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Abstract—The problem of distributed hypothesis testing with
correlated observations is studied. Specifically, systems in which
the behavior is governed by both the underlying hypothesis, as
well as an underlying empirical distribution on the network state
is considered. Thus, there is significant coupling between the
interim decisions of the agents and the signals they transmit.
The current model addresses increased coupling relative to
prior work. The optimal decay rate for optimal detection is
computed; key properties associated with this error rate are
derived. The utility of the analysis is shown via the consideration
of a multi-class problem wherein agents within each class have
specific properties and interact with agents of other classes via
signal enhancement or jamming. This multi-class case is studied
numerically and it is shown that there is a optimal ratio between
class populations that maximizes the decay rate of the error.

Index Terms—decentralized detection, multi-agent networks,
state-dependent networks, error exponents

I. INTRODUCTION

Decentralized detection in wireless networks has been per-
sistently studied over the years [1], [2]. Despite its long
history, the problem remains of interest as different contexts
are considered. Mainly, a large body of recent work has
gone into decentralized detection with correlated observations
[3]–[5]. Unfortunately, the problem of decentralized detection
with correlated observations is NP-Hard [6]. However, many
applications involve sensors with correlated observations and
coupled signaling. We provide a few motivating examples.

In cyber-security for smart grids [7], the initial state of the
grid and the number of nodes that have been attacked affect
the signals received at each node and how the nodes react.
Thus, there is coupling between the received signals and the
network state. Human-decision making is often affected by
environmental conditions and the decisions and psychological
states of others in a community [8]; abstractions of these
couplings can be modeled in our framework. Multi-species
microbial communities engage in different collective behaviors
(e.g. forming a biofilm, inducing a quorum) as a function of
the individual states of the microbes in each community. One
species of bacteria can release antibiotics that are detrimental
to another species. While our prior work has modeled quorum
sensing as a decentralized decision making process [9], the
level of coupling considered herein was not present.

In particular, [10] addressed the generalization of decision
making wherein each agent observes signals due to a common,
unknown hypothesis, but each agent is affected by their
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individual state. In [10], optimal agent rules are found and the
asymptotic performance is studied. However, there are some
weaknesses in this previous work. Specifically, analysis is done
assuming agents’ have a local look at the network state, and
that all statistical dependencies are limited to local, as opposed
to global, dependencies. Also, it is assumed that the fusion
center has total knowledge of the network state, a rather strong
assumption.

We set out to alleviate some of these issues. In particular,
we assume that agents’ observations depend not only on
the underlying hypothesis, but also the empirical distribution
of the network state. Hence, the statistical dependencies of
agents’ observations are global, as opposed to local in [10].
Moreover, we assume the fusion center knows the empirical
distribution of the network state, but not necessarily the overall
network state itself. This assumption is significantly weaker
than that in [10], but helps facilitate design and analysis while
alleviating issues related to computational complexity at the
fusion center. This framework allows us to model multi-agent
interactions where the agents are drawn from a finite number
of distinct classes. Furthermore, we can allow for the agents
in different classes to have distinct coupling with agents from
another class.

Our contributions are as follows:
1) We introduce the concept of using the underlying empiri-

cal distribution of the network state to alleviate statistical
dependencies.

2) We analyze the error exponent of the proposed system and
show a number of desirable properties. One such prop-
erty being that the error exponent collapses to a single
distribution, alleviating several series design challenges.

3) We formalize the problem of computing optimal pop-
ulation ratios, and use our results to analyze system
performance as a function of the agent ratios.

II. PROBLEM FORMULATION

Consider the setup depicted in Fig. 1. a set of n nodes
are oriented in a parallel configuration. Each agent receives
an observation consisting of the random variable Yk ∈ Y ,
which we call the signal, and Xk ∈ S , which we call the
state of agent k, k = 1, 2, ..., n. All agents observe the same
underlying hypothesis. We assume that each agent is in one
of m states: Xk ∈ {0, 1, ...,m − 1}, k = 1, 2, ..., n. The
state vector X has a prior probability q(x). We denote the
type (empirical distribution) of X as Zn. The goal of the
fusion center is to assess which of the two possible hypotheses,
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Fig. 1. Problem setup

H ∈ {0, 1}, is true, with conditional probability p(h|zn). All
agents observe the same underlying hypothesis. For simplicity,
we denote the conditional pmf (pdf) of a random variable X
conditioned on H = h, h ∈ {0, 1}, as ph(x). Also, the pmf
(pdf) of X conditioned on Y = y and H = h is denoted
as ph(x|y). Each agent receives a local observation Yk ∈ Y ,
k = 1, ..., n, distributed according to ph(yk|zn). Moreover,
we assume independence conditioned on the hypothesis and
network type, namely,

ph(y|zn) =
∏
k

ph(yk|zn). (1)

After receiving signal Yk, each agent determines a local
decision, Uk = γk(Yk) ∈ U = {0, 1, ..., b − 1}. These local
decisions are then sent to the fusion center along with the
system state for the final decision. The fusion center output is
given by U0 = ψ(U ,Zn) ∈ {0, 1}. Let the set Γ be the set of
all decision rules and Ψ be the set of all fusion rules. We call
a collection of decision rules γk ∈ Γ, k = 1, 2, ..., n, together
with a fusion rule ψ ∈ Ψ a strategy denoted by ψ ∈ Γn ×Ψ,
where Γn is the Cartesian product of Γ with itself n times.

It is often the case that one wishes to design the system so
as to minimize the probability of error. That is, one wishes to
solve the optimization problem given by

inf
ψ

P(U0 ̸= H). (2)

To minimize the probability of error, the optimal rule at the
fusion center is given by the maximum a posteriori (MAP)
rule [1], regardless of the rules used at the individual agents.
Hence, we only concern ourselves with the optimization over
the agents’ rules γ. Moreover, we focus our attention to
asymptotically large networks, and so we instead choose to
optimize the asymptotic error rate, or error exponent of the
system. The error exponent is given as

− lim
n

1

n
logP(U0 ̸= H). (3)

Following proof techniques as in [10], [11], one can show that
the error exponent is in fact equal to

− lim min
s∈[0,1]

1

n
log

∑
u,z

p0(u|zn)1−sp1(u|zn)sq(zn). (4)

As a result, we elect to restrict our attention to the following
problem,

inf
γ

min
s∈[0,1]

1

n
log

∑
u,zn

p0(u|zn)1−sp1(u|zn)sq(zn). (5)

Notice that zn is a function of all states Xk for k = 1, 2, ..., n.
Hence, the received observation Yk of agent k is a function of
the behavior of all agents in the network. That is, the given
signal model accounts for global network interference across
the agents.

III. ASYMPTOTIC ANALYSIS

Before we begin our analysis, we introduce a few definitions
and concepts that we employ throughout our analysis. Let Pm

denote the probability simplex in Rm. That is,

Pm = {z ∈ Rm : zi ≥ 0,
∑
i

zi = 1}. (6)

As stated in the problem formulation, the signal of agent k is
distributed according to ph(yk|z).1 Hence, the densities of the
agents’ are indexed by elements in Pm. We would like these
densities to have certain properties over Pm, upon which we
now elaborate.

Let Y be an outcome space. Let F be a family of probability
densities with respect to some underlying measure µ, denoted
by fz . Then, we make the following assumption.

Assumption 1. ∀ϵ > 0, ∃δ > 0 such that if α and β are any
two points in Pm that satisfy ∥α− β∥2 < δ, then∫

|fα − fβ|dµ < ϵ (7)

We now give a convenient condition to check whether a
given family F is satisfies Assumption 1.

Lemma 1. If fα −→ fβ a.e. whenever α −→ β for all
β ∈ Pm, then F satisfies Assumption 1.

For the remainder of this correspondence, we make the
following assumptions.

Assumption 2. We assume agents are identical, that is, for
all n ∈ N:

1) Agent states are i.i.d.
2) All agents have the same signal model ph(y|zn).
3)

inf
γ

min
s∈[0,1]

inf
z∈Pm

∑
u

p0(u|z)1−sp1(u|z)s2−D(z||q) > 0.

(8)

Moreover, while the optimization of s takes place over the
interval [0, 1], we restrict ourselves to the interval [ϵ0, 1− ϵ0],
for any ϵ0 > 0. The reason for this is purely technical, and
do not change any of the statements regarding optimality. We
are now ready to state the main theorem.

1When we write zn, we are referring to a specific type class for a sequence
of length n When we drop the n subscript and write only z, we are referring
to an element in Pm.
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Theorem 1. Fix any ϵ0 > 0. For any s ∈ [ϵ0, 1 − ϵ0]. Then,
subject to assumptions 1 and 2, we have

lim
n

inf
γ

min
s∈[ϵ,1−ϵ]

1

n
log

∑
u,zn

p0(u|zn)1−sp1(u|zn)sq(zn) = lim
n

inf
γ

inf
s∈[ϵ,1−ϵ]

max
z∈Pm

1

n
log

∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q)

(9)
where D(z||q) is the Kl-divergence between the mass function
z ∈ Pm and the true state mass function q.

We provide an interpretation of the above theorem. Define
z∗(n) as

z∗(n) = arg max
z∈Pm

∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q) (10)

= arg max
z∈Pm

1

n
log

∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q) (11)

= arg max
z∈Pm

−D(z||q) + 1

n
log

∑
u

p0(u|z)1−sp1(u|z)s.

(12)

Notice that second term is the classical Chernoff information
corresponding to the fixed distributions ph(u|z), h = 0, 1, and
the KL-divergence term can be thought of as a bias. Hence,
z∗(n) denotes the m-dimensional probability vector that yields
the worst Chernoff information, biased by the KL-divergence.
In some sense, z is sufficiently close to q so that its poor
performance cannot be ignored even in asymptotically large
networks. Moreover, an important note of the above theorem
is that only one distribution in Pm dominates the asymptotic
performance. This equivalent exponent admits a number of
desirable properties that we discuss in the sequel, such as
identical rules being optimal for identical agents, as well as
characterizing a region that contains z∗(n).

We are now ready to give the important points of the proof
of Theorem 1. We omit full proofs for brevity and space
constraints.

The first step in proving the main result is to notice the
following. Assume Fh is a family of probability densities
ph(y|z) that satisfy Assumption 1. Then, for any ϵ > 0, there
exists a δ > 0, such that for all γ ∈ Γ and all u ∈ U , if α and
β are any two points in Pm that satisfy ∥α− β∥2 < δ, then

|ph(u|α)− ph(u|β)| < ϵ (13)

That is, we are claiming that for any ϵ > 0, the same δ works
for all γ and messages u. Hence, the ”error” incurred from
assuming α when β is true is dependent only on the distance
between α and β, and not on the actual strategy being used.
This statement will prove immensely useful later on.

We now concern ourselves with the continuity of the func-
tion

p0(u|z)1−sp1(u|z)s2−D(z||q) (14)

over Pm. Notice that this expression is for a single agent. The
uniform continuity of p0(u|z) and p1(u|z) follows from (13).
Moreover, notice that Pm is compact, and that D(z||q) is also

uniformly continuous on Pm (assuming finite support, i.e.,
m < ∞). Hence, using a series of composition and product
arguments (the composition and product of uniformly contin-
uous functions on a compact set is uniformly continuous), one
can show that (14) is indeed uniformly continuous on Pm for
any s ∈ [0, 1]. This gives us the following.

Lemma 2. For any ϵ > 0, there exists a δ > 0, independent
of γ, such that if α and β satisfy ∥α− β∥2 < δ, then∣∣∣∣∑u p0(u|α)1−sp1(u|α)s2−D(α||q)∑

u p0(u|β)1−sp1(u|β)s2−D(β||q) − 1

∣∣∣∣ < ϵ. (15)

Recall that all agents are identical. Hence, ph(u|z) varies
only according to γ. Since δ does not depend on γ, all agents
satisfy (15) with the same δ. That is, even if agents are using
different rules, the difference in performance in cannot be too
large among the agents. Moreover, δ does not depend on any
point in Pm. It is worth pointing out this fact, since z∗(n)
may change with n. Hence, regardless of how z∗(n) changes,
all agents will still satisfy (15) with the same δ. Furthermore,
for notational simplicity, we write z∗(n) as z∗, as we hope
the dependency on n is clear. Finally, we have the following.

Lemma 3. For any s ∈ [0, 1],

lim
n

1

n
log

∑
u,zn

p0(u|zn)1−sp1(u|zn)sq(zn)

= lim
n

1

n
log

∑
u

p0(u|z∗(n))1−sp1(u|z∗(n))s2−nD(z∗(n)||q).

(16)
where

z∗(n) = arg max
z∈Pm

∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q). (17)

We briefly discuss the major points of the proof for Lemma
3. By the preceding lemma, for any ϵ > 0, ∃δ > 0,
independent of γ, such that whenever ∥zn − z∗(n)∥2 < δ,∣∣∣∣∑u p0(u|zn)1−sp1(u|zn)s2−D(zn||q)∑

u p0(u|z∗)1−sp1(u|z∗)s2−D(z∗||q) − 1

∣∣∣∣ < ϵ (18)

for all agents. Moreover, notice that∑
u p0(u|zn)1−sp1(u|zn)s2−nD(zn||q)∑
u p0(u|z∗)1−sp1(u|z∗)s2−nD(z∗||q) (19)

=

∑
u

[∏
k p0(uk|zn)

]1−s[∏
k p1(uk|zn)

]s ∏
k 2

−D(zn||q)

∑
u

[∏
k p0(uk|z∗)

]1−s[∏
k p1(uk|z∗)

]s ∏
k 2

−D(z∗||q)

(20)

=

∑
u

∏
k p0(uk|zn)1−sp1(uk|zn)s2−D(zn||q)∑

u

∏
k p0(uk|z∗)1−sp1(uk|z∗)s2−D(z∗||q) (21)

=
∏
k

∑
uk
p0(uk|zn)1−sp1(uk|zn)s2−D(zn||q)∑

uk
p0(uk|z∗)1−sp1(uk|z∗)s2−D(z∗||q) . (22)

Then, define the set

T n
δ = {zn ∈ Pn : ∥zn − z∗∥2 < δ} (23)
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Fig. 2. As the parameter s changes, so to does the needed δ. We can alleviate
this issue by simply selecting the smallest such δ over all s ∈ [0, 1]. We must
however, guarantee that this smallest δ is non-zero.

where Pn is the set of all possible type classes for sequences
of length n. Thus, for the types zn ∈ T n

δ , we have

(1−ϵ)n ≤
∑
u p0(u|zn)1−sp1(u|zn)s2−nD(zn||q)∑
u p0(u|z∗)1−sp1(u|z∗)s2−nD(z∗||q) ≤ (1+ϵ)n.

(24)
However, in order for this statement to hold, we must have that
T n
δ be non-empty. Notice that by the density of the rationals

in R, for any δ > 0, and z ∈ Rm, ∃q ∈ Qm, such that
∥q − z∥2 < δ. Moreover, the elements of Pn quantize Pm,
and that this quantization becomes finer with increasing n.
Hence, for some sufficiently large n(δ), the set T n

δ is non-
empty for all n ≥ n(δ). The proof then relies on standard
arguments from the method of types [11].

While the result above serves as a good preliminary result,
there is a weakness. Namely, for a given ϵ, δ can be chosen
independently of the strategy and z∗, but is dependent on s.
Recall that in the proof of the lemma, for a given ϵ, we select
the δ so as to guarantee a desired sense of ”closeness” in the
performance of all types that are within the δ-ball centered
around z∗. However, we must have this δ-ball (T n

δ ) be non-
empty which is true for all n greater that some n(δ) ∈ N.
However, notice that for smaller δ, a larger n(δ) is required.
Since δ depends on s, we see that speed of convergence
depends on s. This argument is illustrated in Fig. 2.

As a result, we cannot take the infimum over s. If we
can select this δ to be independent of the strategy, z∗,
and s, then the same n(δ) can be used for all s, and
we may take all necessary infimums. This can be done by
having the family of functions corresponding to equation
(14) for s ∈ [0, 1] be uniformly equicontinuous2 on Pm.
Unfortunately, for s ∈ [0, 1], we cannot guarantee that this
family of functions is equicontinuous. However, if we restrict
ourselves to s ∈ [ϵ0, 1 − ϵ0] for any ϵ0 > 0, then the
family {p0(u|z)1−sp1(u|z)s : s ∈ [ϵ0, 1 − ϵ0]} is uniformly
equicontinuous on Pm. Hence, taking all appropriate infimums
in 3 gives us Theorem 1.

2A family of functions F from X to R is said to be equicontinuous if
∀x ∈ X , ∀ϵ > 0, ∃δ > 0 such that if |x−y| < δ, |f(x)−f(y)| < ϵ, ∀f ∈
F . F is said to be uniformly equicontinuous if ∀ϵ > 0, ∃δ > 0 such that if
|x− y| < δ, x, y ∈ X , then |f(x)− f(y)| < ϵ, ∀f ∈ F .

While it may seem necessary to search all of Pm for z∗, it
is not hard to show that

D(z∗||q) ≤ − min
s∈[0,1]

1

n
log

∫
y

p0(y|p)1−sp1(y|p)s = C∗(p)

(25)
where C∗(p) is the Chernoff information of the signal model
at p. Hence, z∗ must live in the KL-ball centered at p with
radius C∗(p). We provide the following interpretation. z∗ must
belong to the points in Pm such that their divergence from p
gives us less information, and subsequently a higher error rate,
than had we simply assumed p was the observed type and
tested accordingly. This confirms the intuition that only the
observed types that are close to the true network distribution
p need to be considered.

We highlight a corollary of our results.

Corollary 1.1. For all n ∈ N,

inf
γ∈Γn

inf
s∈[ϵ,1−ϵ]

max
z∈Pm

1

n
log

∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q)

= inf
γ∈Γ

inf
s∈[ϵ,1−ϵ]

max
z∈Pm

log
∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q)

(26)

Proof. Notice that for any γ ∈ Γn, and s ∈ [ϵ, 1 − ϵ]. Then,
for any z ∈ Pm, we have that

1

n
log

∑
u

p0(u|z)1−sp1(u|z)s2−nD(z||q) (27)

=
1

n

∑
k

log
∑
uk

p0(uk|z)1−sp1(uk|z)s2−D(z||q) (28)

With this property, the proof can be completed using tech-
niques such as those in [10], [12].

The above corollary states that, asymptotically, there is no
loss of optimality in having all agents use the same rule. This
considerably simplifies design.

While the assumption that all agents must be identical
can seem limiting, it is worth noting that one can relax the
assumption that all agents are identical to one in which there
is a finite number of agent classes, and all classes satisfy the
conditions given in Assumption 1.

IV. A SPECIFIC SIGNAL MODEL

Herein, we show the utility of the proposed model by
employing a specifid signal model which allows further spec-
ification of our error rates. We shall consider a signal model
motivated by microbial interactions; however, other signal
models are easily adapted. As such, the signals received by
agents are Poisson random variables [13].

Specifically, denote each class of agents by g = 1, 2, .., G,
where G is the total number of classes in the network, and
ng is the total number of members of class g. For simplicity,
assume each class may take one of two states, 0 or 1. Similarly
to above, let hg be the class interference vector for class g.
That is, hg[i] = αg,i, where αg,i captures the interference
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induced on g by class i. Then, for members of class g, the
signal model is given as

y ∼ Poiss(

G∑
i=1

rghg[i]zn[i] + λhg ) (29)

where zn[i] = 1
ni

∑ni

k=1 xk (the ratio of agents that belong to
class i that are in state 1), rg is the ratio of agents that belong
to class g, and λhg is the base rate for class g under hypothesis
h. Then, in order to use our previous results, we must show
for each class g,

inf
γ

inf
s∈[0,1]

min
z∈P|Sg|

∑
u

p0(u|z)1−sp1(u|z)s2−D(z||q) > 0.

(30)
Since D(z||p) is bounded on Sg , we get that 2−D(z||q) > 0
for all z ∈ Sg . Hence, it is sufficient to show that

inf
γ

inf
s∈[0,1]

min
z∈P|Sg|

∑
u

p0(u|z)1−sp1(u|z)s > 0. (31)

To this end, the following result is quite useful.

Lemma 4. For all γ ∈ Γ, s ∈ [0, 1], and z ∈ P |Sg|,∑
u

p0(u|z)1−sp1(u|z)s ≥
∫
y

min{p0(y|z), p1(y|z)} (32)

Observe that this lower bound depends on neither γ nor s.
Hence, it is sufficient to show that

inf
z∈P|Sg|

∫
y

min{p0(y|z), p1(y|z)} > 0. (33)

We turn to our chosen model, of which we obtain∑
u

p0(u|z)1−sp1(u|z)s ≥ exp

{
−

G∑
i=1

rghg[i]−max{λ0g, λ1g}

}
(34)

for all z. Moreover, note that
∑G

i=1 hg[i]z[i] ≤
∑G

i=1 hg[i] <
∞ (it is assumed that 0 ≤ hg[i] <∞ for all i and g. Hence,

inf
γ

inf
s∈[0,1]

min
z∈P|Sg|

∑
u

p0(u|z)1−sp1(u|z)s

≥ exp

{
−

G∑
i=1

rghg[i]−max{λ0g, λ1g}

}
> 0.

(35)

Finally, it remains to be shown that this class of mass functions
satisfies Assumption 1. Recall that thanks to Lemma 1, it
suffices to show that fz −→ fθ whenever z −→ θ. Suppose
z −→ θ. We then have that

λhg,z =

G∑
i=1

hg[i]z[i] + λhg −→
G∑
i=1

hg[i]θ[i] + λhg = λhg,θ.

(36)
For any y, by continuity of xy and e−x, we have

(λhg,z)
y

y!
e−λh

g,z −→
(λhg,θ)

y

y!
e−λh

g,θ . (37)

Hence, this family of signal models satisfies Assumption 1.
Since this signal model obeys all assumptions, and members

of the same class can use the same rule we can restrict our
attention to

1

n

G∑
g=1

ng log
∑
ug

p0(ug|z)1−sp1(ug|z)s2−ngD(z||qg). (38)

Moreover, since members of the same class may use the same
rule, we get that

z∗(n) =

arg max
z∈Pm

∑
g

ng log
∑
ug

p0(ug|z)1−sp1(ug|z)s2−D(z||qg)

(39)

= arg max
z∈Pm

∑
g

ng
n

log
∑
ug

p0(ug|z)1−sp1(ug|z)s2−D(z||qg).

(40)

Now, suppose fix the quantity ng

n = rg . That is, for any
n, we wish to keep the ratios of the populations constant.
Recall that we allow n to be arbitrarily large, and so we can
always get arbitrarily close to any rg . Moreover, since we
assume all exponents are finite under any rule, the difference in
performance between two systems that differ only by at most
a fixed number of agents tends towards zero in the limit of the
network size n. Hence, without loss of asymptotic optimality,
we have that

z∗(n) =

arg max
z∈Pm

∑
g

rg log
∑
ug

p0(ug|z)1−sp1(ug|z)s2−D(z||pq).

(41)
Recall that our signal model given in equation (29) depends
only on the ratio of agents from class g that are in state
1, and not on the actual number itself. Hence, ph(ug|z)
does not depend on n for any h or g. This, combined with
the fact that rg is held fixed, tells us that z∗(n) can be
chosen independently of n. That is, the optimal error exponent
becomes

inf
γ1,...,γg

min
s∈[0,1]

∑
g

rg log
∑
ug

p0(ug|z∗)1−s

p1(ug|z∗)s2−D(z∗||pq).

(42)

This exponent is for a fixed set of ratios rg . The utility of this
expression is that it is a function of only the population ratios.
That is, the size of the network or colony n, does not appear
anywhere in the expression and so one can study the impact of
population ratios on the overall network/colony performance,
without worrying about the size of the colony itself (of course,
provided that one is interested in sufficiently large colonies,
but in microbial applications, this is often the case). Indeed,
if one has control of the population ratios, that one can find
the optimal population ratios for asymptotic performance by
solving

inf
r

inf
γ1,...,γg

min
s∈[0,1]

∑
g

rg log
∑
ug

p0(ug|z∗)1−s

p1(ug|z∗)s2−D(z∗||pq)

(43)
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Fig. 3. System performance as a function of the ratio of class 1 for different
interference vectors. The optimal ratio of class 1 for a given α curve is
indicated by a star.

with r = [r1, r2, ..., rG].
We explore the affect of two populations on the asymptotic

performance with respect to the signal model given in (29).
Specifically, λ0g = 1 for both g = 1, 2, λ11 = 3, λ12 = 5.
The systems differ in how the classes interact with each other,
which is captured by the class interference vectors h1 and
h2. Specifically, h1 = [0, 0], and h2 = [α, 2]. That is, only
class 2 experiences interference. Also, q1(X = 1) = 1

2 and
q2(X = 1) = 9

10 . This specific models captures a case wherein
classes of agents send signals that are detrimental to the other.
Furthermore, the model enables the consideration of a wide
range of phenomena. In particular, our analytical results will
be dependent on the ratios of the populations in each class.
Moreover, notice that λ01 = λ11, and so class 1 can never
distinguish between the two hypotheses. However, although
class 1 is useless for the process of inference, it serves the
purpose of mitigating the harmful effects of class 2 on itself.
In our future work, we will specialize our analysis to specific
multi-species microbial models where signal jamming and
interference are common [14].

In Fig. 3, we plot the function

rD(z∗[1]||q1) + (1− r)
[
D(z∗[2]||q2)−

log
∑
u2

√
p0(u2|z∗)p1(u2|z∗)

] (44)

as a function of the ratio of population one, r, for various α. A
few interesting phenomena are illustrated by Fig. 3 . First, the
optimal ratio r depends the strength of coupling captured by
α. Notice that for α = 0, it is optimal to have no members of
population 1. Indeed, when α = 0, notice that class 1 does not
influence class 2 at all. Hence, the trait that made class 1 useful
in design (the ability to assist class 2) is no longer present,
rendering it useless. Furthermore, even though the parameter
of the Poisson distribution for class 2 depends linearly on α,
the received signal Y , and thus the decisions made by the
agents, exhibit a non-linear dependency. This is shown in Fig.
3 by the fact that the optimal ratio of class 1 is non-monotonic
in α.

V. CONCLUSIONS

In this work, we have studied the problem of decentralized
detection over sensor type-sensitive networks. We have shown
that the asymptotic error rate is dominated by a single distri-
bution. This framework and result allows us to model complex
interactions among agents as well as study the effect of ratios
on network or colony performance. Our future work involves
extending this framework to incorporate communication links
between the agents and the fusion center, as well as analyzing
complex intraspecies interactions in microbial colonies.
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