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Abstract

We study the asymptotic (in time) behavior of positive and sign-changing solutions to nonlin-
ear parabolic problems in the whole space or in the exterior of a ball with Dirichlet boundary
conditions. We show that, under suitable regularity and stability assumptions, solutions are
asymptotically (in time) foliated Schwarz symmetric, i.e., all elements in the associated
omega-limit set are axially symmetric with respect to a common axis passing through the
origin and are nonincreasing in the polar angle. We also obtain symmetry results for solu-
tions of Hénon-type problems, for equilibria (i.e. for solutions of the corresponding elliptic
problem), and for time periodic solutions.
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1 Introduction

In this paper we study the asymptotic behavior of (possibly sign-changing) classical uniformly
bounded solutions of

ur — Au = f(t, |x|, u) (x,1) € ¥ x (0, 00),
u(x,t) =0 (x,1) € 0% x (0, 00), (1.1)
u(x,0) = ug(x) X € X,

where X is either the whole space RY or the complement of a ball R¥\ B (0) in dimension
N > 2 for some R > 0. The initial profile u( and the nonlinearity f satisfy some regularity
and stability assumptions detailed below.

A solution u is said to be asymptotically symmetric if all the elements in the w-limit set
w(u), defined as

w) ={ze Cy(X):z(x) = nhﬁrr;() u(x, t,) for x € ¥ and some t,, — 00}, (1.2)

share some symmetry. Here, Co(X) is the space of continuous functions which decay to
zero at infinity and vanish on 9%, equipped with the supremum norm. Standard parabolic
estimates (see Lemma 2.3) yield that

lim diste, 5 (4, 1), 0 () = 0, (1.3)

and therefore the asymptotic symmetry implies that the solution is more and more symmetric
ast — oo.

We are interested in a particular kind of symmetry sometimes referred to as foliated
Schwarz symmetry. We say that a function u € C(X) is foliated Schwarz symmetric with
respect to some unit vector p € SN ! = {x € RN : |x| = 1}, if u is axially symmetric with
respect to the axis R p and nonincreasing in the polar angle 0 := arccos(lj—| -p) €0, x]. If
u is strictly decreasing in 6, then we say that u is strictly foliated Schwarz symmetric.

From the asymptotic symmetry point of view, the results we present in this paper are, as
far as we know, the first to consider sign-changing solutions in unbounded domains, non-
monotone spatial dependences on the nonlinearity, and unbounded domains different from
RV (we give an account of previously known results below). In this more general setting,
however, we need to impose a geometric assumption on the initial profile u#( to guarantee
that all functions in the w-limit set are foliated Schwarz symmetric.

Before we state our theorems in full generality, we illustrate our results with two paradig-
matic particular cases. First, we exploit the (non-monotone) spatial dependence of the
coefficients of a nonautonomous Hénon-type problem to guarantee a symmetrizing effect
ast — 0o.

Theorem 1.1 Let £ be either RN or RV\B1(0), a, b € C([0, 00)) N L>®([0, o)), and let
n > 0 be such that

infb > 1. (1.4)

t>0

Letp>1,0<a< B, andletu € C> (T x (0,00) NC(T x [0, 00)) N L¥(T x [0, 00))
be a solution of

ur — Au = a(@®)|x|* |ul” " 'u — b@)|x|P u (x,1) € T x (0, 00),
u=20 (x,1) € 0% x (0, 00), (1.5)
u(x,0) =ug(x) X €,
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where ug € L®(X) N C(X) satisfies that

up(x1, x2, ..., xN) > uo(—x1,x2,...,x5) forallx € £ withx; > 0, (16)

up(x1, x2, ..., xN) > uo(—x1,x2,...,xn) forsomex € X with x; > 0.

Then, u is asymptotically foliated Schwarz symmetric, that is, there is p € SN~ such that z
is foliated Schwarz symmetric with respect to p for all z € w(u).

Observe that the direction of the symmetry axis p is not determined by the equation,
which is invariant under rotations, p is determined by u¢. Theorem 1.1 is a consequence of
the more general Theorem 1.3 below.

Our results also cover translationally invariant problems, where we can show that (possibly
sign-changing) solutions are asymptotically signed and radially symmetric with respect to
some center. Unlike for Hénon-type problems, a center of symmetry is not fixed a priori if
the equation is translationally invariant; and therefore a suitable assumption on the initial
condition uq plays a key role to guarantee the asymptotic symmetry. In the next section we
present more general conditions on u(; however, to simplify the presentation and to illustrate
the main ideas, in the next theorem we assume that the supports of the positive and the
negative parts of ug are strictly separated by the cones K := {x = (x1,x") e RV : x; >
land x| < |x; —1|}and K~ := {x = (x1,x) € RY : x; < —1 and |x/| < |x1 + 1]}, see
Fig. 1 below.

Theorem 1.2 Let p > 1 and a,b € C([0,00)) N L*®([0, 00)) such that (1.4) holds. Let
u e CEHRYN x (0,00)) NCRN x [0, 00)) N LPRYN x [0, 00)) be a solution of

u; — Au+b(t)u = a(t) |u|”_1u (x,1) e RN x 0, 00),
u(x, 0) = uo(x) x e RV, (47
where ug € Co(RN)\{0} is such that
(xeRY tugx) >0} c KT, {(xeRY : upx) <0} Cc K. (1.8)
Assume furthermore that u has uniform decay at spatial infinity
lim supu(x,t) =0. (1.9)

[x]=00 50

If 0 ¢ w(u), then u is asymptotically signed and radially symmetric, that is, there is q €
RM\{x; = 0} such that all elements in w(u) are radially symmetric with respect to q and

1. z>0inRN forall z € w(u), ifg € {x; > 0},
2. z<0inRY forall z € w(u), ifg € {x1 <0}

Note that, in this setting, there is an additional complication if O belongs to the w-limit set.
If 0 € w(u), then for a sequence of times ¢, — oo the solution tends uniformly to zero, and
therefore the (symmetrizing) influence from the initial condition weakens and the asymptotic
symmetry of solutions becomes unclear. This is why Theorem 1.2 poses an alternative: either
0 € w(u) or the solution u is asymptotically signed and radially symmetric. Theorem 1.2 is
a consequence of the more general Theorem 1.8 below together with an argument involving
the translational invariance of the equation.

Before we present our more general results in the following section, we mention that
proving foliated Schwarz symmetry simplifies the analysis of solutions of evolution problems
of type (1.1). For example, if u : RY — R is foliated Schwarz symmetric with respect to
p=(1,0,...,0), then u is also axially symmetric with respect to the x1-axis and therefore
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Fig. 1 Geometry of the condition (1.8) in R3, where the support of the positive part of u( (represented by the
dark region on the right) lies inside a cone in the halfspace {x; > 1} and the support of the negative part of
ug (represented by the dark region on the left) is inside a cone in the halfspace {x] < —1}

u only depends on the two variables x; € R and p = |(x2,...,xx5)| > 0. Moreover, (1.1)
can be written in these space variables, which simplifies the implementation of numerical
approximation methods. In the context of a related elliptic problem, numerical methods have
been applied, for example, in [2] to approximate foliated Schwarz symmetric solutions. We
also mention that there are results and techniques for nonlinear second order equations in
two dimensions that are not available in general, see for example [16].

Main Results

In the following, we give a more abstract framework to state general results from which
Theorems 1.1 and 1.2 can be deduced. Our results are complementary to the papers [17,18],
where asymptotic radial symmetry of positive solutions is proved in bounded and unbounded
domains. More specifically, the conclusions in [17,18] are stronger (radial versus foliated
Schwarz symmetry) and there are no geometric assumptions on the initial condition; however,
[17,18] require positivity of solutions and monotone dependence of f on |x| (we remark that
the theorems in [17] do not consider spatial dependences on f, but the proof can be adjusted to
include nonincreasing radial spatial dependences). The main tool in [17,18] is the parabolic
moving plane method (MPM), which is a perturbation technique strongly based on maxi-
mum principles, Harnack inequalities, parabolic regularity, and the construction of suitable
subsolutions. The lack of compactness in unbounded domains is the main difficulty when
trying to characterize the symmetry of solutions of (1.1), and in fact, symmetry-breaking phe-
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nomena in unbounded domains are known, see for example [19]. For other results regarding
reflectional symmetry and monotonicity in bounded domains via MPM, see [6—12].

In this paper we consider sign-changing solutions, spatially non-monotone nonlinearities,
and exterior domains. In this setting, a standard MPM cannot be used; instead, we use a
variant sometimes called rotating plane method (RPM). We explain the differences between
these two techniques below. For similar results in bounded domains for parabolic equations
and systems, we refer to [22-25], and for elliptic problems to [13,26].

We introduce some notation to formulate our results. Recall that ¥ can be the whole space
without a ball of radius R > 0, ¥ = RN\BR(O), or the whole space ¥ = RY_ in which
case we set R = 0. For a vector e € SV~!, we consider the hyperplane H (e) := {x € RV :
x - e = 0} and the half domain X(e) :={x € £ : x - ¢ > 0}. We also write g, : ¥ — X to
denote reflection with respect to H (e), i.e. 0.(x) :=x — 2(x - e)e foreach x € X.

We consider a classical global solution # € C%!(Z x (0, 00)) N C(Z x [0, 00)) of (1.1)
satisfying the following assumptions.

(Uo) (Initial reflectional inequality) The initial profile u belongs to Co(X) and there exists
e € SV~ such that

uo(x) > uo(x®) forall x € (e) and ug # ug o o.
(Uy) (Uniform decay) lim supu(x,t) =0.
[x|=>00 40
(U2) (Uniform boundedness) ||u|| (s x(0,00)) =: M1 < o0.
Define I := [R, 00) = {|x| : x € £}. We now state our first assumption on f.

(fo) (Boundedness at zero) For every r > 0 there is K, > 0 such that

sup | f(t,s,0) < K.
s€[R,r],t>0
Assumption (fy) is used to obtain the equicontinuity of «, see Lemma 2.3.
Next, we impose some standard regularity on f and a crucial sign assumption on f;,
outside a compact set. This last assumption has two important variants (see (f2)" and (f2)
below), and we divide our results accordingly.

Strong Stability Outside Compact Sets

Let A1 denote the principal eigenvalue of the Dirichlet Laplacian on the unit ball B; (0) ¢ RV,
Assume that

(f1)" (Regularity) the nonlinearity f : [0,00) x I x R — R, (t,r,u) — f(t,r,u)is
continuous in 7, r, and locally uniformly Lipschitz in u, that is, for every bounded
interval J/ C I and K > 0 thereis C = C(K, J) > 0 such that

sup |[f@,rou)— ft,r,v)| <Clu —v|.
red,t>0,u,ve[—K,K)

In particular, f, (¢, r, u) exists for almost every « and it is locally bounded.
(f2)" (Strong stability) given M > 0 there are p > R, ¢ > 0, and an interval J C (R, p)

such that
max fult,r,u) < — max |f,(t,r,u)| — L forallt > 0. (1.10)
r>p,uc[—e,e] reJ |J|2

uel—M,M]
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If the bound M, from (U,) is known, then it suffices to suppose that (f>)’ is satisfied
for M = M. Observe that the assumption (f2)" can only be satisfied by nonlinearities
with a spatial dependence. This is one of the novelties in Theorem 1.3 below: we show
that a condition on the spatial dependence of the nonlinearity (given by (1.10)) yields a
symmetrizing effect on the solution for large times.

Our main result in this setting is the following.

Theorem 1.3 Let u € C=1(Z x (0, 00)) N C(Z x [0, 00)) be a classical global solution
of (1.1) satisfying (Uy)-(Uz) and assume that ( fo), (f1)’, and (f2)" hold. Then u is asymptot-
ically foliated Schwarz symmetric, that is, there is p € SN~ such that 7 is foliated Schwarz
symmetric with respect to p for all z € w(u).

Note that the axis of symmetry Rp is fixed for all elements in w(u). A typical situation
where (f>)’ is satisfied is the case of a bounded nonlinearity plus a suitable potential. The
next corollary shows an example.

Corollary 1.4 Lert f satisfy (f1) and be such that

sup | fu(t,r,s)] =: Cp < oo.
r>R,t>0,seR

Letu € C*>1(2 x (0, 00)) N C(Z x [0, 00)) be a classical solution satisfying (Uo)—(Us) of
ur — Au+ V(|xhu = f(t,|x],u) in T x (0, 00),

u(x,0)=0 on d¥ x (0, 00), (1.11)
u(x,0) =ug(x) forx e X,
where V : [0, 00) — R is a continuous function such that
Al
min V > max |V|+4——= + 2C, 1.12)
(p.00) e IVi+dize ’ (

for some p > R and some interval J C [R, p). Then u is asymptotically foliated Schwarz
symmetric.

Observe that (1.12) is always satisfied if V(r) — oo as r — 00, and there is no restriction

2
on the behavior of V in [0, p)\I. We also remark that 0 < A; < % (,/% +1+ 1) , (see

[5]) where N is the dimension.

The proof of Theorem 1.3 is based on an RPM which extends the ideas from the bounded
domain case [18,24] to unbounded domains. Similarly as the MPM, the RPM can be divided
in three parts: the start, the perturbation step, and the characterization of symmetry. The start
relies strongly on assumption (Up), maximum principles, and a suitable linearization of (1.1)
(see Lemma 2.1). The perturbation step is based on maximum principles (Lemma 2.5), Har-
nack inequalities (Lemma 2.4), parabolic regularity (Lemma 2.3), and the construction of
suitable subsolutions (Lemmas 2.2 and 3.6). A crucial aspect in this part is the fine use
of constants which have precise dependences in order to construct and control a suitable
perturbation. This is particularly delicate when considering unbounded domains and nonlin-
earities with a spatial dependence. Here hypothesis (U;), (Us), and (f2)" allow to control
the solution outside large compact sets, and this is essential to compensate for the lack of
compactness in unbounded domains. The last part, the characterization of symmetry, relies on
a geometric characterization of foliated Schwarz symmetry in terms of reflectional inequal-
ities (Lemma 2.6), such characterizations were first presented in [3] in the study of elliptic
variational problems.
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Weak Stability Outside Compact Sets

Next we use a set of assumptions which is closer to that of [17]. Assume that
(f1) (Regularity) f : [0,00) x I x R — R, (¢, r,u) — f(t,r,u) is continuous in 7, r,
continuously differentiable in u, and satisfies that

lim sup |f,(t,r,u)— fu,t,r,v)]=0 for every v € R,

U=V el >0

sup [ fu(t,r,s)| <00 forevery K > 0and J CC I.
reJ,t>0,5€[—K,K]

(f2) (Stability) there are a constants p, y, ¢ > 0 such that
Jult,|x],8) < —y forall |[x| > p,t >0,and s € (—e¢,¢).

Here J CC I means that J is compactly contained in I, that is, J is compact and a
subset of 1. The difference between (f2)" and (f2) is that ¥ > 0 in (f2) can be arbitrarily
small. This allows to consider, for example, a problem as in (1.11), where V is possibly
unbounded from below but V (r,,) = —y for a sequence r,, — oo and some y € (0, 1) small.
This weaker assumption (f») implies, however, a weaker control on the solution at spatial
infinity and forces the RPM to use a different subsolution given by Lemma 3.6, which in turn
requires some knowledge on the elements in w(u#). As a consequence, our main result under
the weaker assumption (f2) describes an alternative.

Theorem 1.5 Assume (fo), (f1), (f2), and letu € CZ(T x (0, 00)) N C(X x [0, 00)) bea
classical global solution of (1.1) satisfying (Uy), (U1), and (U3). Then one of the following
alternatives happen:

1. u is asymptotically foliated Schwarz symmetric with respect to some p € SN™1, that is,
all elements in w(u) are foliated Schwarz symmetric with respect to p. Moreover, all
elements in w(u) are strictly decreasing in the polar angle.

2. There exists 7 € w(u) such that 7 = z o o, with e is in (Up).

The proof of Theorem 1.5 follows an RPM and some ideas from [17]. We emphasize that,
in general, the second alternative in Theorem 1.5 can occur; for example, if ugp > 0, then
[17, Theorem 1.1] implies that all the elements in w (u) are radially symmetric with respect
to some center. Note that the first alternative rules out radial symmetry (with respect to the
origin) because of the monotonicity properties in the polar angle. In Sect. 5.1, we show an
example of a solution u for which w(u) only has nodal strictly foliated Schwarz functions.
This example also shows that the set of solutions satisfying the assumptions of Theorem 1.5
is nonempty. Furthermore, we show in Sect. 5.2 that the symmetry in the second alternative
in Theorem 1.5 may not propagate to the other elements in w («); more precisely, we show
in Sect. 5.2 two examples (one in a bounded domain and one in an unbounded domain)
of problems whose solution # has both radially symmetric and strictly foliated Schwarz
functions in w (#); in particular, this shows that the presence of a radially symmetric function
in w(u) does not imply, in general, that all elements in @ («) are radially symmetric.

Whenever the second alternative happens, this creates an obstacle to start the method,
since one cannot use the subsolution in Lemma 3.6. This kind of obstacles do not appear in a
MPM framework (as in [17]), because the starting step in the method relies on the positivity
of solutions, the uniform decay at spatial infinity, and on the stability of 0 given by assumption
(f2)-

The following are direct corollaries for elliptic and periodic parabolic equations, where
the second alternative can be discarded using the maximum principle.
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Corollary 1.6 Assume (fo)—(f>), and let u € C>'(Z x (0,00)) [ C(Z x [0, 00)) be a
classical bounded periodic solution of (1.1) that satisfies (Uy) and that I l‘im ulx,t) =0
X |—> 00

fort > 0. Then there exists p € SN such that, forallt > 0, u(-,t) is foliated Schwarz
symmetric with respect to p and u is strictly decreasing in the polar angle.

Corollary1.7 Let f : I x R — R, (r,u) — f(r,u) be continuous in r and continuously
differentiable in u, with f, uniformly continuous and bounded with respect to r. Moreover,
assume that therglre constants p,y > 0 such that f,(|x|,0) < —y forall |x| > p. Let
ueCi(x) (N C(X) be a classical uniformly bounded solution of
—Au = f(x|,u) inX, u(x) =0 onox, lim u(x) =0.
[x]—o00

If there is e € SNV such that u(x) > u(o.(x)) in T(e) and u % U o O,, then u is foliated
Schwarz symmetric with respect to some p € S¥N 1 and u is strictly decreasing in the polar
angle.

Similar corollaries can be stated for Theorem 1.3. In fact, for elliptic and periodic parabolic
problems a slightly simpler proof can be done, where assumption ( f1) can be weakened (as
in [24], since Lemma 3.6 is not needed).

Under a more “geometrically stable” assumption on 1, we can prove thatif some z € w (u)
has H (e) as symmetry hyperplane, then z is radial. This assumption is the following:

(Up)" The initial profile uo belongs to Co(X) and there exists an open set U C SN=1 such that
uy > upgoo, in X(e)foralle € U.

Theorem 1.8 Assume the same hypothesis as in Theorem 1.5 but with (Up)' instead of (Up).
Then, only one of the following alternatives happen:

1. u is asymptotically foliated Schwarz symmetric with respect to some p € SN, i.e. all
elements in w (u) are strictly foliated Schwarz symmetric with respect to p; that is, all the
elements in w(u) are axially symmetric and strictly decreasing in the polar angle.

2. There exists at least one z € w(u) such that z is radially symmetric with respect to the
origin.

Functions that satisfy (Up)’ are, for example, positive functions with support in a one-sided

cone, or sign changing functions with support in two (disjoint) cones being positive in one side

and negative in the other (see Fig. 2 and Sect. 5.1). The proof of Theorem 1.8 uses Theorem 1.5

plus some geometric results that characterize the rigidity that reflectional inequalities impose

on a function (see Lemmas 2.10 and 2.7 ).

Finally, we remark that Theorem 1.5 can be extended to the quasilinear setting as in
[17]. The main obstacle for a generalization to fully nonlinear problems is, as noted in [17,
Sect. 4], the generalization of the subsolution given in Lemma 3.6. However, Theorem 1.3
can be extended to fully nonlinear problems as in the bounded domain case [18,24]. Our
results consider only the semilinear setting for simplicity and to make the main ideas more
transparent.

On the Uniform Decay Assumption
In Theorem 1.1, the assumption (Uy) is not stated as a hypothesis, since it can be obtained
using the particular form of the equation and comparison principles with suitable supersolu-

tions. In this part of the introduction, we discuss some other conditions that can be used to
guarantee that (U;) holds.
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Fig.2 Example of a function u( satisfying (Up)’

In [4, Corollary 1.2] it is proved that (Uy) is satisfied if the initial condition has compact
support and the nonlinearity does not depend on |x|. Following the same idea, we give
below sufficient conditions to achieve the uniform decay assumption (U1) in settings where
nonradial solutions (and nonradial limit profiles) could be expected, for example, if the
nonlinearity f : [0, c0) x [0, c0) x R — R is such that, for some Ry > 0,

f@,ri,u) < f(t,rp,u), forall0 <ry <Ry <rpor Ry <rj <r, (1.13)

and all 7 > 0, u € R. In particular, f can be non-monotone inside a ball of radius Rg. Then,
we have the following lemmas.

Lemma 1.9 Ler ¥ = RY and u a solution of (1.1), assume that 0, f(t,r, u) is bounded
uniformly in t and r, and that f(t,r,u) satisfies (1.13). If

1. ug >0,

2. ug has compact support,

3o NuC, Dllpeo@yy < C and [|lu(-, Hllpawyy < C for some C > 0, 1 < g < 00 and all
t >0,

then u satisfies (Uy).

Lemma1.10 Let ¥ = RY and assume dy f(t,r,u) is bounded uniformly in t and r, and
that f(t,r,u) satisfies (1.13). If

1. ug has compact support,
2. the problems

v —Av=ft,|x],v) inRY x(0,00), v(x,0)=uj(x) forxeRN(1.14)
where ug and ug, denote the positive and negative part of ug respectively, have global
solutions vy and vy such that ||v; (-, t)”Loo(RN) < C and ||v; (-, t)”Lq(RN) < C for some

C>0,1<g<ooandallt >0,i=1,2,

then any solution u of (1.1) satisfies (Uy).
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Organization of the Paper

The paper is organized as follows. In Sect. 2 we collect several useful results regarding a
linearization of (1.1), regularity, Harnack inequalities, maximum principles, the existence
of suitable explicit subsolutions, and some geometric lemmas which are used in the char-
acterization of symmetry. Section 3 is devoted to the proofs of our main symmetry results
including Theorems 1.1 and 1.2. The proofs of Lemmas 1.9 and 1.10 can be found in Sect. 4.
Finally, in Sect. 5, we include a series of examples to show some of the different possible
behaviors of the elements in the w-limit set; in particular, we exhibit an e-limit set with
only strictly foliated Schwarz symmetric functions and an w-limit set with a strictly foliated
Schwarz symmetric function and a radially symmetric element.

2 Auxiliary Lemmas
2.1 Linearization

Let R > 0 be such that
¥ = RV\Bg, 2.1)

where Bg = Br(0) = {x € RY : |x| < R} is the open ball of radius R centered at the origin
if R > 0 and By := ¢, that is, RV \By = RN, Using the notation given in the introduction,
define ¥ := X(ey), where e; = (1,0, ...,0).
Throughout this section we assume that f satisfies (f1)’, which follows from (f}), and
(f2) which follows from ( f2)’. Let u be a classical solution of (1.1) satisfying (U1) and (U>).
Fixe e SV landletT, : & — Y (e) be a rotation that maps e to e. Then,

We(x, 1) :=u(Te(x), 1) — u(oe(Le(x)), 1) for (x,1) € 1 x [0, 00),
is a classical solution of
0w, — Aw, — c(x, Hw, =0 in 31 x (0, 00),
We(x, 1) =0 on dX; x (0,00), (2.2)
we(x, 0) = ug(e(x)) —ug(oe(Te(x)))  forx € Xy,

satisfying (U1) and (U,) with u replaced by w,, where

1
(xt) = / B f (1, 1x], su(Te(), 1) + (1 = )u(0e(Te()), H)ds
0

is well defined by (U) and (f1)’. Moreover, since u is uniformly bounded in time and the
Lipschitz constant of f is time independent, for every bounded subset U C X, there is
Bu > 0 (independent of e) such that

sup lc“(x, )] < Bu - (2.3)
(x,1)eU x[0,00)

Moreover, by (U1), (f1), and (f2) (or (Uy), (f1)’, and (f2)’), there exists p; > p (see
(f2) or (f>2) for the definition of p) such that

sup (x, 1) < —y, (2.4)
(x,0)€(Z1\Bp; (0))x[0,00)
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where y is given by (f2) or

A
y:= max |f,(t,r,u)|+ IRALINT (f>) is assumed, (2.5)
rel, [J]?
ue[—M,M]

with M} as in (U,) and J as in (f2)’. Observe that y and p; are independent of e € SN-1

For the proofs of our main results we need c¢ to be negative not only far from the origin,
but also near d 2. This is achieved by a modification of w, using appropriate subsolutions,
as in [1,17,18]; however, since we only consider radial domains, the proof is simpler and
more explicit. We use y; to denote the characteristic function of an interval J C R.

Lemma2.1 Foreverye € SN, let w, be a classical solution of (2.2) with ¢¢ satisfying (2.3)
and (2.4). For py asin (2.4) and R > O, fix § > 0 such that

1 R
§ < min , , (2.6)
y + 'BBM © SRA+2(N-—-1)

where ,33/71 ) s given by (2.3). If R = 0, we take

1
<— 2.7
Y + BB,
Then, there are measurable functions l;l-, ¢, and a strong solution W, of
N
(ie)r — Aide — Y bi(x)(e)y; — 6(x, YD, =0 in Ty x (0, 00), 08)

i=1
We =0 ondZL; x (0, 00),

such that, for each x € Z| the sign of we(x) is the same as the sign of w.(x) and for any
subset Q C X1 x (0, 00),

| W
Z||we||L°°(Q) < Nwellee(gy < llWellzoe(g)- (2.9)
Furthermore, for x € X1 and R as in (2.1),

1b1(x1)| < 4x10.51(x¥1) + 4x1R. R451(1X]),
1bi (x1)] < 4x1r,R+51(1X),

o 2
e < e’ + 5 X10.8101) + 8x10.6/ (XD X1R. R+51 (1]) (2.10)
2 2AN-1)
(g + T) XiR.R+81(1x]).

where all terms containing R are dropped if R = 0. In addition,
¢ <—y in ]RN\G, G:={x e X :dist(x,0X1) > §and |x| < p1}. (2.11)

Proof Let R > Obeasin (2.1), 8 > 0 be as in (2.6), and recall that I := [R, 00).
For R > 0leth : [0,00) — Rand g : [R, c0) — R be given by

ht—(—l t—62+8+1> t+<8+1> t
(1) = E( ) 5 5 X[O,B]() E 5 X(S,oo]()»

1 ) 1 ) 1
glr) = (—% (r—R—8%+ 5 + 5) XIR,R+81(r) + <§ + 5) X(R+5,001(T) -
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If R = 0, we keep the definition of s and set g = % Observe that 4 and g are differentiable,
non-decreasing, concave, piecewise C? functions with

<g<l and <h<l1 in Xy, (2.12)

N —
N —

and

W' ()] < x10,51() . 18" (D] < xR, R+51(F)
B 1 B 1 (2.13)
[h"(®)] < EX[O,S](I), lg" (| = EX[R,RJrB](V)«
Then, if R > 0 a direct calculation shows that
We (X, 1)
g(xDh(xy)’
belongs to C2(X(\S), where S := {x : x; = 8 or |x| = R + 8} and w, satisfies (2.8) outside
of X1\S with

We(x, 1) := (x,1) € 1 x (0, 00),

M0 Lol ay g — 1,

bi) =00, s
280 e it #1,
” , , " + N—-1_/

() = R'x) W) g (xh x| 8 (XD 4 T g (xD) .
h(x1) h(x1) g(lx]) |x] g(xD

Note that |[x| > R > 0 and denominators do not vanish. If R = 0, W, satisfies (2.8) and
b;, ¢¢ as above with all terms containing g’ or g” removed. In addition, 1, has bounded
second derivatives on X1\ S and, in particular, w, belongs to W1*°°(El ). Thus, W, is a strong
solution of (2.8).

By (2.12), we have that (2.9) holds and, by using (2.13) and ||xx"|‘ < 1, we obtain that (2.10)
holds. Furthermore, since R + 8 < p1, ¢’ = ¢” = 0on [p}, 00) and & is concave, it follows
that

¢ <—y if |x|>p;. (2.14)
If x;1 < 6 and |x| < p1, then by (2.6)

» 1 20N —=1) 1 .
< =<+ 8+ ———— — < ) xir.r+81(Ix]) + sup || < —y, (2.15)
8 R 8 Ixl<pi

where, as above, we drop the term with [z r+5)(|x]) if R = 0. Finally, in the case R > 0,
if x; > § and |x| € (R, R + §), we have, by (2.6), that
2IN—-1) 1
A
and (2.11) follows. o

¢ <8 < -y (2.16)

Next, using ( f2)’, we construct a suitable subsolution inside G. Let G be as in (2.11) and
y asin (2.5). Let J = (a, b) be the interval given by (f>)’ for M = M| (with M as in (U3))
and for some R <a < b < p.Lete; = (1,0,...,0) e RV,
Lemma22 Let0 <1 < T <00, r = ‘é—l, B = Br(b%el) C G, and let n denote the
positive principal eigenfunction of the Laplacian with Dirichlet boundary conditions on the
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unit ball By(0). Then ¢(x, 1) := e~V n(*=*2) is a (strict) subsolution of (2.8) in B x (v, T),
namely,

N
@ <Ap+Y bigy +&¢ inBx(.T), ¢=00ndBx(z,T), (2.17)
i=1

where l;,- and ¢¢ are defined in the proof of Lemma 2.1.
Proof Since ¢¢ = ¢¢ and l;f = 01in G it suffices to verify that
o <Ap+c®p inBx(t,T), ¢=0o0ndB x (r,T). (2.18)
However, by the definition, ¢(x) = 0 on dB and, in addition, from (2.5) (with J = {|x| :
x € B}) we have that
(p,—A(p—ce<p:<—y+%+ce>go<O in B x (r,T). (2.19)

[}

2.2 Regularity of Solutions

In this section we show that u is locally equicontinuous. We extend the proof of [23, Lemma
3.1] to unbounded domains. Fix o € (0, 1] and a domain Q CcRN.Set 0 :=Q x (z,T) for

0 <t < T. Following [21, p. 4] we define CH'“ (Q) {f :1fl14a;0 < o0}, where
{ [f(x, 1) = f(y,9)]
= yle 4 1r — s

|fhitaso =Y sup|DEFI+ Y D fluco,
1Bl<t € IBI=1

[fle;0 = sup

(0, (vs) € Q. (x0) # (y,S)},
(2.20)

and Df denotes spatial derivatives of order 8 € N(I)V .

Lemma2.3 Letu bea classzcal solution of (1.1) and assume that (Uy), (Uz), (fo), and (f1)
or (f1) hold. If y = N+3 then for every Ry > R there is C>0 satisfying

|u|1+y R, OPSx[s,5+2] = <C foralls > 2.

Proof Let R > Obeasin(2.1), M} > Oasin (Uz), Kg, asin (fp),and C = C(My, [R, R1])
as in (f1)’ (or implicitly given by (f1)). Then |u| < M; in £ x (0, co) and

| fult,r,v)| < C fort >0, r € [R,R], ve[—M;, M{].

Furthermore, f(t,7,0) < Kg, fort > Oandr € [R, R;]. Fix s > 2. Then, u satisfies that

1
luy — Au| = |f(, x|, u)| = / O f (. x|, su)ds u+ f(t.1x],0)| < MiC + Kg, =: C,
0

for (x,1) € Q := (Bg,(0) N X) x (s, s + 2). Recall that, if R > 0, then u = 0 on 9 B¢ (0).
Then, by [14, Theorem 7.22 or Theorem 7.30], there is C» = C2(R, C, My, Kg,, N, R;) >0
such that ||D2M||LN+3(Q)+||M1||LN+3(Q) < (3. By astandard interpolation argument (see [ 14,
Lemma 7.20]), ||u||W21 (0 = < Cj for some constant C3 = C3(R, C, My, Kg,, N, Ry) > 0.

By Sobolev embeddmgs (see, for example, [21, embedding (1.2)] and the references therein),
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we then have that u € CH};’(H};)/Z(Q) for y = N¥+3 € (0,1), and there is a constant
Cq4 = C4(R,C, My, KRI, N, R;) > 0 such that |u|1+};;Q < C4||M||W§l3(Q) < C4C3 =: C.
O

From Lemma 2.3 and the uniform decay assumption (Uy) it follows that w («) (as defined
in (1.2)) is a nonempty and compact set in Co(X) and that (1.3) holds.

2.3 Estimates of Solutions of Linear Equations

In this subsection we prove bounds for general linear parabolic equations needed for the
symmetry results. Fix a domain Q C RN (possibly unbounded), 0 < 7 < T < o0, and

denote Q := Q2 x (t,T).Fori =1,..., N, letb;,c: Q — R be measurable functions such
that, for every bounded subdomain w C €2, there is 8, > 0 such that
il le] < B  nwx(z,T). 2.21)

We formulate the following Harnack inequality for sign-changing solutions proved in
[18]. Letv™ := —min{0, v} > 0 and v+ := max{0, v} > 0 denote the negative and positive
parts of v, respectively. We define dp Q to be the parabolic boundary of a cylindrical domain
QO =U x (z,T), thatis, dpQ = (3U x (z, T)) | JU x {1}).

Lemma2.4 [18, Lemma 3.4] Let Q be a bounded domain. Givend > 0,0 > 0 there is a
positive constant k determined only by N, diam(£2), Bq, d, and 6 with the following property.
If D, U are domains in Q with D CC U, dist(D, dU) > d, and v is a solution of

N

v =Av+ Y b Doy +ex. v inU x (1.7 +40),

i=1

then
9 —_

. 4
inf v(x, 1) > k|| Lo (Dx (r40,7420)) — €™ sup v,
Dx(t+30,t+460) ap (U x(t,7+40))

where m = sup  c.
U x(t,7+46)
The next lemma is the weak maximum principle in unbounded domains, see, for example,
[17, Lemma 2.1], [14,20].
Lemma2.5 Let U C RN be a (possibly unbounded) domain and let v be such that

N
vy > Av + Zbi(x, Doy +cx, v inU x (0, 00)

i=1

with
m:= sup c(x,t) <00 (2.22)
U x(0,00)
and
lim wv(x,t) =0  forallt > 0. (2.23)

|x|—o00,xeU
Then, for each (x,t) € U x (0, 00) one has

e "My (x, 1) < sup e v (y, s).
(y,8)€3, (U x(0,00))
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Note that assumption (2.23) can be weakened, see for example [21, Proposition 52.4].

2.4 GeometricLemmas

We use the following geometric characterization of foliated Schwarz symmetry proved in
[24]. Recall that, fore € S¥—!, Z(e) := {xeX:x-e>0land o, (x) :=x —2(x - e)e.

Proposition 2.6 [24, Proposition 3.3] Let U be a set of continuous functions defined on a
radial domain ¥ C RN, N > 2 such that

M:={ee SV | z2(x) > z(0.(x)) forall x € $(e) and z € U} # 0.

Fix & € M and assume that for any two dimensional subspaces P C RN containing & there
exist p| # p2 in a connected component of M N P such that z = z o op, and z = z 0 0,
for every z € U. Then, there exists p € SN~ such that every z € U is foliated Schwarz
symmetric with respect to p.

Next, we show the following lemma, which is used to show Theorem 1.8.
Lemma2.7 Let U C SN=! be an open set, & C RY a radial domain and z € C(X). If

z2(x) > z(0.(x)) forall x € ¥(e)ande € U, (2.24)
zZ=zo0p for some p € U, (2.25)

then z is radially symmetric.
The proof of Lemma 2.7 is based on the following results.

Lemma 2.8 [24,Lemma3.1] Letv € C(R) be an even and 2w -periodic function, and denote
R:={neR:v2n—¢) =v(p) foreach ¢ € R} the set of points of reflectional symmetry
of v. If for some n € R,

vin+ @) >v(n—¢) forallp € [0, n]and

v(n + o) > v(n — o) for some go € (0, 7), (220
then R = {nm : n € Z}.
Lemma 2.9 Letv € C(R) be a 2r periodic function. If
i) (symmetry)
v(@) =v(—0) forall6 e R, (2.27)
(ii) (local reflectional inequalities) There is € > 0 such that
v(n+0)=>=v(n—0) forallne (0,¢), 6 € (0,7), (2.28)
then v is nondecreasing in (0, ) and also
vin+0)=>=v(n—0) foralln,6 € (0, ). (2.29)

Moreover, if the inequality in (2.28) is strict, then (2.29) is also strict and v is strictly
increasing in (0, 7).
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Fig.3 Example of a 2 -periodic
function v with reflectional v(0)
symmetry at 0 and satisfying the
reflectional inequalities (2.26)
and (2.29)

Proof 1If (2.28) holds with equality for all € (0, ¢) and 6 € (0, i), then v is constant and
the conclusion follows trivially. Now, assume that there is 79 € (0, ¢) and 6y € (0, ) such
that (2.28) is strict, then Lemma 2.8 implies that 0 and 7 are points of reflectional symmetry
of v, that is, v(0) = v(—0) = v(2w — ) for each 6.

Clearly (2.28) implies that v is non-decreasing on (0, 7). Indeed, fix any 6, 6, € (0, )
such thata := 0, — 61 € (0,¢). Setn :=«/2 € (0,¢) and ¢ := 01 + /2 € (0, ). Then,
0> = n + ¢o and —0; = n — ¢o, and therefore by (2.28)

v(02) = v(n + ¢o) = v(n — o) = v(=01) = v(Oh). (2.30)

Moreover, if the inequality in (2.28) is strict then v is strictly increasing.

To prove (2.29), fix n,0 € (0, ) and since v is even, it suffices to prove v(n + 0) >
v(ln—0).Ifn+06 <m, thenn+6 > |n — 0] and (2.29) follows from the monotonicity of
v.If n4+6 > m,thenw > 27 — (n +60) > |0 — n| and, by the symmetry and monotonicity
ofv,v(n+60) =v2r — (n+6)) > v(|6 — nl), as required. The case with strict inequality
follows analogously. o

Fore € SN—! let
Ze(x) == 2(Te(x)) — z(0.(Te(x))), x € 1,z € w(u), (2.31)

where I", is a rotation that maps e; to e (introduced in Sect. 2.1). Recall £| := {x € ¥ :
X1 > 0}

Lemma2.10 Letz € C(X), € € (0, ), and let
e(n) == (cosn,sinn,0,...,0) € RN forany n € (0, 2m).
If ze0) = 0 in Xy and zey) > 0in Xy for all n € (0, &) then
Zeqy >0 inXy foralln e (0,m), Zeqny <0 inXy foralln e (—m,0).(2.32)

Proof For every x € RN (N > 2) we write x = (x1, x2, x") for some x’ € RVY~2, Fix
x €RN=2 ;> 0,and let v : (0, 27) — R be given by v(0) := z(r sin6, r cos 0, x'). With
this notation, (2.31) can be rewritten for x; = r sinf and x, = r cos 6 as

Ze(p (X) = v(@ + 1) —v(n —0). (2.33)

Note that we are not using the usual polar coordinates. Since z.) = 0 in Xy and zeqy) > 0
in ¥ for all n € (0, ¢) we have that v(6) = v(—0) for 8 € (0, 7) and v(n + 6) > v(n — )
forall @ € (0,7) and n € (0, ¢). By Lemma 2.9 we have that v(n + 6) > v(n — ) for
0, n € (0, ). Using the symmetry with respect to 0 and the (2r)-periodicity we also have
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that v(n — ) > v(n+ ) for @ € (0, ) and 5 € (—mx, 0). Since this holds for x’ € RVN—2
and r > 0 arbitrary we obtain that (2.32) holds. ]

We are ready to show Lemma 2.7.

Proofof Lemma 2.7 Let p € U be asin (2.25), g € SN""\{p} and P := span{q, p}. Without

loss of generality we assume that p = (1,0, ...,0) and P := {(x1,x2,0,...,0) | x1,x2 €
R}. Using polar coordinates, let v(r, ¢, x') = z(rcosg, rsing,x’) = z(x) with x’ =
(x3,...,xn) € RV2 (x;,x0,x) =x € X, peR, andr = |x|. Fixr > 0, x’ € RVN—2

and define v : R — R, v(p) := 9(r ¢, x). Since U is open, there exists ¢ > 0 such that
v(p) = v(—g@) forp € Rand v(n + ¢) > v(n — ¢) forn € (—¢, ¢) and ¢ € (0, ). Then,
by Lemma 2.9 we have that v(n + ¢) > v(n — ¢) forn € (—e&, ), ¢ € (0, ), which yields
that v(n + ¢) = v(n — @) for n € (—¢,0), ¢ € (0, ), and consequently v is constant, that
is,  does not depend in ¢. Since » > 0 and x’ € R¥~2 were arbitrary, we have z = z o o,
forall e € P, and in particular z = z o 0. Since ¢ was chosen arbitrarily in SV ~! the radial
symmetry follows. O

3 Symmetry Results
3.1 Strong Stability Outside Compact Sets

In this section we assume that (f), (f1)’, (f2)’ hold and u is a classical solution of (1.1)
satisfying (Up)—(Us). We recall some previously used notation. Let & = R¥\ B, where
Br = {x e RN : |x| < R}if R > 0and By := ¥; furthermore, as defined in the introduction,
Y1 =2X(e1) ={x € X :x-e >0},withe; =(1,0,...,0) € RN.Lethegivenby(Z.ll)
and U be a bounded domain such that

G CccUccz. 3.1
If J = (a, b) is the interval given in (1.10), by (f2)’, then
b
B=Bia (a + el> ccG 32)
2

asin Lenzma 2.2,see Fig.4.Fore € SN=1 et W, be as in Lemma 2.1 and note that, by (2.10),
there is By > 0 (independent of ¢) such that

16°] + 1bil < By inU x (0, 00). 3.3)
The next proposition extends the strategy in [18, Theorem 3.7] to unbounded domains.

Proposition 3.1 Let y be asin(2.5). There is ;v > 0 such that, ifthereist > Qande € sN-1
with

we > 0, inG x[t,t+1),
||ﬁ}g_(7 T)||L°°(E]\G) =< M||we||L°°(GX(r+%,r+%))’ 349
then we > 0in G X [z, 00) and lim;_, lw, (-, )||L<z;) =0.

Proof For 0 = L, D = Basin (3.2), 2 = G, and U as in (3.1), By as in (3.3), and y as
in (2.5), let « > 0 be given by Lemma 2.4, and let 1 > 0 be such that
K2

<K
+1

. (3.5)
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Fig.4 The set G with
¥ = R?\ By and the ball

B:Bb%a(#el)

We argue by contradiction. Assume (by the maximum principle) that there is 7 > t + 1 such

that
We > 0 inG x [t,T),
We(x*, T) =0 for some x* € 9G. (3.6)
Define ro = [|(W.)~(, T)llz=(x,\6)- By Lemma 2.1, m := sup ¢¢ < —y and
21\G % (t,00)
W, > 01in 9(X1\G) x [z, T]. Then, by Lemma 2.5,

(W)™ G, Ol = We)™ ¢, Oz \6) 3.7
<™ sup e " (W) ()
(Swy)€3p(zl\G><[T,TJ)
= "W)™ Dllze o) (3.8)
<o, 3.9)

for all + € [z, T). Hence, (3.4), (3.5), (3.9), and Lemma 2.4 imply, for (x,?) € G x[t+
30, T + 40], that
e (x, 1) = k||(De) Tl Lo Gx(rrorr20y — €™ sup b,
dp(Ux(t,7+40))

A~ K
> i ||(We) Tl %0 (G x (r-40, 7420y — € o > ro(; — 1) =r>0. (3.10)

Furthermore, by Lemma 2.2, there is ¢(x, 1) = e~ "'n(*=2) satisfying (2.17) (with xo =
“tbey). By (3.10),
We > 0 inG x [t+40,T),

=0 ondB x [t +46,T),
o(x, T +40)

We(x, T +40) > 1 forx € B.
‘ lloC-. T +460)[|L~(B)
Then, by comparison,
X—X0
Bo(x. 1) > 1 p(x, 1) > pie Y -T=40) n ()
[lo(-, T +40)||L>(B) [171|LoB)
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forx € Bandt € [t + 46, T]. Using Lemma 2.4 in [t + 46, T] and (3.8),

N N Amo A

We(x, T) > k|| Wellroo(Gx(T=30,T—20)) — € sup w,
p (U x(T—46,T))

> Krle—y(T—r—40) _ e4mHem(T—r—49)r0

= roe—V(T—r—40) <K<£ _ 1) _ e4m98(m+y)(T—r—40)>
m

2
K
> roe_V(T_T_40)(— — K — l) >0,
m

for all x € G, which contradicts (3.6). Therefore, W, > 0in G x [, 00), and consequently
by letting + — oo in (3.8), we have that lim,_, o ||, (-, 1)||>(x,) = 0. O

Fore € SV—1 let z, be as in (2.31) and define
M:={eeS" ' : z,(x) >0in X forall z € w)}. (3.11)

We are ready to show Theorem 1.3 via a rotating-plane method. We split the proof in
several lemmas.

Lemma3.2 Lete € SN be as in (Uy) and P C RN be a two dimensional subspace such
thate € P. Then, there exists ¢ > O such thate' € M foralle’ € SN™1 () P with |e' —e| < ¢.

Proof Due to rotational invariance, we can assume without loss of generality that e = e =
(1,0,...,0)and P = {(x1,0,...,0,xy) | x1, xy € R}. By Lemma 2.5,

e Mw (x,1) < sup e ™ w, (y,s) =supw, (-,0) =0,
(y,8)€dp (21 x(0,00)) Z

for all (x, 1) in X; x (0, 00) and with m := SUPy, x(0,00) c¢®. Then w, > 0in X; x (0, 00)

and, since w, (x, 0) s 0, the strong maximum principle (see, for example, [20, Theorem 5

on p. 173 and Remark 2 on p. 175]) implies that

we(x, 1) >0 in X; x (0, 00). (3.12)

By (3.12), there is > 0 such that @, > 21 > 0in G x [I,2], where W, is as in
Lemma 2.1. Then, by continuity and (U;), there exists & > 0 such that any ¢’ € SN"!1 | P
with |e — €’| < ¢ satisfies that

e >0 >0 inGx[1,2], [0,z x1.2) < un < pllbe |26 x(1,2)):

where p is given by Proposition 3.1. Then, by Proposition 3.1, lim;_, o ||1I)e_,(~, Loz =
0, thatis, ¢’ € M. O

Lemma3.3 Lete € Mandlet P C RN be a two dimensional subspace with e € P. If there
is 7 € w(u) suchthatZ, # 0, then there exists ¢ > 0 suchthate’ € M foralle’ e SN P
with e — €| < e.

Proof Recall that U and G were already defined at the beginning of the section. As
above, we can assume without loss of generality that ¢ = ¢; = (1,0,...,0) and
P ={(x1,0,...,0,xy) | x1, xy € R} and we use the same notation as in Lemma 3.2.

Since, by assumption, z, # 0, there is « > 0 and xo € X such that Z,(x¢) > 4« > 0.
Without loss of generality we can assume that xo € G = G(p1, §) (making p; bigger or &
smaller if necessary). Fix {#,}7>,; C R so that nll)ngo u(x, t,) = z(x) forall x e RV
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There exists N € N such that
We (X0, 1) > o foralln > N.

Since z, > 0in X forall z € w(u) andtlim diste, myy (@(u), u(-, 1)) = 0, thereis T > 0
—00
such that

A KO _4p
[lw, (x, |z < MTe v forallt > T,

where x = « (N, diam(U), 3(/, dist(U, G), 1) > 0, is given by Lemma 2.4, t as in Propo-
sition 3.1, and By as in (3.3).
Set 7 :=ty, — 1, withngp > AN and t,,, > T. Then, by Lemma 2.4,

. A A 4 A
inf o (x, 1) = k|| | Lo (Dx(ri1r42) — € sup  w,,
Gx(t43,7+4) 3p (U x(7,7+4))
Ko Ko
ZKW—L > —=n1>0.
8 2

Then, by continuity and uniform decay (see (U})), there is ¢ > 0 such that, for all ¢’ €
SN P with |e — €| < &,

e (x, 1) — e (. )| Loy < % forall 7 € [z, T + 4].

Hence, if T := 17 + 3,
Ui

inf Wy (x,1) > = >0,
Dx(%,741) 2
[, (x, D)l|Leo(z)) < W, (x, T) =, (x, D)lree(s)) + 10, (x, D|Los))
ML PKE 4p pm pn 7
< —+—e <+ =u=
4 T3 4 Ty T

< ulldf (x, Dl Lo (Dx (7,741

In particular, the hypotheses of Proposition 3.1 are satisfied, and we have that lim, . ||,
(x, )|l (=) = 0, which yields the result. ]

Proof of Theorem 1.3 Lete € S¥~! be as in (Up). Then, by Lemma 3.2, there is some £ > 0
such that

edeM forallle —e| <e. (3.13)

Let P be any 2D-plane that contains e and the origin. Without loss of generality, we may
assume thate = (1,0, ...,0)and P = {x = (x1,x2,0,...,0) | x1, x2 € R}. Define

eg := (cos(0), sin(h), 0, ...,0),
Wo (X, 1) 1= We, (x,1), (x,1) € X1 x (0, 00),
29 (x) 1= z¢y (x), x € Xy,
for6 € [—m, 7], and
O :=sup{f €[0,7) | ey, € MTforall0 < ¢ <0},
©; :=inf{f € (—m,0] | ey € Mforallf < ¢ < 0}.

We show that the assumptions of Proposition 2.6 are satisfied. Clearly eg,, e9, € MNP
and, by Lemma 3.3, necessarily zg, = z@, = 0 forall z € w(u). Then, H (eg,) and H (e@,)
are symmetry hyperplanes for all elements in w () and, by (3.13), ®; < ;.
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If @ # —7 or ©1 # 7, then ep, # e, and e, € {e € S¥~1 | z, > 0in T} for all
¢ € (02, ©1) by the definition of M. In this case, let p; = eg, and pr = ep,.

If®; = —rand ®; = m,then(sincez, = —z_e)wehavethatzew = Oforally € (—m, )
and for all z € w(u). In this case, let p1 = ez2 and pr = ez 2.

Since P is arbitrarily chosen, the claim now follows from Proposition 2.6 using these
choices of p; and p». O

Proof of Theorem 1.1 Let X, n, p, a, b, a, and B as in the statement. We begin by showing
that u satisfies the uniform decay condition (U7) in £ x (1, 00). Let 0 < y < min{g, 1},

1 1
2 v (2 1\ P
r| > max { (;(V2 + 1)) , (;”a”oo”u”go 1) , 1} , (3.14)

and v(x, 1) == |[ullece”l ~*"T. Then, v, — Av + (b(®)|x|P — a(@)|x|*|ulP~Yv = c(x, ),
where, for (x, 1) € X\B, (0) x (0, 1),

ct, x) 1= =[xV =y x| 2+ yt(y + N = 2)x "2+ b(0)|x|P — a(@)]x]*|ul?!
-1
o el (- 2L alleollulis
= r{3+2(1—v) rf—y rf—a
2 p—1
+1 a u
Zmﬁn_y& _nnﬂuw o,
r 4 r

by (3.14). Note that

Y
ri —x|Vt

lu(t, )| < llulloo < llulloce =v(x, 1) in(B,(0)NX) x[0,1]. (3.15)

As aconsequence, 7 := v—u satisfies that 7, — AT+ b(@) x| —a () |x|*|u|P"HT=cv > 0
in (X\ By, (0)) x (0, 1] and ¥ > 0 on the parabolic boundary dp (X \B,, (0) x (0, 1)). Then,
by the maximum principle [21, Proposition 52.4], v > 0 in £\ B,, (0) x (0, 1), and by (3.15),
¥>0in T x [0, 1]. Arguing similarly with ¥ = v + u yields that

lu(x, )] < ullocel e in T x [0, 1]. (3.16)

For (x, 1) € (£\By,) x[1, 00),letv(x, 1) := v(x, 1) —u(x, t). Then, for (x, 1) € (X£\B,,) X
[1, 00),

y? y(y +N—2)
A=) Y
x| x|

—1
() — A0 ) vix. 1)
|x|B—e

2 p—1

14 llallcollull

2 |X|5 <T’_ B—y - Ooﬁ_aoo U(X,l) >07
r r

a_Av+wmuW—amqu“ﬂﬁ=uW(—

by (3.14). On the other hand,

Y _IxlV
lu(t, )| < llulloo < llufloge™ !

=v(x, 1) in(B,0)NT) x[l,00). (3.17)

By (3.16) and (3.17), v > 0 on dp((X\B,,(0)) x (I, 00)); and then, by the maximum
principle [21, Proposition 52.4] and (3.17), 7 > 0 in £ x (1, 00). Arguing similarly with
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U = v + u yields that
lux,t)| < Me ™ in T x [1, 00).

As a consequence, u satisfies the uniform decay assumption (U;) in ¥ x (1, oo). Note also
that, by the assumption (1.6), the linearization procedure (2.2), and the maximum principle
[21, Proposition 52.4], one has that (Up) is satisfied by u(-, t) for all + > 0; in particular,
u(-, 1) satisfies (Up) and (Uy).

Then, by Theorem 1.3, it suffices to show that (fy), (f1)’, and (f2)’ are satisfied. Let

F@,rou) =a@)rul?'u —b@&rPu,  fut,r,u) = pa@r®ul’t = b@)rP.

Then f(t,s,0) = 0 and (fp) is satisfied. Assumption (f1)" also holds, because for K > 0
and k > 1,
sup | fult,r )] < pKP7 k¥ lalloo + kP D]l =: C,
ref0,k],1>0,ue[—K K]
where C > 0 depends only on K, k, and the fixed data of the problem p, «, ||a|co, [|P]lcos
and B.
To prove ( f2)’, note that for any M > 0
t <2f blloo}MP~! =: Cy.
re[l’z]filgﬁM’M]Ifu( 1, w)| < 2P max{|lalleo, 16]loo} Cu
1
Define ¢ := (m) " andlet ppys > 1 be such that n(py — 054) < —Cpy — 4.

Then, since @ < 8

max Ju(t,r,u)
r>py,u€l—e,el

= max plulPa@)yr® — b(t)r?
r>pp,ucl—e,el

IA

max  pe”alloor® — nrf < max (- — ) = (ol — pfp)
r>py,uc[—e,el r>pm

—Cy —4r < —

IA

max t,r,u)| —4r,
rell,2],ue[—M,M] [ ful )l !

and (f2)’ holds. The result now follows from Theorem 1.3. ]

3.2 Weak Stability Outside Compact Sets

Let u be a classical solution of (1.1) and assume that (Uy)—(U3), (fo), and (f1) from Theo-
rem 1.5 hold. For any e € SN-1 define w, as in Sect. 2.1, let z, be as in (2.31), and M as
in (3.11).

Lemma3.4 Ife € M andz # O for some 7 € w(u), then z, > 0 in X.

Proof Let {t,} C [0, 0o) such that#, — oo asn — oo and u(x, t,) — z(x) forall x € RV.
By hypothesis there exist xg € X; and & > 0 such that Z, > 4«. Then there is A € N such
that

we (x0, 1) > 2a > 0, foralln > N.
By Lemma 2.3, there exists & > 0 such that

we(xo, 8) > «, foralls € [t, —460,t,]andn > N.
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Fix D and U such thatxo € D CC U CC X. By Lemma 2.4,

4me -
We(x, 1) = kw20 (Dx(t,—30,1,—20y) — € sup w,
p (U x(tn—40,1,))

> ko — e*m? sup w, (3.18)

Ap (U x(t,—40,1t,))
forx € Dandn > N, where m = supy ., _ag 1,y ¢¢- Since zo > 0 in X for all z € w(u),
then ||w, (-, 1)||L(x) — 0ast — oo. Therefore, passing n — oo in (3.18) yields Z.(x) >
ka > Oforall x € D. Since D can be arbitrarily big (with ¥ > 0 depending on D), the result
follows. O

Lemma 3.5 Fix any e € SN~ and suppose that z, > 0 in 1 for all z € w(u). Then, there
ise > 0suchthat 7o > 0in Xy forall z € w(u) and ¢ € SN~ with |¢ — e| < &.

Proof Let p;, 8, and G CC X be as in (2.11). Since z, > 0 for all z € w(u) and G is
a compact set, we have, by (1.3), that there are o, T > 0 such that w,(x,?) > 20 > 0
x € G x (T, 00). By Lemma 2.3, there is ¢ > 0 such that, for ¢’ € S¥~! with |¢/ — e| < &,
one has

Wy (x,1) >a >0forallx € G x (T, 00). 3.19)

Let w, be as in Lemma 2.1, then (3.19) implies that W, > 0 in G x (T, c0), and by
(2.9), (2.4), and Lemma 2.5,

llw, (x,DlLe(s) < [, (x, D]lL=x\6)

< e "G (x, Tl esr6y < de 7D w (x, T s

fort > T, where we used that w™ =0andc < —y on G.
Letting t — oo we have that z,, > 0 in ¥ and z,/ % 0 by (3.19) for all z € w(u). The
claim now follows by Lemma 3.4. O

The next Lemma is an adaptation of [17, Lemma 3.8] to our setting and to the rotating
plane method using the notation of Lemma 2.1, we give a proof for completeness.

Lemma3.6 Fixe € SV! and assume that z. > 0in I, forall z € w(u), then there are
@ € C*1(Z) x (0,00)) and T (e) = T > 0 such that

1. If G is as in (2.11), there is a bounded domain D with G CC D CC X such that
@x,t) <0indD x (T,00) and p(x,t) > 0in G x (T, o0),
2. Forall T <s <t there exists some constant C > 0 independent of t and s such that

llo(x, DllLep)

> Ce_V(t_S)’
[lo(x, )L G)

3. There is ¢ > 0 independent of e such that ¢; < Agp + ZlNzl l;i(px; + E‘*/(p in D x (T, 00)
forall ¢ € SN~V with |e — €| < &. Recall that b and & were defined in Lemma 2.1
Proof Let
8 €(0,v/2). (3.20)
By (f1) and Lemma 2.3 there exists ¢ > 0 such that

1€ (1) = ¢4 (- D)ooz < 8 (3.21)
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forall7 > Oand ¢’ € S¥N~! with |e — ¢/| < &. Observe that for any z € w(u), one has z, > 0
in 21 and z,(x) = 0 for x € 9% or if |x| — oo. Hence, the compactness of w(u) and the
uniform convergence of u(-, t) to w(u) ast — oo (see (U2) implies that there exist «, fy > 0
such that

We(x,1) >a >0in G X (19, 00). (3.22)
In addition, if we define
M = supf{lw.(x, )] 1 e € SVl x e 21,1 € (0, 0)},

m = sup{|c’(x, 1) :e € SN x € G, 1 € (0, 00)},

. ya
O<s<mny——, ¢, (3.23)
2(m +y)

then there is bounded domain D with G CC D CC Xj such that if we increase #q if
necessary, then

We(x,1) —s <0in dD x (11, 00). (3.24)

Let w, be as in Lemma 2.1, then Lemma 2.1 yields that (3.22) and (3.24) holds with w,
replaced by .. If we define ¢(x, t) := e 7 (W.(x,t) — 5), by (3.22), (3.23), and (3.24),
claim 1. follows. Next, note that

e’ o, Doy <4M +s and e ||p(x, D1~ = o — s

for t > T, which implies Claim 2. Finally, for (x,#) € D\G x (T, co) by the definition of
the coefficients ¢¢ in Lemma 2.1, (2.4), (3.20), (3.21), and (3.22) yield

O — Ap — bigy, — &9 = V(@ — )by — yide + sy + 5]

<e V@B — y)We + sy —sy] <O.
For (x,1) € G x (T, o0) by (2.4), (3.20), (3.21), (3.22), and (3.23) we have
o1 — A — bigy, — &g = V'@ — &), — yibe + sy + 5¢°]

< e*V’[(a - %)ﬁ)e — L+ s(m + y)]

< e_y’|: - % + s(m +y)] < 0.
This implies claim 3. O

Proof of Theorem 1.5 We prove that the first alternative holds assuming that the second one
does not hold. Let ¢ € SN~ as in (Up) and assume that z, # 0 for all z € w(u). Then, by

Lemma 3.4 and Lemma 3.5, there is &g > 0 such that
Zze >0 inXforallz € w(u)and e’ € S with |/ — ¢| < . (3.25)

Now, let P be any two dimensional subspace of RY containing e. Without loss of gener-
ality, we may assume thate = (1,0,...,0) and P = {x = (x1,x2,0,...,0) | x1, x2 € R}.
Define

ey i=(cosn,sinn, 0,...,0), wyx,1) = we, (x,1), z,(x) =z, (x)
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for 6 € R and
Op:=inf{n <0 : z, >0in X; forall z € w(u),0 < ¢ < n},
© :=sup{n >0 : zy, >0in X forallz € w(u), 0 < ¢ < n}.
We note that ®; < 0 < ®; by (3.25). We claim that ®, — ®; = 7. By contradiction,
assume that ®, — ®1 < ; then, by continuity and Lemma 3.4, we can assume that there
are 7, 7 € w(u) such that
Z9, =0 and Zze, =0 in Xj.

Fix &1 > 0 as in Lemma 3.6 part 3 and let
. &1
0 < & < min {7‘( — (B — Oy), ?,80}.

Fix 0 € (®; —¢,01). By Lemma 2.10,
Zp >0 and Zp <0  in Xj. (3.26)
Lett,, f, — oo such that#, <, for alln € N and
wy (x, Iy) — Zg(x), wo (x, ;) = Zp(x) asn — 0o. (3.27)

Now we conclude the proof arguing as in [17, Lemma 3.7], we include the details for
completeness. Recall the change of variables detailed in Lemma 2.1, where the coefficients
l;i, ¢, the function w, and the set G C ¥ were defined. For any n € [0, 27r) we also define
Wy (x, 1) 1= e, (x, 1) for (x, 1) € Xy x (0, 00).

Since zy > 0 for each z € w(u) and ¥ > O sufficiently close to ®, Lemma 3.6 gives
the existence of C, T > 0, a bounded domain D with G CC D CC X and a function
Qe Cx(D x (T, 00)), that satisfies for # € () — &, ®1) that

(pt—Aga—l;,-goxi—é“’”<p<O inD x (T, 00),
¢ <0 onaD x (T, 00),

¢>0 inG x (T, 0),
(. OllLe(p)
o, )L (D)

where we used that [ — | < 2e < ¢1. By (3.26), (3.27), and the definition of w, there
exists & > 0 such that

>Ce V) forT <s <1t,

Wo(- ) >2 >0 and We(-, 1) <0 inD
for any sufficiently large n. Then, there is 7}, € (f,, 1,) such that
We(x,1) >0in G x (&, Tp), (3.28)
W (x*, Ty,) = 0 for some x* € G. (3.29)
From Lemma 2.5 and (2.4) follows
iy - Ollememy < ey (L i)les) fort € G ). (3.30)
By Lemma 2.3, there is # > 0 independent of n such that

[lwe (-, 1) — e (-, $)||re(x) < o for [t — 5| < 46.
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This means that 7, — 7,, > 46 for all sufficiently large n. Let n be sufficiently large such that
fn > T. Since g satisfies (3.28) with ¢ = 6, by the comparison principle [21, Proposition
52.6],

p(x, 1)
e C, )l Lo (D)
And, by (3.26), (3.27), (3.28), (3.30), (3.31), and Lemma 2.4, there are «, C1, Co,m > 0
independent of n such that

We(x,1) >« for (x,1) € D x (t,, Tp). (3.31)

PPN At 4mo P
inf g (x, T,,) > «||Wy |06 x(T,~30.T,—20)) — €™ sup w
xeG Ap(Dx (T, —40,T,))

> KaCe—y(Tn—tn—Z(?) _ e4m€e—V(Tn—ln—49)||@;(.’ fn)”L“(Z)

> ¢ 7T C) — Colldy (- i)llzoecsy] > 0

for n sufficiently big, a contradiction to (3.29).

Therefore ®, — ©®; = &, which in particular implies that z¢, = ze, = 0 in X for
all z € w(u). Since this can be done for all 2D planes P that contain e and the origin,
Proposition 2.6 yields the asymptotic symmetry of u. The strict monotonicity follows from
the fact that z,, > O for all n € (©1, ®2). ]

We are ready to show Theorem 1.8.

Proof of Theorem 1.8 By hypothesis (Uy)’ we have that z, > 0in X for all z € w(u) and all
e € U. If there exists e € U such that z, # 0 for all z € w(u) then Theorem 1.5 yields the
first alternative in the statement of the theorem. On the other hand, if for each e € U there is
z € w(u) such that z, = 0; then, Lemma 2.7 implies that the second alternative in Theorem
1.8 holds. O

Proof of Corollaries 1.7 and 1.6 Corollaries 1.7 and 1.6 follow directly from Theorem 1.5,
since in these cases, the strict initial reflectional inequality and the maximum principle discard
the second alternative in Theorem 1.5. O

Proof of Theorem 1.2 Let f(t,u) := a(t)|u|P~'u — b(t)u. Then f,(t, u) := pa(®)|u|P~" —
b(t) and ( f1) holds because

lim sup | fu (1 ) = fu(t, v)| < pllalloc lim ||ul?~" = [0]P~'| =0
Uu—v t>0 u—v

and, for every K > 0,

sup |fu(t. )| < pmax{[lallco. [Dlloc}| KP7" + 1] < o0.
reJ,t>0,s€[—K,K]
1
. . . L n =T -1
Moreover,ifn > Oisasin(1.4)and ¢ := (W) ,then sup |pa(D)ulP™'| <
ue(—e,e)
7 and

fult,u) < |pa@)lul?~' = = —g forallr > O and u € (—e, €),

which implies that ( f3) is satisfied. Finally, by (1.8), condition (Up)" holds. Then, by The-
orem 1.8, either there is z € w(u) radially symmetric with respect to the origin, or u is
asymptotically strictly foliated Schwarz symmetric.

It remains to prove that
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(a) If z € w(u) is radially symmetric, then z = 0.
(b) If 0 ¢ w(u), then there is ¢ € RY such that, for all z € w(u), z is radially symmetric
with respect to ¢ and all elements in w () are either all negative or all positive.

Proof of (a): For a contradiction, assume there is z € w(u) radially symmetric and
xo € RY such that z(x) # 0. Using the radiality and continuity of z we may without loss
of generality assume that xo = re; = (r,0,...,0) for some » > 0 and z(re;) < 0. For
A e (—1,1),denote RY := {x e RN : x; > A} and up(x, 1) := u(x,t) — u(2he; — x, 1)
for x € Rf' and r > 0. By (1.8), u; (x,0) > 0 and u, (x,0) # O for any A € (—1, 1), and
therefore, by the maximum principle, u; > 0 in Rf\v x (0, o0). Hence, z(x) > z(2Ae; — x)
for all x € Rf\V and A € (—1,1). Since z is radial and in particular even, for any fixed
0 < A < min{r, 1} one has z_; > 0in R",, and then

0> z(rey) = z(—2xe; —rey) = z(2A +r)ey). (3.32)

Iterating this procedure, we obtain that 0 > z(re;) > z((2kA 4 r)ep) for all k € N. Since
|(2kA + r)e1| — oo as k — oo we obtain a contradiction to the uniform decay assumption
(1.9). As a consequence, z = 0 in RN

Proof of (b): Assume that 0 ¢ w(u). Then, as shown above, there is pg € SN¥=1 such
that, for all z € w(u), z is strictly foliated Schwarz symmetric with respect to pg. Let
e1=(1,0,...,0),e2 =(0,1,0,...,0),...,exy = (0,0, ..., 1) denote a basis for RV . For
a € Randi # 1, consider uy ; (x) := u(x +ae;) and note that u, ; solves the same equation
as u (which is translationally invariant) and also satisfies (Up)’. Then, arguing as before, there
1S Pg,i € SN=1 such that, for all z € o (ug i), z is foliated Schwarz symmetric with respect
to pq.i; namely, every z € w(u) is strictly foliated Schwarz symmetric with respect to the
axes P; o := Rpyi + ae;.

Fix Z € w(u) and assume without loss of generality that z+ # 0. Since Z is strictly
monotone with respect to the polar angle and it decays uniformly to zero at infinity, then the
maximum of z in RY must lie in an intersection between P; o and Py, q := P; o N Py. By
varying ¢ € R, we can obtain an irrational angle between P; , and Py, which then easily
implies that 7 must be a radially symmetric function with respect to ¢g. But the axis Py and
P; o are symmetry axes for all elements z € w(u), and therefore w (#) can only have radially
symmetric elements with respect to g.

Finally, for a contradiction, assume that there is a sign-changing z € w(u). Assume first
that ¢ € {x; > 0}. We argue as in (3.32) on the line g + Re;. Indeed, since z changes sign
and z is radially symmetric and continuous, there is » > 0 such that z(¢ + re;) < 0. But
then, for 0 < A < min{r, 1},

0> z(q +rey) > z(=2ke; — g —re1) = z(g + 2A +r)ey).

Iterating this procedure, we obtain a contradiction to the uniform decay assumption (1.9) as
before. In fact, we can deduce that if ¢ € {x; > 0}, then necessarily z > 0 in RN for all
z € w(u), and the strict positivity follows from Lemma 2.4 using that O ¢ w (). Similarly,
if ¢ € {x1 < 0}, then, since z changes sign and z is radially symmetric and continuous,
7(q —rep) > O for some r > 0 and, for 0 < A < min{r, 1},

0<z(g—re) <z(2rey —q +rep) =z(g — 21 +r)ey).

Iterating this procedure, we obtain again a contradiction to (1.9) and, as before, we conclude
that if ¢ € {x; < 0}, then necessarily z < 0 in R for all z € w(u) and the strict negativity
follows from Lemma 2.4 applied to —u. Finally, observe thatif g € {x; = 0}, then necessarily
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z = 0 for all z € w(u), which cannot happen since we assumed that 0 ¢ w (). Therefore,
q ¢ {x; = 0} and this ends the proof. ]

4 Uniform Decay Assumption

Proof of Lemma 1.9 The proof follows closely the ideas of [4, Corollary 1.2]. We first show
that there is some Ry > 0 such that

Vu(x,t)-e <0 forallxeRN,x'e>R0,t>0,e€SN_1. 4.1)

To this end, we use a moving plane method. Let R > Oasin(1.13)ande € SN-1 without loss
of generality we may assume thate = ¢; = (1,0, ...,0). ForA > Rand (x,x") = x € RN
define x — x* = (21 — x1, x’) the reflection in the hyperplane Hy = {x € RN : x; = A}
and let Viu(x,t) := u(x*, 1) —u(x,t) forx € £; := {x e R¥ : x; > A} and ¢ > 0. Then,
by (1.13), we have that

(Vau(x, 1)y — AVau(x, 1) = f(t, |x*], u*) = f(t, |x], )
> £, x| u?) = f@, |xl,u) =t x, ) Vau(x, 1)

forall (x, 1) € ) x (0, 00), where ¢’ (x, 1) 1= fo‘ B ft, |x], su(x*, 1)+ (1 —$)u(x, 1))ds.
Note that ¢* € L®(Z;, x (0, 00)). Let Ry > R be such that supp(u¢) C Bpg,(0), then, for
A > Rp we have that Vyu(x,0) > 0in X, and Vyu(x,0) # 0. Then, since u is globally
bounded, we can apply the parabolic maximum principle to show that Vyu(x,t) > 0 in
35 X (0, 00) forall . > Rg and Vyu(x,t) = 0in H) x (0, 00). Then, by the Hopf’s Lemma
we have that —2Vu(x,t) - e = —20,u(x,t) = 9. Vyu(x,t) > 0 on H; x (0, 00) and (4.1)
follows. Next, to prove the uniform decay property. We proceed by contradiction. Assume
there is some sequence {(xy, #,)}50, C RN x (0, 00) with |x,|, t, — 0o as n — oo such
that

u(xy, ty) >k 4.2)

for some constant k > 0. Passing to a subsequence, we may assume (using rotations if
necessary) that x; /|x| tends to the unitary vector e1. By (4.1) we have that o, u(x,1) <0
forany t > 0 and any x = (x1, x’) € RY with x| big enough. Then, the assumed L> bound
and standard parabolic regularity estimates imply that |Vu| is uniformly bounded. Then, we
canfind ¢ > Osuchthatu(x,t,) > %forallx € B (x,). Since |x,| — ooand dy,u(x,1) <0
we obtain a contradiction to the assumed L?-bound. O

Proofof Lemma 1.10 We proceed by comparison. Consider the solution of the problem

v —Av = f(t, |x],v) inRY x (0,00), v(x,0)=uf(x) forxeRY;
then, by Lemma 1.9, lim|y | o0 SUp,. g v(x, ) = 0. Onthe other hand, let w(x, t) := v(x, ) —
u(x, t), then w satisfies the linearization

1
wy — Aw = |:/ oy f(t, |x],sv+ (1 —s)u)ds:|w in RN x (0, 00)
0

and w(x, 0) > 0 for x € RY. Since the coefficient of w is bounded, the parabolic maximum
principle implies that v > u in RY x (0, 00). Then, lim|y| s o0 SUp, g u(x, 1) < 0. Now,
using the solution of

v —Av = f(t,|x[,v) inRY x(0,00), wv(x,0)=uyx) forxeRY,
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and repeating the argument we obtain that lim | oo sup,. o #(x, t) > 0and the claim follows.
o

5 Examples

5.1 Example 1: An @-Limit Set with Only Strictly Foliated Schwarz Symmetric
Elements

Here we exhibit a problem which does not have any radially symmetric! element in the -
limit set of the solution w (u), but that satisfies the assumptions of Theorem 1.8, and therefore
all elements in w (u) are foliated Schwarz symmetric with respect to the same axis.

First, fix any ball B C ]Rﬁ ={x e RN . x| > 0} and let A1 (B) denote the first eigenvalue
of the Dirichlet Laplacian in B. Define g(v) = vP — Av, where | < p < (N +2)/(N —2)
and 0 < A < A{(B). Then, by standard variational arguments (see e.g. [21, Theorem 6.2])
there exists a positive solution ¢ of the problem

— A =g() inB, =0 ondB. 5.1

Let M = 4supp ¢ and define f such that f(|x|,v) = g(v) forx € Band0 < v < M/2.
Forv > M/2 and x € RV\B, f : [0, c0) x R is extended as a smooth function such that it
satisfies (fp) and (f1). We assume also that

(f3) f isan odd function in u, thatis, f(-,u) = — f(-, —u) for all u € R,
(f1) There is M* > M such that

uf(r,u) <0  foranyr > 0and |u| > M*, (5.2)
(fs) Thereis R* > 1 and A > 0 such that
f(r,00)=0 and f,(r,u) < —A forany |u| < M*andr > R*. (5.3)

Letug € C(RM) be an odd function with respect to xp, thatis, ug(x1, x’) = —ug(—xy, x’)
forall x = (x, x’) € R", and assume that

supp(up) = A1 U Aa, 5.4
where A1 and A; are two disjoint compact sets such that B C Ay,
Aicc{xeRY : x| <R* x>0, x;,>0i=2,...,N}, (5.5)

and A, is symmetric to A; with respect to the hyperplane {x € R" : x; = 0}. Finally,
assume that

uwo>¢ inB, |ugl <M* inRV, (5.6)

and uy is positive in A and negative in Aj.
Let us first derive a priori estimates for classical solutions u of

ur — Au= f(lxl,u) inRY x (0,00), u(x,0)=up(x) forxeRY. (5.7)

! with respect to the origin or with any other point xo € RN,
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Note that, by (f1),

(u—M*); — A —M*) — S, u; : L(lXL M (u — M*)
= f(lx], M*) <0 inR" x (0, c0),

where, by (f4), sSup,crny ;-0 —f(lxl,uli:_}(l(lx‘,M )

ciple, u < M* in RN x (0, c0). Arguing similarly with M* + u, we obtain that

< o0o. Then, by (5.6) and the maximum prin-

lul < M* inRY x (0, o). (5.8)

Then, by standard arguments (see, e.g., [15, Proposition 7.3.1]), there exists a global bounded,
smooth solution u of (5.7).
Observe that W(x, t) := u(x, t) + u(x, t) solves

W, — AD =¢(x,Hw  inRY x (0, 00),

where 2(x, 1) 1= LUCLLELWOTLD) if G(x, 1) # 0 and E(x, 1) = 0if W(x, 1) = 0. Since
w(x,0) = up(x) + up(x) = 0in Rf = {x € RV : x; > 0} we have that % = 0
in RV x [0, 00). In particular, it means that u(-, ¢) is odd in x; for all # > 0. Therefore,
u(0,x',1) =0 forall t > 0 and x’ € R¥N~!. Since ug is nonnegative and nontrivial in RY,
the maximum principle implies that

u>0 inRY x(0,00). (5.9)
Next, let s(x) := M*e ?0¥1=R") with 62 < A; then,

N -1

|x]

5 — As = <9 - 92) s for x| > R*. (5.10)

Therefore, by (f5), w := s — u satisfies

1
w; — Aw —/ Sfu(lx|, 0u) d6 w
0

N-1 2 ! 2
= eﬁ—e — | fullxl,suyds) s> (A—=6")s>0
X 0
in RM\ Bg+. Since w = M* —u > 0 for x € dBg+ and w(x, 0) = s(x) — uo(x) = s(x) for
x € RV\ Bg+, the maximum principle yields that w > 0 on RN\ Bz« x (0, 00). Thus,

0<u< Me?EI=R iy RN\ Bre x (0, 00). (5.11)

Since f coincides with g on the range of { and u > 0 on 9B x (0, 00) C Rﬁ x (0, 00),
we have that

(=0 = 80— 0) = EO 5L -0 =0 inBx 0,00

Moreover, by (5.9),u — ¢ > 0on dB x (0, 0c0) and, by (5.6), u(-,0) — ¢ > 0in B. Then, by
the maximum principle, u > ¢ in B x (0, 00); in particular, O ¢ w(u). Furthermore, since u
isodd in x1, any z € w(u) is odd in x1 as well, and consequently z is not radially symmetric.

Finally, note that all the assumptions of Theorem 1.8 are satisfied; indeed, ( f0) and (f1)
hold by construction, ( f2) follows from (fs), (Ug)" from (5.4), (U;) from (5.11), and (U3)
from (5.8). Therefore, we obtain that all the elements in w («) are strictly foliated Schwarz
symmetric.
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5.2 Example 2: An ®@-Limit Set with a Strictly Foliated Schwarz Symmetric Function
and a Radially Symmetric Element

In this example we show that the presence of a nonzero radially symmetric element in w (1)
does not imply that all the elements in w (1) are radially symmetric. Although we work in an
abstract setting we provide concrete examples.

Let D be a smooth radial domain, bounded or unbounded, in RY and assume that a linear
operator £ acting on smooth functions on D has eigenvalues 0 < A; < A, corresponding
to eigenfunctions ¢ and ¢, such that ¢; is foliated Schwarz symmetric and ¢, is radially
symmetric. Such choice is possible since there exist radial eigenfunctions corresponding to
arbitrarily large eigenvalues. Note that we require the existence of a radial eigenfunction
corresponding to a larger eigenvalue than the foliated Schwarz symmetric one. To satisfy our
assumptions we allow £ to depend only on |x|. Let u(x, t) := a(t)¢;(x) + B()@2(x) for
x € D andt > 0 and, for fixed u € (A1, A2) and define

ft,x,u) =puc@u+v@)pa(x) xeD,t>0, (5.12)

where «, B, ¢, ¥ : (0, 00) — R are chosen below. Note that, since ¢, is radially symmetric,
f depends on x only through |x]|.
First we require that «(0) = 1 and B(0) = 0; therefore, ug(x) = ¢ (x) satisfies (Up).
Also we assume that u is a solution of
ur+ Lu = f(t,x,u) in D x (0, 00), ux,t) =0 forxe€eadD,

where # = 0 on dD is interpreted as u(x) — 0 when |x| — oo if D is unbounded.
Since the operator is linear and ¢; is an eigenfunction we immediately have that u is the
desired solution if

o +ra=pta, B Arp=pB+y, a0 =1, B(0)=0. (5.13)
Consequently, by the variation of parameters formula, for any ¢t > #y > 0 we have that

t
a(t) = a(ty) exp </ ne(s) — A ds) , (5.14)
1

0

t t t
ﬁ(t)=/ W(S)CXP</ M(r)—kzdr)derﬁ(to)ew(/ M(S)—kzdS>- (5.15)
to 0]

s

We finish the argument by constructing sequences (7 )eN, (Te)ken such that

1 - 1 - 1
a(Ty) =1, |B(Tp)| < 5% 0 < |a(Tp)| < 5% 1B(T) — 1] < 5% - (5.16)
Indeed, then we obtain
lim u(, 7)) = @1 lim u(, Tp) = @2 (5.17)
k—o00 k—o0

and the statement follows.

To prove (5.16), we proceed by induction and in addition we show that {(7;,,) = 1 and
¥ (T,) = 0 for every n. Set T1 = 0 and assume that we already constructed 77 < T <Th <

- < T,_1 < T, with the desired properties (5.16).

First introduce a short transition period (of order) to shift the values of ¢ and ¢ to 0 and
A respectively. We use linear functions, but if the smoothness at the endpoints is required,
the transition can me made smooth at the cost of less explicit expressions. Define

(W) =14T,—t, Y@ =r(t—T) tell,T+1) (5.18)
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and, by (5.14) and (5.15),
(T + D) =a(fe? ™, BT+ 1) =c1+B(Te? 72, (5.19)
where ¢ is a universal constant independent of n. Then, for fixed A specified below, define
¢(@) =0, Y(t) = Ao, tell,+1,T,+A1+1), (5.20)
andsetT, =T, + 1+ A;. Consequently, by (5.14) and (5.15)
a(Ty) = a(T, + De ™A, B(T,) =1—e 24 L B(T, + De 41 (521)

Thus, for any sufficiently large Ay, a(Tn)_and ﬂ(fn) satisfy (5.16). Next, we introduce the
second transition period that connects (¢(7y), ¥ (T,)) = (0, X2) to (1, 0). Set

tW=t—T,, YO =xT,+1-1), tell,T,+1), (5.22)
and therefore
a(Ty + 1) = a(T)e* ™, (T, +1) = B(Ty)cr + 3, (5.23)

where ¢, c3 are universal constants independent of n or A (which can be evaluated explic-
itly). Then, set

(=1, Y@ =0, tell,+1,T,+1+Ay), (5.24)
where A, depending on A is specified below. Denote T,,4.| = T, + 1 + A, and we obtain
a(Ty1) = a(Ty)e At 2 hminh, (5.25)
B(Toi1) = B(T, + De4242, (5.26)
Since ;& > A1, we can set

_MAI 20 —p

>0 (5.27)
nw—X

Aj
to obtain o (7,,+1) = «(T,) = 1. Also, by making A larger if necessary, u < A, yields that
B(T,+1) satisfies (5.16). Clearly, ¢(T,,+1) = 1 and ¥ (T,,+1) = 0 and the proof is complete.

Example 5.1 Let B ¢ RY with N > 2 be a ball and let £ = —A. It is standard to show
that such £ has an increasing sequence of eigenvalues diverging to infinity corresponding to
the radial eigenfunctions. Furthermore, the first non-radial eigenfunction is foliated Schwarz
symmetric. Hence, the assumptions are satisfied and we can find f such that the w-limit set
contains both radial and foliated Schwarz symmetric functions.

Example5.2 1f D = RN with N > 2, wecan set £ = —A + V(|x|2), where V > 0 and

V(r) = oo asr — oo. If we denote LZ(RY, V) the L? space with weight V, then, due to

compactness of the embedding L2(RY) — H'(R¥)NL2(RY, V) and the spectral theorem,

one obtains that £ has only discrete spectrum and the eigenvectors span the whole space.
Also, the method of separation of variables implies that the eigenvalue problem

Lu = \u (5.28)
with u(r, 0) = R(r)O ), r € [0, 00), 8 € SN~ can be written as

—AR+V@EHR=MR, R(@©0)=0 (5.29)
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and

— Ng® =10, (5.30)

where A, is radial Laplacian and Ag is Laplace-Beltrami operator on S¥ !,

Itis easy to show that such £ has an increasing sequence of eigenvalues diverging to infinity

corresponding to the radial eigenfunctions. Furthermore, the first non-radial eigenfunction
is foliated Schwarz symmetric. Hence, the assumptions are satisfied and we can find f such
that w-limit set contains both radial and foliated Schwarz symmetric functions.
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