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ABSTRACT

Due to the proliferation of inference tasks on mobile devices, state-
of-the-art neural architectures are typically designed using Neural
Architecture Search (NAS) to achieve good tradeoffs between ma-
chine learning accuracy and inference latency. While measuring
inference latency of a huge set of candidate architectures during
NAS is not feasible, latency prediction for mobile devices is challeng-
ing, because of hardware heterogeneity, optimizations applied by
machine learning frameworks, and diversity of neural architectures.
Motivated by these challenges, we first quantitatively assess the
characteristics of neural architectures and mobile devices that have
significant effects on inference latency. Based on this assessment,
we propose an operation-wise framework which addresses these
challenges by developing operation-wise latency predictors and
achieves high accuracy in end-to-end latency predictions, as shown
by our comprehensive evaluations on multiple mobile devices using
multicore CPUs and GPUs. To illustrate that our approach does not
require expensive data collection, we also show that accurate pre-
dictions can be achieved on real-world neural architectures using
only small amounts of profiling data.
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1 INTRODUCTION

Due to significant breakthroughs in machine learning (ML), infer-
ence tasks using neural networks are being deployed to a growing
number of mobile devices (e.g., smartphones, smartwatches, tablets),
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largely for computer vision and natural language tasks. In com-
parison with powerful cloud servers, mobile devices have limited
resources, which restricts the choice of neural architectures (NAs).

To achieve good tradeoffs between machine learning accuracy
and hardware efficiency, state-of-the-art NAs [28, 55, 56] are typi-
cally designed through Neural Architecture Search (NAS) [70]. For
example, recent work [55, 65] proposes to optimize accuracy under
constraints on efficiency metrics (e.g., latency) that are measured
directly on a target platform. However, NAs exhibit distinct perfor-
mance characteristics across platforms [57], and it is impractical to
measure the end-to-end latency of every architecture on all plat-
forms during a model search. As an alternative to measurements,
existing approaches for evaluating the efficiency of NAs can be
categorized as those using (1) proxy metrics [56, 71] (e.g., FLOPs),
which are usually platform-independent and cannot accurately
reflect the actual performance due to the diversity of platforms
[44, 57]; (2) look-up tables [9, 12, 62] of measurements collected
for the building blocks of NAs, which require extensive profiling
on each platform and cannot cover every possible block configu-
ration; (3) prediction models, which can predict the performance
of any block configuration in the search space, broadly relying on
machine learning techniques [2, 5, 6, 10, 14, 16, 17, 24, 35, 42, 68],
but also including analytical performance models (e.g., accounting
for computations [49] and memory access traffic of GEMM-based
convolution [40, 43]). However, building accurate prediction mod-
els for efficiency metrics on mobile devices is difficult due to the
following challenges (where we also highlight related work).

(1) Hardware heterogeneity: Existing prediction models mainly
focus on Nvidia cloud GPUs [2, 16, 17, 24, 35] or Nvidia embedded
GPUs [5, 6]; instead, the heterogeneity of mobile CPUs and GPUs
makes their performance predictions more difficult. In particular,
inference tasks are frequently performed on mobile devices using
CPUs [63], due to the support of a broader set of available operations
(e.g., Channel Shuffle [69] is currently unavailable on the Tensor-
Flow Lite (TFLite) [19] GPU Delegate [38]). Modern mobile CPUs
typically use the ARM big.LITTLE architecture, which consists
of heterogeneous core clusters, e.g., high-performance cores and
high-efficiency cores [61]; when an inference task takes advantage
of this multicore architecture, the schedule of threads on different
cores has a significant impact on performance (Section 3.1.1). In ad-
dition, multicore speedups on a given device can vary for different
NAs; for instance, MobileNet (with width multiplier of 0.75) and
ResNet18 (with width scale of 0.25) achieve comparable inference
latency (28.4 ms and 28.1 ms, respectively) on Pixel 4 with one
medium core, but differ by 24.6% with three medium cores (11.8 ms
and 14.7 ms, respectively). Therefore, it is necessary to evaluate
prediction approaches using heterogeneous hardware resources, in
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Device Platform CPU Cores GPU

Google Pixel 4 Snapdragon 855  1x Large (2.84 GHz), 3x Medium (2.32 GHz), 4x Small (1.80 GHz)  Adreno 640

Xiaomi Mi 8 SE Snapdragon 710 2x Large (2.20 GHz), 6x Small (1.70 GHz) Adreno 616

Samsung Galaxy S10 Exynos 9820 2x Large (2.73 GHz), 2x Medium (2.31 GHz), 4x Small (1.95 GHz) = Mali G76

Samsung Galaxy A03s  Helio P35 4x Large (2.30 GHz), 4x Small (1.80 GHz) PowerVR GE8320

Apple iPhone XS A12 Bionic 2x Large (2.49 GHz), 4x Small (1.52 GHz) Apple-designed G11P

Apple iPhone 7 A10 Fusion 2x Large (2.34 GHz), 2x Small (1.05 GHz) PowerVR GT7600 Plus (Custom)

Table 1: Mobile Platforms in Our Study

particular on multicore CPUs; this is not taken into consideration by
existing work on latency prediction for mobile CPUs [10, 42, 68].

(2) ML framework optimizations: Modern ML frameworks in-
troduce optimizations that can significantly accelerate inference
tasks. For example, operator fusion [47] reduces overhead in the
invocation of OpenCL/Metal kernels on GPUs: our tests show that
disabling kernel fusion in TFLite can lead to an average of 22%
performance degradation over 102 real-world NAs on PowerVR
GEB8320 (Section 3.2.1). Similarly, the choice of algorithms used to
implement each operation can considerably affect inference perfor-
mance: for example, TFLite uses the faster Winograd [37] algorithm
for some (but not all) convolution layers on GPUs. Existing work
on latency estimation for GPUs [5, 6, 10, 17, 35] does not consider
such optimizations (which are specific to ML frameworks); instead,
current literature predicts inference latency only from the features
of NAs and hardware platforms.

(3) Neural architecture diversity: During the exploration of the
search space by NAS algorithms, the properties of NAs (e.g., the
number of operations and their latency) can vary considerably; in
addition, novel neural architectures are proposed by manual design
[28, 44, 69], prompting the definition of new NAS search spaces.
Existing ML-based performance prediction models use training and
test datasets with very similar NAs [2, 5, 54], or with a small set of
popular NAs [8, 17, 24]; in contrast, practical applicability to NAS
requires accuracy on a large set of diverse NAs.

Motivated by these challenges, we first quantitatively assess
characteristics of neural architectures and mobile devices affecting
inference latency; then, we use our findings to develop a framework
to predict end-to-end inference latency on mobile CPUs and GPUs
by estimating the latency of NA components through machine
learning models. In so doing, we address several shortcomings of
related work: (i) we develop a training dataset that is more repre-
sentative of real-world NAs, by including a broader set of NA blocks
than current literature [13]; (ii) we measure and predict latency
on different combinations of heterogeneous CPU cores and different
data representations (i.e., floating-point or integer quantization [46]),
while related work [42, 68] uses only a single CPU core (unrealistic
in practice) and floating-point calculations. Notably, our solution
explicitly accounts for optimizations applied by TFLite on each NA;
in contrast, previous work nn-Meter [68] uses black-box models to
estimate the effects of ML framework optimizations (and is limited
to a single core for CPUs).

Specifically, the main contributions of our work are as follows.

o By collecting measurements for 102 state-of-the-art NAs (from
25 articles) on 6 mainstream mobile platforms (or SoCs), and
based on quantitative evidence, we identify aspects of hardware
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and ML frameworks that substantially affect the latency of in-
ference tasks on mobile devices. For mobile CPUs, we expose
performance characteristics under various settings, including
multithreading over ARM heterogeneous core clusters and quan-
tization with lower-bit representations (Section 3.1). On mobile
GPUs, we analyze two types of optimization strategies due to
ML frameworks: kernel fusion and kernel selection (Section 3.2).
As a representative example, we present the principles of both
strategies in TFLite, and empirically evaluate resulting speedups
to highlight their impact on inference latency.

e Based on the results of our performance study, we develop a
framework for estimating end-to-end inference latency on mo-
bile devices by combining accurate latency predictions of indi-
vidual NA components (Section 4.2). In contrast with complex
ML models predicting end-to-end latency from graphs of tensor
operations (including parameters of all operations) [2, 14, 16],
latency predictors for NA components require less training data
and are easier to interpret. To address hardware heterogeneity,
we profile execution times of NAs using different sets of CPU
cores and different data representations, and we train ML models
to predict performance for each combination.! For ML frame-
work optimizations, we are able to deduce the OpenCL/Metal
kernels that are selected on mobile GPUs, without deploying and
compiling the target NA on the actual hardware (Section 4.1). After
collecting one-time training data on each device, we apply ML
models to accurately predict the latency of inference tasks under
various settings of mobile CPUs and GPUs, which can be used by
existing NAS techniques without access to the actual hardware.

e Since the existing benchmark dataset NATSBench [13] (studied
in [2, 68]) lacks depthwise convolution operations and exhibits
limited diversity of operation configurations (see Section 5.6.2 for
quantitative analysis), we build a synthetic dataset of 1000 NAs
sampled from a NAS space covering a majority of configurations
for common operations and building blocks (Section 4.3). For each
NA, we comprehensively measure latency under 90 scenarios
across 6 mainstream mobile platforms, including multicore com-
binations and use of integer quantization. In addition to accurate
latency prediction, this dataset provides insight (i) to NA devel-
opers on how to build efficient NAs and (ii) to mobile developers
on how to choose effective optimizations.

o To evaluate how our approach addresses the aforementioned chal-
lenges, in addition to the default setting of NAS (Section 5.1), we
show that our approach also achieves accurate predictions under

1As in existing literature [2, 68] on mobile devices, we collect data and train models
for each setting instead of constructing one model to predict inference latency across
all devices (e.g., [17] for cloud GPUs) due to the heterogeneity of mobile platforms.
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Figure 1: Lifecycle of Neural Architecture Development and
Deployment on Mobile Devices

hardware heterogeneity (Section 5.2), neural architecture diver-
sity (Section 5.3), and ML framework optimizations (Section 5.4).
To address concerns regarding the cost of training data collec-
tion [42], we evaluate prediction accuracy with limited amounts
of training data, using multiple ML methods (Section 5.5). Our re-
sults highlight that, when trained with latency measurements for
a sufficient number of NAs (e.g., 1000 synthetic NAs), powerful
ML methods (e.g., GBDT [15]) achieve very accurate predictions
for NAs with similar characteristics (e.g., 2.4% and 5.2% average
relative error on CPUs and GPUs, respectively); when training
and testing data have different characteristics (e.g., training on
synthetic NAs and testing on real-world NAs), simple linear mod-
els (e.g., Lasso [58]) are robust and still accurate (e.g., 6.5% and
8.3% average relative error on CPUs and GPUs, respectively).
When training data is very limited (e.g., 30 synthetic NAs), ac-
curacy is lower (e.g., 8.1% and 8.6% average relative error on
CPUs and GPUs with GBDT, respectively) but sufficient for NAS,
while profiling time for a target device is negligible compared to
deploying and measuring latency of thousands of candidate NAs,
as noted in [42].

2 BACKGROUND

As illustrated in Fig. 1, the lifecycle of neural architecture develop-
ment and deployment on mobile devices consists of (1) designing
and training a neural network on cloud servers, and (2) deploy-
ing the model on a target mobile device where inference tasks are
performed on CPU cores or GPU.

State-of-the-art neural architectures are developed by both man-
ual design [26, 29, 44] and NAS [28, 52, 55, 56]. Due to scarce com-
puting and memory resources, NAs intended for inference tasks
on mobile devices are designed not only to maximize prediction
accuracy, but also to satisfy performance constraints on end-to-end
latency and memory consumption. To achieve these goals, model
quantization [34, 46] is frequently applied: instead of floating-point
values, fixed-width integers are used to represent model parameters
and to perform computations with low precision, reducing memory
requirements and computation times (as shown in Section 3.1.2).

After training on cloud servers, the identified neural architecture
is stored as a model file, which can be distributed to heterogeneous
mobile platforms for inference tasks. For instance, in TFLite, a neu-
ral architecture is described as a computational graph, where each
node represents an operation and each edge represents the flow of
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Figure 2: 102 Real-world NAs Evaluated in Our Study

intermediate results between operations; the complete computa-
tional graph is included in the . tflite model file.

A mobile device can be equipped with multiple hardware ac-
celerators to serve inference tasks (e.g., CPU, GPU, DSP and Edge
TPU are available on Pixel 4). To be executed on specific hardware,
the model is “compiled” to select an optimized CPU implementa-
tion or a platform-specific GPU kernel for each operation of the
computational graph. Notably, the same operation can be executed
using different algorithms on different devices; for example, the
TFLite GPU Delegate can select different kernels for convolution
operations on Adreno GPUs vs. Mali GPUs (Section 3.2.2). In ad-
dition, the computational graph can be optimized during model
compilation; for instance, two consecutive operations can be “fused”
and implemented using a single GPU kernel (Section 3.2.1). Even-
tually, a compiled model is executed on the target hardware: on
GPUs, kernels are dispatched to a command queue for execution; on
CPUs, operations are executed sequentially, while multithreading
is used only to accelerate the execution of individual operations
using multiple cores (Section 3.1.1).

3 INFERENCE ON MOBILE DEVICES

In this section, we present the results of our empirical study on the
performance of real-world neural architectures on mobile platforms;
in particular, we analyze thread scheduling and model quantiza-
tion in multicore mobile CPUs (Section 3.1), and kernel fusion and
selection in mobile GPUs (Section 3.2), evaluating their impact on
inference latency. The insight gained from our results will be used
in Section 4 to develop a latency prediction framework.

3.1 Mobile CPUs

3.1.1  Effects of Multithreading. Modern mobile platforms typically
adopt the ARM big LITTLE architecture, which allows multiple
types of CPU cores to be integrated into the same system; each
group of homogeneous cores is operated as a “core cluster” running
at the same clock speed. The “big cores” with higher clock speeds
can handle computationally intensive tasks, while the “LITTLE
cores” with lower clock speeds require less power. High-priority
tasks are usually scheduled on big cores for better performance;
non-urgent tasks are assigned to little cores to reduce energy con-
sumption. Table 1 lists the core clusters of the SoCs in our study.’

An inference task can be accelerated with multithreading over
multiple cores. For Android devices, given a set of CPU cores, we
use an equal number of threads and set CPU affinity of these threads
to encourage their scheduling on the given set of cores; for iOS
devices, we set the quality-of-service (QoS) class [3] of each thread
to schedule on performance or efficiency cores. Considering the

2Since the architectures of Snapdragon 710 and A10 are similar to Snapdragon 855
and A12, respectively, we report their measurements in [41].
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limited resources available on mobile devices, we select 102 real- 3.1.2  Effects of Quantization. On mobile devices with limited power
world NAs® with up to 18 million parameters from 25 articles (with and computing resources, neural architectures can be converted
manual design or NAS) [7, 10, 11, 25-33, 39, 50-53, 55, 56, 59, 60, into lower-precision representations (e.g., 16-bit floating-point or
62, 64, 66, 67]. Fig. 2 illustrates the combinations of model sizes and 8-bit integers) to reduce memory utilization and computational
end-to-end latencies (on Adreno 640) of these real-world NAs. demand, without substantial loss in accuracy. We focus on the ap-
Fig. 3 uses boxplots* to depict end-to-end latency of these real- proach of integer-arithmetic-only inference [34] available in TFLite,
world neural architectures with different multicore configurations.” where both weights and activations are represented as 8-bit integers
Counterintuitively, using multiple heterogeneous cores can result in during inference.” Fig. 5 compares end-to-end inference latency
performance degradation: for example, on Snapdragon 855 (Fig. 3a), using an 8-bit integer representation and a floating-point represen-
the combination of a medium core and a small core results in worse tation.® As can be seen, quantization shows a distinct speedup on
performance (on average) than a medium core. As noted in previous various combinations of cores on all devices.
work [61], we attribute this performance degradation to the over- Fig. 6 depicts the latency improvement of each type of opera-
head of inter-cluster communication; after inspecting the source tion after quantization. On all devices, most operations achieve
code of TFLite [21] and of its matrix multiplication library Ruy [20], significant speedup when using 8-bit integers; however, padding
we also observe that the work of an operation is split equally among and element-wise operations show performance degradation after
threads, which is suboptimal for heterogeneous cores.® quantization: the average latency of element-wise operations is
In Fig. 3, we observe a sublinear end-to-end speedup with respect increased by 2.55x and 2.60x on Snapdragon 855 and Exynos 9820,
to the number of cores for multithreading with homogeneous cores. respectively. Previous work [34, 46] suggests that this degradation is
Fig. 4 shows the speedup of different operation types with respect due to the overhead of matching quantization ranges (i.e., the scale)
to the number of homogeneous cores. We observe that convolu- of all inputs of quantized operations (e.g., element-wise addition).

tion, depthwise convolution (DW-Conv) and fully-connected (FC)
operations achieve sublinear speedups as the number of threads
increases. However, performance improvements on the remaining
operations are negligible, due to the lack of support for parallel
execution of these operations in the current TFLite implementation.

Insight 2. Quantization can reduce latency and memory uti-
lization of a model, significantly improving the performance of
inference tasks. However, quantization can cause performance
degradation for some operations due to the cost of scaling inputs.

Insight 1. On mobile CPUs, multithreading has a significant im- 3.2 Mobile GPUs
pact on the performance of inference tasks. On homogeneous
cores, multithreading leads to sublinear reduction of latency for
convolution, depthwise convolution and fully-connected opera-
tions in TFLite; however, on heterogeneous cores, multithreading
can result in performance degradation due to the overhead of

3.2.1 Effects of Kernel Fusion. Kernel fusion has been broadly
adopted to reduce the overhead of dispatching kernels [68]. We an-
alyzed the implementation of kernel fusion available in TFLite [18],
which we report in Algorithm 3.1. Two consecutive operations of
the computational graph are fused when the first operation has
only one output tensor (Line 5) and the second operation: (1) is
the only operation in the graph using this output tensor (Line 14),

inter-cluster communication.

3The TensorFlow implementations of these NAs are from [1], which also provides
pre-trained parameters and Top-1/Top-5 test errors on the ImageNet-1K dataset.
“In the paper, boxplots indicate 1st quartile, median, and 3rd quartile of the data;

whiskers extend for 1.5x the interquartile range. 7We study the effects of integer quantization only on mobile CPUs, because using
SFor clarity of presentation, we omit some outliers with substantially higher latency 8-bit integers can cause significant overhead in the current implementation of the
in Fig. 3 (<4% of the data per configuration) and report the complete data in [41]. TFLite GPU delegate when extra GPU kernels for quantization and dequantization are
The work in [61] also proposes solutions to improve the throughput over heteroge- invoked.

neous cores. In our paper, we focus on the performance characteristics of ML workloads 8Similarly to Fig. 3, we omit outliers (only of a couple of points) for better visualization
and use the current implementation of TFLite. and report complete data in [41].
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(2) uses this output tensor as its first input to produce a single
output (Line 22), and (3) has a compatible type (Line 24).

Fig. 7a illustrates that kernel fusion leads to a reduction in the
number of OpenCL/Metal kernels of over 45% for real-world NAs.
Fig. 7b shows the performance improvements from kernel fusion
on different mobile devices.” We observe up to 1.22x speedup of
the average end-to-end latency over all the neural architectures,
due to a reduction in the cost of kernel dispatching. As shown
in Fig. 8,'° kernel fusion can significantly reduce the latency of
element-wise operations by merging multiple kernels; at the same
time, there is no substantial latency increase for other operations.
This observation is in line in Algorithm 3.1: the operations fused
into other operations are mainly element-wise operations (Line 24).

Insight 3. By substantially reducing the number of operation
kernels, kernel fusion can improve the performance of inference
tasks on mobile GPUs. However, only element-wise operations
obtain substantial performance improvements; the effect on other
operations is negligible.

9The outliers (only a couple of data points) are removed to improve visualization.
104 few outliers with large speedups on element-wise operations are reported in [41].

Algorithm 3.1: Kernel Fusion in TFLite GPU Delegate

MERGENODESs(nodes)
1 ready_tensors = []
2 for cur_node in nodes
3 for dst_tensor in cur_node.dst_tensors

4 ready_tensors.insert(dst_tensor)
5 if cur_node.dst_tensors.size() # 1
6 continue
7 candidate_nodes = []
8 candidate_tensor_index = 0
9 for next_node in nodes
10 for k = 0 to next_node.src_tensors.size() -
11 if next_node.src_tensors[k] == cur_node.dst_tensors[0]
12 candidate_tensor_index = k
13 candidate_nodes.insert(next_node)
14 if candidate_nodes.size() # 1 or candidate_tensor_index # 0
15 continue
16 next_node = candidate_nodes[0]
17 if next_node.src_tensors[0] € ready_tensors
18 and ISLINKABLE(next_node)
19 MERGE(cur_node, next_node)

20
21 return nodes

nodes.remove(cur_node)

IsLINKABLE(node)

22 if node.output_tensors.size() # 1
23
24

return FALSE
if node.type € [ACTIVATION, COPY, ADD, SUB, MUL, DIV, EXP,
LOG, SQRT, SQUARE, ABS, NEG, POW, EQUAL, GREATER, LESS,
MAXIMUM, MINIMUM]
25 return TRUE

26 return FALSE

3.2.2  Effects of Kernel Selection. Machine learning frameworks use
different optimized implementations for the operations of neural
architectures. Algorithm 3.2 summarizes the criteria used by TFLite
to select the Winograd algorithm for convolution operations: when
the input tensor and kernel size of a convolution operation satisfy

103
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Index Configurations Conditions in Algorithm 3.2 Choosing Winograd Kernels
c}f:rlirlll;ls Cg:;f] 2{5 ilelitg}‘lltt src_depth  dst_depth total tiles Adreno Mali
(1) 64 64 56 16 16 196 No Yes
2) 128 128 28 32 32 49 No Yes
3) 256 256 14 64 64 16 No No

Table 2:
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=1 wjo Winograd

B w/ Winograd

=1 w/o Winograd

© Bninception Resnetl6 Diracnet18v2Vovnet27s Preresnet1d Seresnetls
Neural Architectures

Bninception  Resnetl6 Diracnetl8v2 Vovnet27s Preresnetld Seresnetls
Neural Architectures

(a) Helio P35 (PowerVR GE8320) (b) A12 Bionic

Figure 9: Effects of Winograd Kernels on End-to-end Latency

the criteria defined by the CHECKWINOGRAD function, a Winograd
kernel will be selected. Fig. 9 shows the performance improvement
from using Winograd kernels in real-world NAs; we observe per-
formance improvements of up to 1.32x for PowerVR GE8320 and
up to 1.36x for A12 Bionic.

Notably, kernel selection is hardware-dependent: none of the
NAs obtain performance improvements on Adreno 640 or 616, be-
cause the requirements for applying the Winograd algorithm on
these GPUs are stricter than Mali and PowerVR GPUs in the current
TFLite implementation. For example, Table 2 presents the kernels
selected for three convolution operations of ResNet16; all the oper-
ations have only one convolution group, kernel size 3x3, and stride
1. For convolution (1), src_depth and dst_depth fail to satisfy the
conditions for Adreno GPUs (Line 17 of Algorithm 3.2), but meet
the requirements for Mali and PowerVR GPUs (Line 21). For convo-
lution (2), total_tiles is too small for Adreno 6xx GPUs (Line 24), but
large enough for Mali and PowerVR GPUs (Line 28). Convolution
(3) cannot be implemented using the Winograd algorithm in either
GPU because of the small total_tiles (Line 28).

Insight 4. Framework-dependent optimizations have significant
impact on the performance of inference tasks. In TFLite, convolu-
tion operations with certain shapes of input tensors and kernel
sizes can use the Winograd algorithm to accelerate the execution.
Therefore, an accurate performance prediction model needs to
accurately capture which kernels are executed during inference.

4 METHODOLOGY

Given an input model file (e.g., a .tflite file) generated on a
cloud server (e.g., during NAS), we aim at accurately predicting its
end-to-end latency on different mobile CPUs and GPUs without
deploying it to actual devices. Our approach includes the following
steps: (1) from the model file, we first extract information from the
operations (i.e., the execution units on mobile CPUs) of the compu-
tational graph; (2) for mobile GPUs, we deduce (without deploying
to the mobile device) the actual kernels executed after kernel fusion
and kernel selection (Section 4.1); (3) we use ML models to predict
inference latency of each operation from its parameters (e.g., input
shape and number of channels; Section 4.2); (4) end-to-end latency
is estimated as the sum of predicted operation latencies plus the
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Algorithm 3.2: Conv Kernel Selection in TFLite GPU Delegate

SELECTCONV2DKERNEL(gpu_info, op_info)
1 if CHECKGROUPEDCONV2D(gpu_info, op_info)
2 return KERNEL(GROUPEDCONV2D, gpu_info, op_info)
3 else if CHECKWINOGRAD(gpu_info, op_info)
4 return KERNEL(WINOGRAD, gpu_info, op_info)
5 else return KErNEL(CONV2D, gpu_info, op_info)

CHECKGROUPEDCONV2D(gpu_info, op_info)
6 src_group_size = op_info.input_channel
7 dst_group_size = op_info.output_channel / op_info.group
8 if op_info.group # 1 and src_group_size % 4 == 0
9 and dst_group_size % 4 == 0
10
11

return TRUE
return FALSE

CHECKWINOGRAD(gpu_info, op_info)

12 if op_info.group # 1 or op_info kernel_shape # 3x3

13 or op_info.stride # 1

14 return FALSE

15 src_depth = [op_info.input_channel/4]

16 dst_depth = [op_info.output_channel/4]

17 if gpu_info.type == ADRENO and (src_depth < 32 or dst_depth < 32)
18 return FALSE

19 else if gpu_info.type == AMD and (src_depth < 16 or dst_depth < 8)
20 return FALSE

21 else if src_depth < 16 or dst_depth < 16

22 return FALSE

23 total_tiles = [op_info.output_height/4]  [op_info.output_width/4]
24 if gpu_info.type == ADRENO6XX and total_tiles < 128

25 return FALSE

26 else if gpu_info.type == ADRENO and total_tiles < 64

27 return FALSE

28 else if total_tiles < 32

29 return FALSE

30 return TRUE

additional latency due to ML framework overhead. To train the ML
models and to evaluate our approach, we collect latency measure-
ments on a synthetic dataset including 1000 neural architectures
from a NAS space (Section 4.3), which we plan to make publicly
available to help further research on mobile inference performance.

4.1 Kernel Deduction

From the model file, we are able to extract the configurations of all
operations of the computational graph. As discussed in Section 3.1.1,
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these operations are executed sequentially on mobile CPUs; mul-
tiple threads collaborate only on the execution of each operation.
For each type of operation, platform, and CPU core combination,
we train a machine learning model to predict inference latency.
However, when using mobile GPUs, operations of the compu-
tational graph can be fused (Section 3.2.1) or implemented with
optimized algorithms (Section 3.2.2), which have substantial effects
on performance (as illustrated by our measurements); consequently,
identifying which kernels are actually executed on the target de-
vice is critical to obtaining accurate latency predictions. To avoid
the cost of deploying the neural architectures to physical devices
(which is impractical for NAS, given the huge number of candidate
NAs), we deduce the kernels executed on a device by simulating the
process of kernel fusion and kernel selection, according to the prin-
ciples elicited from the implementation of TFLite. Specifically, to
predict latency on mobile GPUs, we first fuse kernels according to
the rules in Algorithm 3.1; then, we use the rules in Algorithm 3.2
to select a kernel among {Conv2D, Winograd, GroupedConv2D}
based on the parameters of each convolution operation (e.g., input
size, output size, kernel size) and on the specific target device.

4.2 Prediction Models

To predict the latency of an operation, we use features associated
with both memory access cost (e.g., size of input, output and pa-
rameters) and computational cost (e.g., FLOPs). Table 3 reports the
features affecting latency of each operation type.

Formally, for each operation, given the feature vectors x; € X
and latencies y; € Y measured on a specific device,i =1 ...,N
(where N is the size of the training dataset of the operation), we
train a prediction model f* = arg ming ﬁ Zﬁl [(f(%:) - vi)/yil?
where each feature x; ; is standardized as X;; = (xi; — yj)/oj
based on its training set mean y; = (Zfil xi,j)/N and standard

deviation o} = ,[Zﬁl(xi,j — ptj)?/N. Note that we minimize the
mean squared percentage error; during testing, we evaluate the
mean absolute percentage error (MAPE) ﬁ Zfil [(f* (%) = yi)/yil-
For prediction model, we consider the following representative ML
approaches [45] adopted in the literature [5, 6, 17, 35, 68].

Lasso. We first consider a linear model f(x) = w’ x and estimate
the optimal weights w™* as
2

wl i -y

1
* 1 —
w" = argmin NZ +alwl; st w>0. (1)

i=1

1

An L1 regularization term with hyperparameter « is included to
control model complexity and to favor a sparse solution. We use
grid search in [107>, 10?] to find the best . Since each input feature
Xi,j is positively correlated with latency, we constrain weights w;
to be nonnegative in Eq. (1).

Random Forests (RF). An RF model includes multiple decision
trees to reduce the overfitting of a single decision tree. We tune
hyperparameters including the number of decision trees (1 to 10)
and the minimum number of samples to split an internal node (2 to
50) using 5-fold cross-validation.

Gradient-Boosted Decision Trees (GBDT). GBDT generates de-
cision trees with gradient boosting on multiple stages. We tune
hyperparameters including the number of gradient boosting stages

105

ICPE 23, April 15-19, 2023, Coimbra, Portugal

E z 14 !
- 12 ’ H
8 4 10 [}
c3 8
: -
£1 e e ==
Qo
Helio  SnapdragonSnapdragon Exynos. A2 A10 PowerVR Adreno Adreno  Mali A2 AlO
P35 710 855 9820 GE8320 616 640 G76
Devices Devices
(a) CPUs (b) GPUs

Figure 10: Difference between End-to-end Latency and Sum
of Operation-wise Latency for Real-World NAs

(1 to 200) and the number of examples required to split a node (2 to
7) using 5-fold cross-validation.

Multi-Layer Perceptron (MLP). An MLP consists of multiple layers
of fully-connected neurons. We tune the hyperparameters for the
number of layers from 1 to 6 and select the number of neurons in
each layer from {64, 128, 256, 512}. Similarly to previous work [17],
we use ReLU activations after each layer and the Adam optimizer
with learning rate selected from {5 x 10735 x 107%,5 x 107°},
and weight decay selected from {10_3, 1074, 10_5}. We use 20% of
training data as the validation set, and stop training when there is
no improvement in the validation error over 50 epochs.

To obtain end-to-end latency predictions, we add up latencies
predicted for all operations of the NA, since CPU operations and
GPU kernels are executed sequentially by TFLite (in a topological
order determined by their dependencies). We also account for the
additional latency due to overhead and data transfers in TFLite; as
shown in Fig. 10, the sum of the latencies measured for all operations
is consistently lower than the measured end-to-end latency, espe-
cially on GPUs. Since the difference fluctuates around a constant
value for all NAs on a specific GPU, we use the average difference
between end-to-end latencies and the total operation-wise latencies
in the training dataset to estimate this additional latency Toyerhead-
Formally, for a neural architecture with set of operations C, we
predict end-to-end latency as Tyyerhead + 2cec fo (X¢), where f
is the latency predictor trained from measurements of operations
with the same type as ¢, and Tyyerhead is the estimated overhead.

4.3 Synthetic Dataset

Next, we present our synthetic dataset of NAs sampled from a
NAS space including operations and building blocks proposed in
recent works. We first introduce the approach to collect latency
measurements, and then describe the design of the NAS space.

4.3.1 Kernel Latency Profiling. We use the TFLite Model Benchmark
Tool [23] to benchmark the performance of neural architectures.
Since the tool supports latency measurements of elementary op-
erations only on mobile CPUs, we record start/stop timestamps
of GPU kernels by collecting profiling information at the OpenCL
command queue (on Android) or Metal command buffer (on iOS),
respectively. To reduce the overhead of timestamp recording, we
dispatch the same kernel 256 times.!! For iOS devices, we set the
GPU Performance State [4] to high to acquire stable measurements
over time. We also adopt the default precision settings of the TFLite
Model Benchmark tool, which uses 32-bit floating-point variables
on mobile CPUs and 16-bit floating-point variables on mobile GPUs.
"Here, we follow the TFLite implementation [22], which allows no more than 256

dispatches for Mali GPUs; we found that using a lower number of dispatches does not
sufficiently reduce the overhead of timestamp recording.
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Operation / Kernel Features

Conv2D, Winograd,

Input height (width), input channel, output height (width), stride, kernel height (width), filters, input size, output size, kernel size, FLOPs

Input height (width), input channel, output height (width), stride, kernel height (width), filters, input size, output size, kernel size, group number, FLOPs

DepthwiseConv2D

GroupedConv2D

FullyConnected Input channel, filters, parameter size, FLOPs

Mean Input height (width), input channel, kernel height (width), input size, FLOPs

Concat, Split
Pooling
Padding

Element-wise Input height (width), input channel, input size

Input height (width), input channel, kernel height (width), output channel, input size, output size

Input height (width), input channel, output height (width), stride, kernel height (width), input size, output size, FLOPs
Input height (width), input channel, output height (width), padding size, output size
)

Table 3: Feature Space for Each Category of Operations
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Figure 12: Design of the NAS Space for Synthetic Dataset

Fig. 11a shows the average latency breakdown for 102 real-world
neural architectures'? on Snapdragon 855. Notably, convolution and
depthwise convolution operations account for most of the end-to-
end latency. We observe that, for the same NAs, Winograd kernels
are selected on Mali G76 but not on Adreno 640; as discussed in
Section 3.2.2, kernel selection is different on each platform.

4.3.2  NAS Space for Sampling Neural Architectures. Fig. 11a high-
lights the importance of convolution and depthwise convolution
operations in end-to-end latency. Consequently, we design a search
space to effectively sample various configurations of operations
for the purpose of understanding their performance characteristics.
As illustrated in Fig. 12, synthetic neural architectures of our NAS
space use a sequence of 9 blocks with fixed input height and width,
following the design of sequential connections of blocks in Mo-
bileNetV2 [52].13 The type and parameters of each building block
are sampled uniformly at random among;:

(1) A convolution layer (with kernel size 3x3, 5x5 or 7x7, and op-
tional group size 4k, with 1 < k < 16).

(2) Depthwise separable convolution [29] (with kernel size 3x3, 5x5
or 7x7).

(3) Linear bottleneck [52] (with kernel size 3x3, 5x5 or 7x7, expan-
sion rate 1, 3 or 6, optionally using Squeeze-and-Excite [28]).

(4) Average or max pooling layer (with window size 1x1 or 3x3).

12When presenting the percentage of end-to-end latency, we include the results of
NAs that may not have all types of operations, e.g., depthwise convolution operations
only appear in 44 NAs, so its median across 102 NAs is zero.

31n Section 5.3, we also evaluate our predictions on real-world NAs that consist of
non-linearly connected building blocks.
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(5) A split layer (with 2, 3 or 4 splits), followed by element-wise op-
erations performed on each output tensor, and a concatenation
layer that merges all output tensors.

Due to the limited memory and computing resources on mobile de-
vices, we uniformly sample the output channel sizes of these build-
ing blocks (identified as C; to Co) with the following constraints:
{C1,...Cs} € [8,80], {Cé,...Co} € [80,400], and C1o € [1200, 1800].

We built a synthetic dataset including 1000 neural architectures
sampled from this NAS space. For each neural architecture, we col-
lected training measurements on 6 mobile platforms (Table 1), for a
total of 90 scenarios, covering (1) combinations of homogeneous or
heterogeneous cores, (2) floating-point and 8-bit integer represen-
tations, and (3) mobile GPUs from different manufacturers. Fig. 11b
illustrates the latency breakdown for neural architectures in our
synthetic dataset, where the latency distribution over operations is
similar to real-world neural architectures.

5 RESULTS

This section presents a comprehensive evaluation of our latency
prediction framework across a broad range of scenarios: first, we
present results on the default setting of NAS (Section 5.1), and then
we evaluate the impact of hardware heterogeneity (Section 5.2),
neural architecture diversity (Section 5.3), and ML framework opti-
mizations (Section 5.4). In addition, to address concerns regarding
the cost of training data collection, we present results using a small
number of training examples (Section 5.5). Lastly, we quantitatively
compare both our predictions and the design of the synthetic dataset
with existing literature (Section 5.6).

5.1 Default Setting: NAS Space

We first test our framework in the common scenario of predicting
inference latency during NAS: we sample test data (the candidate
architectures during NAS) and training data (the profiling archi-
tectures used to train our latency prediction model) uniformly at
random from the same search space (Section 4.3.2). These sampled
NAs constitute our synthetic dataset of 1000 samples; in this section,
we use 900 of these for training and 100 for testing.

Fig. 13 presents the average MAPE across 6 platforms'# under dif-
ferent ML approaches when predicting end-to-end latency, as well
as the latency of the 3 operation types accounting for most of end-
to-end latency. Based on the latency breakdown of synthetic neural
architectures on CPUs and GPUs (Fig. 11b), convolution operations

“Due to lack of space, MAPE of each platform is reported in [41].
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Figure 13: Predictions of ML Models (Synthetic NAs)

typically account for the largest proportion of end-to-end latency;
consequently, the prediction error of convolution dominates the
error of end-to-end latency prediction for all ML approaches on
both CPUs and GPUs. For example, Lasso has a large MAPE (62.2%)
for “mean” operations on CPU (Fig. 13a), while its MAPE for end-to-
end latency is only 10.0%; that is because, as shown in Fig. 11b, for
75% of synthetic neural architectures, mean operations contribute
to less than 3.6% of the CPU end-to-end latency.

As shown in Fig. 13, in our default setting, all nonlinear ML
approaches (RF, GBDT, MLP) achieve comparable accuracy on end-
to-end latency predictions, with average MAPE across six platforms
below 2.8% for CPU predictions and below 5.5% for GPU predictions;
Lasso achieves less accurate predictions (11.2% on CPUs and 9.4%
on GPUs) because its linear model cannot represent non-linear
relationships between latency and operation features, as identified
by previous work [57, 68].

5.2 Case Study: Hardware Heterogeneity

Next, we evaluate our prediction framework under hardware hetero-
geneity, including scenarios with different CPU core combinations
and with both floating-point and integer representations. We select
GBDT as a representative ML approach in this section, since it
shows comparable or slightly better predictions than RF and MLP
in the case of a large CPU core (Fig. 13a).

Fig. 14 illustrates GBDT predictions of end-to-end latency over
various core configurations.!> We observe that more homogeneous
cores typically lead to higher prediction errors. Using more cores
can result in larger measurement variance, due to background jobs
running on mobile devices (e.g., cameras, sensors, and networking
services); measurement variance can impair the quality of profiling
data and thus affect prediction accuracy.'® For example, from the
results on Exynos 9820 shown in Fig. 14b, the MAPE on 4 small
cores (10.3% for floating-point and 10.5% for integer quantization) is
higher than the MAPE on 1 small core (8.6% and 4.9%, respectively),
due to the substantial interference of background jobs when an
inference task attempts to make use of all the efficient cores on the
device; in these situations, latency measurements have larger coef-
ficient of variation, as shown in Fig. 15. Overall, GBDT achieves ac-
curate predictions across all platforms: the worst MAPEs for homo-
geneous cores are 10.5% on Exynos 9820, 5.8% on Snapdragon 855,
6.0% on Helio P35, and 5.8% on A12 Bionic.

Note that using heterogeneous cores results in even higher vari-
ability of latency measurements due to inter-cluster communication

5For clarity of presentation, we omit some outliers (<9% data points for 1 large and 2
medium cores of Exynos 9820, and <4% data points for all other configurations), and
report plots with all data points in [41].

16T our approach, we do not explicitly model background jobs; in practice, they depend
on user activities and so are different at runtime.
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[61]. In addition, as explained in Section 3.1.1, operations without
multithreading implementations can be scheduled on arbitrary
cores, complicating prediction; for example, when using 1 large and
1 medium core on Snapdragon 855, MAPEs (3.9% for floating-point
and 5.5% for integer quantization) are higher with respect to using
2 medium cores (3.2% and 3.9%, respectively).

Fig. 16 presents predictions of GBDT for different GPUs. For con-
volution operations, we split the results of Conv2D and Winograd
kernels in Fig. 16a because separate latency predictors are trained
for each kernel; no Winograd kernel is used on Adreno 640 and
616 due to the rules of kernel selection presented in Section 3.2.2.
Overall, GBDT achieves good end-to-end prediction across all six
GPUs, with worst MAPE of 8.2% on Exynos 9820.

5.3 Case Study: Neural Architecture Diversity

Next, we evaluate our framework on diverse neural architectures:
we consider a scenario where training data include candidates sam-
pled at the early stages of NAS, while test data are highly accurate
neural architectures generated at the end of NAS. In our evaluation,
we use 1000 synthetic neural architectures as training data and
102 real-world neural architectures (from existing literature) as test
data. The two sets of neural architectures have different distributions
(i.e., we introduce a dataset shift): we observe that the latency of
convolution operations in real-world neural architectures is gener-
ally lower than in synthetic neural architectures. Fig. 17a shows the
percentage of end-to-end latency attributed to convolution opera-
tions (split by range) on Helio P35 (with a large core): convolutions
greater than 50 ms dominate end-to-end latency in our synthetic
neural architectures, while faster convolutions contribute more to
real-world neural architectures.

Fig. 18a shows the average MAPE across six devices for the
real-world neural architectures on CPUs. For most ML approaches
trained on synthetic neural architectures, prediction errors are
higher for real-world neural architectures than synthetic neural
architectures (Fig. 13) that are generated from the same distribution
as the training data. The only exception is Lasso, which achieves
better predictions on real-world neural architectures, with end-to-
end MAPE on CPUs (5.4%), similar to RF and GBDT. We attribute
this anomaly to the better accuracy of Lasso predictions on fast
operations (< 50 ms) due to higher weights assigned to these opera-
tions in Eq. (1), which we observe in both synthetic and real-world
architectures (Fig. 17b). Since real-world architectures include a
larger proportion of fast operations (in this specific dataset shift),
average accuracy of Lasso is better on real-world architectures than
synthetic neural architectures.

Fig. 18b presents predictions on mobile GPUs. We observe that,
for some small real-world neural architectures, the overhead of
TFLite is significant. Since the overhead has high runtime variability
(in particular, on PowerVR GE8320 and Mali G76), it can affect the
accuracy of end-to-end latency predictions, especially for neural
architectures with low latency such as MobileNets.

5.4 Case Study: ML Framework Optimizations

Next, we illustrate the improvements of GPU predictions from
accounting for ML framework optimizations such as kernel fusion
and kernel selection.
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Figure 15: Coefficient of Variation for Latency Measurements of Synthetic NAs on CPUs
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formance characteristics). Fig. 20a shows the considerable error
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Kernel Fusion. In Section 3.2.1, we show that kernel fusion con- world neural architectures (presented in Section 5.3), respectively
siderably reduces the number of kernels and leads to improve- (errors are average MAPE across 6 platforms).!” Predictions of Lasso
ments in end-to-end latency. Fig. 19a shows that, after following are less sensitive to the size of training data, while other more com-
Algorithm 3.1 to estimate which kernels will be fused by TFLite plex approaches achieve higher errors when the training set size is
(Section 3.2.1), we obtain a number of kernels close to actual mea-
surements collected on 102 real-world neural architectures. Fig. 19b 7MAPEs for each platform are reported in [41].
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Figure 21: Prediction Errors on Synthetic or Real-World NAs for Different Synthetic Training Set Sizes

decreased from 900 to 30. Consequently, when training data is lim-
ited, e.g., in Figs. 21a and 21b for training size of 30, a simple model
such as Lasso achieves similar or better accuracy than complex
models; Lasso is also more robust when test and training datasets
have different distributions, even for large amounts of training data,
e.g., when training on synthetic NAs but testing on real-world NAs
in Figs. 21c and 21d. Complex models (GBDT, RF and MLP) are
similarly accurate when sufficient training data is available and
there is no dataset shift (i.e., training and testing datasets have
similar distributions), e.g., in Figs. 21a and 21b for training set size
of 900. In the case of data shift (Figs. 21c and 21d), MLP achieves the
worst predictions with a training set of size 100. This is due to se-
vere prediction errors on concatenation/split operations: on Pixel 4
(one large CPU core), MAPEs on concatenation/split operations are
56.7%, 1400.4% and 1068.7%, after training on 30, 100 and 900 neural
architectures, respectively. This anomaly is due to the very small
amount of training data (only 5, 25 and 312 concatenation/split op-
erations from training data of 30, 100 and 900 neural architectures,
respectively). Instead, for convolution operations with sufficient
data, MLP prediction errors are 7.8%, 5.1% and 4.6% for training sets
of size 30, 100 and 900, respectively, on the same platform.

Notably, for real-world neural architectures, using only 30 train-
ing examples, Lasso considerably outperforms other ML approaches
on CPUs with a large core (Fig. 21c), with an average MAPE of 6.5%
across six platforms. As pointed out by prior work [42], the cost
of profiling only 30 neural architectures on each target device is
negligible compared to measuring latencies of all candidate neural
architectures (e.g., thousands) during NAS.

5.5.2  Lasso Predictions with Limited Training Data. Next, we thor-
oughly evaluate the predictions of Lasso with a limited training set
size (i.e., 30 neural architectures) on real-world neural architectures,
across a broad range of scenarios for hardware heterogeneity.

Fig. 22 shows the prediction error of Lasso on real-world neu-
ral architectures, across various combinations of cores and data
representations.'® Generally, the trend of prediction errors for ho-
mogeneous and heterogeneous clusters is similar to the results in
Fig. 14. The maximum MAPE for combinations of homogeneous
cores is 22.9% on Exynos 9820, 13.5% on Snapdragon 855, 9.6% on
Helio P35, and 9.5% on A12 Bionic. We attribute the large prediction
errors on Exynos 9820 to the noise of measurements collected with
many small cores, which is due to background tasks and can affect
the quality of training data for this limited dataset. By adding more
training data, MAPEs can be reduced to less than 14.8%.

Fig. 23 shows the predictions of Lasso across multiple mobile
GPUs. In general, the end-to-end predictions on the slower GPUs

18For clarity of presentation, we omit some outliers (<4% data points per configuration)
and report plots with all data points in [41].
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(MAPEs of 5.0% on PowerVR GE830 and 5.4% on Adreno 616) are
better than on faster GPUs (MAPEs of 11.0% on Mali G76 and 10.7%
on Adreno 640), since we observe smaller noise of measurements
on slower GPUs over the longer execution time.

Since all the features are standardized, we use the magnitude of
weights in the Lasso model to analyze the importance of different
features. On all devices, using either CPUs or GPUs, we find the
most critical features (those with largest weights) of convolution
operations to be FLOPs and kernel size, which are strongly correlated
with the costs of computation and memory access, respectively.'?
In contrast, the two most critical features of depthwise convolution
operations are FLOPs and input size. Input size can dominate the
cost of memory access for depthwise convolutions since their kernel
sizes are substantially smaller than those of standard convolutions.

5.6 Comparison with Related Work

Lastly, we quantitatively compare our results with the state-of-the-
art inference latency predictor nn-Meter [68] and conduct evalua-
tions on the existing NAS benchmark dataset NATSBench [13].

5.6.1 Predictors: nn-Meter. As noted in Section 1, nn-Meter [68]
is a state-of-the-art technique for predicting inference latency on
mobile devices; it uses a black-box model to estimate the rules of
kernel fusion on a target device and predicts the latency of each
kernel using Random Forest Regression. We first compared our
results with those of nn-Meter using the pre-trained predictors pro-
vided by nn-Meter; however, nn-Meter’s predictors failed to achieve
accurate predictions on our dataset because they were trained on
measurements collected using different compile options of TFLite
(as detailed in [41]). Therefore, to achieve a fair comparison, we ran
the source code of nn-Meter [48] to train a predictor with the same
data used by our approach: (1) we first used nn-Meter to detect the
rules of kernel fusion on four Android devices from Table 1;%° (2)
then, we trained kernel-level latency predictors on our synthetic
dataset (including our latency measurements), but using the fea-
tures and the hyperparameters of the Random Forest Regression
model specified by nn-Meter.

Fig. 24 compares nn-Meter predictions (the average MAPE across
four Android platforms) to those of our approach (using different
ML models); as can be seen, our approach outperforms nn-Meter
on both 102 real-world NAs and 100 NAs from our synthetic dataset
across different sizes of training data. An important reason is that
our approach considers a broader set of features for operations. For
example, nn-Meter does not distinguish grouped convolutions from

19However, as noted in Section 1, FLOPs alone is not an accurate proxy metric for the
actual latency.

20In nn-Meter, rule detection requires benchmarking NAs on actual devices; nn-Meter
does not support this for iOS devices.
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standard convolutions; a grouped convolution splits the input ten-
sor into multiple groups of small tensors and conducts convolutions
on each tensor, leading to a significant reduction in FLOPs. Con-
sequently, nn-Meter mispredicts 14 real-world NAs with grouped
convolutions (e.g., errors of 31.2% and 157.1% on the CPU and GPU
of Helio P35, respectively). Notably, nn-Meter predictions are less
accurate on GPUs for the following reasons: (1) nn-Meter does not
account for kernel selection on GPUs, e.g., it neglects the fact that
various kernels with distinct performance characteristics (such as
Winograd) can be applied to the same convolution operation on dif-
ferent platforms (as evaluated in Section 5.4); (2) nn-Meter ignores
the effects of ML framework overhead, which can be significant on
GPUs (in particular, on PowerVR GE8320 and Mali G76, as shown
in Section 5.3).

5.6.2  NAS Benchmark: NATSBench. Evaluated in related work [2,
68], the NATSBench [13] dataset includes NAs sampled from Topol-
ogy Search Space (S;) and Space Search Space (Ss). In S, each NA
consists of operations with predefined configurations (e.g., number
of channels) and different topology (i.e., interconnections between
operations); in Ss, the topology is fixed and the number of channels
is chosen from 8 candidates. For both datasets, we select 1000 NAs
with the highest test accuracy on CIFAR-100 [36]; we observe that
the diversity of operation configurations in these NAs is very lim-
ited. For example, there are only 11 and 239 unique configurations
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of convolution operations in the NAs from S; and S respectively
(compared to 6608 configurations in our synthetic dataset). In the
NAS space of such limited configurations, building look-up tables
by measuring the latencies of all possible configurations of each
building block is sufficient to estimate the end-to-end latency of
candidate NAs; in contrast, our NAS space covers over 2 X 107 con-
figurations of convolution operations (i.e., with different number of
input/output channels, kernel size, and group size), which makes
look-up tables very costly to build and is better suited for inference
latency prediction approaches during NAS.

In addition, the limited data diversity results in NATSBench being
less representative of real-world NAs; for example, among 102 real-
world NAs in our study, 58 contain depthwise convolutions, which
are not present in NATSBench NAs (therefore, a prediction model
cannot be trained for this type of operation). Fig. 25 compares
prediction errors on the remaining 44 real-world NAs based on
training with 1000 NAs from Ss (which includes a broader set of
configurations than S;) and from our synthetic dataset. As can be
seen, more complex ML models are less accurate when trained
with Sg, due to its limited diversity.

6 CONCLUSIONS

Using measurements collected on 6 mobile devices for a number
of neural architectures (1000 synthetic NAS architectures and 102
real-world architectures), we showed the impact of different fac-
tors on inference latency, including optimizations applied by ML
frameworks for mobile GPUs (kernel fusion and kernel selection),
scheduling over heterogeneous subsets of CPU cores and integer
representations after quantization, often neglected by related work.
Based on this experimental evaluation, we proposed an approach
to estimate end-to-end inference latency by training ML models
to predict latency of each component type of neural architectures.
Our approach can accurately predict latency of novel neural archi-
tectures on a given device using limited profiling data (e.g., from 30
architectures); notably, we achieve good accuracy also when the test
dataset has different characteristics from training data, a common
scenario in NAS. In future work, we plan to extend our evaluation
and prediction approach to other efficiency metrics (e.g., power
consumption), to different classes of specialized hardware acceler-
ators for inference tasks (e.g., Apple Neural Engine), and to other
machine learning framework optimizations (e.g., the OpenVINO
ARM CPU plugin).

ACKNOWLEDGMENTS

This work was supported in part by the NSF CNS-1816887 and
CCF-1763747 awards.



Predicting Inference Latency of Neural Architectures on Mobile Devices

REFERENCES

(1]
(2]

(3]

[11]

[12

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23

[24]

[25

2021. Sandbox for training deep learning networks. https://github.com/osmr/
imgclsmob

Saad Abbasi, Alexander Wong, and Mohammad Javad Shafiee. 2022. MAPLE:
Microprocessor a Priori for Latency Estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
Apple. 2016. Prioritize Work at the Task Level. https://developer.apple.com/
library/archive/documentation/Performance/Conceptual/power_efficiency_
guidelines_osx/PrioritizeWorkAtTheTaskLevel.html Accessed: 2022-10-10.
Apple. 2021. Discover Metal debugging, profiling, and asset creation tools. https:
//developer.apple.com/videos/play/wwdc2021/10157 Accessed: 2022-10-06.
Noureddine Bouhali, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait EI Cadi.
2021. Execution Time Modeling for CNN Inference on Embedded GPUs. In
Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and
Performance Evaluation: Methods and Tools Proceedings. 59-65.

Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait El Cadi.
2021. Performance prediction for convolutional neural networks on edge GPUs.
In Proceedings of the 18th ACM International Conference on Computing Frontiers.
54-62.

Wieland Brendel and Matthias Bethge. 2019. Approximating CNNs with Bag-
of-local-Features models works surprisingly well on ImageNet. arXiv preprint
arXiv:1904.00760 (2019).

Peter Bryzgalov, Toshiyuki Maeda, and Yutaro Shigeto. 2021. Predicting How
CNN Training Time Changes on Various Mini-Batch Sizes by Considering Convo-
lution Algorithms and Non-GPU Time. In Proceedings of the 2021 on Performance
EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy. 11-18.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-
for-All: Train One Network and Specialize it for Efficient Deployment. In Inter-
national Conference on Learning Representations, ICLR.

Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Ar-
chitecture Search on Target Task and Hardware. In International Conference on
Learning Representations, ICLR.

Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, and Youn-Long
Lin. 2019. HarDNet: A Low Memory Traffic Network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang,
Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uyt-
tendaele, and Niraj K. Jha. 2019. ChamNet: Towards Efficient Network Design
Through Platform-Aware Model Adaptation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. 2021. NATS-
Bench: Benchmarking NAS Algorithms for Architecture Topology and Size. IEEE
transactions on pattern analysis and machine intelligence 44, 7 (2021), 3634-3646.
Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim,
and Nicholas Lane. 2020. BRP-NAS: Prediction-based NAS using GCNs. In
Advances in Neural Information Processing Systems, Vol. 33. 10480—-10490.
Jerome H. Friedman. 2001. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics 29, 5 (2001), 1189-1232.

Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2021.
Runtime Performance Prediction for Deep Learning Models with Graph Neural
Network. Technical Report. Technical Report MSR-TR-2021-3. Microsoft.

X Yu Geoffrey, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habi-
tat: A Runtime-Based Computational Performance Predictor for Deep Neural
Network Training. In USENIX Annual Technical Conference. 503-521.

Google. 2022. Tensorflow Lite: Kernel Fusion Implementation.
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/
delegates/gpu/common/gpu_model.cc#L.393 Accessed: 2022-08-05.

Google. 2022. Tensorflow Lite: ML for Mobile and edge devices. https://www.
tensorflow.org/lite

Google. 2022. TensorFlow Lite: Multithreading for Convolutions with the Ruy Li-
brary. https://github.com/google/ruy/blob/38a926/ruy/trmul.cc#L390 Accessed:
2022-08-05.

Google. 2022.  TensorFlow Lite: Multithreading for Depthwise Convolu-
tions.  https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/
kernels/internal/optimized/depthwiseconv_multithread.h#L173 Accessed: 2022-
08-05.

Google. 2022. Tensorflow Lite: Profile Time for OpenCL Kernels.
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/
delegates/gpu/cl/inference_context.cc#L792 Accessed: 2022-10-12.

Google. 2022. TFLite Model Benchmark Tool. https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/lite/tools/benchmark Accessed: 2022-07-12.
Ubaid Ullah Hafeez and Anshul Gandhi. 2020. Empirical Analysis and Modeling
of Compute Times of CNN Operations on AWS Cloud. In 2020 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 181-192.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. 2020.
GhostNet: More Features From Cheap Operations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

111

[26

[27

[28

™~
29,

[30

(31]

[32

®
3

[34

[35

[36

[37

'
&,

[39

[40

[41

[42

[43

[44

S
)

[46

[47

(48

ICPE 23, April 15-19, 2023, Coimbra, Portugal

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity map-
pings in deep residual networks. In Computer Vision-ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
IV 14. Springer, 630-645.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. 2019. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
preprint arXiv:1704.04861 (2017).

Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).
Sergey loffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, Vol. 37. PMLR, 448-456.
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
2018. Predicting the Computational Cost of Deep Learning Models. In 2018 IEEE
International Conference on Big Data (Big Data). 3873-3882.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

Andrew Lavin and Scott Gray. 2016. Fast Algorithms for Convolutional Neural
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh,
Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. 2019. On-
Device Neural Net Inference with Mobile GPUs. arXiv preprint arXiv:1907.01989
(2019).

Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok Bae, and Jongyoul Park.
2019. An Energy and GPU-Computation Efficient Backbone Network for Real-
Time Object Detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.

Jinyang Li, Runyu Ma, Vikram Sharma Mailthody, Colin Samplawski, Benjamin
Marlin, Songging Chen, Shuochao Yao, and Tarek Abdelzaher. 2021. Towards an
Accurate Latency Model for Convolutional Neural Network Layers on GPUs. In
MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM). IEEE,
904-909.

Zhuojin Li, Marco Paolieri, and Leana Golubchik. 2022. Predicting Inference La-
tency of Neural Architectures on Mobile Devices. arXiv preprint arXiv:2210.02620
(2022).

Bingqian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, and Shaolei Ren. 2021. One
proxy device is enough for hardware-aware neural architecture search. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems 5, 3 (2021),
1-34.

Sangkug Lym, Donghyuk Lee, Mike O’Connor, Niladrish Chatterjee, and Mattan
Erez. 2019. DeLTA: GPU performance model for deep learning applications with
in-depth memory system traffic analysis. In 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE, 293-303.
Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV). 116-131.

Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A White Paper on Neural Network
Quantization. arXiv preprint arXiv:2106.08295 (2021).

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNN-
Fusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 883-898.

Microsoft Research nn Meter Team. 2021. nn-Meter: Towards Accurate Latency
Prediction of Deep-Learning Model Inference on Diverse Edge Devices. https:
//github.com/microsoft/nn-Meter


https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.apple.com/videos/play/wwdc2021/10157
https://developer.apple.com/videos/play/wwdc2021/10157
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/delegates/gpu/common/gpu_model.cc#L393
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/delegates/gpu/common/gpu_model.cc#L393
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://github.com/google/ruy/blob/38a926/ruy/trmul.cc#L390
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/kernels/internal/optimized/depthwiseconv_multithread.h#L173
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/kernels/internal/optimized/depthwiseconv_multithread.h#L173
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/delegates/gpu/cl/inference_context.cc#L792
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/lite/delegates/gpu/cl/inference_context.cc#L792
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark
https://github.com/microsoft/nn-Meter
https://github.com/microsoft/nn-Meter

ICPE 23, April 15-19, 2023, Coimbra, Portugal

[49]

[50]

[51

[52]

[53

[54]

[55]

[56]

[57]

[58]

Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance
Model for Deep Neural Networks. In Proceedings of the International Conference
on Learning Representations.

Zheng Qin, Zhaoning Zhang, Xiaotao Chen, Changjian Wang, and Yuxing Peng.
2018. Fd-mobilenet: Improved mobilenet with a fast downsampling strategy. In
2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 1363—
1367.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollar. 2020. Designing Network Design Spaces. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi
Priyantha, Jie Liu, and Diana Marculescu. 2020. Single-Path NAS: Designing
Hardware-Efficient ConvNets in Less Than 4 Hours. In Machine Learning and
Knowledge Discovery in Databases. Springer, Cham, 481-497.

Muhtadyuzzaman Syed and Arvind Akpuram Srinivasan. 2021. Generalized
Latency Performance Estimation for Once-For-All Neural Architecture Search.
arXiv preprint arXiv:2101.00732 (2021).

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. 2019. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In International conference on machine learning.
PMLR, 6105-6114.

Xiaohu Tang, Shihao Han, Li Lyna Zhang, Ting Cao, and Yunxin Liu. 2021. To
bridge neural network design and real-world performance: A behaviour study for
neural networks. Proceedings of Machine Learning and Systems 3 (2021), 21-37.
Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267-288.

[59] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao,

[60]

Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao.
2020. Deep high-resolution representation learning for visual recognition. IEEE
transactions on pattern analysis and machine intelligence 43, 10 (2020), 3349-3364.

Robert ] Wang, Xiang Li, and Charles X Ling. 2018. Pelee: A real-time object
detection system on mobile devices. Advances in neural information processing
systems 31 (2018).

112

(61

[62

[63

[64

(65

[66

(68

[69

[70

Zhuojin Li, Marco Paolieri, & Leana Golubchik

Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania,
and Tulika Mitra. 2019. High-throughput CNN inference on embedded ARM Big.
LITTLE multicore processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39, 10 (2019), 2254-2267.
Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. FBNet:
Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture
Search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).
Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand,
Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch,
Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran
Xian, Sungjoo Yoo, and Peizhao Zhang. 2019. Machine learning at facebook:
Understanding inference at the edge. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 331-344.
Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017.
Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. 2018. Netadapt: Platform-aware neural network
adaptation for mobile applications. In Proceedings of the European Conference on
Computer Vision (ECCV). 285-300.
Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. 2018. Deep Layer
Aggregation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Sergey Zagoruyko and Nikos Komodakis. 2017. Diracnets: Training very deep neu-
ral networks without skip-connections. arXiv preprint arXiv:1706.00388 (2017).
Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang,
and Yunxin Liu. 2021. nn-Meter: towards accurate latency prediction of deep-
learning model inference on diverse edge devices. In Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and Services.
81-93.
Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet:
An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
CVPR).
garret)Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforcement
Learning. In International Conference on Learning Representations, ICLR.
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learning
Transferable Architectures for Scalable Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).



	Abstract
	1 Introduction
	2 Background
	3 Inference on Mobile Devices
	3.1 Mobile CPUs
	3.2 Mobile GPUs

	4 Methodology
	4.1 Kernel Deduction
	4.2 Prediction Models
	4.3 Synthetic Dataset

	5 Results
	5.1 Default Setting: NAS Space
	5.2 Case Study: Hardware Heterogeneity
	5.3 Case Study: Neural Architecture Diversity
	5.4 Case Study: ML Framework Optimizations
	5.5 Case Study: Limited Training Data
	5.6 Comparison with Related Work

	6 Conclusions
	References



