
Confidential High-Performance
Computing in the Public Cloud

Keke Chen
Computer Science Department, Marquette University

Abstract—High-Performance Computing (HPC) in the public cloud democratizes the
supercomputing power that most users cannot afford to purchase and maintain. Researchers
have studied its viability, performance, and usability. However, HPC in the cloud has a unique
feature – users have to export data and computation to somewhat untrusted cloud platforms.
Users will either fully trust cloud providers to protect from all kinds of attacks or keep sensitive
assets in-house instead. With the recent deployment of the Trusted Execution Environment (TEE)
in the cloud, confidential computing for HPC in the cloud is becoming practical for addressing
users’ privacy concerns. This paper discusses the threat models, unique challenges, possible
solutions, and significant gaps, focusing on TEE-based confidential HPC computing. We hope
this discussion will improve the understanding of this new topic for HPC in the cloud and
promote new research directions.

CONFIDENTIAL COMPUTING preserves the
confidentiality of data and computation while
running programs on an untrusted platform,
such as a public cloud. With the growing
availability of high-performance computing
(HPC) in the public cloud, we foresee that
confidential computing will also be a need
for potential HPC users who cannot access
traditional HPC facilities. However, the study
on the challenges and solutions for this topic
is seriously lagging.

Traditionally, HPC facilities are maintained
by national labs or major research institutes
and accessed by authorized users. While
many industrial users 1 and small-institute
users are potential HPC users, they may
find it cumbersome to access such exclusive
resources due to policies and restrictions.
Since purchasing and maintaining an HPC
cluster is expensive, HPC in the public cloud
is probably the most viable option for such

1https://www.top500.org/news/why-we-care-about-
industrial-hpc/

cash-strapped users. To meet this unique
demand, most major cloud providers have
started offering HPC services. Researchers
have done extensive studies to understand
the problems with HPC in the public cloud,
e.g., on viability, performance, and usability
[1]. However, no sufficient studies have been
done on confidentiality issues.

In non-cloud HPC environments, the in-
tegrity of data and computing has been the
primary concern in HPC security, and the
HPC provider is fully trusted to guarantee
the security of data and computation. Studies
have been done on issues such as hardware
root of trust, software and data supply chain
security, and identity management. However,
confidential processing of sensitive assets,
including data and possibly algorithms, is
a unique feature and will be an emerging
demand for outsourced HPC applications.
Specific examples may include but are not
limited to intellectual property protection, data
or algorithm embargo, and legal requirements

Internet Computing Published by the IEEE Computer Society © 2022 IEEE 1



Department Head

on private data. Due to the concerns about
curious or malicious insiders, co-tenants, and
external attackers [2], users have hesitated to
move sensitive data and computation to the
public cloud.

Confidential computing techniques are be-
coming more practical in recent years due to
the Trusted Execution Environment (TEE) de-
velopment. TEE creates a secure enclave for
running programs securely with the specific
CPU instructions [3]. Most recent Intel, AMD,
and ARM CPUs have implemented the TEE
concept. Many cloud providers have started
to provide TEE-enabled servers, e.g., Azure
has Intel SGX-enabled servers, and Google
provides AMD SEV servers. TEE essentially
moves the trust on cloud service providers to
the CPU manufacturers and reduces the at-
tack surface from the entire software stack to
the enclave. The hardware-enabled features
have significantly improved the performance
over pure software-based cryptographic ap-
proaches [4]. Typical TEE applications (with-
out handling side-channel attacks) cost only
about 1.x of non-TEE applications’ [5]. During
the past few years, confidential computing
has been rapidly transformed from academic
research to practical applications (e.g., for-
tanix.com), enabling new forms of comput-
ing and sharing with reduced risk of data
breaches2. However, the combination of TEE-
based confidential computing and HPC in the
cloud remains an insufficiently explored area.

This paper will discuss the threat models,
potential challenges, and solutions for apply-
ing TEEs to public HPC clouds. Other studies
may have covered interesting topics around
“HPC in the cloud”, e.g., applying cloud com-
puting technologies to manage a traditional
HPC3. Our study is distinct from those, as
we will focus on the fundamental issues in
public HPC clouds – users’ confidentiality
and ownership concerns about their data and
computation.

The remaining sections are organized as
follows. Section “Thread Modeling” discusses

2https://docs.microsoft.com/en-us/azure/confidential-
computing/use-cases-scenarios

3https://www.hpcwire.com/2018/02/15/fluid-hpc-extreme-
scale-computing-respond-meltdown-spectre/

threat models for confidential HPC in the
public cloud. We review existing confidential
computing solutions in Section “Types of Con-
fidential Computing Solutions”. Section “TEE
for HPC in the Public Cloud” focuses on
applying TEEs to public HPC clouds, includ-
ing the challenges and solutions. Finally, we
conclude the discussion.

Threat Modeling
To discuss the possible challenges and

solutions, we will need to establish a clear
context for applying confidential computing
for HPC in the public cloud. We will focus
on unique issues that distinguish public HPC
cloud from traditional HPC.

Single-User Case. Users may run con-
fidential computation tasks in an untrusted
cloud server, where the server’s OS or hy-
pervisor can be compromised. The goal is to
preserve data and program integrity and con-
fidentiality while availability is out of concern.
A typical TEE, such as Intel SGX, provides
a hardware-protected memory area, i.e., the
enclave [3], and guarantees the integrity of
the data and computation running inside the
enclave. While adversaries cannot directly
access the enclave, they can still glean infor-
mation via side channels, such as memory
access patterns and CPU caches. However,
cache-based attacks target all CPUs (regard-
less of having TEEs or not) and thus need
manufacturers’ micro-architecture level fixes.
In contrast, the exposure of memory access
patterns is inevitable as enclaves have to
interact with the untrusted memory area. It’s
also reasonable to assume that attackers
cannot access the cloud server physically,
e.g., attaching a device to the server or
access the motherboard, which exclude all
attacks based on physical accesses. Figure
1 illustrates the threat model.

Collaborative-Multiparty Case. HPC ap-
plications often involve collaborative work-
flows, where the use of TEEs may enable
new types of attacks. The following discus-
sion also addresses general concerns with
collaborative workflows, not specific to HPCs.
We model a collaborative workflow as a di-
rected graph consisting of the modules (data

2 Internet Computing



���������	���
��

���������	�����


���
�������	

�����
�

��������	


	���

����	�������	

�������

Figure 1. Threat model for TEEs.

sources or processing modules) contributed
and shared by different participants, some of
which are confidential components. Figure 2
shows two cases of confidential components
in a collaborative workflow, where a partic-
ipant P1 holds a private dataset D3 and a
private algorithm C1, and another participant
P2 has a private algorithm C2 only, while all
other components are public. More generally,
we identify the following critical scenarios:
(1) private datasets as the input or output of
a processing component (either confidential
or non-confidential), and (2) confidential pro-
cessing components.

����

��

��

��

����

��

��

��

�	

�


Figure 2. Collaborative workflow with private compo-
nents. Pi: participants who may own private compo-
nents, Ci: processing component, Di: data compo-
nent. P1 and P2 own private components, while all
other components are public.

Reproducibility is critical for scientific
workflows. A reproducible workflow must
have a logging component to keep track of
workflow provenance. Most workflow man-
agement systems, such as Galaxy and Tav-
erna, can automatically log activities behind
the scene. In contrast, users of manually
built scripts and pipelines depend on pub-

lic repositories, such as GitHub, to support
reproducibility, using workflow scripts + a
Readme file describing the inputs/outputs of
each step. We consider logging, provenance
data analysis (for debugging and optimiza-
tion, etc.), and reproducibility verification are
the minimal core service components in a
reproducible workflow. These service com-
ponents are likely moved to the cloud for
better scalability, which can also benefit from
confidential computing.

Based on the reproducible workflow
model, we aim to protect two types of assets.
(1) the confidentiality and integrity of private
components, and (2) the integrity of service
components. Intrinsically, protecting one type
of asset may interfere with the other. We
consider the following potential adversaries in
the collaborative environment.

• Curious participants in the workflow. While
the participants’ major goal is to collab-
oratively generate results, they might be
interested in learning the private data or
algorithms.

• Dishonest owners of private components.
They are also participants with demands
on confidential processing. However, they
may also take advantage of the confiden-
tial computing mechanism to disguise their
fraudulent activities.

We can assume all the service components
are running in a trusted environment, e.g.,
TEE enclaves, to make the attacking surface
smaller. However, the interplay between the
private components and service components
still creates new challenges.

Types of Confidential Computing
Solutions

We briefly review the available solutions
of confidential computing and check whether
they fit HPC applications.

Pure Software Approaches. For many
years, researchers have studied the software
approaches to achieve confidential comput-
ing [4]. We summarize them with the following
categories.

• Homomorphic Encryption allows computa-
tions with encrypted data without decryp-

May/June 2022 3



Department Head

tion, which is ideal for computing on un-
trusted platforms such as public clouds.
Fully homomorphic encryption (FHE) [6]
allows any function to be implemented on
encrypted data. However, FHE’s high costs
in implementing multiple levels of multipli-
cation are the primary issue, despite recent
improvements in ring-based implementa-
tions [6]. Additive homomorphic encryption
(AHE) and somewhat homomorphic en-
cryption (SHE) methods are more efficient
than FHE schemes, while allowing only a
small number of homomorphic multiplica-
tions.

• Secure Multiparty Computation (MPC) is
another approach for multiple parties col-
laboratively working to evaluate a known
function of their inputs while keeping the
data private. Garbled Circuits (GC) and
secret sharing among the main MPC meth-
ods. Recent advances such as FastGC [7]
have also significantly reduced the cost of
GC. However, they are still costly, as shown
in several applications [8], [9]. Optimized
secret sharing has been applied in con-
fidential machine learning [9], which also
suffer from high communication costs.

• Hybrid Constructions combines AHE,
SHE, and multiparty computation
primitives to minimize the overall costs
of protocols. A few recent studies [9], [8]
have shown such hybrid approaches are
possible for data analytics, although the
costs are still much higher than plaintext
approaches and TEE based solutions.

Trusted Execution Environment. TEEs
depend on unique CPU features to allow
user-specified code and data to run inside
a secure enclave that even a compromised
OS or hypervisor cannot breach. It is an ideal
hardware-level primitive for securely running
programs on top of untrusted platforms, such
as public clouds, edges, and third-party ser-
vice providers. The most well-known TEE
is Intel Software Guard Extensions (SGX),
available in most Intel server processors,
starting from the Skylake CPUs in 2015. AMD
EPYC CPUs (since 2017) have also included
the Secure Encrypted Virtualization (SEV)

feature, which makes each protected virtual
machine a secure enclave. Typically, a TEE
automatically encrypts memory pages when
they are not used (e.g., when swapped to
the disk). The encrypted memory pages are
decrypted and put in a protected memory
area (e.g., the enclave page cache (EPC))
that only the owner process can access. AES
encryption is used to make sure good perfor-
mance and strong protection.

Let’s take a closer look at the most pop-
ular TEE implementation: Intel SGX. SGX
implementation reserves a region of the exist-
ing system memory called Private Reserved
Memory (PRM). Intel extended their x86 in-
struction set to isolate PRM accesses from
operating systems, virtual machines, or other
privilege system codes. When the user wants
to perform a secure computation, it creates
an isolated container known as enclave and
executes the confidential code inside the en-
clave. An enclave uses PRM to host data
and code. Before creating an enclave, an Intel
service can challenge the cloud provider via
a three-party remote attestation protocol that
verifies if the provider is using a certified SGX
supported CPU. After creating the enclave,
the user can safely upload their code to the
enclave. Then, the user can pass encrypted
data into the enclave, decrypt it, compute with
plain text data, encrypt the result, and return
it to the untrusted cloud components. During
the runtime of an enclave, when other appli-
cations want to access the enclave memory,
the CPU will deny such operation and return
0xFF, also known as abort page in SGX.
An SGX application typically contains the
untrusted part and the enclave part. Figure
3 shows SGX runtime interactions between
these parts. Readers can check [3] to under-
stand the detail.

Discussion. Enhanced by the hardware
support, TEE programs can achieve much
better performance than the pure software
cryptographic approaches. The performance
gain comes from three aspects. First, AES
does not increase the ciphertext size and
is much faster than homomorphic encryp-
tion methods in decryption and encryption

4 Internet Computing



Figure 3. Illustration of SGX runtime execution (from
intel.com)

operations. 128-bit AES is typically used in
TEEs. In contrast, homomorphic encryption
keys are typically 1024 or 2048 bits, resulting
in long ciphertext and more expensive oper-
ations. Second, TEEs have much lower com-
munication costs than MPC solutions. TEEs
only require initial remote attestation to verify
the authenticity of enclaves and programs.
However, MPC incurs communication costs
between two cloud servers for each basic
computation step (e.g., addition and multipli-
cation operations). Finally, the computation
within the enclave is done with plaintext. It’s
thus much faster than computation with HE
or MPC.

All these methods can preserve data con-
fidentiality well. However, software crypto-
graphic approaches do not protect code con-
fidentiality, while we can also implement code
confidentiality with TEEs. Both types of meth-
ods still suffer from side-channel attacks,
which will be discussed in more detail later for
TEEs. In contrast, protecting side channels
is a lower priority in the research of pure
software approaches, as other issues, such
as performance and protocol-level security,
have not been fully addressed yet.

TEE for HPC in the Public Cloud
As pure software cryptographic

approaches take much more costs than the

TEE approach, we believe the TEE approach
is more practical for HPC applications in
the cloud. There are still several challenges
to using TEEs for typical HPC users. We
summarize the challenges and discuss
possible solutions in this section.

Unique Challenges
While TEEs guarantee good performance

and strong security, several unique chal-
lenges exist. We summarize the main ones:
usability, performance, side-channel attacks,
and attacks in collaborative workflows.

Usability. Developing TEE applications
may not be straightforward. For example, the
code needs to be redesigned for Intel SGX:
the application has to be split into two parts:
the enclave program and the program in un-
trusted memory. Also, the enclave part of the
code cannot use OS API directly to ensure a
strong security guarantee. The learning curve
will be steep for normal HPC users unfamiliar
with the security concepts and the particular
programming paradigm. AMD SEV does not
require applications to be redesigned. How-
ever, if a higher level of confidentiality is de-
sired, i.e., making programs resilient to side-
channel attacks, the developer must modify
the applications. Revising existing code is
particularly unfriendly to HPC applications as
most depend on low-level scientific comput-
ing libraries that have been used for decades.

TEE Side-Channel Attacks. Since most
kinds of possible attacks in the conventional
environment are no longer possible in TEEs,
researchers focus on side-channel attacks.
Memory side channels, i.e., access patterns,
are the major ones for data-intensive pro-
cessing. To be processed, encrypted data
must be loaded from the untrusted areas,
such as the non-TEE memory area or the file
system, and then fetched by the enclave pro-
grams inside the TEE. Thus, interactions be-
tween the TEE and the untrusted area always
exist regardless of what type of TEE is used,
and they will be observed by adversaries and
utilized to infer sensitive information. Oblivi-
ous RAM (ORAM) [10] has been a popular
method to hide block-level access patterns
for TEEs, such as ZeroTrace [10], Obliviate,

May/June 2022 5



Department Head

and Oblix. Researchers have also used page-
fault interrupts, and page table features to
extract secrets such as encryption keys inside
enclave [11]. The most popular method to
address this problem uses the CMOV in-
struction to rewrite each branching statement
[12], [10], [13] to make them oblivious. The
CPU cache is another popular side channel.
Attacks like Meltdown and Spectra [14] apply
to both Intel and AMD CPUs, and TEEs are
not immune to such attacks. However, the
defenses against cache-related attacks often
depend on manufacturers’ micro-architecture
level firmware or software fixes.

Performance. In general, TEE will have
a performance penalty depending on types
of workloads and CPUs. Akram et al. [5]
have shown that with proper configurations
the cost for HPC benchmarks can be around
x1.15 slowdown for AMD SEV, while vary-
ing in a larger range for Intel SGX. Note
that these tests do not consider any side-
channel protection mechanism. The current
access-pattern protection mechanisms, such
as ORAM will significantly increase the over-
head – reducing the cost of protection has
been one of the primary goals for ongoing
research [13].

Issues with Collaborative Workflow. As
HPC applications typically involve workflows,
some of which may also include multiple
parties, confidential computing in this context
also raises new problems.

• Owner’s Attacks. Private components may
create a blind spot in the workflow system:
They do not allow other users to examine
the internal details, and the logging service
only records the external information about
using the algorithm component, i.e., pa-
rameter settings, input, and output. Thus,
dishonest private-component owners have
a chance to issue a replacement attack
that the owner can replace the private
algorithm or data anytime. This attack is
even more challenging to detect for algo-
rithms with randomization steps, which are
common in scientific computing. A dishon-
est owner can forge a fake algorithm that
works only for specific input-output pairs

while replacing it later with another one that
generates outputs with a similar statistical
property.

• Conflict between Confidentiality and
Provenance Analysis. Provenance analysis
needs to access the log data, which
includes the description of the activities
around a private component (a dataset
or a processing program). As a result,
attackers may utilize this information to
infer the content of the private component.
For example, model-inversion attacks [15]
are possibly applied to infer private input
data from a known processing algorithm
and output data; and model-stealing
attacks [16] try to rebuild the private
processing algorithm based on sample
input-output pairs.

• Reproducibility Verification is a replay of
workflow execution, supposedly conducted
by an authorized third party. Due to the
security requirements (e.g., passing secret
keys to the enclave), TEE-based private
components are controlled and executed
by their owners, which have effectively pre-
vented any unauthorized verification. How-
ever, it’s inconvenient to demand all owners
staying online for verification. Another con-
cern is that the dishonest owner’s attack
can also be applied in this stage.

Possible Solutions
The application of the TEE approach is

still at the early stage. In the following, we
discuss some solutions that can be applied
to HPC applications in the cloud.

Improving Usability. A few efforts have
been conducted to usability issues of SGX.
To avoid modifying existing applications,
Graphene-SGX [17] and SCONE [18] try to
build a library OS or a shim layer to allow
unmodified Linux applications running inside
enclaves. However, this approach does not
protect access patterns from attacks, and it’s
difficult to incorporate any application-level
protection methods into these frameworks.
Other approaches, such as Google Asylo and
Open Enclave, try to simplify SGX program-
ming with an easier programming framework
or library, so that users do not need to learn

6 Internet Computing



the complex native SGX APIs.
For distributed data-intensive processing,

VC3, M2R, and Opaque [19] try to adapt
existing popular data-processing software
stacks such as Hadoop and Spark by slightly
modifying the original software, e.g., only
moving the confidential data processing part
into the enclave. However, leaving the system
components in the untrusted memory area
enables many attacks.

Gaps: To our best knowledge, all these
usability-oriented projects do not address the
side-channel attacks. However, these meth-
ods are particularly useful for legacy HPC
applications, if side-channel protection is not
a concern.

Protecting Block Access Patterns with
ORAM. The ORAM-based approaches [10]
try to disguise block I/O accesses and provide
a generic block I/O interface for applications.
However, ORAM-based methods have sev-
eral notable drawbacks. (1) They are expen-
sive. Each block access incurs O(log n) ad-
ditional block accesses to disguise the actual
access, where n is the number of blocks in
the file. (2) Not all block access patterns leak
sensitive information, which requires users to
examine the application-specific block access
patterns to design solutions with good perfor-
mance, which is time-consuming and error-
prone. (3) As a low-level I/O interface, they
do not aim to protect application-level access
pattern problems such as branch prediction
attacks.

Application-Specific Data Oblivious
Approaches. The application-specific ap-
proach requires developers to carefully ex-
amine all access patterns of a specific ap-
plication and apply oblivious operations to
protect them. Ohrimenko et al. [12] have an-
alyzed a batch of well-known machine learn-
ing algorithms and identified that oblivious
move (omove), oblivious greater(ogreater),
and oblivious sorting (osort) are the three
most frequently needed operations by these
algorithms. omove and ogreater use the
CMOV instructions to achieve obliviousness,
which have been mentioned earlier. For expe-
rienced developers, this approach can thor-
oughly address all access-pattern problems.

However, again, it is time-consuming and
probably not practical for most HPC develop-
ers.

Map Sorting Reduce

Data
Block

Phase 1 Phase 2 Phase 3

Untrusted Memory

SGX Memory

Data
Block

Data
Block

Data
Block

Figure 4. Regulated data flow between enclave and
main memory (from SGX-MR [13])

Framework-Level Access Pattern Pro-
tection. A more promising solution is the
framework-level protection scheme, such as
SGX-MR [13], which achieve a balance be-
tween usability and access-pattern protec-
tion. The idea of SGX-MR is to regulate the
application data flow with a framework, and
then identify and protect the access patterns
of the regulated data flow and the within-
block (or page) access patterns. Once these
access pattern problems are addressed, all
applications using this framework will benefit.
MapReduce is the right candidate for this
purpose. Figure 4 shows how the application
data flow is regulated by the MapReduce
processing pipeline at the block level. (1) The
input to the Map phase is just sequential
reads, not leaking any information. (2) The
Sorting phase can use an efficient oblivious
sorting algorithm. (3) In the Reduce phase,
we can protect the output privacy, i.e., group
sizes. Users only need to implement the map,
reduce, and possibly combine, functions,
which only need to handle in-page branching
statements – these are typically much easier
to handle.

SGX-MR has unique advantages in trans-
parency, programmability, efficiency, and at-
tack protection. (1) Transparency is achieved
with a carefully designed middle layer be-
tween TEE and user applications. It hides
all the details about TEE processing and
access-pattern protection. (2) It provides
reasonably good programmability. Instead
of emulating OS APIs, this approach uti-
lizes the MapReduce processing framework
to unify the applications at the framework

May/June 2022 7



Department Head

level. Almost all existing data mining and
machine learning algorithms can be imple-
mented with one or multiple MapReduce pro-
grams, as shown by Mahout and numer-
ous examples during the past ten years
with the booming big data applications. (3)
This design can achieve better efficiency
in access pattern protection than ORAM-
based approaches [10], while the difficulty
of redesigning users’ applications is much
lower than the customized data-oblivious ap-
proaches [12]. (4) The framework also allows
users to achieve different levels of protec-
tion against application-oriented and memory
page-oriented access-pattern attacks to meet
various demands on performance and usabil-
ity.

The goal of SGX-MR is not to provide a
framework for legacy applications, as rewrit-
ing the code to use SGX-MR is not easy for
most applications. It’s more appropriate for
those data-intensive applications that can be
easily modified or developed from scratch.
In addition, SGX-MR is still at the prelimi-
nary stage focusing on single-node process-
ing. In contrast, multi-node processing is the
norm for HPC applications. Opaque [19] has
mentioned several access pattern issues with
inter-nodes data exchange, which should be
integrated into the extension of SGX-MR to
multiple nodes.

Gaps: The above three approaches ad-
dress the access pattern problem. (1) While
new HPC applications can use these attack-
mitigation methods, to our best knowledge,
there is no solution to address side-channel
attack problems for legacy HPC applications
yet. In particular, as many HPC applica-
tions depend on scientific computing libraries,
making these libraries fully data oblivious is
very challenging. (2) ORAM and SGX-MR
target data-intensive applications, but many
HPC applications are compute-intensive,
where new framework-level access-pattern
protection methods should be developed. (3)
All these data oblivious methods will impair
performance, the level of which has not been
fully understood yet for HPC applications.

Monitoring and Detecting Side-channel
Attacks. This approach is attractive as it may

avoid revising the existing codes (e.g., after
using Graphene-SGX or SCONE to achieve
good usability). The idea is to monitor the
abnormal patterns of page fault interrupts or
other system-level activities to detect possible
attacks, as many attacks utilize these system
features. While an attack is in progress, these
system-level activities might differ from nor-
mal program execution. For example, SGX-
TSX [20] has followed this approach. It uti-
lizes Intel Transactional Synchronization Ex-
tensions (TSX) to monitor page-fault inter-
rupts. TSX is a CPU built-in mechanism and
cannot be compromised by attackers. Using
TSX transactions, SGX-TSX detects anoma-
lies and terminates the enclave programs as
needed.

Gaps: The monitoring and detection ap-
proach is promising for protecting legacy
code that cannot be easily modified. How-
ever, the current method: SGX-TSX is not
easy to use and still requires a certain level
of code modification. Another issue is false
alarms, which might accidentally interrupt
normal programs.

Blockchain-based Workflow Manage-
ment. As we have discussed, collaborative
HPC workflows may bring more challenges:
dishonest owners, the conflict between confi-
dentiality and provenance analysis, and the
inconvenience in reproducibility verification.
We envision a blockchain-based solution that
can probably address most of these prob-
lems.

• Protect from dishonest owners. Use the
blockchain to store the non-fungible signa-
tures of the program and data. While this
does not prohibit users from uploading fake
data or algorithms or tampering with data
and algorithms, we can trace the exact
version used in a specific run.

• Control accesses to provenance data.
Control the access to provenance anal-
ysis and log the accesses for anomaly
detection. Access control can be reinforced
with blockchain-maintained logs and smart
contracts. We can also build an anomaly
detection subsystem, learning from the
tamper-resistant provenance access log.

8 Internet Computing



The challenge is to develop an effec-
tive anomaly detection algorithm using the
provenance access patterns. We can also
prohibit access to the provenance data re-
lated to private components or their nearby
components, which will significantly reduce
the utility of provenance data.

• Automated secure replay of workflows
can be implemented with smart contracts,
which do not need owners of private com-
ponents to stay online. It also prevents any
attacks trying to compromise the integrity
of reproducibility verification.

Gaps: (1) Blockchain applications are
still in the embryonic stage. The cost of us-
ing current public blockchains is too high to
be practical, while permissioned blockchains,
such as HyperLedger, will need users to
trust the management peers. (2) The access
control and anomaly detection methods for
provenance analysis will deter some attack-
ers, but do not eliminate the risk of attack –
they merely increase the chance of attackers
getting caught.

Conclusion
HPC in the cloud can benefit many users

who cannot own or access on-premise HPC
resources. Recent studies have explored sev-
eral aspects of HPC in the cloud, while
the confidentiality issues have not been ad-
dressed yet. As data and computation con-
fidentiality has been a general concern for
many cloud users, we anticipate that HPC
users may also have such needs in the
future. Confidential computing has become
practical due to the recent development of
trusted execution environments, but it is still
at the early stage of applications. We en-
vision that combining TEE and HPC may
raise some unique challenges, especially in
a collaborative environment. We have ana-
lyzed the threat models for the single-user
and collaborative-workflow cases, discussed
several unique challenges, including usabil-
ity, side-channel attacks, performance, and
the interplay between confidential compo-
nents and collaborative workflow, and re-
viewed some candidate solutions. We have

also highlighted a few gaps that appear no
satisfactory solutions yet, which probably in-
dicate valuable research directions.

Acknowledgements
This work was supported in part by

the U.S. National Science Foundation under
Grant #2232824, Marquette University, and
Northwestern Mutual Data Science Institute.

REFERENCES
1. M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F.

Cunha, and R. Buyya, “Hpc cloud for scientific and

business applications: Taxonomy, vision, and research

challenges,” ACM Comput. Surv., vol. 51, no. 1, 2018.

2. F. Khoda Parast, C. Sindhav, S. Nikam, H. Izadi Yekta,

K. B. Kent, and S. Hakak, “Cloud computing security:

A survey of service-based models,” Computers and

Security, vol. 114, 2022.

3. V. Costan and S. Devadas, “Intel sgx explained,” IACR

Cryptology ePrint Archive, vol. 2016, p. 86, 2016.

4. S. Sagar and C. Keke, “Confidential machine learning

on untrusted platforms: a survey,” Cybersecurity,

vol. 4, no. 1, p. 30, 2021. [Online]. Available:

https://doi.org/10.1186/s42400-021-00092-8

5. A. Akram, A. Giannakou, V. Akella, J. Lowe-Power,

and S. Peisert, “Performance analysis of scientific com-

puting workloads on general purpose tees,” in 2021

IEEE International Parallel and Distributed Processing

Symposium (IPDPS). Los Alamitos, CA, USA: IEEE

Computer Society, may 2021.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(lev-

eled) fully homomorphic encryption without bootstrap-

ping,” in Innovations in Theoretical Computer Science

Conference (ITSC), 2012, pp. 309–325.

7. Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster

secure two-party computation using garbled circuits,”

in USENIX Conference on Security, 2011, pp. 35–35.

8. S. Sharma and K. Chen, “Confidential boosting with

random linear classifiers for outsourced user-generated

data,” in Computer Security - ESORICS 2019 - 24th Eu-

ropean Symposium on Research in Computer Security,

Luxembourg, September 23-27, 2019, Proceedings,

Part I, 2019, pp. 41–65.

9. P. Mohassel and Y. Zhang, “SecureML: A system for

scalable privacy-preserving machine learning,” in 2017

IEEE Symposium on Security and Privacy (SP), 2017,

pp. 19–38.

10. S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zero-

Trace : Oblivious memory primitives from intel SGX,” in

May/June 2022 9

https://doi.org/10.1186/s42400-021-00092-8


Department Head

Network and Distributed System Security Symposium,

2018.

11. Y. Xu, W. Cui, and M. Peinado, “Controlled-channel

attacks: Deterministic side channels for untrusted

operating systems,” in Proceedings of the 2015

IEEE Symposium on Security and Privacy, ser.

SP ’15. Washington, DC, USA: IEEE Computer

Society, 2015, pp. 640–656. [Online]. Available: https:

//doi.org/10.1109/SP.2015.45

12. O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,

S. Nowozin, K. Vaswani, and M. Costa, “Oblivious

multi-party machine learning on trusted processors,” in

USENIX Security Symposium. USENIX Association,

2016, pp. 619–636.

13. A. M. Alam, S. Sharma, and K. Chen, “SGX-MR: Regu-

lating dataflows for protecting access patterns of data-

intensive sgx applications,” Proceedings on Privacy

Enhancing Technologies, vol. 2021, no. 1, pp. 5 – 20,

2021.

14. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,

W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre at-

tacks: Exploiting speculative execution,” in 2019 IEEE

Symposium on Security and Privacy (SP), 2019, pp.

1–19.

15. M. Fredrikson, S. Jha, and T. Ristenpart, “Model in-

version attacks that exploit confidence information and

basic countermeasures,” in ACM Conference on Com-

puter and Communications Security, 2015.

16. F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-

tenpart, “Stealing machine learning models via predic-

tion apis,” in Proceedings of the 25th USENIX Con-

ference on Security Symposium, ser. SEC’16. USA:

USENIX Association, 2016, pp. 601–618.

17. C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX:

A practical library OS for unmodified applications on

SGX,” in 2017 USENIX Annual Technical Conference,

USENIX ATC 2017, Santa Clara, CA, USA, July 12-14,

2017, D. D. Silva and B. Ford, Eds., 2017, pp. 645–658.

18. S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,

C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.

Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,

and C. Fetzer, “SCONE: Secure linux containers with

intel sgx,” in Proceedings of the 12th USENIX Con-

ference on Operating Systems Design and Implemen-

tation, ser. OSDI’16. Berkeley, CA, USA: USENIX

Association, 2016, pp. 689–703.

19. W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.

Gonzalez, and I. Stoica, “Opaque: An oblivious and

encrypted distributed analytics platform,” in USENIX

Symposium on Networked Systems Design and Imple-

mentation, 2017.

20. M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:

Eradicating controlled-channel attacks against enclave

programs,” in Network and Distributed System Security

Symposium 2017 (NDSS’17). Internet Society, Febru-

ary 2017.

Keke Chen is an associate professor with the
Department of Computer Science at Marquette Uni-
versity and the Northwestern Mutual Data Science
Institute. He directs the Trustworthy and Intelligent
Computing Lab (TAIC). He earned his Ph.D. de-
gree in Computer Science from Georgia Institute of
Technology in 2006. His current research areas in-
clude confidential computing, data analytics, secu-
rity&privacy of AI, and distributed computing. During
2006-2008, he was a senior research scientist at
Yahoo! Labs, working on web search ranking, cross-
domain ranking, and web-scale data mining. He owns
three patents for his work at Yahoo! Labs. During
2008-2020, he was a faculty member with the Depart-
ment of Computer Science and Engineering and the
Center of Excellence in Knowledge-Enabled Comput-
ing at Wright State University. He is a senior IEEE
member and an ACM member. His contact email is
keke.chen@marquette.edu.

10 Internet Computing

https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/SP.2015.45

	Threat Modeling
	Types of Confidential Computing Solutions
	TEE for HPC in the Public Cloud
	Unique Challenges
	Possible Solutions

	Conclusion
	Acknowledgements
	REFERENCES
	Biographies
	Keke Chen


