
Intellectual Property Protection of Deep Learning
Systems via Hardware/Software Co-design

Huili Chen† Cheng Fu† Bita Darvish Rouhani⇤ Jishen Zhao† Farinaz Koushanfar†
† University of California San Diego ⇤ Microsoft

† {huc044, cfu, jzhao, farinaz}@ucsd.edu ⇤ bita.rouhani@microsoft.com

Abstract—Recent advances in model piracy have uncovered
a new security hole for malicious attacks endangering the
Intellectual Property (IP) of Deep Learning (DL) systems. This
manuscript features our research titled “DeepAttest: An End-to-
End Attestation Framework for Deep Neural Networks” [1] that
is selected for the 2021 Top Picks in hardware and embedded
security. DeepAttest is the first end-to-end framework that
achieves reliable and efficient IP protection of DL devices with
hardware-bounded usage control. We leverage device-specific
model fingerprinting and Trusted Execution Environment (TEE)
to ensure that only DL models with the device-specific fingerprint
can run inference on protected hardware.

Index Terms—Intellectual property protection, Deep learning
hardware, Attestation, Digital fingerprinting

I. INTRODUCTION

Deep Neural Networks (DNNs) have enabled a paradigm
shift in various real-world applications due to their unprece-
dented performance and the capability of automatically learn-
ing informative representations for desired tasks. Although
advanced learning systems are critical to ensure the high
performance of autonomous agents, the investigation of their
vulnerability to Intellectual Property (IP) piracy attacks is still
in its infancy. To facilitate practical deployment and reliable
technology transfer, protecting the IP of the emerging Deep
Learning (DL) hardware is of great importance.

There has been a line of research that reveals the vulner-
ability of DL models to model piracy attacks [2], [3]. The
malicious adversary might intend to claim the authorship of
well-trained DNNs deployed in publicly available settings or
Machine Learning as a Service (MLaaS). Figure 1 visualizes
the IP concern in the supply chain. The designer trains the
DL model using large training data and computing resources.
Therefore, the designer is the legal owner of the model.
However, when the owner uploads the trained model to public
platforms or deploys it as a remote service on the cloud,
malicious users may steal the valuable DL model to gain
financial benefits.

Prior works have proposed various methodological and
architecture-level advancements to improve the performance
and efficiency of DNN training/execution on diverse plat-
forms [4], [5]. However, emerging DL platforms are suscep-
tible to unregulated usage. For instance, the attacker might
deploy a DNN from a competitor company on the DL de-
vice, or maliciously perturb the deployed model to divert its
prediction. The end users may also intend to use the DL

Fig. 1: Demonstration of the IP piracy attack against pre-
trained DL models.

device after license expiration. The above-described hardware-
based attacks may cause substantial financial loss for the DL
hardware provider, motivating us to extend the IP protection
of DL systems to the hardware level.

This paper features our framework named DeepAttest,
which is the first end-to-end hardware-bounded IP protection
and usage control technique for DNN applications. DeepAttest
addresses the following three challenges:

I. Identifying a new attack vector against DL systems for
unregulated device usage.

II. Characterizing and protecting DNN hardware via on-
device attestation of the deployed DL model.

III. Devising optimized hardware architecture and an accom-
panying API to facilitate the deployment of DeepAttest.

We propose a novel formulation of hardware-bounded IP
protection of DL programs using on-device DNN attestation.
The high-level usage of DeepAttest is shown in Figure 3.
DeepAttest works by designing a device-specific fingerprint
and encoding it in the weight distribution of the DNN deployed
on the protected hardware. The fingerprint (FP) of the DL
model is later extracted with the support of the Trusted
Execution Environment (TEE). We use the existence of the
device-specific fingerprint as the attestation criterion for de-
termining whether the queried DNN is legitimate. DeepAttest
framework ensures that only authorized DNN programs pass
the attestation (i.e., yield the matching FP) and are allowed
to run inference on the protected hardware. We provision
the device provider with a practical solution to controlling

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

mailto:huc044@ucsd.edu
mailto:cfu@ucsd.edu
mailto:jzhao@ucsd.edu
mailto:farinaz@ucsd.edu
mailto:bita.rouhani@microsoft.com

Fig. 2: Comparison of existing secure DNN techniques and our work.

the application usage of his/her manufactured hardware and
preventing unauthorized or tampered DNNs from execution.

Process

...

Device Provider

Device 1 Device 2 Device N

Pre-trained Model

Secur ity Parameters

DeepAttest

Fig. 3: DeepAttest is a hardware-bounded IP protection solu-
tion that takes the pre-trained model as input and returns a set
of verifiable DNNs as outputs.

In summary, we make the following contributions:
• Enabling effective on-device attestation for DNN

applications. DeepAttest is an end-to-end attestation
framework that is capable of verifying the legitimacy
of an unknown DNN with high reliability (preventing
unauthenticated DNNs from execution) and high integrity
(allowing legitimate DNNs to execute normal inference).

• Characterizing the criteria for a practical attestation
technique in the domain of deep learning. We present
a comprehensive set of metrics to profile the performance
of pending DNN attestation techniques. The introduced
metrics allow DeepAttest to provide a trade-off between
the security level and the attestation overhead.

• Leveraging an Algorithm/Software/Hardware co-
design approach to devise an efficient attestation
solution. Our device-aware framework is equipped with
careful design optimization to ensure minimal overhead
and enhanced security. As such, DeepAttest provides
a lightweight on-device attestation scheme that can be
applied to resource-constrained embedded systems.

• Demonstrating superior performance across various
benchmarks. DeepAttest’s online attestation incurs neg-
ligible latency and energy consumption across different
DL models and platforms, thus providing a viable solu-
tion to hardware-level IP protection.

II. PRELIMINARIES AND BACKGROUND

A. IP Protection of DNNs
A line of research has focused on addressing the soft-

IP concern of DL models using digital watermarking [6]–
[9]. The authors of [6] encode the watermark (WM) in the
transformation of model weights by adding constraints to the

original objective function. The works [7], [9] extend DNN
watermarking to remote cloud service. Particularly, they design
specific image-label pairs as the watermark set and embed the
WM in the model’s decision boundary. DeepSigns [8] presents
the first data-aware watermarking approach by embedding the
WM in the dynamic activation maps.

All of the above-mentioned DNN watermarking techniques
focus on software-level model authorship proof. Note that a
naive implementation of DNN watermarking on the hardware
is inadequate to provide an efficient and trustworthy attestation
solution due to the unawareness of resource management and
potential attacks. As such, these methods are not suitable
for hardware-level IP protection. The works [7], [9] require
DNN inference of multiple inputs on the local device and
TEE-supported WM checking, which is prohibitively costly.
Compared to weight-based watermarking [6], DeepAttest’s
fingerprint extraction from the DL model involves fewer
computations since no extra sigmoid function is required.

B. Secure DNN Evaluation on Hardware

TEE Protection Mechanism. Modern CPU hardware archi-
tectures provide TEEs to ensure secure execution of confi-
dential applications using program isolation. Intel SGX, ARM
TrustZone, and Sanctum are examples of TEEs. To prevent
malicious programs from interfering with executions in TEEs,
data is encrypted by Memory Encryption Engine (MEE) before
its is put into the Enclave Page Cache (EPC) located in the
Processor Reserved Memory (PRM). We refer to this process
as secure memory copy. Programs inside the TEE can read or
write the data outside of the TEE while the programs outside
of the TEE are not allowed to access the EPC. TEEs on other
platforms utilize similar mechanisms to isolate the execution
of the protected program by securing memory access to the
code and data of the confidential program. Besides the CPU-
level TEE support, Graviton [10] proposes a GPU architecture
design to provide TEEs.
Comparison between Secure DNN Techniques. We compare
DeepAttest and existing secure DNN techniques in Figure 2
in terms of platform requirement, the incurred workload in
TEE, resistance to off-line/online data tamper, and capabil-
ity of verifying DNN inference results. Prior secure DNN
inference can be divided into two categories: full execution
inside the TEE, and outsourcing partial computations from
the TEE to untrusted environments. DeepAttest identifies a

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Global flow of DeepAttest for on-device DNN attestation. In the offline marking stage, the device manufacturer generates
secret FP keys (stored in TEE secure memory) and marked DL models. The online attestation stage ensures only users who
purchase marked DNNs can pass attestation and prohibits the deployment of unauthorized DNNs.

new security dimension named ‘device-level’ IP protection
and usage control. Therefore, DeepAttest is orthogonal to
verifiable or privacy-preserving inference techniques.

III. DEEPATTEST OVERVIEW

DeepAttest is the first DNN attestation framework for device
IP protection and usage control. Figure 4 illustrates the global
flow of DeepAttest. The target device can be used with a co-
processor (e.g., ASIC, FPGA) where usage control can be
extended to cover. We identify the performance requirements
for an effective DNN attestation scheme and outline them in
Table I. We introduce the two main phases of DeepAttest,
offline model marking and online DNN attestation below.

A. Offline DNN Marking
We explore the non-uniqueness of non-convex DL problems

and generate a device-specific fingerprint (FP) for the target
hardware. The FP is embedded in the probabilistic distribution
of the selected parameters in the legitimate DNN by fine-
tuning the model with an FP-regularized loss. The generated
FP is stored in the secure memory of the hardware. Besides
the position of the FP-carrying layer, DeepAttest’s secret keys
consist of three parts: a codebook C, an orthogonal basis
matrix U , and a projection matrix X .

Fingerprint Construction. DeepAttest constructs code mod-
ulated FPs as follows. Given the codebook C, the coefficient
matrix B is computed from the linear mapping bij = 2cij � 1
where cij 2 {0, 1}. The FP of the jth user is generated from
the linear combination of basis vectors:

fj =
vX

i=1

bijui, (1)

Regularized Model Fine-tuning. We embed the FP designed
from Equation (1) in the weight distribution of the selected
DL layer by integrating an FP-specific embedding loss to the
original loss function (L0):

L = L0 + � Mean Square Error(f �Xw). (2)

Here, � is the embedding strength that controls the trade-off
between preserving the model’s accuracy (L0) and enforcing
the FP constraint (LFP). The vector w is the flattened aver-
aged weights of the target layers that carry the FP information.

B. Online DNN Attestation

DeepAttest utilizes a hybrid trigger mechanism to prevent
static and dynamic data tamper. When OS detects the DNN
start request, we enable the static trigger. For the dynamic
trigger, we design it from two sources: (i) Memory change
signal provided by OS monitoring. When OS detects the status
change of pages allocated for the DNN program, we raise a
dynamic trigger signal; (ii) A fixed-frequency timestamp signal
from the trusted timer [11] in the TEE.

When attestation is activated by the hybrid trigger, DeepAt-
test securely extracts the fingerprint from the deployed DL
model with the support of TEE and compares it with the
ground-truth value stored in secure memory. Algorithm 1
outlines the steps of DeepAttest’s online attestation. The
queried DNN is determined to be legitimate and permitted
for normal inference if it yields a matching FP with the pre-
stored one. Otherwise, the DNN program fails the attestation
and its execution will be aborted on the protected device.

C. Hardware Optimizations

We develop DeepAttest framework using an Algorithm
/Software /Hardware co-design principle to ensure the security
and efficiency of online DNN attestation. For this purpose,
we propose three novel hardware optimization techniques and
discuss each one below.

Shredder Storage. To improve security against fault in-
jection attacks on memory, DeepAttest deploy a ‘shredder’
storage format instead of continuous storage. Particularly, we
shuffle the model weights and store the resulting data in the

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Requirements for an effective on-device attestation technique of DNN applications.
Requirements Description
Fidelity Functionality of the deployed DNN shall not be degrade as a result of FP embedding in the marking stage.
Reliability Online attestation shall be able to prevent unauthorized DNN programs (including full-DNN program substitution and malicious fault injection)

from executing on the specific device.
Integrity Legitimate DNN programs shall yield the matching FP with high probability and run normal evaluation.
Efficiency The online attestation shall yield negligible overhead in terms of latency and energy consumption.
Security The attestation method shall be secure against potential attacks including fault injection and FP forgery.
Scalability The attestation technique shall be able to verify DNNs of varying sizes.
Generalizability The DNN attestation framework shall be compatible with various computing platforms.

untrusted memory. Figure 5 shows the intuition of shredder
storage. We can see that the probability of detecting the mali-
cious memory blocks is higher when the fingerprint-marked
blocks are randomly distributed compared to the detection
probability with continuous allocation.

Fig. 5: Enhancing attestation security with shredder storage.

Data Pipelining and Early Termination. Note that Deep-
Attest’s FP extraction is parallelizable since each bit of the
fingerprint can be recovered independently as can be seen from
Algorithm 1. We leverage the independence of FP reconstruc-
tion and propose two optimization methods, data pipelining
and early termination, to improve attestation efficiency.

We pipeline secure memory copy and the FP computation
in TEE as shown in Figure 6. Particularly we create two
pipelined TEE threads to transport the partitioned weight into
the TEE and extract the FP, respectively. After the computation

completes, the enclave memory occupied by FP extraction is
freed and no intermediate results need to be stored. There-
fore, DeepAttest supports DNNs with large weight size. In
addition, we propose early termination for FP comparison and
skips unnecessary computation as well as communication. The
online attestation terminates and yields the failure signal once
a mismatch between the extracted FP segment and the pre-
specified device-specific FP is detected as shown in Figure 6.

Fig. 6: Data Pipeline and Early Termination of DeepAttest on
TEE execution.

IV. EVALUATIONS

In this section, we present a comprehensive evaluation of
DeepAttest’s performance according to Table I and compare
it with existing secure DNN inference techniques.

A. Performance Evaluation of DNN Attestation

We assess DeepAttest on various DNN architectures and
datasets. Table II summarizes the DNN benchmarks used in
our experiments. As for hardware platforms, we investigate
DeepAttest on Intel-SGX (TEE-support CPU platform) and
Graviton-based TEE simulation (GPU platform) [10].
DeepAttest Configuration. We use a codebook C31⇥31 that
accommodates 31 users. We set the embedding strength to
� = 0.1 and fine-tune the pre-trained DL model for 5 epochs
during offline DNN marking. For online FP extraction, we use
a detection threshold of ⌧ = 0.85.

TABLE II: Evaluated benchmark summary.

Benchmark Dataset Model Size
(MB)

Multiply-Add
Operations

(Mops)
Marked Layer Size

(MB)

MNIST-CNN MNIST 1.3 24 0.13 (10.1%)
CIFAR-WRN CIFAR10 2.4 198 0.29 (12.3%)

VGG16 ImageNet 276.7 25180 28.3 (10.2%)
MobileNet ImageNet 8.4 569 1.05 (12.6%)

Fidelity. To evaluate the fidelity of DeepAttest, we compare
the test accuracy of the FP-marked model with the one of
the baseline model (without FP embedding). For all DNN
benchmarks in Table II, our results show that DeepAttest has
slight improvement or maintains the same level of accuracy
compared to the baseline, thus satisfying the fidelity criteria.

Reliability and Integrity. We evaluate the reliability and
integrity of DNN attestation by measuring the Bit Error
Rate (BER) of FP extraction when the deployed DNN is
legitimate or unauthorized. We add random Gaussian noise on

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

the weights of the FP-marked layer and perform FP extraction
on the resulting ‘noisy’ weight. Figure 7 shows how the BER
of DeepAttest changes with varying noise intensity and spatial
range. DeepAttest yields a zero BER on the marked weights,
and a high BER when noise increases (i.e., DNN is altered),
thus satisfying reliability and integrity in Table I.

Fig. 7: Evaluate reliability and integrity of DeepAttest.

Efficiency. We detail the memory and runtime overhead
of DeepAttest with data pipelining and early termination
optimizations in the following sections.

B. Comparison with Related Works
We compare DeepAttest with SOTA secure DNN inference

techniques listed in Figure 2. Note that DeepAttest solves a
new security concern (i.e., hardware-level IP protection and
usage control) for DNNs that have not been identified by previ-
ous works. Since DeepAttest is orthogonal to existing privacy-
oriented DNN inference methods, we provide a horizontal
performance comparison of the relative overhead required by
different security/privacy-protection DNN techniques.

Secure Memory Copy. Recall that we define secure memory
copy as the communication between untrusted memory and
TEE-encrypted memory. Figure 8 illustrates the theoretical
(minimal) size of secure memory copy required by different
secure DNN techniques assuming the TEE is not memory-
bounded. Slalom [12] incurs large overhead of secure memory
copy since it outsources linear operations of DNN inference
to the untrusted GPU. Fully TEE-based DNN evaluation only
requires to transfer all weight data and input data, thus is less
sensitive to the number of inputs. DeepAttest’s memory copy

Fig. 8: Comparison of the theoretical size of secure memory
copy to TEE required by different secure DNN techniques on
(a) CIFAR-WRN and (b) VGG16 benchmark.

size is not sensitive to the number of inputs since it adopts a
hybrid triggering scheme where the attestation is performed on
every batch of f images. Furthermore, the secure copy size of
DeepAttest is small for a given attestation interval due to the
deployment of shredder storage optimization, which ensures
security for a smaller value of the marked ratio �.

Latency. Figure 9 shows the normalized latency required
by different secure DNN inference methods and DeepAttest
where the baseline is performed on the untrusted CPU. Run-
ning DNN inference fully inside TEE is 12.34⇥ slower than
insecure inference on average. Slalom [12] outsources linear
operations to the untrusted CPU and non-linear parts to Intel-
SGX, resulting in an average normalized latency of 1.72⇥
to provide verifiable results. DeepAttest incurs negligible
relative latency of 0.7% and 1.9% on VGG16 and MobileNet
respectively, thus is highly efficient.

Fig. 9: Comparison of relative latency between different se-
cure DNN techniques running on CPU for VGG16 (a) and
MobileNet (b).

V. DISCUSSION

We discuss two open questions about the applicability and
security of DeepAttest in this section.
How to adapt DeepAttest on hardware without TEE?
DeepAttest framework is general and can be extended to pro-
tect devices that do not have TEEs. The on-device attestation
step of DeepAttest mainly involves two matrix multiplications
as shown in Algorithm 1. If the processor does not have a TEE
to perform the above computation in a secure environment,
DeepAttest can Freivalds’ algorithm , a verifiable outsourcing
scheme, to verify the two matrix multiplications required for
the fingerprint check in an untrusted environment.
How is DeepAttest impacted by vulnerabilities of TEEs?
Known attacks on TEEs will compromise the security of
DeepAttest from various possible aspects. For example, the
side-channel analysis might be run against the TEE , leaking
information about the device-specific secret fingerprint and
facilitating FP forgery to bypass DeepAttest. Alternatively, the
software timers in the TEE might be manipulated , which
directly impacts the dynamic trigger used by DeepAttest. If
the adversary makes the speed of the TEE timer faster, then
the dynamic trigger will be activated more frequently and
unnecessary verification might be performed, resulting in an

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

increased resource consumption. If the adversary makes the
speed of the TEE timer slower, then the dynamic trigger of
DeepAttest will be activated less often than expected, meaning
that on-device attestation may not launch on a pre-scheduled
frequency and increase the IP infringement risk.

VI. CONCLUSION AND BROADER IMPACT

DeepAttest is a holistic solution to enabling reliable technol-
ogy deployment and protecting the commercial advantage of
DL hardware providers. To the best of our knowledge, there
is no prior investigation on hardware-bounded IP protection
for DL models with full consideration of security, reliability,
and efficiency. DeepAttest’s formulation of on-device DNN
attestation enables usage control and model authentication
for DL hardware providers. DeepAttest is developed based
on an Algorithm/Software/Hardware co-design approach to
achieve secure and lightweight model signature extraction and
comparison. Our vision is to constrain the usage of intelligent
hardware to specific DL models that are pre-specified by the
device provider. Such a usage control scheme not only prevents
the execution of tampered DL models but also prohibits the
misuse of the devices for undesired purposes. DeepAttest is
the first on-device DNN attestation framework that verifies the
legitimacy of the deployed DNN before allowing it to execute
normal inference, which is practically useful to industrial
practitioners for reliable technology transfer.

ACKNOWLEDGEMENT

This work was supported in part by National Science Foun-
dation (NSF) Trust-Hub under award number CNS-2016737,
and NSF TILOS under award number CCF-2112665.

REFERENCES

[1] H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar, “Deepattest:
An end-to-end attestation framework for deep neural networks,” in Pro-
ceedings of the 46th International Symposium on Computer Architecture,
2019, pp. 487–498.

[2] M. Chen and M. Wu, “Protect your deep neural networks from piracy,”
in 2018 IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 2018, pp. 1–7.

[3] R. Yasaei, S.-Y. Yu, E. K. Naeini, and M. A. Al Faruque, “Gnn4ip: Graph
neural network for hardware intellectual property piracy detection,” in
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 217–222.

[4] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 764–775.

[5] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 367–379.

[6] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proceedings of the 2017 ACM on
international conference on multimedia retrieval, 2017, pp. 269–277.

[7] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1615–1631.

[8] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: An
end-to-end watermarking framework for ownership protection of deep
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 485–497.

[9] J. Guo and M. Potkonjak, “Evolutionary trigger set generation for dnn
black-box watermarking,” arXiv preprint arXiv:1906.04411, 2019.

[10] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 681–696.

[11] Intel, “Intel software guard extensions sdk,” https://software.intel.com/
en-us/sgx-sdk-dev-reference-sgx-get-trusted-time, 2017.

[12] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” arXiv, 2018.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-get-trusted-time
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-get-trusted-time

H uili Chen received her Ph.D. from the Department
of Electrical and Computer Engineering at Univer-
sity of California, San Diego in 2022. Her research
interests include intellectual property protection of
machine learning systems, security assessment of
deep neural networks, and adapting deep learn-
ing to solve security problems in other domains.
(huc044@ucsd.edu)

C heng Fu received his M.Sc. in University of
Michigan, Ann Arbor. He is currently a Ph.D.
student at Computer Science and Engineering De-
partment at University of California, San Diego.
Cheng’s research interests lie at the intersection of
machine learning, computer architecture, and secu-
rity. (cfu@ucsd.edu)

B ita Darvish Rouhani received her Ph.D. in
Electrical and Computer Engineering at Univer-
sity of California, San Diego. She is currently a
principal research manager at Microsoft. Her re-
search interests include deep learning, safety of ma-
chine learning models, and low-power computing.
(bita.rouhani@microsoft.com)

J ishen Zhao received her Ph.D. degree in Com-
puter Science and Engineering, Pennsylvania State
University. She is currently an Associate Professor
in Computer Science and Engineering Department
at University of California, San Diego. Her research
interests include computer architecture and systems
research that bridges system software and hardware
design, with an emphasis on memory and storage
systems, machine learning and system co-design,
and reliability. (jzhao@ucsd.edu)

F arinaz Koushanfar received her Ph.D. in Elec-
trical Engineering and Computer Science from UC
Berkeley. She is currently a professor and Henry
Booker Faculty Scholar of Electrical and Computer
Engineering in University of California, San Diego.
Koushanfar’s research interests include embedded
and cyber-physical systems design, embedded sys-
tems security, and design automation of domain-
specific/mobile computing. She is an IEEE Fellow.
(farinaz@ucsd.edu)

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3303435

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 16,2023 at 00:50:24 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Preliminaries and Background
	IP Protection of DNNs
	Secure DNN Evaluation on Hardware

	DeepAttest Overview
	Offline DNN Marking
	Online DNN Attestation
	Hardware Optimizations

	Evaluations
	Performance Evaluation of DNN Attestation
	Comparison with Related Works

	Discussion
	Conclusion and Broader Impact
	References
	Biographies
	H
	C
	B
	J
	F

