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Abstract

Subfactor standard invariants encode quantum symmetries. The small index
subfactor classi�cation program has been a rich source of interesting quantum sym-
metries. We give the complete classi�cation of subfactor standard invariants to
index 51

4 , which includes 3 +
√

5, the �rst interesting composite index.

1 Introduction
The classi�cation of small index subfactors is an essential part of the search for exotic
quantum symmetries. A quantum symmetry is a non-commutative analogue of the rep-
resentation category of a �nite group. There is no single best axiomatization: choices
include standard invariants of �nite index subfactors [Pop95a; Jon99] or fusion cate-
gories [ENO05]. We focus on standard invariants here.

Topological �eld theories and topological phases of matter have revolutionized our
understanding of symmetry in physics: these systems do not have a group of symmetries
in the classical sense, but rather possess quantum symmetries, described by a higher
categorical structure. [NSSFDS08; BBCW14]

What, then, do quantum symmetries look like? The basic examples come either from
�nite group theory (possibly with cohomological data) or from quantum enveloping al-
gebras at roots of unity. Many are also realized from conformal �eld theories. While
there are a number of constructions producing new quantum symmetries from old, we
are far from having a good structure theory. We are still at the phenomenological phase
of studying quantum symmetries, and understanding the range of examples is an essen-
tial problem.

We now have several instances of quantum symmetries that do not come from the
basic examples, even allowing these constructions. Indeed, the strangest and least un-
derstood of all known quantum symmetries were discovered in exhaustive classi�cations
of subfactors at small index [Haa94].
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A critical next step in our understanding of quantum symmetries will be developing
structure theory. (See, for example, Question 5 below.) This article lays essential ground-
work for this, by completing the classi�cation of small index subfactors beyond the �rst
interesting composite index (that is, a product of smaller allowed indices), namely 3+

√
5.

Initially, it was expected that the classi�cation at index 3 +
√

5 would be very compli-
cated, with a profusion of examples built by composites and other constructions from
basic examples at smaller indices. These composite planar algebras were classi�ed by
[Liu15], contradicting that expectation.

There are relatively few subfactor standard invariants in the range we study, sug-
gesting that the as yet unknown structure theory of quantum symmetries will strongly
constrain possible examples.

Theorem. There are exactly 15 subfactor standard invariants with index in (5, 51
4
], besides

the Temperley-Lieb-Jones A∞ and the reducible A(1)
∞ standard invariants at every index.

(See Theorem A below.)
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1.1 Quantum symmetries and the Galois correspondence
Subfactors are universal hosts for quantum symmetries. In this section we say just enough
to explain our slogan, before explaining precisely what a subfactor is in the next.

The �rst astonishing fact (of several!) about subfactors is Jones’ index rigidity theo-
rem [Jon83]. A subfactorA ⊂ B has an index measuring the relative sizes of the factors,
and this index is quantized:

[B : A] ∈
{

4 cos2(π/n)
∣∣n ≥ 3

}
∪ [4,∞].

The Jones index has been understood from the beginning as a non-commutative
analogue of the index of a �eld extension. The �rst sign that this analogy is important
comes from a subfactor version of the Galois correspondence for �eld extensions. Given
a �nite group G, there is an essentially unique action of G on R, the hyper�nite II1-
factor [Jon80]. We obtain a subfactor R ⊂ R o G, whose intermediate subfactors R ⊂
P ⊂ RoG are all of the form P = RoH for some subgroup H ⊂ G [NT60].

This analogy runs even deeper. The standard invariant of a subfactor is a collection of
�nite dimensional vector spaces equipped with algebraic operations. It can equivalently
be axiomatized via Popa’s λ-lattices [Pop95a], Ocneanu’s paragroups [Ocn88], or Jones’
planar algebras [Jon99]. The essential feature is that this standard invariant plays the
same role as the Galois group of a �eld extension — it describes the quantum symmetries
of the subfactor.

We can now justify our initial slogan. The ‘even half’ of a standard invariant is a rigid
C∗-tensor category, and when the subfactor is ‘�nite depth’, this is a fusion category.
Conversely, given a unitary fusion category C, there is a hyper�nite subfactor which we
should think of asR ⊂ RoC, whose even half is exactly C, and moreover this subfactor
is essentially unique [Pop90], [FR13, Theorem 4.1].

2 Background
In this section we introduce subfactors, their standard invariants, and their role as quan-
tum symmetries. Readers for whom this is familiar can skip ahead to Section 3 for the
overview of our new results.

2.1 Subfactors and their standard invariants
A factor is a von Neumann algebra with trivial centre, and a subfactor is a unital inclusion
of factors. Factors are classi�ed into three types; we will be interested throughout in II1-
subfactors, which are in�nite dimensional and have a tracial state. (Most of what we
describe below extends to type III subfactors, cf. [Kos86; Izu93; Pop95b].)

To prove the index restriction, Jones introduced the basic construction [Jon83]. After
taking the GNS completion L2(B) of B with respect to the tracial state, we have the
orthogonal projection eA with range L2(A). The basic construction applied to A ⊂ B is
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the new factor 〈B, eA〉, containing B as a subfactor. When [B : A] < ∞, we get a new
II1-subfactor B ⊂ 〈B, eA〉 with the same index.

Iterating the basic construction for A = A0 ⊂ A1 = B, we obtain the Jones tower

A0 ⊂ A1

e1⊂ A2

e2⊂ A3

e3⊂ · · · .

The �rst sign that something genuinely interesting is happening is that the Jones pro-
jections ei satisfy the Temperley-Lieb-Jones relations [Jon83]:

(1) ei = e2
i = e∗i ,

(2) eiej = ejei when |i− j|> 1, and

(3) eiei±1ei = [A1 : A0]−1ei.

From the Jones tower, we extract two towers of �nite dimensional centralizer alge-
bras [GHJ89]:

A′0 ∩ A0 ⊂ A′0 ∩ A1 ⊂ A′0 ∩ A2 ⊂ A′0 ∩ A3 ⊂ · · ·
∪ ∪ ∪

A′1 ∩ A1 ⊂ A′1 ∩ A2 ⊂ A′1 ∩ A3 ⊂ · · ·

There’s much more structure present here than just the ∗-algebra structures and their
inclusions — in particular there are also the restrictions of the conditional expectations
Ei : Ai → Ai−1 (obtained by restricting the Jones projection ei on L2(Ai) to Ai) and the
Jones projections ej , all interacting according to intricate algebraic relations.

Our preferred way to axiomatize all this data is as a subfactor planar algebra, which
we brie�y de�ne here. (Recall the alternatives are λ-lattices [Pop95a] or paragroups
[Ocn88].) These are the main objects of study of this article, and they correspond un-
der Theorem 2.1 below to subfactors. More detail, and a summary of the important
techniques for analyzing a subfactor planar algebra, can be found in the survey article
[JMS14].

A shaded planar algebra [Jon99] is a collection of complex vector spacesP• = (Pn,±)n≥0,
together with an action of the operad of shaded planar tangles. A shaded planar tangle
consists of a disc with several sub-discs removed, a collection of non-intersecting strings
in the complementary region (whose endpoints lie on the boundary circles), with an al-
ternating shading of the regions between the strings, and a marked interval on each
boundary circle. For the careful de�nition of a shaded planar tangle, see [Jon99; Pet10];
we settle for giving an illustrative example below.

Suppose we have a shaded planar tangle T . We number the output circle 0, and
number the input circles 1 through r. Suppose there are 2ki points on the i-th circle,
and the marked interval of the i-th circle is either unshaded or shaded according to a
sign ±i respectively. Then the structure of a planar algebra assigns to this tangle T a
multilinear map

P(T ) : Pk1,±1 ⊗ · · · ⊗ Pkr,±r → Pk0,±0 .
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For example,

?
?

?

: P2,+ ⊗ P3,− → P3,+.

We require that the identity tangle acts as the identity map. We can glue tangles
one inside the other (we require that the distinguished intervals marked with ? match),
and we require that gluing corresponds to composition of multilinear maps. Tangles
which are isotopic must give the same linear map. (Contrary to the usual situation in
quantum algebra, isotopies may move the boundary, although as each boundary circle
has a marked interval this just means that 2π rotations act as the identity.)

Moreover, to be a subfactor planar algebra, we require that:

• each Pn,± is �nite dimensional,

• P• is evaluable, that is P0,± is 1-dimensional,

• each Pn,± has an involution ∗ which is compatible with re�ection of tangles,

• P• is positive, in the sense that the sesquilinear form 〈x, y〉 = tr(y∗x) on eachPn,±
is positive de�nite, where multiplication of elements in Pn,± is stacking, and

tr = ? ? · · · : Pn,± → P0,± ∼= C,

• and P• is spherical, that is closed diagrams are invariant under spherical isotopy.

We sometimes also talk about non-spherical or non-extremal subfactor planar alge-
bras, which do not satisfy this last axiom.

Theorem 2.1 ([Pop95a; Jon99]). Given a �nite index II1-subfactor, its standard invariant
forms a subfactor planar algebra. Conversely, given a subfactor planar algebra P•, there is
a II1-subfactor whose standard invariant is P•.

Under this correspondence, the planar algebra is spherical if and only if the subfactor
is extremal [Pop02]. We say a subfactor planar algebra is irreducible if dim(P1,±) = 1.
Irreducible subfactor planar algebras correspond to irreducible subfactors, i.e. thoseA ⊂
B where A′ ∩ B = C.

From the Jones tower for A0 ⊂ A1, we de�ne the associated planar algebra P• as
follows. The vectors spaces Pn,± are de�ned as the two towers of centralizer algebras:
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Pn,+ = A′0∩An and Pn,− = A′1∩An+1. The planar algebra structure is given in [Jon99]
or [JP11, Section 2.3]. We note that as proven in [JP11, Section 2.6], the planar algebra
structure is completely determined by the following, where δ = [A1 : A0]1/2:

• Stacking elements in Pn,± is multiplication in the centralizer algebra.

• The involution ∗ on Pn,± is the involution on the centralizer algebra.

• The n-th Jones projection is given by en = δ−1 · · · ∈ Pn+1,+ = A′0 ∩ An+1.

• Adding a string on the right is the inclusion Pn,+ = A′0 ∩ An ↪→ A′0 ∩ An+1 =
Pn+1,+.

• Adding a string on the left is the inclusion Pn,− = A′1 ∩ An+1 ↪→ A′0 ∩ An+1 =
Pn+1,+.

• Capping on the right is δ times the restriction of the conditional expectationAn →
An−1 to

Pn,+ = A′0 ∩ An → A′0 ∩ An−1 = Pn−1,+.

• Capping on the left is δ times the restriction of the conditional expectation A′0 →
A′1 to

Pn,+ = A′0 ∩ An → A′1 ∩ An = Pn−1,−.

Since P0,± is 1-dimensional, the shaded and unshaded closed loops are multiples of
the empty diagram. The spherical axiom ensures they are the same multiple, δ = [A1 :
A0]1/2. We de�ne the index of a subfactor planar algebra by the quantity δ2. As an
exercise, the reader can check that the diagrammatic en is an idempotent with respect
to stacking.

A planar tangle with no input discs and 2n boundary points gives a map C→ Pn,±,
and can be thought of as an element of Pn,±. The span of these elements forms the
Temperley-Lieb-Jones planar subalgebra T LJ (δ)• present inside any planar algebra P•
with index δ2. Indeed every index value allowed by Jones’ restriction is realized by a
subfactor whose standard invariant is ‘trivial’, in the sense that it is no bigger than the
Temperley-Lieb-Jones planar algebra [Pop93].

From a subfactor planar algebra P•, we may de�ne a strict pivotal 2-category C. An
equivalent construction is described in detail in [BP14, Section 2.1]. As a �rst step, we
de�ne a preliminary 2-category Ĉ. It has two objects, called ‘+’ (or ‘unshaded’) and ‘-’
(or ‘shaded’), and the 1-morphisms are natural numbers, even for 1-morphisms that do
not change the shading, and odd for those that do. (We use the ⊗ symbol to denote
horizontal composition; on composable 1-morphisms we have n ⊗ m = n + m.) The
2-morphisms are given by Hom(n → m) = P 1

2
(n+m),±, with the sign determined by

the source of n and m. The structure as a pivotal 2-category is readily provided by the
planar algebra operations. For example,
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• if f ∈ Hom+−(1→ 3) and g ∈ Hom+−(3→ 5), we have g ◦ f =

g?

f?
,

• if f ∈ Hom+−(1 → 3) and g ∈ Hom−−(4 → 2), we have f ⊗ g = g?f? ,

and

• evaluation is given by the cap ev : +1− ⊗ −1+ → 0 = , while coevaluation
is the cup coev : 0→ +1− ⊗ −1+, and similarly for the other shading.

Finally, we declare C to be the idempotent completion of Ĉ.
Remark 2.2. When the subfactor planar algebra comes from a �nite index subfactorA ⊂
B, this 2-category is a purely algebraic model of the 2-category ofA−A, A−B, B−A,
andB−B L2-bimodules (or at least, those generated by the bimodule AL2(B)B) [Jon08].

De�nition 2.3. A subfactor planar algebra is �nite depth if C has only �nitely many
isomorphism classes of 1-morphisms.

De�nition 2.4. The even part of a subfactor planar algebra is the ⊗-category obtained
as the endomorphisms of the unshaded object, in the associated 2-category.

A critical invariant of a subfactor planar algebra is its supertransitivity [Jon12].

De�nition 2.5. The supertransitivity of a subfactor planar algebraP• is the least integer
k such that dimPk+1,± > dim T LJk+1,±.

Every subfactor planar algebra can be seen as a representation of the annular Temperley-
Lieb-Jones algebra (this is spanned by the planar tangles with one input disc), and de-
composed into a direct sum of irreducible representations. These have been described
in [GL98; Jon01].

Capturing slightly less information than the full decomposition into irreducibles, we
can look at the lowweight spacesWn,± ⊂ Pn,± of the planar algebra: those vectors which
are annihilated by capping any two adjacent strings:

R ··· = 0.

De�nition 2.6. The annular multiplicity sequence of the planar algebra is the sequence
(dimWn,±)n≥0.
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The Fourier transform (1-click rotation) tangle gives a vector space isomorphism
Wn,+

∼=Wn,−. This sequence can be computed [Jon12, p.1], according to the formula ap-
pearing in [MS12, De�nition 2.5], which is obtained by inverting the generating function
for the dimensions of the annular Temperley-Lieb-Jones irreps given in [Jon01, Corollary
5.4].

dimWn,± =
n∑
r=0

(−1)r−n
2n

n+ r

(
n+ r

n− r

)
dimPr,±. (2.1)

For an evaluable k-supertransitive planar algebra, the sequence of annular multi-
plicities necessarily starts with 10k. When we say below that a standard invariant has
annular multiplicities ∗ab, we mean that while we may not know the supertransitivity
k yet, the annular multiplicity sequence begins with 10kab.

2.2 Towards classi�cation
We now turn towards classifying subfactor standard invariants. Classical results [Ocn88;
GHJ89] give us an ADE classi�cation when the index is less than 4. To explain how these
Coxeter-Dynkin diagrams arise, we introduce the principal graph Γ(P•) of a subfactor
planar algebra P•.

Recall in the associated pivotal 2-category C we have a generating 1-morphism 1 :
+ → −. (When we start with a subfactor A ⊂ B this is the bimodule AL

2(B)B .) We
denote it as X , and its dual as X∗.

De�nition 2.7. The vertices of Γ(P•) are the isomorphisms classes of simple 1-morphisms
in C. If vertices Y and Z have the same shadings on their sources, and Y ’s target is un-
shaded whileZ’s target is shaded, the number of edges betweenY andZ is dim HomC(Y⊗
X → Z) = dim HomC(Z ⊗X∗ → Y ).

The vertices of the principal graph come in 4 types, according to the shadings of
their sources and targets. The principal graph has two components, according to the
shadings of the sources, and each component is bipartite, according to the shadings of
the targets.

Each component of the graph is pointed, with the basepoints being the identity 1-
morphisms. We say the depth of a vertex is its distance to the basepoint in that compo-
nent.

For our purposes, we nearly always consider principal graphs equipped also with the
involution recording the duals of simple 1-morphisms (contragredients of bimodules in
the subfactor setting1). It is easy to see that duality preserves depth on the principal

1 Recall that the vertices of Γ± correspond to 4 di�erent �avors of L2-bimodules generated by L2(B):
the A−A, A−B, B−A, andB−B. Each bimodule has a contragredient, or dual, which is the complex
conjugate Hilbert space with the conjugate action. For example, given AQB , the dual BQA =

{
ξ
∣∣ξ ∈ Q}

with action given by b · ξ · a = a∗ξb∗. The dual of an A − A bimodule is again an A − A bimodule and
similarly for B −B bimodules, but the dual of an A−B bimodule is a B −A bimodule.
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graph. We indicate duality of even depth vertices on the graphs using red marks: a
small red tag above a vertex indicates that it is self-dual, while a red line joining two
vertices indicates they are duals of each other. In odd depths, we use the convention
that the vertices at a given depth on one component of the principal graph are dual to
the vertices at the same depth on the other component, in the order that they appear on
the page. As an example, the principal graph of the Haagerup subfactor [AH99], along
with its dual data, is given by:

H = (H+,H−) =
(

,
)
.

We can compute dimPn,± as the number of loops of length 2n beginning at the
basepoint of the± component. This means that the supertransitivity can be read o� the
principal graph: it is the greatest integer k such that the principal graph is the same as
A∞ up to depth k. In what follows, we will often consider families of potential principal
graphs which di�er only in their supertransitivity.

De�nition 2.8. A translation by 2t of a graph pair is the new graph pair obtained by
increasing the supertransitivity by 2t.

(It’s essential we only translate by an even amount, to respect the bipartite structure.)

De�nition 2.9. An extension of a graph pair Γ with depth k is another graph pair Γ′

with depth k′ > k, such that the truncation of Γ′ to depth k (that is, deleting all vertices
above depth k) recovers Γ.

In what follows, we will frequently talk about families of principal graphs, which
come in two types, vines and weeds. A vine is a �nite graph pair for which we will
consider the family of translations by 2t for all t ≥ 0. A weed is a �nite graph pair for
which we will consider the family of arbitrary extensions of translations by 2t for all
t ≥ 0.

The principal graph is a �nite graph if and only if the standard invariant is �nite
depth. The standard invariant is irreducible if and only if there is exactly one edge
between depths 0 and 1 in the principal graph.
Remark 2.10. Given a �nite depth planar algebra P•, it is relatively easy to see that
the index can be recovered as λ(Γ(P•))2, the square of the graph norm. (This was �rst
established in [Jon87].) The graph norm is the largest eigenvalue of the adjacency matrix
of the principal graph.

When P• is in�nite depth, Γ(P•) has bounded degree, so the adjacency matrix de-
�nes a bounded operator on the in�nite dimensional Hilbert space given by `2 of the
vertices. As in the �nite case, the graph norm is the norm of the adjacency matrix. In
this case, we only have the inequality λ(Γ(P•))2 ≤ δ2 [Pop94].

Fact 2.11. If we can enumerate all possible graph pairs with norm at most δ, these must
include all the principal graphs of subfactors of index at most δ2.
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This gives us a very powerful tool — graph norms are increasing under graph in-
clusion (strictly increasing for connected �nite graphs), and so we obtain easy lower
bounds for the index of a subfactor with a given principal graph.

When the index is at least 4, the principal graph of the Temperley-Lieb-Jones planar
algebra T LJ• is two copies of the graph A∞ (with graph norm 2). When the index is
4 cos2(π/n) for some n ≥ 3, the principal graph of T LJ• is two copies of the Coxeter-
Dynkin diagram An−1.

The mere fact that the only bipartite graphs with graph norm less than 2 are the
ADE Coxeter-Dynkin diagrams gives us the start of the classi�cation. It is relatively
straightforward to see that both components of the principal graph must be the same
Coxeter-Dynkin diagram. The full classi�cation of subfactor planar algebras with in-
dex at most 4 was developed by Jones [Jon87] and Ocneanu [Ocn88], with many of the
details provided by others [GHJ89; BN91; Izu91; Izu94; Kaw95b] (see also [Jon01] for
an independent approach using annular tangles). As is well-known by now, there is a
unique subfactor planar algebra for eachAn andD2n Coxeter-Dynkin diagram, two dis-
tinct subfactor planar algebras for each of E6 and E8, and no subfactor planar algebras
for D2n+1 or E7.

The classi�cation at index exactly 4 was given by Popa [GHJ89; Pop94; IK93]; the
principal graphs are all a�ne Coxeter-Dynkin diagrams.

It is a remarkable fact that once we decide to ignore subfactors with trivial standard
invariant and reducible subfactors, the index is actually also quantized above 4. It is
straightforward to see that there is a gap between 4 and λ(E10)2 ∼ 4.0264. This gap is
an easy consequence of the following exercise, which is an excellent introduction to the
genre.
Exercise ([CDG82]). Show that every bipartite graph is either

(1) a Coxeter-Dynkin diagram,

(2) an a�ne Coxeter-Dynkin diagram,

(3) A∞, A(1)
∞ , or D∞, or

(4) contains one of the following as a subgraph:

3 2

Then, by calculating the graph norms of the �nitely many exceptions, show that the
last has the lowest graph norm. Thus λ(E10)2 gives a lower bound on the index of any
subfactor above index 4, leaving aside subfactors with trivial standard invariant and
reducible subfactors.
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2.3 Some �rst obstructions
Enumerating possible graph pairs above index 4 gets di�cult quickly. Over the years, a
number of important obstructions to a graph pair being realized as the principal graph of
a subfactor have been developed. We recall these brie�y in this section. Many of these
will be incorporated into the algorithm for enumerating potential principal graphs of
subfactors which we describe in Section 4.

We saw above that dim(Pn,±) is given by the number of loops of length 2n beginning
at the basepoint of the ± component. We also saw that the Fourier transform (1-click
rotation) tangle gives a vector space isomorphism Pn,+ ∼= Pn,−, which restricts to a
vector space isomorphismWn,+

∼=Wn,−. This gives us the following easy constraints.

Fact 2.12 (Dimension constraints [GHJ89; Jon01]).

(1) The numbers of based loops of length 2n on either component Γ± must agree.

(2) Both Γ+ and Γ− have the same supertransitivity.

(3) The annular multiplicity sequences of Γ± must agree by Equation (2.1).

From the principal graphs Γ = (Γ+,Γ−), we can already deduce a lot of information
about the associated strict pivotal 2-category C. One strong constraint comes from as-
sociativity of composition of 1-morphisms. The Ocneanu 4-partite graphO(Γ) encodes
the same information as Γ, but allows us to verify associativity of certain tensor products
easily.

De�nition 2.13. Suppose A ⊂ B is a �nite index subfactor with standard invariant P•
and principal graphs Γ = (Γ+,Γ−). Taking 2 copies of each of Γ±, they �t together in
the Ocneanu 4-partite graph O(Γ):

V00 = {A− A bimodules}

V11 = {B − B bimodules}V01 = {A− B bimodules}

V10 = {B − A bimodules}

Γ+

Γ−

Γ+

Γ−−⊗A L2(B)B

BL
2(B)⊗A −

BL
2(B)⊗A −

−⊗A L2(B)B

We note that the right hand graph is exactly Γ+, but the top copy of Γ+, while abstractly
isomorphic to Γ+, has di�erent vertex labels. We note vertices APA and BSA are con-
nected by

dim(Hom(BL
2(B)⊗A PA → BSA) = dim(Hom(AP ⊗A L2(B)B → ASB) (2.2)

edges. Similarly, the right copy of Γ− is exactly Γ−, and the bottom copy is twisted using
the dual data. Thus the graph pair Γ = (Γ+,Γ−) with dual data is exactly the same data
as O(Γ).
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For example, the Ocneanu 4-partite graph of the Haagerup subfactor is given by

H+

{

H−

{
AModA

AModB

BModB

BModA

AModA

Since composition of 1-morphisms in C is associative, we must have that for every
simple APA,

(BL
2(B)⊗A PA)⊗A L2(B)B ∼= BL

2(B)⊗A (AP ⊗A L2(B)B).

There is a similar condition starting with each of the other 3 �avors of bimodules. We
deduce:

Fact 2.14 (Associativity constraint [Ocn88; EK98]). Given two vertices v and w on op-
posite corners of the Ocneanu 4-partite graph O(Γ), there are the same number of paths
between v and w going either way around.

The two ways of going around the Ocneanu 4-partite graph correspond to:

(1) moving to a neighbour on the principal graph, taking dual, moving to a neighbour,
and taking dual again, or

(2) taking the dual, moving to a neighbour, taking dual, and �nally moving to a neigh-
bour again.

Ocneanu’s axiomatization of the standard invariant of a �nite depth subfactor used
connections on 4-partite graphs.

De�nition 2.15. A connection on Γ is a pair (W, dim) where dim is a dimension function
on the vertices of O(Γ) satisfying the Frobenius-Perron condition, and W is a complex
valued function on the loops of length 4 of O(Γ) which include a vertex of each color.
The connection is said to be bi-unitary if the following two axioms hold:

• (Unitarity) For every P,R on diagonally opposite corners of O(Γ), the matrix
W (P,−, R,−) is unitary, i.e.,∑

S

W (P,Q,R, S)W (P,Q′, R, S) = δQ,Q′

13



• (Renormalization) For all P,Q,R, S, we have

W (P,Q,R, S) =

√
dim(Q) dim(S)

dim(P ) dim(R)
W (Q,P, S,R)

Fact 2.16 (Existence of connection [Ocn88; EK98]). A necessary condition for Γ to be the
principal graph of a subfactor is that O(Γ) must have a bi-unitary connection.

Ocneanu found the �rst triple point obstruction, which is a simple consequence of
the existence of a bi-unitary connection. This obstruction was used by Haagerup to
classify principal graphs to index 3 +

√
3 [Haa94]. In the case of initial triple points,

improvements were made subsequently by [Jon12; Sny13; Pen15]. These obstructions
were invaluable to the previous classi�cation to index 5 [MS12; MPPS12], and the new
obstruction [Pen15] is vital to this classi�cation (see Section 6 below).

Fact 2.17 (Ocneanu’s triple point obstruction [Haa94]). Let A ⊂ B be a �nite index
subfactor with principal graph Γ = (Γ+,Γ−). Suppose we have two 3-valent vertices v
on Γ+ and w on Γ− at the same depth, and there are exactly 6 paths between v and w on
O(Γ) (3 in each direction around the square). If there is a dimension preserving bijection β
between the neighbors of v on Γ+ and the neighbors of w on Γ− such that

• for every pair of neighbors v′ of v and w′ of w such that β(v′) 6= w′, there are exactly
2 paths on O(Γ) from v′ to w′ (one each way around the square),

then [B : A] ≤ 4.

A reader who (understandably) �nds that formulation hard to digest may �nd work-
ing through the following exercise helpful.
Exercise ([Haa94]). Show that the obvious bijection between the neighbors of the triple
points on the graph pair

(H+,H+) =
(

,
)

satis�es the bulleted condition in Ocneanu’s triple point obstruction 2.17. Conclude that
(H+,H+) is not the principal graph of a subfactor.

Popa’s principal graph stability gives a strong constraint on extensions of graph
pairs. We denote the truncation of Γ± to depth n by Γ±(n).

De�nition 2.18. A graph Γ± is called stable at depth n if Γ± does not merge, split, or
have multiple edges between depths n and n+1. We say Γ = (Γ+,Γ−) is stable at depth
n if both Γ± are stable at depth n.

Fact 2.19 (Stability constraint [Pop95a; BP14]). Suppose δ > 2 and Γ±(n) 6= An+1.

14



(1) If the graph Γ = (Γ+,Γ−) is stable at depth n, then Γ is stable for all depths k ≥ n,
and Γ is �nite. (This means Γ± \ Γ±(n) must be a disjoint union of �nite type A
Coxeter-Dynkin diagrams.)

(2) If the graph Γ+ is stable at depths n and n+ 1, then Γ = (Γ+,Γ−) is stable at depth
n+ 1.

A �nal easy obstruction comes from duality.

Fact 2.20 (Duality constraint [MS12, Lemma 3.6]). Suppose Γ has supertransitivity n− 1
(so that depth n is one past the branch) with n even. If the graphs Γ±(n) are both simply
laced, then the number of self-dual vertices on Γ+ at depth n is equal to the number of
self-dual vertices on Γ− at depth n.

3 The main theorem
Over the last few years, we’ve made considerable progress in understanding small index
subfactor standard invariants. Haagerup initiated the classi�cation of subfactors above
index 4, leaving aside reducible subfactors and the poorly understood non-amenable sub-
factors with Temperley-Lieb-Jones standard invariant. Haagerup gave the classi�cation
up to index 3+

√
3 [Haa94], with components proved in [Bis98; AY09; BMPS12]. Follow-

ing this, the next major step was the classi�cation of subfactors up to index 5 = 3 +
√

4.
This was completed in a series of articles [MS12; MPPS12; IJMS12; PT12; IMPPS15], with
some additional number theoretic ingredients in [CMS11]. There is now a survey paper
summarising this work [JMS14]. Unfortunately, the techniques developed there struggle
beyond index 5.

For the special case of 1-supertransitive standard invariants, it has nevertheless been
possible to extend the classi�cation further: up to index 3 +

√
5 in [MP14c], and then

1-supertransitive standard invariants without intermediates up to index 61
5

in [LMP15].
In this article we give the complete classi�cation of subfactor standard invariants

with index at most 51
4
. At every index above 4, we have the Temperley-Lieb-Jones A∞

standard invariant, as well as the reducible A(1)
∞ standard invariant (see Lemma 3.2 be-

low).

Theorem A. The only subfactor standard invariants in the index range (5, 51
4
], besides

the A∞ and A(1)
∞ standard invariants, are the following standard invariants at index ∼

5.04892, the largest root of x3 − 6x2 + 5x− 1:

• the unique subfactor planar algebra coming from the irreducible 3-dimensional rep-
resentation of the quantum group su(2)5 [Wen88; MP14c] and

• the unique subfactor planar algebra coming from (either of) the irreducible 3-dimensional
representation of the quantum group su(3)4 [Wen88; MP14c],
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and the following standard invariants at index 3 +
√

5:

• the Fuss-Catalan A3 ∗A4 subfactor planar algebra and its dual, constructed by Bisch
and Jones [BJ97],

• the 3 �nite quotients of the Fuss-Catalan A3 ∗ A4 subfactor planar algebra [BH94;
Liu15; IMP13] (the �rst is the self-dual tensor product; the other two are not self-dual),

• the unique 2D2 subfactor planar algebra and its dual [MP14b],

• Izumi’s unique symmetrically self-dual 3Z/2Z×Z/2Z subfactor planar algebra [Izu16;
MP15],

• Izumi’s unique 3Z/4Z subfactor planar algebra and its dual [Izu16; PP15], and

• the unique symmetrically self-dual 4442 subfactor planar algebra [MP15; MP14b].

(Our arguments supersede the earlier combinatorial arguments required for index
at most 3 +

√
3 and at most 5, but still rely on many obstructions and existence results

proved by other authors.)
As in previous classi�cation e�orts, the problem essentially divides into three parts:

(1) First, we enumerate all possible principal graph pairs, satisfying certain combina-
torial constraints, with graph norm up to the square root of the index.

(2) Second, we rule out several ‘di�cult’ families of such graphs using quite compli-
cated arguments speci�c to each family, and we reduce many ‘easy’ familes of such
graphs down to �nitely many cases using a standard number theoretic approach.

(3) Finally, we completely classify all subfactor planar algebras with the given prin-
cipal graph in each of the remaining cases.

In general, one expects all parts to su�er when increasing the bound on the index; the
combinatorial enumeration problem will be harder for the computer, and moreover it
will produce more results, leaving a rapidly growing workload for the humans.

To overcome these problems, this article brings three essential new tools to bear.

(1) We use a completely new technique for tackling the combinatorial enumeration
problem. Previous methods produced many isomorphic copies of a single graph
during the enumeration, and removing the corresponding redundancies in the
search tree became unrealistically computationally expensive. We now use McKay’s
approach of ‘construction by canonical paths’ [McK98] to perform this enumera-
tion in a manner which avoids pairwise isomorphism checking between graphs.

(2) A recent new result [Pen15] using quadratic tangles tightly constrains certain pa-
rameters for principal graphs with annular multiplicity sequence ∗11 (see De�-
nition 2.6 above). Happily this constraint applies to many of the new potential
principal graphs we �nd.
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(3) Calegari-Guo [CG15] developed a new number theoretic tool for cylinders (weeds
which are stable in the sense of [Pop95a; BP14]) similar to the uniform treatment
of vines a�orded by [CMS11]. We use this in one particular case (and anticipate
it would be very useful in any future classi�cations) and obtain a generalisation
which we apply to a certain ‘periodic’ weed.

The complete list of all non-A∞, non-A(1)
∞ subfactor standard invariants with index

in (4, 51
4
] appears in Appendix A.3. In Appendix A.4, we give the current ‘map of sub-

factors’, showing the overlapping ranges of the classi�cation results to date.

3.1 The future
In this section, we suggest some open questions to guide our future exploration of quan-
tum symmetries.

Question 1. How far can the classi�cation of small index subfactors go?

Perhaps somewhat surprisingly, there is not a clear ‘wall’ after which classi�cation
becomes too hard. Index 6 remains the distant goal; there we know many new phenom-
ena arise (subfactors not classi�able by their standard invariants [BNP07; BV15], as well
as in�nitely many non-isomorphic �nite depth Bisch-Haagerup subfactors [BH96] as-
sociated to �nite quotients of Z/2Z ∗ Z/3Z). A �rst step would be 51

3
, the largest index

of any 4-spoke. Perhaps the next goal should be (1 +
√

2)2 = 3 + 2
√

2, which is the
minimum index for an extremal, reducible subfactor [PP86, Corollary 4.6].

The new combinatorial enumerator seems to be able to look some distance above
our present cut-o� of 51

4
. However we quickly �nd graphs which we don’t know how

to deal with. We present the reader with the following weed which appears above index
5.27.( )
There are many possible avenues for attacking this weed — a quadratic tangles approach
to quadruple points, number theoretic obstructions based on the repeating unit in the
tail, or analyzing possible connections — but so far we have had no success. The absence
of a doubly one-by-one connection entry means we can’t use the techniques of Section
5.2 below.

Question 2. Is there a global bound on supertransitivity for standard invariants above
index 4?

Leaving aside the subfactors of index less than 4, high supertransitivity is exceed-
ingly rare. At this time, the record is the extended Haagerup subfactor [BMPS12] with
supertransitivity 7, and the second highest is the 5-supertransitive Asaeda-Haagerup
subfactor. The third is the 4-supertransitive 4442 subfactor at index 3 +

√
5 [MP15],

discovered as part of the project leading up to this paper.
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As supertransitivity is a subfactor analog of transitivity of group actions, one hopes
by analogy that for su�ciently large k there are only �nitely many non-trivial k-supertransitive
standard invariants. At this point, we have no evidence that this is not the case for k ≥ 5.

At present we have two methods for proving bounds on supertransitivity for families
of graphs. First, the number-theoretic results of [CMS11] show that only �nitely many
translations of a �xed graph can be principal graphs of subfactors, giving an explicit
bound on the supertransitivity. These results are further generalized in [CG15] and
Section 5.3 below, allowing us to eliminate all �nite depth translated extensions of a
certain graph ((f)(9) in Theorem 3.1), by �rst proving a bound on supertransitivity in
Lemma 5.19.

Second, quadratic tangles inequalities sometimes give bounds on supertransitivity,
and we see this while eliminating the weeds (f)(7) and (f)(8) from Theorem 3.1, in Sec-
tion 6.3. One hopes that this technique can be improved by a deeper understanding of
quadratic tangles (see Question 4 below).

Question 3. Can Liu’s results showing there are only �nitely many composites of A3 and
A4 be generalized?

Following Bisch-Haagerup’s classi�cation of the possible principal graphs of com-
posites of A3 and A4 [BH94] (see also [IMP13]), the one might expect to �nd an in�nite
family of �nite depth composite subfactor standard invariants whose principal graphs
converge to the A3 ∗A4 Fuss-Catalan [BJ97] principal graph, parallel to the situation at
index 4, with the D(1)

n+2 standard invariants ‘converging’ to the D∞ standard invariant.
Liu’s result [Liu15] came as quite a surprise, now suggesting that quotients of the

free product Fuss-Catalan standard invariants are also rare.
This is analogous to the situation in Question 2, where we observe that high super-

transitivity is rare. A planar algebraP• with supertransitivity k looks like its Temperley-
Lieb-Jones subalgebra along with certain extra elements which only appear in the space
Pn,± for n > k. The observation that high supertransitivity is rare can be reformu-
lated as the ‘di�culty’ of adding a large generator to the Temperley-Lieb-Jones algebra.
Similarly, as any composite planar algebra contains (more or less by de�nition) the cor-
responding Fuss-Catalan planar algebra, we could de�ne the Fuss-Catalan supertransi-
tivity as the �rst n soPn,± contains elements beyond Fuss-Catalan. Liu’s result can then
be interpreted as saying that it is hard to add large generators to a Fuss-Catalan planar
algebra.

Is this a general phenomenon? Are there number theoretic, or even algebraic geo-
metric, constraints limiting possible quotients of free products?

Question 4. How can we e�ectively develop the theory of quadratic tangles?

Understanding the representation theory of the annular Temperley-Lieb-Jones al-
gebras led to the well-developed theory of annular tangles [GL98; Jon01]. As annu-
lar tangles together with quadratic tangles generate the entire planar operad, analyzing
quadratic tangles systematically is an extremely di�cult task. However, we are rewarded
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with strong constraints and structure theorems which tightly restrict the structure of
subfactor planar algebras [Jon12; Sny13; Pen15].

Certainly there are more constraints which can be obtained by analyzing higher
annular consequences. A systematic treatment of the space of second annular conse-
quences was given in [PP15], but deeper analysis is needed to extract useful information.

Moreover, we lack a good description of the fusion of low weight representations
above index 4, along with the possible quotients which occur in subfactor planar alge-
bras. Again, we may see tight restrictions which lead to quadratic tangles obstructions.
Question 5. Is there a good extension theory for fusion categories?

At this time, we have the theories of G-graded extensions of fusion categories for �-
nite groupsG [ENO10], (de)equivariantization (the notion goes back to [Kaw95b; Kaw95c];
see also [DGNO10, Section 4] and [BN13]), and exact sequences of fusion categories
[BN11; BN14]. However, there are certain examples arising from the small index sub-
factor classi�cation program which behave somewhat like extensions but do not �t into
these theories.

The 4442 subfactor at index 3 +
√

5 [MP15] was discovered in exhaustive enu-
meration of principal graphs. While this subfactor appears as an equivariantization of
Izumi’s 3Z/2×Z/2 subfactor [Izu16], its even half also resembles a ‘non-graded’ extension
of Rep(A4). It has the form C ⊕M where C = Rep(A4), andM is C as a module over
itself, while the tensor product structure onM is stranger.
Question 6. Where do the quadratic categories come from?

A quadratic category has a group G of invertible objects, together with one other
orbit of simple objects. At this point, thanks to [Izu01; EG11; EG14], there is a well-
developed theory of quadratic fusion categories using endomorphisms of Cuntz alge-
bras for classi�cation and construction. These categories include the near group cat-
egories [Sie03] and a possible in�nite family generalizing the even half of the exotic
Haagerup subfactor [AH99]. Recently, [GIS15] gave a new construction of the exotic
Asaeda-Haagerup subfactor, showing it is related to a quadratic category.

The theory of quadratic categories provides a classi�cation (for a �xed group of in-
vertible objects, and orbit structure for the non-invertible objects) in terms of the �nitely
many solutions of an explicit system of polynomials. (Analogously, one could attempt
directly solving the pentagon equations; there, however, there is a large gauge group,
and categories correspond to orbits. In the theory of quadratic categories there is no
gauge group.) Nevertheless, constructing quadratic categories by solving these equa-
tions leaves something to be desired. The simple structure of these categories led Evans
and Gannon to conjecture that they should arise from conformal �eld theories, and that
there is some unknown underlying construction.

On the planar algebra side, we know two possible skein theoretic approaches to
quadratic categories, based on jelly�sh relations [BP14; MP15; PP15] or Yang-Baxter
relations [LP15]. Although both appear promising, Cuntz algebra techniques have been
much more successful to date. We are far from fully understanding this situation.
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Question 7. Can we �nd further sources of in�nite families of examples?

At this point, almost every known quantum symmetry is related to quantum groups
or quadratic categories via known constructions. In fact, the extended Haagerup sub-
factor [BMPS12] stands alone as the only quantum symmetry not arising in this way!
While it is certainly important to study this example further (e.g. [MW14]), in the hopes
that maybe it too is related to quantum groups or quadratic categories, what we really
want is new in�nite families of examples.

One way to �nd new families may be to continue the search for quantum symmetries
which are ‘small’ by some metric besides the index of the standard invariant, for example
rank or global dimension. For example, we have a full classi�cation of rank 2 fusion
categories [Ost03], rank 3 pivotal categories [Ost13], and a partial classi�cation of rank 4
pseudo-unitary categories [Lar14]. There are only �nitely many modular categories of a
given rank [BNRW13], and they have been completely classi�ed up to rank 5 [BNRW15].

Perhaps it would be interesting to look at certain families of graphs, e.g., spoke
graphs. Are there only �nitely many higher spoke graphs with high valence and high
supertransitivity? There is good number theoretic evidence that beyond certain families,
very few (possibly only �nitely many) spoke graphs have an index which is a cyclotomic
integer.

Question 8. What can we say about hyper�nite A3 ∗ A4 subfactors?

To fully understand non-A∞ irreducible hyper�nite subfactors with index at most
51

4
, we would still like to know what A3 ∗ A4 subfactors can exist. We note that there

is a unique A3 ∗ A3 = D∞ subfactor, coming from the fact that this standard invariant
is amenable [Pop94]. However, the higher Fuss-Catalan standard invariants [BJ97] are
not amenable [HI98], and we conjecture that A3 ∗ A4 already exhibits the same unclas-
si�ability phenomenon seen for hyper�nite subfactors with A3 ∗D4 standard invariant
[BV15]. As a proof of concept, it would be interesting to approach A3 ∗ A5 hyper�nite
subfactors, which can be obtained by composing subfactors associated to groups.

3.2 Proof of the main theorem
The proof of the main theorem splits naturally in many parts, most of which are in-
dependent of each other. We begin with a combinatorial enumeration that shows that
every principal graph of an irreducible subfactor with index at most 51

4
must be repre-

sented by one of a certain list of weeds or one of a certain list of vines. This appears as
Theorem 3.1 below. This calculation is closely analogous to the calculation performed
in [MS12], but with more advanced combinatorial techniques, described in Section 4.

Theorem 3.1. The principal graph of any subfactor with index in (4, 51
4
] must either be

(a) A∞ (in which case the subfactor is non-amenable)

(b) reducible, i.e. there are multiple edges between depths 0 and 1,
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(c) exactly 1-supertransitive,

(d) not simply laced,

(e) a translated extension of one of the following ‘weeds’with annular multiplicities ∗11,

(1)
(

,
)

(2)
(

,
)

(3)
(

,
)

(4)
(

,
)

(5)
(

,
)

(6)
(

,
)

(f) a translated extension of one of the following ‘weeds’ with annular multiplicities ∗10,

(1)
(

,
)

(2)
(

,
)

(3)
(

,
)

(4)
(

,
)

(5)
(

,
)

(6)
(

,
)

(7)
(

,
)

(8)
(

,
)

(9)
(

,
)

(g) a translated extension of one of the following stable graphs with annularmultiplicities
∗20,

(1)
(

,
)

(2)
(

,
)
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(3)
(

,
)

(4)
(

,
)

(5)
(

,
)

(6)
(

,
)

(7)
(

,
)

(8)
(

,
)

(9)
(

,
)

(10)
(

,
)

(11)
(

,
)

(h) or a translation of one of the ‘vines’ listed in Section 8.

The proof of this appears in Section 4.4, after we describe the underlying algorithm
in Section 4.1 and our implementations in Section 4.3. Unfortunately this classi�cation
looks at �rst quite discouraging compared with the corresponding classi�cation up to
index 5.

First, we give the folklore result which deals with everything in case (b), by describ-
ing all reducible subfactors in the index range (4, 3 + 2

√
2).

Lemma 3.2. The only reducible subfactor standard invariants with index in (4, 3 + 2
√

2)

are the A(1)
∞ standard invariants at every such index. Moreover these are all non-spherical,

and can be obtained as perturbations of the spherical index 4 A(1)
∞ standard invariant.

Proof. By [Pop02] (see also [DGG14, Section 3]), a non-spherical reducible subfactor
standard invariant can be perturbed without altering the principal graph. Amongst these
perturbations, there is a unique one with minimal index [Kos86; Lon89], and this pertur-
bation is necessarily spherical. By [PP86, Corollary 4.6], a spherical reducible subfactor
standard invariant with index in (4, 8) must have index (1 + 2 cos(π/n))2, for n ≥ 3.
The least such index is 3 + 2

√
2.

Thus a reducible subfactor standard invariant P• with index in (4, 3 + 2
√

2) must
be a pertubation of some reducible spherical subfactor standard invariantQ• at index 4.
The only such standard invariants are A(1)

2n−1 and A(1)
∞ . The A(1)

2n−1 standard invariants,
being �nite depth, admit no non-spherical perturbations [EK98, Proposition 10.4]. Thus
Q• is the unique A(1)

∞ standard invariant, and necessarily P• also has principal graph
A

(1)
∞ .
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We next note that case (c) from Theorem 3.1, the 1-supertransitive principal graphs,
has already been completely classi�ed for index less than 6 in [LMP15]. Case (d) from
Theorem 3.1, the non-simply laced graphs, can be handled as follows.

Lemma 3.3. There are no subfactors with index in (4, 5.3] whose principal graphs are not
simply-laced.

Proof. First, we note∥∥ 3

∥∥2
= 9,

∥∥ 2 2

∥∥2
= 8,

∥∥ 2 2

∥∥2
> 6.56,

∥∥∥ 2
∥∥∥2

= 6,

∥∥ 2

∥∥2
> 5.82,

∥∥∥ 2

∥∥∥2

> 5.56,
∥∥ 2

∥∥2
> 5.3.

The only non-simply laced graphs not containing one of these as a subgraph are 2 ,
2 , and 2 . The �rst is at index 4. In the other two cases, the dimension

of the non-trivial object in the even half is not 1 or τ = 1+
√

5
2

, so these graphs cannot be
principal graphs of subfactors by [Ost03]. More generally, we note that [SV93] shows
that the graphs β2n+1 (that is, the 2n− 2-translate of 2 ) are not principal graphs
of subfactors by showing that the fusion rules must have coe�cients of the form 2k+1

2

for k ∈ N≥0.

The remaining cases (e), (f), and (g) constitute ‘weeds’, i.e. translated extensions of
some �nite set of possibilities, and the cases in (h) are ‘vines’, i.e. translations of some
�nite set of possibilities.

While there are signi�cantly more vines than in previous classi�cations, this itself
is no problem, as we by now have a uniform and rather e�cient mechanism for dealing
with vines. This is described in Theorem 8.1, and all the vines from part (h) are analyzed
in Section 8.

The ∗11 graphs can be dealt with by the techniques of [Pen15], and we prove the req-
uisite inequalities for all but one of these in Section 6.2. The remaining ∗11 graph (case
(e)(5) in Theorem 3.1) is treated in Section 6.1, and requires additional analysis using
doubly one-by-one connection entries, since it has undetermined relative dimensions.

Nearly all the ∗10 graphs have branch factor not equal to 1, and can be dealt with
by the techniques of [Jon12; MPPS12]. We do this in Section 6.4. Two graphs (namely
(f)(7) and (f)(8) in Theorem 3.1) require additional arguments in Section 6.3 using doubly
one-by-one connection entries. We note that both these exceptional ∗10 weeds require
using Morrison’s hexagon obstruction [Mor14] in an essential way. Of the remaining
∗10 weeds, we get one candidate graph (from the �rst graph in either (f)(3) or (f)(4) from
Theorem 3.1) which is eliminated using the formal codegree obstruction (see Section 6.5).

Additionally, there are three exceptional ∗10 graphs, with branch factor 1. The �rst
(namely (f)(5) in Theorem 3.1) is the depth 2 truncation of one of the weeds ruled out in
[MPPS12], and we give an easy argument based on stability to rule it out in Theorem 5.1.
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The second (namely (f)(6) in Theorem 3.1), which begins with an initial hexagon, has
been called the ‘AMP spider’, and was ruled out by purely number theoretic methods
in [CG15]. The third (namely (f)(9) in Theorem 3.1) appears to be a truncation of an
in�nite periodic graph, rather reminiscent of the A3 ∗A4 Fuss-Catalan principal graph.
It is isomorphic to

A(0) =
(

,
)
.

We rule out this weed with a several stage approach which occupies Section 5.1.

(1) First, we �nd a doubly one-by-one entry in the connection, which gives us the
value of q as a function of the translation t.

(2) We next run the enumerator to see that any extension is either �nite, or begins
with a basic building block, called B.

(3) We then show all further extensions are either �nite, or periodic with repeating
unit B. This improved method uses the tail enumerator described in Section 4.3,
a new mode of the graph enumeration program, adapted to work with only with
the repeating unit of a periodic graph, without looking at the ‘head’.

In Lemma 5.4 below, we are able to use a variation of the argument in [CG15] to take
care of all these �nite extensions simultaneously. We show the corresponding indices
are not totally real cyclotomic integers, and thus cannot be indices of subfactors. This is
the �rst time number theory has been used to rule out all �nite extensions of a partic-
ular weed! We deal with the in�nite graph by showing that it eventually has bimodule
dimensions less than 1, whatever the supertransitivity.

In every case in (g), both graphs are identical ‘4-spoke graphs’. The existence of a bi-
unitary connection on such graph pairs was determined by [Sch90], and it is relatively
little work after that to complete the classi�cation of subfactors for 4-spoke principal
graphs up to index 51

4
. We do this in Section 7. (Note that the index of the in�nite

4-spoke is 51
3
, so we are not yet done with 4-spokes!)

This concludes the proof of the main theorem.

We note that the �rst two of the ∗11 weeds and the �rst three of the ∗10 weeds are
also stable, so in principle, these could be eliminated using the analysis of Calegari-Guo
in [CG15]. All extensions of stable weeds must be stable and �nite by [Pop95a; BP14].
Thus by [CG94; ENO05] and Theorem 1.1 of [CG15], for any stable weed, there are at
most �nitely many translated extensions which could be principal graphs of subfactors.
At this point it seems simpler to use the planar algebraic obstructions, however. In the
future it may be possible to handle stable graphs just as easily as we handle vines today,
by automating the arguments used in Sections 6 and 7 of [CG15].

In the organization of the proof, we see that after the combinatorial enumeration,
all the other arguments are essentially independent. We have decided to arrange them
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according to the novelty of the methods. The really interesting stu� comes �rst: the new
combinatorics of the enumerator in Section 4, our new approach to in�nite periodic
graphs in Section 5, Penneys’ obstructions to ∗11 graphs in Section 6, applications of
Morrison’s hexagon obstruction in Section 6.3, and eliminating one candidate via formal
codegrees in Section 6.5. We defer Section 7 on 4-spokes and Section 8 on vines to
the end of the article; these sections are essentially applications of already well-known
arguments.

4 Better combinatorics for graph enumeration
In this section we describe our new technique for enumerating principal graphs, based
on McKay’s method of construction by canonical paths. The classi�cation statement we
prove using this technique has appeared above as Theorem 3.1. Its proof appears below,
in Section 4.4.

We begin with the precise de�nition of the objects we enumerate.

De�nition 4.1. A principal graph pair (PGP) is a tuple (Γ+,Γ−, depth, · , n) where

• Γ± are �nite bipartite graphs,

• depth is a graph homomorphism from Γ± → N, the graph with one edge be-
tween n and n+ 1 for all n ∈ N, such that depth−1(0) intersects every connected
component of Γ±,

• · is an involution on the vertices of Γ+ t Γ−, which

(1) takes an even depth vertex on Γ± to a vertex at the same depth on Γ±, and
(2) takes an odd depth vertex on Γ± to a vertex at the same depth on Γ∓,

• and n, called the ‘working depth’, is a non-negative integer which is either equal
to the maximum distance of a vertex from the base vertex, or to the maximum
distance plus one,

satisfying the following constraints, which are described below:

• the PGP associativity constraint,

• the PGP triple point obstruction, and

• the PGP duality constraint.

There is an obvious notion of isomorphism of PGPs.
The index of a PGP is max{λ2

+, λ
2
−}, where λ± is the Frobenius-Perron eigenvalue

for Γ±, that is, the largest eigenvalue of the adjacency matrix.
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It is important to note here that we are not allowing multiple edges between vertices,
so we only see ‘simply-laced’ principal graphs. This is not an essential restriction, but it
makes the implementations so much simpler that it is worthwhile having to deal with
non simply-laced principal graphs separately.
De�nition 4.2. If nbhd(v) denotes the set of neighbours of a vertex v, associativity
between vertices v and w is the condition∣∣∣nbhd(v) ∩ nbhd(w)

∣∣∣ =
∣∣∣nbhd(v) ∩ nbhd(w)

∣∣∣ . (4.1)

This condition is symmetric in v and w, and trivially satis�ed unless depth(v) and
depth(w) di�er by −2, 0, or 2. The PGP associativity constraint is associativity between
all pairs of vertices v and w such that at least one of v or w is at depth n− 2 or less.2

De�nition 4.3. We �rst de�ne the combinatorial dimension relation, on the set of ver-
tices of a PGP Γ. This is the weakest equivalence relation such that

• v ∼ w if v = w, and

• v ∼ w whenever v and w have depth at most n − 2, and there is a bijection
α : nbhd(v)→ nbhd(w) such that u ∼ α(u) for all u ∈ nbhd(v).

(Clearly if Γ is the principal graph of a subfactor, and v ∼ w, then dim(v) = dim(w).)
A PGP Γ satis�es the PGP triple point obstruction if it satis�es Ocneanu’s triple point

obstruction 2.17 for all pairs of triple points with depth at most n − 2, replacing the
condition that the bijection β preserves dimensions with the condition that β(u) ∼ u
for all u.
Remark 4.4. The classi�cation to index 5 only used the triple point obstruction for ini-
tial triple points [MS12]. Our use of the combinatorial dimension relation allows us to
apply the triple point obstruction at non-initial other triple points, which is an essential
improvement, without which the algorithm described here would not terminate.

The PGP duality constraint is identical to the duality constraint 2.20.
Facts 4.5.

(1) No extension of a PGP can satisfy the associativity constraint 2.14 unless the PGP
satis�es the PGP associativity constraint.

(2) No extension of a PGP can satisfy Ocneanu’s triple point obstruction 2.17 unless the
PGP satis�es the PGP triple point obstruction.

(3) No extension of a PGP can satisfy the duality constraint 2.20 unless the PGP satis�es
the PGP duality constraint.

2 Since we may subsequently add vertices at the working depth n, we cannot require this identity to
hold for pairs of vertices both at depth at least n− 1, because later vertices at depth n may change either
side of the equation. When v is at depth at most n−2, on the other hand, the sizes of the sets in the above
equation for a vertex w, at any depth, will not change when further vertices are introduced. Nevertheless,
there is an inequality one may impose for pairs of vertices at depth n− 1, which we address later.
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4.1 Generation by canonical constructionpaths for principal graphs
We now review McKay’s method of enumeration by construction by canonical paths
[McK98]. Although our description here is a very close parallel of his, we have slightly
specialized his framework, and allowed ourselves the use of slightly more sophisticated
mathematical language (particularly of groupoids). We hope that our exposition is acces-
sible, and simultaneously explains the general picture and the particular instance used
in this paper. McKay’s running example is triangle free graphs, while our running ex-
ample will be principal graph pairs (PGPs). Throughout this section, the general method
is described in the main text, and the specialization to the PGP example is illustrated in
highlighted boxes.

The general setup for McKay’s method is that we have a (countable) groupoid of
combinatorial objects O, and we would like to enumerate the isomorphism classes.

The groupoid O is all PGPs with index bounded by some �xed constant L, with
PGP isomorphisms.

Our initial plan is to come up with a �nite collection of seed objects and generating
steps so that a representative of each class can be reached from a seed in a �nite number
of steps. This plan ensures that we can enumerate all isomorphism classes. The problem,
of course, is that we may produce many representatives of the same class.

For example, any PGP Γ with index at most L may be reached from the trivial
PGP (∅, ∅, id, 0) using �nitely many applications of these two generating steps.

(1) We can increase the working depth at which we add vertices.

(2) We may join new vertices at the working depth n to vertices at the previous
depth. The details di�er depending on whether n is even or odd.

(a) If n is odd, given two sets of vertices S+ ⊂ V (Γ+) and S− ⊂ V (Γ−) at
depth n − 1, we may add a new vertex v to Γ+ and a new vertex v̄ to
Γ−, both at depth n, joined to the vertices of S+ and S− respectively.

(b) If n is even, there are two ways to add vertices to either Γ+ or Γ−.
(i) Given a set of vertices S ⊂ V (Γ±) at depth n − 1, we may add a

new self dual vertex v at depth n to Γ±, joined by an edge to each
vertex of S.

(ii) Given two sets of vertices S1, S2 ⊂ V (Γ±) at depth n−1, we may
add two new vertices v and v̄ at depth n to Γ±, joined by edges to
S1 and S2 respectively.

In fact, there are restrictions on when these steps may be applied (ensuring asso-
ciativity and staying below the index limit). We postpone discussing these until
later in this section.
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In particular, there are three ways in which this process would produce representa-
tives in the same isomorphism class.

(1) If two generating steps starting from the same object are equivalent under the
automorphism group of that object, the results will be isomorphic.

(2) Two inequivalent generating steps applied to the same object can yield isomorphic
objects.

(3) Starting with two non-isomorphic objects and applying a generating step can re-
sult in isomorphic objects.

(1) Adding a vertex in two di�erent locations to the same graph will give iso-
morphic results, if those locations are equivalent under the automorphism
group action.

(2) Two inequivalent ways of adding vertices to the same graph pair may yield
isomorphic results.

These extensions are not equivalent: in the �rst case, but not the second, the
new vertices are connected to vertices which are dual to vertices at distance
3 from the old vertices at the working depth.
The resulting PGPs are equivalent by permuting the vertices at successive
depths in each graph in the lower pair by (1), (1), (1), (231), (436512), (12).

(3) Adding vertices to two inequivalent graphs pairs may yield isomorphic re-

28



sults.

McKay’s method of construction by canonical paths avoids these problems. First,
however, we need to endow our groupoid of objects with the following pieces of extra
structure.

De�nition 4.6. A McKay groupoid is a countable groupoid O with the extra structure
(`, U, L, ·̂, (·)−1, φ) described in conditions (C1)-(C6) below.

(C1) The groupoid O should be graded by N; that is, every object o ∈ O has a isomor-
phism invariant ‘level’, which we write as `(o).

For PGPs, we use the following slightly complicated level function. Let a be
the working depth of o, let b be the number of self-dual vertices in o, and let
c be the number of pairs of dual vertices in o. Then `(o) = a+ b+ c.

`


 = 6 + 8 + 5 = 19

(C2) Associated to an object o ∈ O we de�ne a new set, the ‘upper objects’ U(o) for o.
The elements of U(o) consist of an object inO along with certain extra data. (It is
important to point out here that ‘upper’ is not a property of an object, but rather
an upper object is some extra structure associated with an object. We keep this
terminology for consistency with [McK98].) If u ∈ U(o) is an upper object for o,
we write û for the resulting object in O. We must have `(û) > `(o). Essentially,
the upper object u records the generating step that produces û from o.

We have three types of upper objects, called ‘increasing the depth’ I , ‘adding
a self-dual vertex’ S+(V ), and ‘adding a pair of dual vertices’ P+(V1, V2).

• There is only one way to increase the depth, and the underlying object
Î is just o with the working depth incremented by one. We denote Î
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by adding a white shaded vertex at the next depth, and we denote I by
drawing a dotted circle around this white vertex.

o = ; I = ; Î =

• When we add a self-dual vertex, S+(V ) ∈ U(o), V denotes a subset
of the vertices of o at depth n − 1, all on one graph. The underlying
object Ŝ+(V ) is the PGP obtained by adding a new self-dual vertex at
depth n, connected by an edge to each vertex in V .

o = ; S+(V ) =
V

; Ŝ+(V ) =

• When we add a pair of dual vertices P+(V1, V2) ∈ U(o), the sets V1

and V2 denote two collections of vertices of o at depth n − 1. When
the working depth n is even, both must be collections of vertices of
the same graph, and we do not distinguish between P+(V1, V2) and
P+(V2, V1).

o =

P+(V1, V2) =

V2

V1

̂P+(V1, V2) =

When the working depth n is odd, each is a subset of vertices on dif-
ferent graphs.

o = ; P+(V1, V2) =
V1

V2

; ̂P+(V1, V2) =
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The resulting object ̂P+(V1, V2) is the PGP obtained by adding a pair
of vertices, dual to each other at depth n (either on the same graph, or
di�erent graphs, as appropriate), with the �rst connected by an edge
to each vertex in V1, and the second connected to each vertex in V2.

For a given PGP o:

• We include I ∈ U(o) if and only if there is at least one vertex on each
graph at the current working depth, and the associativity condition
holds between all pairs of vertices at depth n− 1. (This ensures that Î
is associative.)

• We include S+(V ) for every subset V such that Ŝ+(V ) would have
index below our cuto�, and the associativity condition holds between
all vertices at depth n− 2 and the new vertex in Ŝ+(V ).

• Similarly we include P+(V1, V2) if it has small enough index and the
associativity condition holds between all vertices at depth n − 2 and
both of the new vertices in ̂P+(V1, V2).

Note that associativity between any pair of vertices v and w is checked pre-
cisely once.

(C3) Associated to an object o ∈ O, we de�ne a new set, the ‘lower objects’ L(o) for o.
The elements of L(o) consist of an object in O along with certain extra data. (As
with upper object, again take care to note that lower objects are not just objects
satisfying a property.) If l ∈ L(o) is a lower object for o, we write l̂ for the resulting
object in O. We must have `(l̂) < `(o). Again, a lower object l essentially records
the generating step that produces o from l̂.
We insist that L(o) is empty if and only if `(o) = 0.

This is completely parallel to the description of upper objects. We have three
types of lower objects, called ‘decreasing the depth’ D,

o = ; D = ; D̂ =

‘deleting a self-dual vertex’ S−(v), where v denotes any self-dual vertex at
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the working depth,

o = ; S−(v) =

v

; Ŝ−(v) =

and ‘deleting a pair of dual vertices’ P−(w1, w2), wherew1, w2 denote a pair
of dual vertices at the working depth.

o =

P−(w1, w2) =

w2

w1

̂P−(w1, w2) =

The resulting objects are the PGPs which are obtained by deleting the
marked vertices.

We have D ∈ L(o) if and only if there are no vertices on either graph at the
working depth. We have S−(v) ∈ L(o) and P−(w1, w2) ∈ L(o) for all valid
choices of v or w1, w2.

(C4) The groupoid O acts on the bundle of sets U . That is, for each o, U(o) carries
an action of the automorphism group Aut(o), and moreover we have a coherent
family of bijections U(o) ∼= U(o′) for each isomorphism o ∼= o′. Similarly O acts
on the bundle of sets L.
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For example, the following upper objects in U(o) are isomorphic:

o = ; P+(V1, V2) =
V1

V2

∼=

V ′1

V ′2
= P+(V ′1 , V

′
2)

The automorphism of o which swaps the vertices V1, V
′

1 and the vertices
V2, V

′
2 induces the above isomorphism.

Remark 4.7. When we write u ∼= u′, for u ∈ U(o) and u′ ∈ U(o′), we mean an
isomorphism o ∼= o′ carrying u to u′ (and similarly for lower objects).

(C5) Each upper object u ∈ U(o) must have an inverse lower object, denoted u−1, in
L(û), such that û−1 = o. We require that when u−1

1
∼= u−1

2 , it is also the case that
u1
∼= u2.

For o and u the �rst two graphs below, we see that û−1 = o:

o = u =
V1

V2

û = u−1 =

w1

w2

An isomorphism g : û1

∼=→ û2 carrying u−1
1 ∈ L(û1) to u−1

2 ∈ L(û2) can
be restricted to the vertices which are not being deleted, obtaining an au-
tomorphism g′ : o

∼=→ o. This automorphism then carries u1 ∈ U(o) to
u2 ∈ U(o).

(C6) Finally, for each o such that L(o) is non-empty, we have a chosen orbit φ(o) ∈
L(o)/Aut(o) called the canonical reduction orbit of o. These choices must be co-
herent with respect to the groupoid action, that is for g : o ∼= o′, φ(g(o)) =
g(φ(o)).
(The choice of canonical reduction is the critical optimization step for this algo-
rithm; see below.)
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When o is a PGP, we have many potential criteria to choose the canonical
reduction orbit in L(o). Here we explain the general framework for such
criteria, deferring the actual choice we make to Section 4.3.

If there are no vertices at the working depth,L(o) is the singleton containing
the lower object which decreases the working depth, and there is no choice
to make. Otherwise, every lower object deletes either a self-dual vertex or a
pair of dual vertices at the working depth. (Note that if the working depth
is odd, there can not be any self-dual vertices.)

We may make choices such as to prefer deleting vertices from Γ− over Γ+,
deleting dual pairs of vertices over deleting self-dual vertices, and so on,
as long as these choices are invariant under the groupoid (because we are
choosing an orbit, not a particular lower object). Our two implementations
make slightly di�erent choices here. After expressing these preferences,
there may still be alternatives, and indeed in the simplest case, where we
have no such preferences, all the orbits are alternatives!

The nauty [MP14a] package provides an algorithm for canonically la-
belling the vertices of a vertex-coloured graph. Since the data of a lower
object for a PGP can be encoded as a vertex-coloured graph, preserving au-
tomorphisms, it is always possible to use this canonical labelling to make a
choice of orbit of lower objects.

The precise details di�er in our two implementations; we describe these in
Section 4.3.

This concludes the de�nition of a McKay groupoid (and simultaneously how we see
PGPs as an example).

De�nition 4.8. Given an upper object u ∈ U(o), we say it is genuine exactly if u−1 is
contained in the canonical reduction orbit φ(û).

Observe that this property is preserved by the groupoid action: if g : o ∼= o′, then u
is genuine if and only if g(u) is genuine.
Remark 4.9. Making a clever choice of canonical reduction φ amongst the automorphism
orbits in L(o) can provide a signi�cant speed-up. The key fact is that when preparing
the upper objects as above, we may omit any upper object that we know in advance can
not possibly be genuine.

If the choice function simply relies on canonical labellings from nauty, it is essen-
tially a black box, and it is not possible to make such predictions. As such, it would be
impossible to prune the list of upper objects. Moreover, calls to nauty can be com-
putationally expensive. We �nd that it is possible to specify φ in a way that drastically
reduces the number of calls needed; this is described in Section 4.3.
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We consider the following PGP (with Γ+ the upper graph, Γ− the lower graph).

o =

We give an example of an upper object S+(V ) ∈ U(o) which is not genuine since
S+(V )−1 /∈ φ(Ŝ+(V )), for the choice function φ used in the Scala implemen-
tation, given in detail in Section 4.3 below.

S+(V ) =

V

; Ŝ+(V ) = ; S+(V )−1 =

v

Because the choice function φ prefers to delete vertices from Γ−, we have

φ(Ŝ+(V )) =


w1

w2

 .

Our strategy now, described in detail in the next section, is to build a tree of objects
in O, such that the children of an object o are the resulting objects of representatives of
the Aut(o) orbits of genuine upper objects.

4.2 Exhaustivity and uniqueness
We write K(O) for the set of isomorphism classes of the groupoid O, and K(O1) for
the set of isomorphisms classes of elements o ∈ O such that L(o) is not empty.

Lemma 4.10 (cf. [McK98, Lemma 1]3). There is a unique function π : K(O1) → K(O)
such that for each

• o ∈ [o] ∈ K(O1),

• l ∈ φ(o), and

• o′ ∈ O and u ∈ U(o′) such that u−1 ∼= l,

3The statement of Lemma 1 in [McK98] is slightly incorrect; it should say that for each element X̂ ∈
f(X̌) there is a Y ∈ p(S) such that X̂ ∈ U(Y ), rather than that all elements of f(X̌) are in a single such
U(Y ).
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we have o′ ∈ π([o]).

Proof. We just need to show that for any allowed choices (o1, l1, o
′
1, u1) and (o2, l2, o

′
2, u2)

with o1
∼= o2, we have o′1 ∼= o′2.

Condition (C6) shows l1 ∼= l2. Now u−1
1
∼= u−1

2 , and by Condition (C5), u1
∼= u2,

which in particular (recall Remark 4.7) means o′1 ∼= o′2.

As in [McK98, p. 6], this is called the parent function. An ancestor of an isomorphism
class [o] is an [o′] such that πk([o]) = [o′] for some k. There is an obvious notion of the
children and descendants of [o]. Because π reduces the level by one by Condition (C3), it
is clear that every isomorphism class is a descendant of some ‘progenitor’ [o] with L(o)
empty.

Given a McKay groupoid O satisfying Conditions (C1)–(C6), we de�ne a forest F
of elements. Theorems 4.13 and 4.14 below shows that this forest consists of a single
representative of each isomorphism class [o] ∈ K(O).

De�nition 4.11. We �rst de�ne a tree T[r] ⊂ O for any isomorphism class [r]. The root
is an arbitrarily chosen representative r of [r], and the children of any node o ∈ T[r] are
then obtained as follows:

• for each orbit in U(o)/Aut(o),

• pick a representative u, and

• accept û if u is genuine (i.e. u−1 ∈ φ(û)), rejecting otherwise.

The forest F is the union of all the trees T[r] where [r] varies over all isomorphism
classes for which L(r) is empty.

Remark 4.12. This de�nition is a close parallel of the procedure scan(X,n) [McK98, p.
6]. Our setup is less general, and in particular we use u−1 as the canonical choice of
Y̌ ∈ f ′(X̂) in scan(X,n).

Theorem 4.13. For any r ∈ O, if [o] is descended from [r], then some o ∈ [o] appears in
T[r].

Proof. We say a descendant [o] of [r] is in generation i if πi([o]) = [r]. We induct on the
generation. The base case is trivial.

Consider [o] descended from [r] in generation i + 1. Pick o, a representative of [o],
some l ∈ φ(o), and u such that l ∼= u−1. The upper object u is an upper object for some o′.
By the de�nition of π, [o′] = π([o]), and [o′] is also a descendant of [r], but in generation
at most i. By induction, some other o′′ ∼= o′ appears in T[r]. As U is equivariant by
Condition (C4), there is a u′ ∈ U(o′′), with u′ ∼= u. We see that u′−1 ∼= l, and so û′ ∼= o.

Finally, we need to check that u′−1 ∈ φ(û′), so that we accept û′. As φ is also
equivariant by Condition (C6), this follows from l ∈ φ(o).
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Theorem 4.14. Given any [r], the elements of T[r] are pairwise non-isomorphic.

Proof. Again, we induct on the generation. The base case is trivial.
Suppose o′1 and o′2 in generation i + 1 of T[r] are isomorphic. Because they are in

T[r], there are u1 and u2 with o′i = ûi and u−1
i ∈ φ(o′i). Combining the equivariance of

φ (Condition (C6)) and the fact that φ(o) is a single orbit, we have that u−1
1
∼= u−1

2 , and
hence by Condition (C5) u1

∼= u2.
Let oi = û−1

i . By construction, oi ∈ T[r] and o1
∼= o2, so by the inductive hypothesis

o1 = o2. We see that ui was our chosen representative of U(oi)/Aut(oi) in De�nition
4.11, but now only one choice is available, so in fact u1 = u2, and hence o′1 = o′2, as
desired.

Corollary 4.15. The elements of F are pairwise non-isomorphic, because the root of the
tree an element appears in is an isomorphism invariant.

As noted above, the only PGP with no parent is (∅, ∅, id, 0). In practice we are very
often interested in the descendants of ( , ), as all principal graphs of irreducible
subfactors are of this form. However, in Section 4.3, where we describe the ‘tail enumer-
ator’, we will be interested in other roots.

4.3 The implementations
We have two independent implementations of the algorithm described above for PGPs.
The �rst was written by Narjess Afzaly, as part of her ANU PhD thesis work with Bren-
dan McKay, and is implemented in C. The second was written later by Scott Morrison
and David Penneys, in Scala. The implementations are independent in the sense that
they share no common code, and in fact neither group read the code of the other imple-
mentation. The C implementation is faster, although both programs su�ce to do all the
computations required in this paper. To the extent possible (subject to the constraints
described below) all computations have been reproduced in both implementations and
compared.

Both implementations are best run by means of theMathematicawrappers we’ve
prepared for them. The Scala code is used in the Mathematica notebook enu-
merator.nb included with the arXiv sources of this article to give the proof of
Theorem 3.1 below. The C code can be run by loading /development/afzaly-
enumerator/Enumeration-setup.m from the FusionAtlas repository in
a Mathematica session (after �rst loading the FusionAtlas itself), and then us-
ing the command ExtendToDepth.

Our choice function φ is speci�ed as follows, in descending order of priority:

• In the Scala implementation only, if the PGP has vertices on both the principal
and dual principal graphs at the working depth, then the canonical reduction will
be a lower object which removes vertices from the dual principal graph.
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• If the PGP has both self-dual vertices and pairs of dual vertices at the working
depth, then the canonical reduction will be a lower object which removes a dual
pair. The canonical reduction only removes a self-dual vertex if all vertices at the
working depth are self-dual.

• Subject to these constraints, the canonical reduction is a lower object which re-
moves a set (either a single vertex or a dual pair) of vertices with least total degree
amongst the lower objects.

• Finally, ties are broken using canonical labellings from nauty, according to one
of the two strategies described here. The C implementation uses the �rst strategy,
while the Scala implementation uses the second strategy.
In both, we need to encode PGPs as vertex-coloured graphs, in order to be able to
use nauty. From the underlying pair (Γ+,Γ−) for o, we apply a vertex-colouring
according to depth, and additionally add new (depth-preserving) edges between
pairs of dual objects. Then the automorphism group of this graph, which we de-
note G(Γ+,Γ−) is exactly the automorphism group of the PGP o.

(1) We observe that all the lower objects we are considering are described by
some subset of vertices (of size 1 or 2) on a �xed graph. Only some of
these subsets are allowed according to the choices described above. We use
nauty [MP14a] to compute a canonical labelling of the vertices of the graph
G(Γ+,Γ−), as well as the action of the automorphism group on subsets of
the appropriate size (in some cases, the C implementation shortcuts this cal-
culation, using the action on vertices to quickly deduce the action of subsets
of size 2). We identify which subset has least canonical labelling, and then
choose the orbit of lower objects consisting of the images of this subset under
the automorphism action.

(2) For each orbit [l] of lower objects satisfying our preferences, we pick a repre-
sentative l ∈ L(o), and construct a single vertex-coloured graph Gl encoding
l, in an Aut(o) equivariant manner. This is the same vertex-coloured graph
as that described in the �rst alternative, with the addition of an extra vertex-
colour for the vertices to be deleted by l. We then call nauty to canon-
ically label the vertices of Gl, obtaining a vertex-coloured graph G[l] which
did not depend on the representative l. We then de�ne a total ordering on
vertex-coloured graphs (e.g. dictionary order on a textual representation),
and declare that our chosen orbit is the one with the least G[l].

Note the second approach may require several calls to nauty when the �rst re-
quires just one; the Scala implementation is certainly less e�cient.
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For simplicity, we consider the following graph (not a graph pair) at an even work-
ing depth, whose lower objects consist of deleting vertices at the working depth.

There are 4 orbits of lower objects under the Aut(o) action:

(1) deleting one of the �rst two dual pairs (counting from the bottom),

(2) deleting the third dual pair,

(3) deleting the fourth dual pair, and

(4) deleting the self-dual vertex.

Here, the canonical reduction orbit must be deleting a dual pair with least total
degree amongst dual pairs, so it must be deleting either the third or fourth dual
pair. We then call nauty to produce a canonical labeling to break the tie.

We note the following di�erences between the implementations. The optimizations
made in the C implementation are described in detail in Afzaly’s Ph.D. thesis [Afz15].

• TheC implementation only enumerates simply-laced principal graphs (as re�ected
in the de�nition of PGPs above), while the Scala implementation can also pro-
duce non-simply-laced graphs (requiring the obvious modi�cations to the de�ni-
tions above). Given Lemma 3.3, this is not a signi�cant di�erence for the purposes
of this paper.

• The C implementation uses certain shortcuts for estimating graph norms, while
theScala implementation uses the straightforward heuristic of bounding a graph
norm below by ||An+1v||/||Anv|| for any chosen n and v (taking n = 10 and v the
vector which is 1 on every vertex is good enough).

• The C implementation di�ers slightly from the description above in that it treats
the graphs (Γ+,Γ−) in a PGP as an unordered pair. Thus the output from the
Scala implementation contains (Γ+,Γ−) and (Γ−,Γ+) separately whenever Γ+ 6=
Γ−.

• The Scala implementation assumes that there is exactly one vertex on each
graph in depth 0, while the C implementation allows arbitrarily many. This is
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a more signi�cant limitation, as this freedom is essential for the ‘tail enumerator’
described below, and used in Section 5.4.

• The C implementation does not natively implement the triple point obstruction;
we �lter its output using an implementation of the triple point obstruction writ-
ten in Mathematica (thus the two overall implementations maintain separate
codebases, although both triple point obstructions were implemented by the sec-
ond and third authors).

• Finally, theScala implementation includes one additional inequality, which some-
times rules out a PGP on the basis of having no possible associative descendants.
Let nbhd+(v) and nbhd−(v) denote the neighbours of a vertex v at the next and
the previous depth respectively. We can decompose both sides of the associativity
constraint in Equation (4.1) as a sum of two positive terms. For vertices v and w
at the same depth (and in particular depth n− 1) we have

A+B = C +D

where

A =
∣∣∣nbhd+(v) ∩ nbhd+(w)

∣∣∣ B =
∣∣∣nbhd−(v) ∩ nbhd−(w)

∣∣∣
C =

∣∣∣nbhd+(v) ∩ nbhd+(w)
∣∣∣ D =

∣∣∣nbhd−(v) ∩ nbhd−(w)
∣∣∣ .

We are interested in the speci�c case where n is even, and there are already ver-
tices on Γ− at depth n. Consider v on Γ+ at depth n − 1, and w on Γ− at depth
n − 1. We know that in any genuine child the additional vertices at depth n will
also be on Γ−. Thus three out of the four terms above will not change: only
C =

∣∣∣nbhd+(v) ∩ nbhd+(w)
∣∣∣ will increase as we look at genuine children. Thus

we can discard any graph in this situation for whichA+B−C−D is already neg-
ative. (In fact, this apparently rather speci�c check saves a huge amount of e�ort,
reducing the total number of graphs considered in our application from 239710 to
17360!) The C implementation similarly implements associativity checks as early
as possible [Afz15], although the details are di�erent because of the symmetry
between Γ+ and Γ− there.

The tail enumerator. We can apply the above algorithm starting with a PGP which
does not represent the entirety of a subfactor principal graph up to some depth, but
rather a ‘block’ B of a principal graph containing only the vertices at depths between
some speci�ed limits a and a+k. Using this, we can enumerate all possible blocks C such
that ABC could be the principal graph of subfactor, where ABC represents a principal
graph given by some unknown A from depth 0 to depth a (with a itself perhaps also
unknown), the �xed block B from depth a to depth a + k, and the block C from depth
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a + k onwards. We call this application of the general algorithm the ‘tail enumerator’.
In practice we use it knowing that A is of the form A(0)Bm, for some �xed initial graph
A(0) followed by an unknown number of repeats of a certain block B.

4.4 Application to graph pairs up to index 51
4

Proof of Theorem 3.1. The algorithm described in Section 4.1, implemented as described
in Section 4.3, and applied to the input ( , ), enumerates all possible principal
graphs of irreducible subfactors up to a given index, by Theorem 4.13. The output is a
tree whose nodes constitute a single representative of every isomorphism class, and is
produced via a depth-�rst traversal. There is no guarantee that this tree is not in�nite.
We may instruct the enumeration algorithm to ignore any speci�ed sub-trees.

A subfactor principal graph needs to satisfy more associativity conditions than PGPs
do — in particular it must satisfy associativity between pairs of vertices at the penulti-
mate depth, or between pairs of vertices at the ultimate depth. As a result, we don’t
actually need to look at every node of this tree, but rather only those nodes which have
no vertices at the working depth (i.e. graphs just produced by increasing the depth).
These are exactly the PGPs which satisfy the associativity condition at the penultimate
depth (which is actually n − 2 for a PGP with no vertices at the working depth n), and
we then separately �lter out those that satisfy the associativity condition at the ultimate
depth n− 1.

As a simpli�cation in the primary implementation, we only generate simply-laced
graphs, requiring case (d) above. (The secondary implementation does not have this re-
striction.) We ask the algorithm to ignore any subtrees which are exactly 1-supertransitive
(giving case (c)), or which are 4-supertransitive (every 4-supertransitive graph other than
A∞ is a translation of an exactly 2- or 3-supertransitive graph), or which correspond to
extensions of any of the graphs listed in cases (e), (f), and (g). Finally, the graphs listed
in case (h) are exactly the output of this program.

For reference, the Scala implementation takes about 440s on a 1.7GHz Core i7
processor, and considers 17360 PGPs in total. (Running only up to index 5 takes 20s,
considering 992 PGPs, while running up to index 3+

√
3 takes 6s, considering 251 PGPs.)

5 Weeds with branch factor r = 1

Recall from [Jon12; MPPS12] that for an n − 1 supertransitive weed starting with an
initial triple point,

0 1
· · ·

n− 2 n− 1

Q

P
n

,
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the branch factor r = Tr(Q)/Tr(P ) is the ratio of the dimensions of the vertices one past
the branch. The branch factor is connected to the rotational eigenvalue ωA of the new
low-weight rotational eigenvector A at depth n, which is the new element in the n-box
space perpendicular to Temperley-Lieb-Jones. When r 6= 1, there are tight restrictions
on the possible dimensions of vertices, which we can leverage to rule out weeds using
branch factor inequalities. Section 6 is devoted to this task.

However, when r = 1, this corresponds to ωA = −1, and branch factor inequalities
no longer help. In Theorem 3.1, we see three weeds with branch factor r = 1, namely
(f)(5), (f)(6), and (f)(9), and we eliminate each weed with a di�erent ‘bespoke’ argument,
of varying di�culty.

For example, the weed B from [MS12; MPPS12] was eliminated using connections
together with an intricate graph norm argument. However, as noted in [JMS14, Section
5.2.1], this weed is easily eliminated by Popa’s principle graph stability [Pop95a; BP14].
We now eliminate the truncation B′ of B by 2. (This is (f)(5) from Theorem 3.1.)

Theorem 5.1. There are no subfactors with principal graph a translated extension of

B′ =
(

,
)
.

Proof. This weed is actually stable at the penultimate depth, so any subfactor exten-
sion must end with A�nite tails [Pop95a; BP14] (this result relies on [Pop95c]). However
[MPPS12, Lemma 4.14] shows that associativity is never satis�ed for an extension with
A�nite tails, a contradiction.

The next weed, (f)(6) from Theorem 3.1, is stable. By the Stability Constraint 2.19,
any extension could only be realized by graphs in the following two parameter family. ︸ ︷︷ ︸

a edges
︸ ︷︷ ︸

b edges

, ︸ ︷︷ ︸
a edges

︸ ︷︷ ︸
b edges


This family has been called the ‘AMP spider’. To eliminate this weed, a new number-
theoretic technique was developed by Calegari-Guo [CG15]. This technique is a signi�-
cant generalisation of and improvement over the main result of [CMS11] which in turn
was developed to treat uniformly the vines in the classi�cation of subfactors to index 5
[PT12]. As discussed in the introduction, we hope that it will be possible to implement
this technique to treat uniformly cylinders (stable weeds) as we treat vines now.

Theorem 5.2. There are no subfactor planar algebras whose principal graphs are an in-
stance of the AMP spider.

Proof. The article [CG15] shows that any subfactor principal graph which is a translated
extension of the AMP spider must have b ≤ 56. This reduces this weed to 56 vines, which
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we deal with using the algorithms from [PT12]. The only cyclotomic translates are when
(a, b) ∈ {(0, 0), (1, 1)}. This calculation is performed in the Mathematica notebook
CalegariGuoSmallCases.nb bundled with the arXiv source.

We now eliminate the two remaining cases. First, (a, b) = (0, 0), corresponding to
the graph

is not possible, since the branch point does not occur at an odd depth, which is necessary
by Ocnenau’s triple point obstruction [Haa94] (see also [Jon12, Theorem 5.1.11]). To
eliminate (

,
)
,

we note that this graph pair has index 5, which is not a composite index. However, by
looking at the dual graph, we see that there is a normalizer, which would give rise to
an intermediate subfactor [PP86, Proposition 1.7], a contradiction. (A planar algebraic
proof of this easy fact is available at [IMP13, Lemma 4.7].)

5.1 The remaining r = 1 weed
In the remainder of this section, we eliminate the �nal weed with branch factor r = 1,
(f)(9) from Theorem 3.1.
Theorem 5.3. No subfactor planar algebra has principal graph a translated extension of

A(0) =
(

,
)
.

(Note that A(0) is isomorphic to the graph in part (f)(9) of Theorem 3.1.)

We de�ne A(2t) to be the translation of A(0) by 2t.
Theorem 5.3 follows from the following four lemmas.

Lemma 5.4. There are no �nite depth subfactor planar algebras with principal graph a
translated extension of A(0).

This lemma is a striking application of number theory; while previously we’ve used
the cyclotomicity of the index for �nite depth subfactors to rule out arbitrary translations
of a �xed graph, this lemma is the �rst case in which we are able to rule out arbitrary
translations and all �nite extensions. Its proof appears in Section 5.3.

We prove the next two lemmas, which both rely on graph enumeration arguments,
in Section 5.4.
Lemma 5.5. Any subfactor principal graph which is an in�nite depth extension of A(2t)

must be an extension of A(2t)B where

B =

 ,


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Lemma 5.6. The only possible subfactor principal graph which is an in�nite depth exten-
sion of A(2t)B is A(2t)B∞.

Finally, the remaining possibilities are ruled out by the next lemma, proved in Section
5.5.

Lemma 5.7. There is no subfactor planar algebra with principal graph A(2t)B∞.

5.2 Relative dimensions and doubly one-by-one connection en-
tries

For some weeds it is possible to determine the dimensions of all the vertices as functions
of q and t, where t is the translation. If we can do so, we call these dimensions the relative
dimensions of the vertices [MPPS12, Section 4.1].

To compute the relative dimensions, we combine and solve the following three types
of equations.

(1) Since the trivial vertex marked ? always has dimension 1, and the quantum di-
mension of the vertex at depth 1 is [2] = q + q−1, we set the dimension of the
leftmost vertex of our weed equal to [t+ 1] = qt−q−t

q−q−1 .

(2) If two vertices are dual to each other, they must have the same dimension.

(3) For every vertex v for which we know all its neighbors w, we have the equation
[2] dim(v) =

∑
neighbors w dim(w).

When we can determine all the relative dimensions, it is possible to use certain
branch factor inequalities to try to rule out the weed, as in Section 6 below. However,
in many cases, we have too few equations to determine all the relative dimensions. In
extremely fortunate situations, we can calculate an additional unknown dimension by
using connection techniques, namely looking for doubly one-by-one connection entries.

By Fact 2.16, a necessary condition for a PGP Γ to be the principal graph of a subfac-
tor is that it must have a bi-unitary connection on the Ocenanu 4-partite graph O(Γ).
We can form this 4-partite graph for an arbitrary PGP Γ parallel to De�nition 2.13, and
associativity of Γ directly corresponds to the associativity constraint for O(Γ).
Remark 5.8. A PGP Γ will not have any extension which is the principal graph of a
subfactor unless there is a ‘partial connection’ on Γ.

A partial connection on a PGP with working depth n is a pair (W, dim) as in Def-
inition 2.15, with W (P,Q,R, S) only de�ned when at least one of {P,R} and at least
one of {Q,S} have depth at most n − 2. The unitarity and renormalization conditions
must be satis�ed whenever all the relevant entries are de�ned. (The restriction on the
de�ned entries ensures that the conditions we impose for a partial connection on a PGP
Γ are implied by the conditions for a partial connection on any extension of Γ.)
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In certain nice conditions, we can use the existence of a bi-unitary connection to
specify certain unknown relative dimensions.

De�nition 5.9. Suppose Γ is a PGP with a bi-unitary connection on O(Γ). A doubly
one-by-one connection entry is a loop of length 4 ` = (P,Q,R, S) around O(Γ) which
is the unique such loop passing through the pairs (P,R) and (Q,S). Such an ` exists if
and only if there are exactly 2 paths of length 2 onO(Γ) between P andR and exactly 2
paths of length 2 between Q and S. For an example, see the proof of Lemma 5.10 below.

If we have a doubly one-by-one connection entry, then the one-by-one matrixW (P,−, R,−)
is unitary by the Unitarity Axiom. Also, by the Renormalization Axiom, so is the one-by-
one matrix W (Q,−, S,−). Hence we must have the following identity of dimensions:

dim(P ) dim(R) = dim(Q) dim(S).

The presence of a doubly one-by-one connection entry sometimes allows us to solve
for one relative dimension in terms of three other known relative dimensions.

We now return to our example at hand. Looking at the section of A(0) between
depths 6 and 10, which we will denote (A+,A−), we get B with two missing univalent
vertices at depth 8:

(A+,A−) =

 ,


Recall that A(2t) is the 2t-translation of A(0).

Lemma 5.10. There is a doubly one-by-one entry of the connection for any principal graph
which is an extension of A(2t), and so

a2X1(q) +X0(q) + a−2X1(q−1) = 0 (5.1)

where a = q2t and

X1(q) = q16 − 2q14 − q12 − 2q10 − 3q8 − 4q6 − q4

X0(q) = −2q4 + 8q2 + 12 + 8q−2 − 2q−4.

Proof. The loop (V p
2t+6,1, V

p
2t+5,1, V

d
2t+6,2, V

d
2t+7,1) (in the notation of [MPPS12]: the p and

d stand for ‘principle’ and ‘dual’ to specify which graph, and the subscript i, j gives
the depth and height) inO(A+,A−), outlined in blue below, gives a doubly one-by-one
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connection entry.

A+

{

A−

{
AModA

AModB

BModB

BModA

AModA

Happily, we can compute the dimensions of these vertices in the principal graph
A(2t)C, as functions of q and a = q2t, irrespective of tail C. The formula in the statement
is now obtained from the Renormalization Axiom.

5.3 A variation on Calegari-Guo
In this section we adapt the arguments of [CG15] to prove the following number theo-
retic result, with a very helpful consequence.

Theorem 5.11. Suppose t ≥ 0, and q > 1 satis�es

Pt(q) = q2tX1(q) +X0(q) + q−2tX1(q−1) = 0,

where X0 and X1 are the Laurent polynomials de�ned in Lemma 5.10. Then the quantity
(q + q−1)2 is not a totally real cyclotomic integer.

Remark 5.12. We write qt for the largest real root of Pt, and q∞ for the largest real root
of X1. It is clear that qt → q∞, but we will need careful control of the convergence.

Before we prove this theorem, we use it to prove Lemma 5.4.

Proof of Lemma 5.4. Suppose (Γ+,Γ−) is a �nite translated extension ofA(2t) which oc-
curs as a subfactor principal graph. By [Jon87], the index of this subfactor must be equal
to ‖Γ±‖2. By the uniqueness of the Frobenius-Perron dimension function on the ver-
tices, together with Lemma 5.10, ‖Γ±‖2= (q + q−1)2 where q is a solution to Equation
(5.1) which is greater than 1. Now by [CG94; ENO05], the index of a �nite depth sub-
factor must be a totally real cyclotomic integer. But by Theorem 5.11, (q + q−1)2 is not
a totally real cyclotomic integer, a contradiction.

The proof of Theorem 5.11 occupies the remainder of this section. Some calculations
are performed in the Mathematica notebook CalegariGuoAdaptation.nb, and
the interested reader should look there for more details.

Recall Theorem 3.3 of [CG15] which we restate here with the parameter L �xed as
L = 3.16826 (for which B(L2) < 0).
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Theorem. Let β be a totally real algebraic integer such that

(1) β2 is not Galois conjugate to (ζt + ζ−1
t )2 for any t ≤ 52.

(2) The largest conjugate β of β is less than L = 3.16826.

(3) At mostM conjugates of β2 lie outside the interval [0, 4].

Then,M(β) =
TrQ(β2)/Q(β2)

[Q(β2):Q]
< 14

5
or [Q(β2) : Q] < 260

11
·M .

Our plan is to apply this theorem with βt = (qt + q−1
t )2 − 2 (recall qt was de�ned

in Remark 5.12). After showing that we can take M = 1, this will give us a dichotomy:
eitherM(βt) <

14
5

or [Q(β2
t ) : Q] ≤ 23. In the �rst case, there are not many possibilities

for β2
t being a cyclotomic integer, controlled by later results of [CG15]. In the second

case, analysis of the rate of the convergence of β t as t→∞will give a bound on t, after
which we have reduced the problem to a �nite number of cases.
Lemma 5.13. The polynomial Pt(q) has a unique root q > 1.

Proof. By Descartes’ rule of signs, Pt(q) has either 4, 2, or 0 positive roots. Easily, q = 1
is a double root. The polynomial Pt(q) is reciprocal, so there is at most one root q > 1.
Since Pt(q) → ∞ as q → ∞ and P ′′t (1) = −32 (3t2 + 24t+ 52) < 0, there is exactly
one such root.
Lemma 5.14. The largest roots qt of Pt(q) are always smaller than q∞.

Proof. By de�nitionX1(q∞) = 0, so we just calculatePt(q∞) = X0(q∞)+q−2t
∞ X1(q∞) =

X0(q∞) > 0 (this can just be done numerically: q∞ ∼ 1.67712, and X0(q∞) ∼ 21.2704).
The previous lemma, and the fact that Pt(q) is eventually positive, gives the result.

Remark 5.15. Consider the function f(q) = ((q+ q−1)2− 2)2. This maps points q on the
unit circle to [0, 4], and points q > 1 to (4,∞). Complex numbers o� the unit circle or
real line are sent to points o� the real line.

Since βt ∈ Q(qt), f gives a surjection from the Galois conjugates of qt to the Galois
conjugates of β2

t , and in particular from the Galois conjugates of qt greater than 1 to the
Galois conjugates of β2

t greater than 4, and the last two lemmas establish that condition
(2) holds and condition (3) holds with M = 1 in Calegari-Guo’s theorem.

Moreover, if qt has Galois conjugates that are neither real nor on the unit circle, βt
cannot be totally real.
Lemma 5.16. The largest roots qt converge monotonically to q∞.

Proof. Recall Pt(q) has a unique root qt greater than 1. It su�ces to show Pt(qt−1) < 0.
We �rst observe thatX0(q) andX1(q−1) are positive for 1 < q < q∞, and then calculate

Pt(qt−1) = q2q2t−2X1(qt−1) +X0(qt−1) + q−2tX1(q−1
t−1)

= −q2(X0(qt−1) + q−2t+2X1(q−1
t−1)) +X0(qt−1) + q−2tX1(q−1

t−1)

= (1− q2)X0(qt−1) + q−2t(1− q4)X1(q−1
t−1)

< 0.
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Although we’re staying purely in the number theoretic context for now, recall that
qt + q−1

t is actually the largest `2-eigenvalue of the graph A(2t)B∞, which easily gives
both of the last two lemmas.

Condition (1) of Calegari-Guo’s theorem is trivial as |ζkt + ζ−kt |2≤ 4, while |β2
t |>

|β2
0 |> 9 by monotonicity.

We have now established that Theorem 3.3 of [CG15] applies to βt.

Lemma 5.17. We have |q∞ − qt|< 23
7077

(2.802)−t < exp(−5− t).

Proof. By monotonicity, qt ∈ [q0, q∞). We now follow the proof of [CG15, Lemma 6.3].
In this interval, we have the inequalities

|X1(q)| > 7077|q − q∞|
|X0(q)| < 22

|X1(q−1)| < 1.

As q2t
t X1(qt) +X0(qt) + q−2t

t X1(q−1
t ) = 0, by the triangle inequality we obtain

q2t
0 7077|qt − q∞|< q2t

t |X1(qt)|≤ |X0(qt)|+q−2t
t |X1(q−1

t )|< 23,

giving the result, since 2.802 < q2
0 .

Lemma 5.18. IfM(βt) < 14/5 then βt is not a totally real cyclotomic integer.

Proof. By [CG15, Proposition 4.3], a totally real cyclotomic integer β withM(β) < 14/5
must either be a sum of two roots of unity (and hence less than 2) or β must be on an
explicit �nite list. By Lemma 5.17, once t ≥ 2, qt is within 0.001 of q∞, and so βt is
within 0.01 of 3.17, and there are no such numbers on the list.

Lemma 5.19. If [Q(β2
t ) : Q] ≤ 23 and βt is totally real, then t ≤ 66.

Proof. As qt is not Galois conjugate to q∞, X1(qt) is a non-zero algebraic number, and
so ∏

σ∈Gal(Q(β2)/Q)

|σX1(qt)|≥ 1,

being a positive integer.
For σ non-trivial, |σqt|≤ 1 by Remark 5.15, so |σX1(qt)|≤ 14, and so

|X1(qt)|≥
1

1422
.

Applying Lemma 5.17, we see

|X1(qt)| = |X1(qt)−X1(q∞)|
≤ 14|q16

t − q16
∞|

= 14|q∞ − qt||q15
∞ + q14

∞qt + · · · q15
t |

≤ 14 · 16 · q15
∞ · exp(−5− t).
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This gives
14 · 16 · q15

∞ · exp(−5− t) ≥ 1

1422

and hence the result.

Finally we check the cases t ≤ 66 individually, verifying that the totally real roots
are not cyclotomic integers. This completes the proof of Theorem 5.11.

5.4 The tail enumerator and periodicity
Proof of Lemma 5.5. By Lemma 5.10, any subfactor with principal graph which is a trans-
lated extension ofA(2t) must have (a = q2t, q) satisfying Equation (5.1). By Lemma 5.16,
q < q∞, and so the index of this subfactor must be at most (q∞ + q−1

∞ )2 < 5.1683.
We thus run the enumerator described in Section 4.1 on A(0), up to index 5.1683,

stopping whenever we reach depth 17. We �nd 6 vines (which aren’t relevant now, as
we’re only interested in in�nite depth extensions), and 20 graphs at depth 17. All of
these 20 graphs truncate back to depth 14 as A(0)B.

By running the tail enumerator described in Section 4.3 on the basic block B for 12
depths, we observe the following.

Lemma 5.20. Any extension of the basic block B must either

• start with another basic block,

• be one of several cylinders, or

• terminate before depth 16, and in particular be �nite depth.

These computations are performed in the Mathematica notebookr1TailEnumerator.nb
bundled with the arXiv source.

Corollary 5.21. Any principal graph of the form A(2t)BC where B is the basic block has
the form

• A(2t)B∞,

• A(2t)BkC, for some k, where C is a cylindrical tail, or

• A(2t)BkD, for some k, where D is a �nite tail.

Combined with Lemma 5.4 we have proved Lemma 5.6.
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5.5 Ruling out the in�nite depth graph
We now consider the family of in�nite depth graphs A(2t)B∞. Suppose that we have
a subfactor with principal graph A(2t)B∞, with index (q + q−1)2 (which may well be
greater than the square of the graph norm of A(2t)B∞ itself).

We introduce a = q2t. Happily, the dimension of every bimodule may be computed
as a rational function in a and q.

Lemma 5.22. We have the following explicit formula for a2:

a2 =
q20 − 4q18 − 6q16 − 4q14 + q12 −

√
q20 (q2 − 1)2 (q2 + 1)6 (q8 − 2q6 − q4 − 2q2 + 1)

q20 (q12 − 2q10 − q8 − 2q6 − 3q4 − 4q2 − 1)
(5.2)

Proof. By Lemma 5.10, we see that a satis�es Equation (5.1). Applying the quadratic
formula, we get two possible solutions for a2. Only the one in Equation (5.2) is greater
than 1 in the relevant range for q, i.e., 1.65 < q < q∞, where 1.65 is less than the q such
that q + q−1 is the graph norm of A(0), and q∞ is as in Section 5.3.

Letαm denote the dimension of the two bimodules on the �rst graph at depth 6+2t+
2m. One easily sees that these satisfy the recursion αm+1 = ((q+ q−1)2−3)αm−αm−1,
and thus

αm = c+

(
1−q2+q4+

√
1−2q2−q4−2q6+q8

2q2

)m

+c−

(
1−q2+q4−

√
1−2q2−q4−2q6+q8

2q2

)m

for some constants c+ and c− (depending on t). We can solve for these constants (cf. the
notebook code/r=1.nb), using

α0 =
a2q16 − a2q14 − a2q12 − a2q10 + q6 + q4 + q2 − 1

2aq6 (q2 − 1) (q2 + 1)

and

α1 =
a2q20 − 2a2q18 − a2q16 − a2q14 − a2q10 + q10 + q6 + q4 + 2q2 − 1

2aq8 (q2 − 1) (q2 + 1)
,

obtaining

c+ =
f+(a, q)

8aq10 (q4 − 1) z
and c− =

f−(a, q)

2aq6 (q2 − 1) (q2 + 1) z (−q4 + q2 + z − 1)
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where

z =
√
q8 − 2q6 − q4 − 2q2 + 1

f+(a, q) = z2
(
a2q10

(
−q10 + 2q8 + q6 + q4 + 1

)
− q10 − q6 − q4 − 2q2 + 1

)
+ z

(
2a2q14

(
q6 − q4 − q2 − 1

)
+ 2q4

(
q6 + q4 + q2 − 1

))
+ a2q10

(
q18 − 4q16 + 4q14 − 3q12 + 2q10 − 2q8 + 3q6 − 2q4 + 2q2 − 1

)
+ q18 − 2q16 + 2q14 − 3q12 + 2q10 − 2q8 + 3q6 − 4q4 + 4q2 − 1

f−(a, q) = z
(
a2q10

(
−q10 + 2q8 + q6 + q4 + 1

)
− q10 − q6 − q4 − 2q2 + 1

)
+ a2q10

(
q14 − 3q12 + 2q6 + q2 − 1

)
+ q14 − q12 − 2q8 + 3q2 − 1

Finally, substituting a from Equation (5.2) and simplifying, we obtain c+ = 0, and note
that for q > 1

2
(1 +

√
5), i.e. index greater than 5, we have

1− q2 + q4 −
√

1− 2q2 − q4 − 2q6 + q8

2q2
< 1,

so αm is eventually less than 1, for large enough m. Thus there is no subfactor with
principal graph A(2t)B∞. This completes the proof of Lemma 5.7.

6 Ruling out weeds using branch factor inequalities
The results of [Jon12; Sny13; Pen15] give, for certain graph pairs Γ = (Γ+,Γ−), a rational
function p(a, q) such that for a t-translated extension Γ′ = (Γ′+,Γ

′
−) of Γ to be the

principal graph of a subfactor with index (q + q−1)2, we must have pΓ(qt, q) ≤ 0. Now,
the index of a subfactor with principal graph Γ′ must be at least ‖Γ′±‖2≥ ‖Γ±‖2. Thus,
if pΓ is positive for all q > q0 where ‖Γ‖= q0 +q−1

0 , then there are no possible subfactors
with principal graph a translated extension of Γ. In this case, we say the result rules out
the weed Γ.

In each of these results, as long as the annular multiplicities match some pattern, we
obtain an inequality involving q, a = q2t, and ratios of the relative dimensions of certain
vertices on the graph Γ = (Γ+,Γ−), called the relative branch factors. In fortunate
circumstances, all the relative dimensions can be computed as functions of a and q, so
we can easily write down the inequality pΓ(a, q) ≤ 0. In less fortunate circumstances,
there are undetermined relative dimensions; sometimes, nevertheless, we can compute
these relative dimensions from a doubly one-by-one connection entry. See Sections 6.1
and 6.3 for such examples. This often gives these unknown dimensions as functions of
a, q which are no longer rational, and it is usually more work to apply the inequality.

We now recall the three results on branch factors. We assume that Γ = (Γ+,Γ−) has
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an initial triple point at depth n− 1:

0 1
· · ·

n− 2 n− 1

Q

P
n

We label the projections at depth n of Γ+ by P and Q. The new low-weight rotational
eigenvector perpendicular to T LJn,+ is given byA = rP−Q, where r = Tr(Q)/Tr(P )
is the branch factor. The rotational eigenvalue is denoted ωA.
Remark 6.1. If (Γ+,Γ−) is k-supertransitive, then the t-translated graph has n = t+k+1.

Theorem 6.2 ([Jon12, Theorem 5.1.11]). Suppose (Γ+,Γ−) is a (n− 2)-translated exten-
sion of (

,
)
.

Then
ωA + ω−1

A = (r + r−1 − 2)[n][n+ 2]− 2. (6.1)

Theorem 6.3 ([Sny13, Theorem 3]). Suppose (Γ+,Γ−) has an initial triple point at depth
n−1 where n is even, and Γ− has a univalent vertex at depth n. Then Equation (6.1) holds.

Corollary 6.4 (Triple-single branch factor inequality). If (Γ+,Γ−) has an initial triple
point at depth n− 1 where n is even, and Γ− has a univalent vertex at depth n, then

−4 ≤ ωA + ω−1
A − 2 = (r + r−1 − 2)[n][n+ 2]− 4 ≤ 0.

The main result of [Pen15] is strictly stronger than those of [Jon12; Sny13], but we
include only what we need for the annular multiplicity ∗11 weeds in this article. For the
following theorem, Γ± are both (n− 2)-translated extensions of

,

and P is chosen to be the bivalent vertex at depth n of Γ+ (regardless of Tr(P ) and
Tr(Q)). When n is even, we choose P̌ to be the trivalent vertex at depth n of Γ−, and
when n is odd, we choose P̌ to be the bivalent vertex at depth n of Γ−

Again,A = rP−Q, and Ǎ = řP̌−Q̌where r = Tr(Q)/Tr(P ) and ř = Tr(Q̌)/Tr(P̌ ).
We must have that the one click rotation ofA is equal to

√
r√
ř
σAǍwhere σA is some 2n-th

root of unity with σ2
A = ωA.

Theorem 6.5 ([Pen15, Theorem 3.10]). Suppose Γ± are both (n−2)-translated extensions
of .

(1) If n is even, (Γ+,Γ−) is a translated extension of
(

,
)
,

and

σA + σ−1
A =

√
ř√
r

[n+ 2]−
√
r√
ř

[n].
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(2) If n is odd, (Γ+,Γ−) is a translated extension of
(

,
)
,

and

σA + σ−1
A =

[n+ 2]

r
− r[n].

Remark 6.6. The two formulas in Theorem 6.5 are really the same using an alternate
de�nition of the branch factor. If we let s± be the trace of the trivalent vertex of Γ±
divided by the trace of the bivalent vertex of Γ±, then both formulas can be written as

σA + σ−1
A =

[n+ 2]
√
s+s−

−√s+s−[n]. (6.2)

Indeed, we always have s+ = r; when n is even s− = 1/ř, and when n is odd s− =
s+ = r.

Squaring both sides of Equation (6.2), we have

[n+ 2]2

s+s−
− 2[n+ 2][n] + s+s−[n]2 = ωA + ω−1

A + 2 ∈ [0, 4], (6.3)

so subtracting 4, we get the following:

Corollary 6.7 (Non-univalent ∗11 branch factor inequality).

−4 ≤ ωA + ω−1
A − 2 =

[n+ 2]2

s+s−
− 2[n+ 2][n] + s+s−[n]2 − 4 ≤ 0.

Corollary 6.7 was used in [Pen15, Theorem 3.17] to eliminate weed (2) in part (e) of
Theorem 3.1, which has annular multiplicities ∗11 (see Section 6.2). Corollary 6.4 was
used in [MPPS12, Section 4] to eliminate two weeds in part (f) of Theorem 3.1, which
have annular multiplicities ∗10 (see Section 6.4).

These weeds were eliminated by determining the relative dimensions of the vertices
as functions of q and a = q2t. Next, the relative branch factors were computed, which
are the expressions for r, ř as functions of a and q. Finally, we use Corollaries 6.4 and
6.7 to write ωA + ω−1

A − 2 = pΓ(a, q), and we show pΓ is always positive for a ≥ q2t0

and q > q0 where q0 is determined by the graph norm of a 2t0-translate of the weed in
question. This eliminates all 2t-translates of extensions of the weed for t ≥ t0. For the
∗11 weed eliminated in [Pen15, Theorem 3.17], t0 = 0, which eliminates all translated
extensions. However, for the two ∗10 weeds eliminated in [MPPS12, Section 4], t0 = 1, 2
respectively, and additional arguments were supplied for these small translates.

The following trick was used in [Pen15] to verify positivity for certain polynomials
p(a, q).

De�nition 6.8. Given a polynomial p in variables a and q

p(a, q) =
k∑
i=0

pi(q)a
i
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we say that p is obviously positive for q > q0 if each single variable polynomial

k∑
i=j

pi(q) for j = 0, . . . , k

has positive leading coe�cient, and the largest root of any of them is at most q0.
We say a rational function in a, q is obviously positive for q > q0 if each irreducible

factor, of either the numerator or denominator, is obviously positive.

This condition is su�ciently straightforward to check that we make such claims
without explicit proofs. The following lemma is ‘obvious’.

Lemma 6.9. If p is obviously positive for q ≥ q0, then p(a, q) is positive for all q > q0 and
a ≥ 1.

In the subsequent subsections, we suppress most of the calculations, which are straight-
forward. These calculations are performed in the Mathematica notebook Weeds.nb,
bundled with the arXiv source.

6.1 Ruling out a particular ∗11 weed
We begin by eliminating a particularly di�cult ∗11 weed: number (5) of part (e) of The-
orem 3.1.

Theorem 6.10. There is no subfactor whose principal graphs are a translated extension of

D = (D+,D−) =
(

,
)
.

We would like to eliminate this weed using the technique outlined in the previous
section, but when solving for the relative dimensions, we have one unknown parameter:
dim(V d

5+2t,3). Luckily, as in Section 5.2, the loop (V p
2t+4,2, V

p
2t+5,2, V

d
2t+6,3, V

d
2t+5,3) outlined

in blue below in O(D) between depths 2t + 3 and 2t + 7 corresponds to a doubly one-
by-one connection entry.

D+

{

D−

{
AModA

AModB

BModB

BModA

AModA
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This doubly one-by-one entry gives us the following formula for our undetermined rel-
ative dimension:

dim(V d
5+2t,3) =

1 +K − 2q2 + 3q4 + q8 + a2 (−q8 − 3q12 + 2q14 − q16)

2a(−1 + q)q3(1 + q) (1 + 4q4 + q8)

where K > 0 such that

K2 = a4
(
q32+4q30+14q28+24q26+27q24+20q22+10q20+4q18+q16

)
+a2

(
−2q24−8q22−20q20−44q18−62q16−44q14−20q12−8q10−2q8

)
+q16+4q14+10q12+20q10+27q8+24q6+14q4+4q2+1.

Remark 6.11. There is another solution for dim(V d
5+2t,3) with−K instead of +K ; this is

always negative for a, q ≥ 1, which is impossible.
Now applying the technique of the previous section, Corollary 6.7 tells us the fol-

lowing inequality must be satis�ed:

4(aq5 + 1)2(aq5 − 1)2(α(a, q)−Kβ(a, q))(α(−a, q)−Kβ(−a, q))
a2(q + 1)2(q − 1)2q10

∏4
i=1(γi(a, q)−Kδi(a, q))

≤ 0 (6.4)

where

α(a, q) = a4
(
q42+q40+4q38−7q36−5q34−13q32+q30+8q28+17q26+16q24+8q22+4q20+q18

)
+a3

(
−2q36−4q34−14q32−14q30−16q28+10q26+38q24+28q22+26q20+14q18+4q16+2q14

)
+a2

(
−q34−2q32−8q30−17q28−17q26−14q24−25q22+25q20+14q18+17q16+17q14+8q12+2q10+q8

)
+a
(
−2q28−4q26−14q24−26q22−28q20−38q18−10q16+16q14+14q12+14q10+4q8+2q6

)
−q24−4q22−8q20−16q18−17q16−8q14−q12+13q10+5q8+7q6−4q4−q2−1

β(a, q) = a2
(
−q26+q24−q22+6q20−3q18+6q16+q14+2q12+q10

)
+a
(
2q20+8q16+2q14+2q12+8q10+2q6

)
+q16+2q14+q12+6q10−3q8+6q6−q4+q2−1

γ1(a, q) = a2
(
q16+2q14+5q12+q8

)
−q8−5q4−2q2−1

γ2(a, q) = a2
(
2q20+5q18+12q16+9q14+4q12+q10

)
−q10−4q8−9q6−12q4−5q2−2

γ3(a, q) = a2
(
2q20+q18+6q16+3q14+2q12+q10

)
−q10−2q8−3q6−6q4−q2−2

γ4(a, q) = a2
(
2q24+4q22+9q20+14q18+17q16+10q14+5q12+2q10

)
−2q14−5q12−10q10−17q8−14q6−9q4−4q2−2

δ1(a, q) = −1

δ2(a, q) = −2q4−q2−2

δ3(a, q) = q2

δ4(a, q) = 2q6+q4+2q2
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Lemma 6.12. When a ≥ 1 and q ≥ 1.65, every factor in both the numerator and the
denominator of Inequality (6.4) is positive. Hence for a ≥ 1 and q ≥ 1.65, Inequality (6.4)
does not hold.

Proof. This calculation is straightforward, and performed in Weeds.nb.

Proof of Theorem 6.10. If such a subfactor existed, then by Corollary 6.7, Inequality (6.4)
must hold. We note that the q for (D+,D−) must be larger than 1.65 by looking at the
graph norm. But by Lemma 6.12, Inequality (6.4) is never satis�ed for the relevant range
of a and q, a contradiction.

6.2 Ruling out the remaining ∗11 weeds
Recall that the weed(

,
)

was eliminated in [Pen15, Theorem 3.17]. The argument there is a straightforward appli-
cation of the method outlined in Section 6 by showing that each factor in the numerator
and each factor in the denominator of the relative branch factor are obviously positive
(see Lemma 6.9) for a ≥ 1 and q ≥ 1.6789, which is a lower bound for the q for the
above weed. Hence no subfactor exists with principal graphs a translated extension,
since Corollary 6.7 would not hold.

The argument for each weed in the following theorem is identical to [Pen15, Theo-
rem 3.17], mutatis mutandis. The interested reader can view the necessary calculations
in Weeds.nb.

Theorem 6.13. No subfactor has principal graphs a translated extension of any of(
,

)
(

,
)

(
,

)
(

,
)

Now the previous theorem, [Pen15, Theorem 3.17], and Theorem 6.10 rule out all
the ∗11 weeds in part (e) of Theorem 3.1.

6.3 Ruling out two particular ∗10 weeds with doubly one-by-ones
6.3.1 A truncation of F from [MPPS12]

In [MPPS12, Section 4.5], the problematic weed

F =
(

,
)
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was ruled out using both branch factor inequalities and doubly one-by-one connection
entries.

First, the relative dimensions can be computed in terms of q and a = q2t, where 2t is
the translation, which gives a formula for the relative branch factor. Then Branch Factor
Inequality (6.1) shows that t ≤ 1. Now for each of t = 0 and t = 1, we know ωA is a
(2t+ 4)-th root of unity. This allows us to solve directly for q in each case.

Second, there is a doubly one-by-one connection entry, which allows us to exactly
solve for q in the cases t = 0, 1. It turns out that these values of q are incompatible with
the values of q obtained from Branch Factor Inequality (6.1) for any allowed ωA. Hence
no translated extension of F can be the principal graphs of a subfactor.

Working a bit harder, we can use the recent advances [Mor14; IMPPS15] to rule out
the truncation F ′ of F by two depths.

Theorem 6.14. There are no subfactors whose principal graphs are a translated extension
of

F ′ =
(

,
)
.

(This is case (f)(7) from Theorem 3.1.)

ForF ′, we can no longer solve for all the relative dimensions; we have one unknown
parameter: dim(V p

2t+5,2). By the proof of [MPPS12, Proposition 4.17], we still have the
same doubly-one-by-one connection entry, corresponding to the loop (V p

2t+6,2, V
p

2t+5,1, V
d

2t+4,, V
d

2t+5,2).
This yields the following equation for our unknown parameter:

dim(V p
2t+5,2) =

−2− q2 −Kq2 + q6 + a2 (−q10 + q14 + 2q16)

2a(−1 + q)q5(1 + q) (1 + q2)2

where K > 0 is the positive square root of

K2 = 5+4q2+6q4+4q6+q8+a2
(
−2q8−8q10−20q12−8q14−2q16

)
+a4

(
q16+4q18+6q20+4q22+5q24

)
.

Remark 6.15. As in Remark 6.11 in Section 6.1, we get two solutions for dim(V p
2t+5,2),

where the other solution has +K instead of−K . This time, both formulas give positive
values for dim(V p

2t+5,2), but this second solution with +K gives a negative value for

dim(V p
2t+5,1) =

a2q10 − aq5 dim(V p
2t+5,2) + 1

aq5

when q, a ≥ 1.
Applying the relative branch factor technique, Corollary 6.4 tells us that the follow-

ing inequality must be satis�ed:

4 (−1 + a2q10)
2

(α(a, q)− q2K) (α(−a, q)− q2K)

a2(−1 + q)2q10(1 + q)2 (γ(a, q) +K) (δ(a, q)− q2K)
≤ 0 (6.5)
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where

α(a, q) = −1− q4 + a
(
q4 + 2q6 − 2q10 − q12

)
+ a2

(
q12 + q16

)
γ(a, q) = −3− 2q2 − q4 + a2

(
q8 + 2q10 + 3q12

)
δ(a, q) = −2− 3q2 − 4q4 − q6 + a2

(
q10 + 4q12 + 3q14 + 2q16

)
It is straightforward to calculate that every factor in both the numerator and the

denominator of Inequality (6.5) is positive for q > 1.567 and a ≥ q6 (see Weeds.nb
for more details). This immediately gives us the following lemma.

Lemma 6.16. Any subfactor with principal graphs a 2t-translate of an extension of F ′
must have t ≤ 2.

Proof. Suppose we have such a subfactor with t ≥ 3. Then by Corollary 6.4, Inequality
(6.5) must hold. We note that the q for F ′ translated by 6 is larger than 1.567. Now
all the factors in Equation (6.5) are positive when a ≥ q6 and q > 1.567. This shows
that Inequality (6.5) is never satis�ed for the relevant range of a ≥ q6 and q > 1.567, a
contradiction. Hence t ≤ 2.

We now deal with the cases that t ≤ 2 by hand as in [MPPS12, Proposition 4.16],
noting that there are only �nitely many possibilities for the rotational eigenvalue ωA in
Corollary 6.4.

Proposition 6.17. Any subfactor with principal graphs a translated extension ofF ′ either
has

(1) t = 0 and index (q + q−1)2 = 3 +
√

5, or

(2) t = 1, 2 and index (q + q−1)2 ≤ 5.

Proof. Using the notation D = dim(V p
2t+5,1) Equation (6.1) simpli�es to

f(a, q, ω)

a2q10 (−1 + a2q8 + aD (−q3 + q5)) (−1 + a2q12 + aD (q5 − q7))
= 0 (6.6)

where

f(a, q, ω) =
(
a2q8 − 1

) (
a2q12 − 1

) (
a2q10 − ω

) (
a2q10 − ω−1

)
+ aDq5

(
−1 + aq5

(
D − aq5

)) (
4 + 4a4q20 + a2q8

((
−1 + q2

)2 (
ω + ω−1

)
− 2

(
1 + q2

)2))
When t = 0, 1, 2, a = 1, q2, q4 respectively. We note that we must have q > 1.558,

which comes from solving ‖F ′‖= q + q−1. Recall that if ω is a primitive k-th root of
unity, then 2k|(2t + 4) by [Jon12, Theorem 5.1.11]. Using the fact that Equation (6.6) is
symmetric in ω and ω−1, it remains to look at the cases

(t, ω) ∈ {(0, 1), (0,−1), (2, 1), (2, e2πi/3), (4, 1), (4,−1), (4, i)}.
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Now plugging each of these in to Equation (6.6) using a = q2t, we can solve for q, and
the claim follows. For example, when ω = −1, for each t ≤ 2, we solve Equation (6.6)
to see q < 1.554, which is too small. Thus in the case t = 0, we must have ω = 1, and
solving for q shows that the index is exactly 3 +

√
5. Again, calculations can be viewed

in Weeds.nb.

By the classi�cation of subfactors with index at most 5 [MS12; MPPS12; IJMS12;
PT12; IMPPS15], we can rule out t = 1 and t = 2. However, we need a di�erent way to
deal with t = 0. The recent 3-supertransitive ∗10 obstruction of [Mor14] does the trick.

Theorem ([Mor14]). Suppose a subfactor has principal graphs (Γ+,Γ−) an extension of(
,

)
.

If there is no vertex of Γ+ at depth 6 which connects to both vertices of Γ+ at depth 5, then

(Γ+,Γ−) =
(

,
)
.

Proof of Theorem 6.14. Suppose we had a subfactor whose principal graph is a 2t-translate
of an extension of F ′. By Lemma 6.16, t ≤ 2. By Proposition 6.17 and the classi�cation
of subfactors to index 5, we must have that t = 0, but by [Mor14], we have t > 0, a
contradiction.

6.3.2 Another ∗10 weed with undetermined relative dimensions

We now tackle another di�cult ∗10 weed. We are not able to completely eliminate it
at this time, but we can show any potential translated extension must occur at index
∼ 5.3234.

Theorem 6.18. Any subfactor with principal graphs a 2t-translated extension of

G =
(

,
)

must have t = 1, ω = 1, and q is the root of 1 − 2x2 − 2x4 − 2x6 − 2x8 − 2x10 + x12

which is about 1.72882. In this case, the principal graph is an extension of(
,

)
,

and the index is the root of −4 + 15x− 8x2 + x3 which is about 5.3234.
(This graph is case (f)(8) from Theorem 3.1.)

Corollary 6.19. There is no �nite depth subfactor with principal graphs a translated ex-
tension of G.
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Proof. The root of −4 + 15x − 8x2 + x3 which is about 5.3234 is not a cyclotomic
integer.

In fact, this weed can be completely ruled out up to index 51
4

only using enumeration!
Of course this lemma is su�cient for the main result of this article, but we can get the
much stronger result of Theorem 6.18 with some more work.

Lemma 6.20. A subfactor with index at most 51
4
cannot have principal graphs a translated

extension of G.

Proof. See the section titled The (f)(8) weed from Theorem 3.1 in the Mathematica
notebook enumerator.nb.

Together with the quadratic tangles technique and the main result of [Mor14] (Theo-
rem 6.3.1), Lemma 6.20 actually reduces G to the single case left in Theorem 6.18. Again,
a quadratic tangles argument shows us that t ≤ 2, and Theorem 6.3.1 says t > 0. How-
ever, the upper bounds for q when t = 2 or when t = 1 and ω = e±2πi/3 are between
5 and 51

4
, so Lemma 6.20 does the remaining work. While we could just ignore G for

now due to index considerations and Lemma 6.20, we will perform the extra analysis
required to reduce G to the one remaining case for future enumeration considerations.

As in the previous subsection, there are undetermined relative dimensions, in par-
ticular dim(V p

6,4). (In this case, there is actually more than one undetermined dimension,
but we need only determine one of them!) Luckily, there is a doubly-one-by-one entry
of the connection corresponding to the loop (V p

6,3, V
p

5,2, V
d

4,1, V
d

5,1).
This gives us the following formula for one of our undetermined dimensions:

dim(V p
6,4) =

−2 + 4q2 + q4 + 3q6 + q8 +K
(
−1 + q2 − q4

)
+ a2

(
−q8 − 3q10 − q12 − 4q14 + 2q16

)
2a(−1 + q)q4(1 + q)(1 + q2)3

where K > 0 is the positive square root of

K2 = 4 + 4q4 + 4q6 + q8 + a2
(
−4q10 − 18q12 − 4q14

)
+ a4

(
q16 + 4q18 + 4q20 + 4q24

)
.

Remark 6.21. As in Remark 6.11, the other solution for dim(V p
6,4) with−K instead of K

is impossible, since it is always negative.
Again, applying the relative branch factor technique, Corollary 6.4 tells us that the

following inequality must be satis�ed:

4 (−1 + a2q10)
2

(α(a, q)− q2K) (α(−a, q)− q2K)

a2(−1 + q)2q10(1 + q)2 (γ(a, q) +K) (δ(a, q)− q2K)
≤ 0 (6.7)

where

α(a, q) = −1 + q2 − q4 + a
(
−q4 − 2q6 + 2q10 + q12

)
+ a2

(
q12 − q14 + q16

)
γ(a, q) = −4− 2q2 − q4 + a2

(
q8 + 2q10 + 4q12

)
δ(a, q) = −2− 2q2 − 4q4 − q6 + a2

(
q10 + 4q12 + 2q14 + 2q16

)
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Proof of Theorem 6.18. Similar to the weed F ′, all the factors in Inequality (6.7) are posi-
tive for q > 1.69684 and a ≥ q4. Hence Inequality (6.7) is never satis�ed for q this large.
For q ≤ 1.69684, we note that (1.69684 + 1.69684−1)2 = 5.22658 < 51

4
. Thus Lemma

6.20 actually eliminates all 2t-translated extensions of G with t ≥ 2!
Again, the case t = 0 is ruled out by [Mor14], so the only remaining case is t = 1.

Similar to the proof of Proposition 6.17, we need only check ω = 1, e±2πi/3 by [Jon12,
Theorem 5.1.11]. When ω = e±2πi/3, we calculate that (q + q−1)2 ≈ 5.24994 < 51

4
, so

Lemma 6.20 eliminates this case as well. However, when ω = 1, we have (q + q−1)2 is
the root of−4 + 15x− 8x2 + x3 which is approximately 5.3234. We cannot yet rule out
this case, but its index is too large for our current goal of 51

4
.

6.4 Ruling out the remaining ∗10 weeds
Suppose we have a weed with annular multiplicities ∗10. When the relative branch
factor r can be determined in terms of a and q, and r(a, q) is not identically 1, then we
can typically use Corollary 6.4 to bound the translation t < t0. For the remaining small
values of t, as in Proposition 6.17, we can �nd a new smaller upper bound for the index.
Re-running the enumerator to this smaller index is often possible, which allows us to
completely rule out the weed.

This method was applied to the weed C in [MPPS12, Theorem 4.10], which appears
in part (f) of Theorem 3.1:

C =
(

,
)
.

A similar argument rules out 3 of the remaining ∗10 weeds.

Theorem 6.22. The only subfactor principal graph which is a translated extension of(
,

)
is the S4 ⊂ S5 subfactor principal graph.

Proof. One computes that for the 2-translate, the relative branch factor is given by

r(a, q) =
q2 (−2− q2 − q4 + a2q12 + a2q14 + 2a2q16)

(1 + q4) (−1 + a2q16)

so by Corollary 6.4, we must have(
a2q14 − 1

)2 (
1− 2q2 − q6 + a(−q6 − 2q10 + q12)

) (
−1 + 2q2 + q6 + a(−q6 − 2q10 + q12)

)
a2(−1 + q)2q14(1 + q)2 (1 + q4) (−2− q2 − q4 + a2(q12 + q14 + 2q16))

≤ 0.

However, a simple calculation shows that every factor in both the numerator and the
denominator above is obviously positive (see Weeds.nb for more details). This rules
out all 2t-translated extensions of the above weed when t ≥ 1.
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We now consider the case t = 0. Notice that this weed is actually stable, so that
any extension must end with A�nite tails. By [LMP15, Proposition 1.17], these tails must
not be longer than the initial arm of length 3, so there are only two possible extensions.
The trivial extension is not possible for a number of reasons. For example, the index is
not a cyclotomic integer, and there is a vertex dimension between 1 and 2 which is not
of the form 2 cos(π/k) for k ≥ 3. The only other possibility is the S4 ⊂ S5 principal
graph.

Theorem 6.23. No subfactor has principal graphs a translated extension of either of(
,

)
(

,
)

Proof. In fact, these two weeds can be ruled out simultaneously. Each one has the same
relative branch factor. Similar to the proof of Theorem 6.22, we can rule out all 2t-
translated extensions for t ≥ 2 by showing that Corollary 6.4 cannot hold. The interested
reader can view this calculation in Weeds.nb.

We must now consider the case that t ≤ 1. Again, these weeds are stable, so any
extension must end with A�nite tails, and by [LMP15, Proposition 1.17], the tail cannot
be longer than the initial arm. A simple calculation shows that the norm squared is only
a cyclotomic integer when t = 1 and we extend stably by 3. At this point, we look at
the common graph for both graph pairs:

X = .

This graph cannot be the principal graph of a subfactor by Theorem 6.31 in the next
section.

Now Theorems 5.1, 5.2 (with [CG15]), 5.3, 6.14, 6.18, 6.22, 6.23, and [MPPS12, Theo-
rem 4.10] together rule out all the ∗10 weeds in part (f) of Theorem 3.1.

6.5 Ruling out a graph with formal codegrees
In this section, we use formal codegrees to rule out the graph

X =
1 f (2) f (4)

P

Q

R

gQ

gf (4)

gf (2) g
.

(We performed a graph isomorphism to make the fusion matrices in Appendix A.2 easier
to interpret.)
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De�nition 6.24. Let C be a fusion category over C, and let K0(C) be its (Grothendieck)
fusion ring. A dimension function onK0(C) is a ring homomorphismK0(C)→ C. (Note
that a dimension function gives a character onK0(C)⊗ZC, which is semi-simple [Lus87,
1.2(a)] and hence a multi-matrix algebra.)

Given a dimension function dim : K0(C)→ C, its formal codegree is

fdim =
∑

X∈Irr(C)

|dim(X)|2,

where Irr(C) is the set of isomorphism classes of simple objects of C.

Remark 6.25. AsK0(C)⊗ZC is a multi-matrix algebra, we can represent a fusion ring as
a collection of matrices LX for X ∈ Irr(C) acting in the left regular representation, in
the basis corresponding to Irr(C). Suppose there is a common eigenvector v for all the
fusion matrices LX , i.e., LXv = λXv for some λX ∈ C for all X ∈ Irr(C). We normalize
v so that v1 = 1. Letting ϕ : Cv → C by λv 7→ λ, we get a dimension function by the
formula

dim(X) = ϕ(LXv) = λX ,

which is easily seen to be a ring homomorphism. Denoting the basis for Irr(C) by {eX}
with dual basis {e∗X}, we have

λX = λXv1 = λXe
∗
1(v) = e∗1(λXv) = e∗1(LXv) = e∗X∗(v) = vX∗ .

In particular, if all objects of Irr(C) are self-dual, then vX = λX for all X ∈ Irr(C).
Example 6.26. For every fusion ring, there is unique simultaneous eigenvector for the
left fusion matrices LX such that every entry is strictly positive, normalized so that the
entry corresponding to 1 is equal to 1. This gives rise to the Frobenius-Perron dimension
function FPdim. The Frobenius-Perron dimensions of the even vertices of X are given
lexicographically by depth and height (bottom to top) by(

1, 2 +
√

5, 6 + 3
√

5, 10 + 4
√

5, 9 + 4
√

5, 4 + 2
√

5, 9 + 4
√

5, 6 + 3
√

5, 2 +
√

5, 1
)
.

Remark 6.27. There are also formal codegrees for arbitrary irreducible representations
of the fusion ring over C [Ost09], but we only need the one-dimensional case here.

There are strong number theoretic properties of formal codegrees of fusion cate-
gories [Ost09; Ost13]. To eliminate the graph X , we need the following result.

Theorem ([Ost13, Corollary 2.15]). Let C be a spherical fusion category. Then every
formal codegree of K0(C) belongs to the number �eld generated by the dimensions of the
objects of C.

In particular, if C is pseudo-unitary, then the formal codegrees belong to the number
�eld generated by the Frobenius-Perron dimensions of the objects of C.
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Example 6.28. Using the dimension function FPdim from Example 6.26, we see that the
number �eld generated by the Frobenius-Perron dimensions of the even vertices of X is
Q(
√

5).
We now �nd a dimension function on K0(1

2
X ), the fusion ring of the even part of X

whose formal codegree does not belong to Q(
√

5).
We note that since all even vertices of X are self-dual, we must have that K0(1

2
X )

is commutative. Also, the vertex g at depth 12 has dimension 1, so we must have that
tensoring with g gives us a Z/2Z-symmetry on the vertices. Thus giving the fusion
rules amongst the vertices 1, f (2), f (4), P,Q,R, all other fusion rules can be determined
by commutativity together with g2 = 1. Thus we have the following lemma:

Lemma 6.29. The fusion ring of the even half of X is completely determined by the fusion
matrices given in Appendix A.2.

Proof. To determine K0(1
2
X ), we use the FusionAtlas function FindFusion-

Rules, and we keep the only solution with non-negative entries. This calculation is
performed in Weeds.nb.

Lemma 6.30. The map dim : K0(1
2
X )→ R by(

1, f (2), f (4), P,Q,R, gP, gf (4), gf (2), g
)
7→
(

1, 1 +
√

2, 1 +
√

2, 1, 0, 0,−1,−1−
√

2,−1−
√

2,−1
)

de�nes a dimension function on K0(1
2
X ).

Proof. The right hand side gives a simultaneous eigenvector for all the fusion matrices
listed in Appendix A.2. We are �nished by the discussion in Remark 6.25.

Theorem 6.31. There is no subfactor whose principal graph is X .

Proof. We see the formal codegree of the dimension function in Lemma 6.30 is given
by fdim = 16 + 8

√
2 /∈ Q(

√
5), which is the number �eld generated by the Frobenius-

Perron dimensions of the vertices ofX by Example 6.28. Thus by [Ost13, Corollary 2.15],
K0(1

2
X ) is not categori�able, and thus X is not the principal graph of a subfactor.

7 Ruling out 4-spokes
A 4-spoke, called a 4-star in [Sch90; IMPPS15], is a simply laced graph with a single
central vertex with valence 4 and with all other vertices having valence at most 2. We
denote a 4-spoke by S(a, b, c, d), which has arms with a, b, c, d edges respectively con-
nected to the central 4-valent vertex. If a 4-spoke is a component of the principal graph
of a subfactor, then the distinguished vertex marked by ? must be on the end of the
longest arm, cf. [LMP15, Proposition 1.17].

In [Sch90], Schou gave a complete list of 4-spokes Γ such that (Γ,Γ) has a biunitary
connection. This is a necessary condition for (Γ,Γ) to be the principal graph pair of a
subfactor.
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Theorem 7.1 ([Sch90, p. 41]). If Γ = S(a, b, c, d) is a 4-spoke such that (Γ,Γ) has a
biunitary connection, then Γ must be S(1, 2, 2, 5) or one of:

• S(j, j, k, k) for 1 ≤ j ≤ k

• S(j, j + 1, j + 1, j +m) for 1 ≤ j and 1 ≤ m ≤ 3

• S(j, j + 1, j + 2, j +m) for 1 ≤ j and 2 ≤ m ≤ 4

• S(j, j + 2, j + 2, j + 2) for 1 ≤ j

Lemma 7.2. Of the 4-spokes with biunitary connections, only the following have index in
(5, 51

4
]:

• S(2, 2, k, k) for k ≥ 3 and S(3, 3, 3, 3),

• S(2, 3, 3, 3), S(2, 3, 3, 4), S(2, 3, 3, 5),

• S(2, 3, 4, 4), S(2, 3, 4, 5), S(2, 3, 4, 6),

• S(2, 4, 4, 4)

Proof. Recall that if Γ is a subgraph of Γ′, then ‖Γ‖≤ ‖Γ′‖. Since ‖S(3, 3, 3, 4)‖2> 5.25,
this gives an upper bound on each of the 4 families. For the lower bound of the �rst
family, we note that ‖S(1, 1, k, k)‖< 5 for all k ∈ N. In fact, these 4-spokes were
treated in [IJMS12]. For the lower bound of the second two families, we note that the
norm of S(1, 2, 3, 5) is less than 5. Finally, for the fourth family, we note that the norm
of S(1, 3, 3, 3) is exactly 5.

These computations are performed in the Mathematica notebook 4Spokes.nb.

Lemma7.3. Of the 4-spokes with biunitary connections and index in (5, 51
4
], onlyS(3, 3, 3, 3),

and S(2, 4, 4, 4) have norm squared which is a cyclotomic integer (and indeed, these both
have index 3 +

√
5).

Proof. The only di�cult case is the family S(2, 2, k, k), but this is readily treated by the
same argument as in [IJMS12, Section 4]. We see these graphs have the same norm ck
as the graphs

Hk =

k − 1 edges

.

The �eldQ(c2
k) is not cyclotomic for any k ≥ 3; the argument in Section 8 shows that the

adjacency matrix of Hk has a multiplicity free eigenvalue λk with Q(λ2
k) not cyclotomic

for all k ≥ 3. Now the characteristic polynomials Pk for the adjacency matrix of Hk

satisfy
Pk(t+ t−1)

(
t− t−1

)
= tkA(t)− t−kA(t−1)

65



with A(t) = t7 − t5 − 4t3 − 3t − t−1. This polynomial has just two real roots with
magnitude grater than 1, namely the square roots of the real root of µ3 − 2µ2 − 2µ− 1,
and so by Remark 10.1.7 of [CMS11], the polynomial Pk(x) is S(x2) times a product
of cyclotomic polynomials where S is a Salem polynomial. Thus λk must be Galois
conjugate to ck, giving the result.

The interested reader can view this calculation in the Salem 4-spoke section
of the Mathematica notebook 4Spokes.nb.

Finally, we need to analyze the possible dual data for S(3, 3, 3, 3) and S(2, 4, 4, 4).
The function FindGraphPartners in the FusionAtlas package computes all
possible graphs pairs with dual data containing a speci�ed single graph without dual
data (by applying the graph enumerator one depth at a time, discarding all branches
which do not agree with the speci�ed graph up to the current depth). We obtain
Lemma 7.4. A subfactor principal graph containing an S(3, 3, 3, 3) or S(2, 4, 4, 4) must
be amongst (

,
)

(
,

)
(

,
)

(
,

)
(

,
)
.

Here we don’t care about the third case, as one of the graphs is not a 4-spoke (in
fact, this graph is the principal graph of the 3Z/4Z subfactor, which appears in Section
8). We easily rule out the �fth case, as the dimension 1 vertices would form a group of
invertible bimodules of order three, with all objects involutions. The �rst case is ruled
out by the following.
Lemma 7.5. The �rst graph in Lemma 7.4 cannot be the principal graph of a subfactor,
because it does not satisfy the conditions of [Pen15, Theorem 4.5].

Proof. Let P be the self-dual vertex at depth 4 of Γ+, and let P ′ be the vertex at depth
5 of Γ+ connected to P . Then P ′ is only connected to the self-dual vertex at depth 4 of
Γ−. By [Pen15, Theorem 4.5], we must have that δ ≤ 2, a contradiction.

Summarizing this section, we have
Theorem 7.6. The only subfactor planar algebras with principal graphs both 4-spokes,
and index in the interval (5, 51

4
], are Izumi’s 3Z/2Z×Z/2Z planar algebra [Izu16; MP15] and

the 4442 planar algebra [MP15; MP14b]. In each case, the principal graph is realized by just
a single planar algebra.

This �nishes our treatment of case (g) from Theorem 3.1, and gives two of the sub-
factor standard invariants described in Theorem A.
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8 Cyclotomicity of vines
We now perform the analysis of [CMS11; PT12] to determine which translations of the
vines enumerated in Theorem 3.1 may be principal graphs of subfactors.

We say a graph is cyclotomic if for every multiplicity free eigenvalue λ of the adja-
cency matrix, the quantity λ2 is a cyclotomic integer. (This is stronger than the require-
ment that the square of the graph norm is a cyclotomic integer, and is necessary for a
graph to be the principal graph of a subfactor, by [CG94; ENO05].)

For each vine (Γ+,Γ−), we have a bound N(Γ) = min{N(Γ+), N(Γ−)}, where
N(Γ±) is a bound on the total number of vertices a translation of Γ± may have and still
potentially be cyclotomic. It is calculated according to the results of [CMS11], using the
algorithm described in [PT12].4

We then look at each of the �nitely many translates remaining, and check whether
each has cyclotomic index. There are in every case very few translations which may have
cyclotomic index, and all are signi�cantly smaller than the bounds given by N(Γ). We
rule out all the other translations by explicitly �nding a witness prime, modulo which the
minimal polynomial factors into irreducible factors with di�erent degrees. If we fail to
�nd such a prime amongst the �rst 500 primes we say that the index may be cyclotomic.
Although in this case we don’t certify cyclotomicity, in practice these exceptions are
always cyclotomic (and are either ruled out by easy obstructions or realized as principal
graphs of subfactors).

Certain optimizations are necessary to e�ciently �nd all the minimal polynomials
up to the bound. Observe that the minimal polynomial of the index is a factor of the
characteristic polynomial of AtA, with A the adjacency matrix of the graph. In fact, in
practice we see that the set of irreducible factors of the quotient of this characteristic
polynomial by the minimal polynomial of the index is periodic in the translation, al-
though we do not know a proof. Nevertheless, this gives an e�cient practical method
for �nding the minimal polynomials; we compute the �rst few minimal polynomials
directly, observe the factors appearing in the quotient, and then for the tail we merely
remove these factors from the easily computed characteristic polynomial, and verify the
irreducibility of what remains.

Finally, we take each of the cyclotomic translates and run a few simple tests on the
graphs, allowing us to rule out most of them as principal graphs of subfactors. All these
computations are detailed in Appendix A.1, and give the following result.

Theorem 8.1. The only possible principal graphs arising from the vines enumerated in
Theorem 3.1, with index in the interval (4, 21/4] are the following.

(1)
(

,
)

4Since the publication of [PT12], we discovered a potentially signi�cant error in the code used in that
paper, in particular in the BoundR1 function. While �xing this error was essential for the following
calculations, fortuitously it did not change any of the claims of the original paper.
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(2)
(

,
)

(3)
(

,
)

(4)
(

,
)

(5)
(

,
)

(6)
(

,
)

(7)
(

,
)

(8)
(

,
)

(9)
(

,
)

(10)
(

,
)

(11)
(

,
)

(12)
(

,
)

(13)
(

,
)

(14)
(

,
)

(15)
(

,
)

We note that for some of these principal graphs there is already a complete classi�-
cation of subfactors realizing them. We summarize these here. The notation ‘2d’ in the
‘# of subfactors’ column indicates that there are 2 non-isomorphic subfactors which are
dual to each other.

principal graph name # of subfactors citation
(1) Uexp(2πi/14)(su3) 1 [Wen88; Wen98; MP14c]
(2) 2D2 2d [MP14b]
(5) the Haagerup 2d [AH99]
(7) A4 ⊂ A5 2d [IMPPS15]
(10) 3Z/4Z 2d [Izu16; PP15]
(12) the Asaeda-Haagerup 2d [AH99]
(15) the extended Haagerup 2d [BMPS12]
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Further, some of the graphs in Theorem 8.1 have already been ruled out as principal
graphs of subfactors in other papers.

Theorem ([MP14b]). There is a unique subfactor with principal graphΓ+ = ,

and it must have dual graph Γ− = . Thus the graph pairs numbered (3)
and (4) above, are not principal graphs of subfactors.

Theorem 8.2 ([IMPPS15, Lemma 3.10, Lemma 3.11, Proposition 3.12]). There are no
subfactors with the principal graphs numbered (6), (8), or (9).

Finally a calculation based on checking associativity of the fusion ring concludes our
treatment of these vines.

Lemma 8.3. The remaining three graphs, numbered (11), (13), and (14) above, cannot be
the principal graphs of subfactors, as there are no compatible fusion rings.

A Appendices

A.1 Cyclotomicity bounds
We now display the cyclotomicity bounds for the vines discussed in Section 8, along
with the potentially cyclotomic translates and the results of running simple tests on
these. This table, and the computations underlying it, are constructed in the Mathe-
matica notebook processing-vines.nb available with the arXiv sources of
this article.

The �rst column shows the vine (Γ+,Γ−). In the second column, we give the up-
per bound maxN(Γ±) on the number of vertices appearing in a cyclotomic translate.
The third column, named ‘CT’ for ‘cyclotomic translates’, shows those translations up to
that bound which may be cyclotomic. The fourth column, named ‘Obstr.’ for ‘obstruc-
tions’, indicates if a simple obstruction can rule out each of the potentially cyclotomic
translates.

These obstructions are labelled as follows, with the most elementary ones coming
�rst:

(a) Some bimodule has dimension less than 1. (The index of a subfactor is bounded
below by 1.)

(b) Some bimodule has a dimension which is not an algebraic integer. (The index of
a �nite depth subfactor is an eigenvalue of an integer matrix.)

(c) Some bimodule with dimension less than 2 has dimension not of the form 2 cos(π/n)
for n ≥ 3, which is impossible by [Jon83].

(d) Some low weight space would have negative dimension, as computed according
to [Jon01, p. 33].
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(e) The global dimension of the even part (that is, the sum of the squares of the dimen-
sions of vertices at even depths) is not an Ostrik d-number, which is a necessary
condition by [Ost09].

Any potentially cyclotomic translate which is not ruled out by one of these obstructions
is marked with a ‘?’.

In the above, we use the fact that the dimension of any bimodule is the square root
of the index of the associated reduced subfactor [Jon87], and if the principal graph is
�nite depth then all the associated reduced subfactors are �nite depth.

vine N(Γ) CT Obstr.(
,

)
76 {0} {c}(

,
)

87 {0,4} {?,?}(
,

)
76 {0} {d}(

,
)

76 {0} {d}(
,

)
76 {0} {d}(

,
)

96 {2} {?}(
,

)
70 {0,2} {e,e}(

,
)

123 {0,2} {a,e}(
,

)
123 {} {}(

,
)

75 {0} {b}(
,

)
75 {0} {b}(

,
)

75 {0} {e}(
,

)
75 {0} {e}(

,
)

122 {0} {e}(
,

)
122 {0} {e}(

,
)

101 {} {}(
,

)
119 {} {}(

,
)

119 {} {}(
,

)
119 {} {}(

,
)

104 {} {}(
,

)
121 {} {}(

,
)

121 {} {}
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(
,

)
121 {} {}(

,
)

121 {} {}(
,

)
225 {} {}(

,
)

131 {} {}(
,

)
119 {0} {?}(

,
)

119 {0} {?}(
,

)
119 {0} {?}(

,
)

119 {0} {?}(
,

)
200 {0,2} {a,e}(

,
)

200 {} {}(
,

)
113 {0} {?}(

,
)

216 {} {}(
,

)
113 {} {}(

,
)

120 {} {}(
,

)
120 {} {}(

,
)

147 {} {}(
,

)
261 {} {}(

,
)

111 {} {}(
,

)
111 {} {}(

,
)

111 {} {}(
,

)
109 {} {}(

,
)

109 {} {}(
,

)
137 {} {}(

,
)

110 {} {}(
,

)
110 {} {}(

,
)

110 {} {}(
,

)
100 {} {}(

,
)

147 {} {}
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(
,

)
120 {} {}(

,
)

120 {} {}(
,

)
120 {} {}(

,
)

119 {} {}(
,

)
155 {} {}(

,
)

192 {} {}(
,

)
348 {} {}(

,
)

100 {} {}(
,

)
100 {} {}(

,
)

111 {} {}(
,

)
244 {} {}(

,
)

244 {} {}(
,

)
244 {} {}(

,
)

109 {2} {?}(
,

)
110 {} {}(

,
)

110 {} {}(
,

)
218 {} {}(

,
)

196 {} {}(
,

)
120 {} {}(

,
)

120 {} {}(
,

)
345 {} {}(

,
)

345 {} {}(
,

)
345 {} {}(

,
)

337 {} {}(
,

)
174 {} {}(

,
)

137 {} {}(
,

)
180 {} {}(

,
)

244 {} {}
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(
,

)
205 {} {}(
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A.2 The fusion ring of X
Below, we give the fusion matricesLX for tensoring on the left withX ∈ {f (2), f (4), P,Q,R, g}
for the fusion ring K0(1

2
X ) from Section 6.5 in the ordered basis

B =
(
1, f (2), f (4), P,Q,R, gP, gf (4), gf (2), g

)
.

This means the (i, j)-th entry of LX is the coe�cient of Xi in X ⊗ Xj , where Xk de-
notes the k-th element of B. For each object X , the fusion matrix for gX is LgX =
LgLX = LXLg , which is obtained from LX by permuting the columns with the permu-
tation (10, 9, 8, 7, 5, 6, 4, 3, 2, 1).

Lf (2) =


0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 0 1 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0

 Lf (4) =


0 0 1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
1 1 2 2 2 1 2 1 0 0
0 1 2 3 3 1 3 2 0 0
0 1 2 3 3 2 3 2 1 0
0 0 1 1 2 1 1 1 0 0
0 0 2 3 3 1 3 2 1 0
0 0 1 2 2 1 2 2 1 1
0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0

 LP =


0 0 0 1 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 1 2 3 3 1 3 2 0 0
1 1 3 4 4 2 4 3 1 0
0 1 3 4 5 2 4 3 1 0
0 1 1 2 2 1 2 1 1 0
0 1 3 4 4 2 4 3 1 1
0 0 2 3 3 1 3 2 1 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0



LQ =


0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 1 1 0 0
0 1 2 3 3 2 3 2 1 0
0 1 3 4 5 2 4 3 1 0
1 1 3 5 4 2 5 3 1 1
0 0 2 2 2 0 2 2 0 0
0 1 3 4 5 2 4 3 1 0
0 1 2 3 3 2 3 2 1 0
0 0 1 1 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0 0

 LR =


0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 1 2 1 1 1 0 0
0 1 1 2 2 1 2 1 1 0
0 0 2 2 2 0 2 2 0 0
1 0 1 1 0 1 1 1 0 1
0 1 1 2 2 1 2 1 1 0
0 0 1 1 2 1 1 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0

 Lg =


0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0


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A.3 Subfactors with index in (4, 51
4 ]

Combining the results of this paper with the previous results on the classi�cation of small index subfactors, we obtain the
following complete list. The non Temperley-Lieb-Jones irreducible subfactor planar algebras with index in (4, 51

4
] are:

index principal graph name # of subfactors citations
1
2
(5 +

√
13) Haagerup 2d [AH99]

∼ 4.37720 extended Haagerup 2d [BMPS12]
1
2
(5 +

√
17) Asaeda-Haagerup 2d [AH99]

3 +
√

3 3311 2d existence [GHJ89], classi�cation [Kaw95a; IJMS12]
1
2
(5 +

√
21) 2221 2c existence [Izu01], classi�cation [Han10]

5 Z/5Z 1 classi�cation [Izu97]
5 Z/2Z ⊂ D10 1
5 Z/4Z ⊂ Z/5Z o Z/4Z 1
5 S4 ⊂ S5 2d classi�cation [IMPPS15]
5 A4 ⊂ A5 2d

∼ 5.04892 su(2)5 1 existence [Wen88], classi�cation [MP14c]
∼ 5.04892 su(3)4 1

3 +
√

5 A3 ⊗ A4 = (A3 ∗ A4)/∼1 1 classi�cation [Liu15; IMP13]
3 +
√

5 (A3 ∗ A4)/∼2 2d existence [BH94], classi�cation [Liu15; IMP13]
3 +
√

5 (A3 ∗ A4)/∼3 2d existence [IMP13] (due to Izumi), classi�cation [Liu15; IMP13]
3 +
√

5 · · · A3 ∗ A4 2d [BJ97]
3 +
√

5 2D2 2d existence [Izu16; MP14b], classi�cation [MP14b]
3 +
√

5 3Z/4Z 2d existence [Izu16; PP15], classi�cation [Izu16]
3 +
√

5 3Z/2Z×Z/2Z 1 existence [Izu16; MP15], classi�cation [Izu16]
3 +
√

5 4442 1 existence [MP15; Izu16], classi�cation [MP14b]



A.4 The map of subfactors

index

su
p
er
tr
an
si
ti
vi
ty

4 5 3+
√
5 6 61

5

×∞

D
(1)
n+2

one ∞-depth

E
(1)
6

E
(1)
7

E
(1)
8

×2

×2

×4

at least one
∞-depth

×1

×3

×∞
unclassifiably
many ∞-depth

∞ A∞ at every index
Hyperfinite A∞ at

the index of E10

×2

E6

×2

E8

A
se
ri
es

D
se
ri
es

1
2

(5 +
√

13) 1
2

(5 +
√

17)

3 +
√

3

1
2

(5 +
√

21)

×3

×3
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