios 
without the centralized agent. In par­
ticular, population growth in quorum 
sensing is modeled using the queuing 
approach of  [21] in  [3]. Therein, there 
is an excellent match between predict­
ed population sizes and experimental 
data. However, a challenge is that the 
decision-making of each agent is not 
explicitly considered. A control and  

decision-theoretic approach is consid­
ered in  [32] for the discrete-time case. 
It can be shown that for noiseless obser­
vations, the optimal decision structure 
is threshold based (an individual cell 
expresses new genes when the level of 
autoinducer in the environment exceeds 
a threshold). Moreover, building off of 
the model presented in [3], the observa­
tion (autoinducer molecules) seen by an 
individual cell is modeled as a Poisson 
random variable

P x
xX

x
( )

exp
!

�
�� �

� (3)

with parameter � � 0. Then, the work 
in  [32] f inds the optimal activation 
thresholds that maximize the colony fit­
ness and verif ies the theoretical f ind­
ings with experimental data. In [12], the 
problem is framed as a continuous-time 
sequential optimization problem where 
each cell in the colony decides at each 
time instant whether to activate – acti­
vation is costly – in order to maximize 
the future population size. A surprising 
observation from our analysis is that the 
community must consider both current 
and future payoffs. This observation is 
also ref lected in the experimental data 
which is well modeled by our theoretical 
approach. However, these models still 
lack a detailed interaction model to cap­
ture the coupling between the agents/
bacteria and the environment.

Thus, our recent focus has been on 
capturing this coupling, which will 
also impact the analysis of social learn­
ing mechanisms. In particular, previous 
decentralized inference theory adopts a 
key conditional independence assump­
tion for tractabililty without the assump­
tion, determining optimal detection 
rules becomes NP-hard. Denote Ui  as 
cell i’s behavior and H  as the true state 

of nature. We have the following coupled 
equations:

H g U U U
U f U U U H f H

n

i n

� �
� � �

( , , , )
( , , , , ) ( )

1 2

1 2

The inequality shows the result ing 
decoupling if the conditional indepen­
dence assumption is invoked. We have 
shown  [33] how to obviate this strong 
assumption through the introduction 
of the notion of a cell’s state, Xi  which 
acts as a “summary” for the behavior of 
the other cells and circumvents the NP-
hardness of microbial interactions.

U f U U U H f X Hi n i� � �( , , , , ) ( , ).1 2 � (4)

In  [33], the asymptotic learning rate is 
characterized, and it shown that each 
agent employing a common decision 
strategy is also asymptotically opti­
mal (although not optimal in the small 
number of cells regime). The ability to 
consider a common strategy across all 
bacteria significantly simplifies the analy­
sis of asymptotically large colonies. In 
particular,  [33] provides an important 
first step towards the analysis of multi-
species colonies where the interaction 
models are species-dependent.

ON THE RESILIENCE  
OF MICROBIAL NETWORKS
While microbial systems are inherently 
complex, we see that stochastic methods 
have the capability of capturing intricate 
coupled behavior. In particular, stochas­
tic modeling can capture the effects of 
variations across cells as well as unmod­
eled effects that can be appropriate as 
noise. Particular to the decentralized 
agent modeling, we see that threshold-
based decision rules which have been the 
conventional wisdom for such behav­
iors as quorum sensing can be math­
ematically justified  [32] motivating our 

FIGURE 3  Depiction of coupling model for 
a decision-making microbial network.

A feature to integrate in the future is that of time-
varying network topologies; these have been 

considered in wireless sensor networks, the rate  
of change for biological systems is different.
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current framework. Our ultimate goal 
is to understand the optimal trade-off 
between population growth and colony 
fitness and to leverage experimental out­
comes to enable the design and under­
standing of such microbial communities. 
We see from [33] and [34] that there are 
optimal operating regimes which suggest 
that inherent self-regulation is benefi­
cial to the colony. This self-regulation, 
to improve colony fitness, was observed 
experimentally in  [12]. Furthermore, 
both [33] and [34] mathematically show 
that while individual decision rules for 
individual bacterium may be optimal for 
small populations, despite single-cell het­
erogeneity, common decision rules ben­
efit the community.

Communities appear to self-regulate 
to limit outlier behavior as that it is in 
the community’s longer term best inter­
ests. In contrast to many pure engineer­
ing system where “greedy is good,” that 
is not necessarily what is seen in modeled 
systems that directly take biological con­
straints into consideration [12], [21].

MULTI-SPECIES COMMUNITIES
In the previous section, we focused on 
the signal coupling that is inherent to 
microbial signaling; herein, we intro­
duce other unique features of microbial 
interaction which suggest that modified 
multiple-input, multiple-output (MIMO) 
models provide a useful perspective for 
analysis. We summarize recent develop­
ments in modeling microbial signaling 
through MIMO systems, as this area of 
research is rapidly expanding. Wireless 
MIMO systems have a rich history  [35], 
[36] and have had broad impact in engi­
neering applications. We have previously 
underscored the impact of signaling via 
diffusion which can introduce time-vari­
ation and uncertainty to timing as well 
as network topology. In our discussion 
of relay-systems we have also discussed 

the presence of self-interference and feed­
back. This feedback mechanism within a 
single cluster of cells can result in behavior 
that is seemingly independent of the over­
all colony as seen in recent experimental 
work [17]. The main reason why we will 
examine MIMO models in this context is 
to consider the self-signaling and to pro­
vide models which capture intra-species 
interaction in multi-species environments. 
Up to now, we have only considered single 
strains of bacteria. As will be seen, multi-
species environments can lead to addition­
al degrees of freedom when it comes to 
interaction and coupling, in particular, dif­
ferent strains can influence the transmitted 
signals of other strains in the community. 
Thus, new MIMO modeling and analysis 
is needed, as illustrated by the Microbial 
MIMO system given in Figure 4.

MICROBIAL SYSTEMS  
AS MIMO CHANNELS
Bacteria, as simple, single-cell organ­
isms, can enable complex behaviors such 
as infection, bioluminescence, and bio­
film production. Given the prevalence 
of bacteria and their role in animal and 
environmental health, it is important to 
understand these behaviors and the asso­
ciated complicated interactions. These 
interactions are governed by signaling 
molecules and associated genetic expres­
sions. Our prior models for quorum 
sensing and coupled interaction via a 
decentralized decision-making frame­
work were in the context of a single spe­
cies (“Many-to-One Networks” Section). 
We next generalize the problem envi­
ronment by considering the presence of 
multiple bacterial strains, each capable 
of producing distinct autoinducer mol­
ecules. Considering heterogeneous spe­
cies further challenges analysis due to 
increased coupling and interaction. Fur­
thermore, each cell generates associated 
receptors for the different molecules. In 

fact, most quorum sensing signals inter­
act with many receptors2 and impact the 
downstream cellular response to the sig­
nal, a phenomenon commonly referred 
to as crosstalk  [38]. Thus, in cross-talk, 
the wrong molecule binds to an unin­
tended receptor. Crosstalk can have a 
stimulatory or inhibitory effect on cellu­
lar activation. The MIMO model enables 
the clean description of self-signaling in 
the multi-strain microbial environment.

MULTI-STRAIN/MULTI-SPECIES 
SIGNALING
Recently, in  [39], an important concep­
tual advancement in the understanding 
of microbial quorum sensing networks 
is made by demonstrating that quorum 
sensing networks can be represented as 
Hopfield networks [40]. Each strain cor­
responds to a particular node whose state 
represents whether the strain is activated 
or not. Each strain has its own autoin­
ducer molecule. Activation is based on 
the multiple signaling inputs which are 
linearly combined with different weights 
and fed into a non-linear function (usual­
ly sigmoidal). Thus, each strain responds 
to all the different quorum-sensing mole­
cules in the community as input. In [39], 
the optimal number of strains needed to 
maximize the capacity of the network 
as described by the Boltzmann entropy 
is determined. Furthermore, this num­
ber is consistent with patterns of diver­
sification of the quorum sensing system 
of the microbial species Staphylococcus 
aureus, suggesting a possible selective 

2Microbial cells can also express so-called, 
orphan receptors, for which the associated 
cognate signal has not been identified [37].

FIGURE 4  Microbial MIMO system. Cells 
send chemical signals into the environment 
and receive chemical signals consisting of 
a mixture of other cells’ chemical signals.

Communities appear to self-regulate to limit  
outlier behavior as that it is in the community’s 

longer term best interests.
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evolutionary constraint in quorum  
sensing networks.

The MIMO neural network model 
was further employed to study the hetero­
geneous spatial structure within a micro­
bial community via reaction-diffusion 
models  [17]. Colony dispersals are var­
ied and it is shown that at low dispersal, 
which corresponds to a community state 
in which most cells are located in a small 
number of highly clustered colonies, the 
quorum sensing systems are dominated 
by the localized signal. However, as the 
community state transitions to higher 
dispersal, individual colonies are unable 
to self-activate and thereby become 
dependent on the global quorum sens­
ing signal to active. The neural network 
model is used to explicitly explore cross­
talk within a microbial community [41]. 
Five different strains of Bacillus subtilis 
were employed. Once the weights of acti­
vation/inhibition of each quorum sens­
ing molecule were established for each 
node, the neural network model was used 
to accurately predict community-level 
signaling states in the community that 
are an integration of all signal present in 
the community at a given time point.

Cells that belong to different geno­
types can interact with each other in 
highly complex ways. To illustrate this, 
a recent experiment arrayed colonies of 
different Bacillus species. Many of the 
Bacillus isolates are capable of producing 
biofilms. Bacillus can release compounds 
that inhibit the growth of other species. 
For example, B. subtilis (right colony) and 
B. mojavensis display a negative interac­
tion. In comparison, some Bacillus strains 
are more ’friendly’ towards other Bacillus 
such that two biofilms can merge. For 
example, B. atrophaeus and B. subtilis 
(right colony) display a neutral or poten­
tially positive interaction. The presence 
of other species can also induce B. sub­
tilis motility. In summary, interactions 
between different species of bacteria gen­
erate collective behaviors. The results of 
this experiment can be seen in Figure 5.

To begin modeling signaling among 
different species, we analyzed a model 
community, THOR, that includes three 
species that are normally found in close 
proximity to plant roots (the hitchik­
ers of the rizhosphere, THOR)  [42]. 

To accommodate this model system, 
we examined the scenario  [34] where 
agents’ observations depend not only 
on the underlying state of nature, but 
also on the empirical distribution of the 
genetic expressions of the colony. Hence, 
the statistical dependencies of agents’ 
observations are global, as opposed to 
local in [33]. The model allows for agents 
in different classes to have distinct cou­
pling with agents from another class, 
which is inherent to THOR. There are 
three strains of interest: Flavobacterium, 
Bacillus, and Pseudomonas. This model 
reduces the complexity of the natu­
ral community from over 1,000 spe­
cies to three. Our work shows that the 
three species greatly affect each others’ 
patterns of gene expression, including 
genes involved in the synthesis of sig­
naling molecules. In particular, When 
grown in isolation, Bacillus produces a 
biofilm which can be modeled by the 
methods in [33]. When grown together 
with Flavobacterium, the Bacillus strain 
is eradicated by an antibiotic produced 

by the Flavobacterium, and no biofilm 
is produced. However, when all three 
strains coexist, Pseudomonas produces 
a chemical signal that shields Bacil­
lus from Flavobacterium. In addition, 
not only is Bacillus protected from the 
harmful effects of Flavobacterium, but 
Bacillus produced more biofilm when 
all three strains are present. THOR con­
tains a total of 17,000 genes and around 
100 pathways that may generate signals. 
Through use of a mutant affected in one 
small molecule and genetic analysis, we 
found that one molecule was responsible 
for changes in the expression of thou­
sands of genes in the other community 
members [43], [44]. A systematic genetic 
analysis of all pathways for synthesis of 
small molecules in all three members will 
generate a network model that accounts 
for the impact of each signal on gene 
expression in the other members.

Now, work is being done to bridge 
the gap between microbiology and 
experimental findings with statisti­
cal modeling. We have extended our 

FIGURE 5  Biofilm interactions among the various Bacillus wild-type isolates.

Bacteria, as simple, single-cell organisms,  
can enable complex behaviors such as infection, 

bioluminescence, and biofilm production.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 15,2023 at 00:17:31 UTC from IEEE Xplore.  Restrictions apply. 



40  |  IEEE NANOTECHNOLOGY MAGAZINE  |  JUNE 2023	

prior  [33] to the more general setting 
in  [34]. Specifically, systems in which 
the behavior is governed by both the 
underlying hypothesis (individual state 
of the microbe), as well as an underlying 
empirical distribution on the network 
state (environmental state) is consid­
ered. Thus, there is significant coupling 
between the interim decisions of the 
agents and the signals they transmit. 
The performance of collective decision-
making is asymptotically analyzed. Opti­
mal ratios of species are computed in the 
context of both signal enhancement or 
jamming (as experienced in THOR). The 
results of the consideration of a two spe­
cies scenario can be seen in Figure 6. The 
two species interact through the constant 
α, and the learning rate as a function of 
the population ratio for various values of 
α, as well as the optimal ratio are shown. 
These results show the sensitivity of not 
only the optimal ratio to α but also the 
functional dependence of the learning 
rate on population ratios. Currently, we 
are examining THOR data in order to 
tune and validate these models against 
experimental data. The goal is to deter­
mine signal parameter values and to eval­
uate the predictive value of the model.

MULTI-SPECIES COMMUNITY 
ROBUSTNESS
As seen in the multiple experimen­
tal results discussed, the interaction of 

multiple strains or species within a com­
munity leads to complex signaling and col­
lective behaviors. The presence or absence 
of one strain/species can have an enor­
mous impact. A goal of our engineering 
models is to determine optimal commu­
nity operating points and see whether such 
operating points exist in nature or can 
be induced in engineered environments. 
The effectiveness of these analytical frame­
works, such as the Hopfield network, to 
predict community behavior will have a 
significant impact on the understanding 
and design of microbial communities. Of 
particular interest is understanding what 
molecules and control mechanisms lead to 
microbial community resilience.

CONCLUSION
In this position paper, we examine micro­
bial populations through the lens of sig­
naling and sensing networks. The goal 
was to use communication, signal process­
ing, and information theories to model 
and understand community behaviors. 
As the modeling efforts were strongly  
informed by microbiology and experi­
mental findings, new experimental sys­
tems and data were presented. Theoretical 
abstractions to employ when modeling 
signaling and decision-making in bacterial 
communities were provided. In particu­
lar, we presented SPACE, a microfluid­
ic-based multi-hop bacterial molecular 
communication testbed, and character­

ized the communication delay associated 
with it. In contrast to SPACE’s spatially 
constrained structure, we discussed the 
effects of multihop signaling to achieve 
quicker quorum sensing in spatially 
“unconstrained” systems. Furthermore, 
we have explored the effects of signifi­
cant coupling between cells in a micro­
bial community and their surrounding 
environment, as well as coupling between 
cells, when reaching a common quorum 
decision akin to a decentralized detection 
system. Behaviors from microbial com­
munities and interaction were presented 
and drove the modeling approach. Finally, 
we leverage the existing understanding 
on MIMO communication to describe 
microbial behavior in multi-species envi­
ronments. As multi-species communi­
ties can engage in novel interactions and 
reflect real-environments, this scenario is 
of strong interest. The impact of differ­
ent signaling molecules from different, 
heterogeneous species in a community 
environment is still not fully understood. 
The ultimate goal is to use modeling to 
better understand and potentially design 
or control microbial communities.
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