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Abstract

Model-based attacks can infer training data information from
deep neural network models. These attacks heavily depend
on the attacker’s knowledge of the application domain, e.g.,
using it to determine the auxiliary data for model-inversion
attacks. However, attackers may not know what the model
is used for in practice. We propose a generative adversarial
network (GAN) based method to explore likely or similar do-
mains of a target model – the model domain inference (MDI)
attack. For a given target (classification) model, we assume
that the attacker knows nothing but the input and output for-
mats and can use the model to derive the prediction for any
input in the desired form. Our basic idea is to use the target
model to affect a GAN training process for a candidate do-
main’s dataset that is easy to obtain. We find that the target
model may distract the training procedure less if the domain
is more similar to the target domain. We then measure the
distraction level with the distance between GAN-generated
datasets, which can be used to rank candidate domains for the
target model. Our experiments show that the auxiliary dataset
from an MDI top-ranked domain can effectively boost the re-
sult of model-inversion attacks.

1 Introduction
Numerous companies are applying machine learning in mar-
keting, advertising, and targeting users to improve revenues.
Many such machine-learned models depend on sensitive
personal or confidential business operational data, raising
privacy concerns. So far, most studies about the privacy is-
sue in machine learning focus on problems with training and
testing data privacy in the stages of model development and
inference (Chakraborty et al. 2018).

In addition to training/testing data privacy, researchers
have been wondering how releasing models only can also
leak private information in training data. Surprisingly,
machine-learned models often remember much more than
what we expected (Song, Ristenpart, and Shmatikov 2017).
Membership inference attacks (Shokri et al. 2017; Rahman
et al. 2018; Li and Zhang 2020; Hui et al. 2021) can in-
fer which data points were likely used to train the model,
and model inversion attacks (Fredrikson, Jha, and Ristenpart
2015; Wang, Si, and Wu 2015; Zhang et al. 2020; Khosravy
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et al. 2021) allow the adversary to approximately reconstruct
the training set based on a trained model.

In all these model-based attacks, the adversaries are as-
sumed to have the prior “domain knowledge” of the trained
model, which is often defined as the application or task be-
hind the trained model, e.g., a model for facial recognition.
The domain knowledge is critical for identifying auxiliary
data (Fredrikson, Jha, and Ristenpart 2015; Zhang et al.
2020), e.g., face images, in model inversion attacks. Zhang
et al. (Zhang et al. 2020) show that the attacking accuracy
may drop significantly without auxiliary data, and the re-
constructed images are not recognizable. Our experiments
(Section 5) confirm that this attack-accuracy difference can
be up to ∼ 30%.

Thus, an interesting question is: what if the attacker does
not have the desired domain knowledge? In addition to so-
cial engineering to explore the domain of a model, does the
model itself contain information to infer the domain? Un-
derstanding this problem will help us better assess the risk
of model-based attacks and design defense mechanisms to
protect models.

Scope of research and our contributions. In this paper,
we hold the following minimum assumption about the at-
tacker’s prior knowledge. We assume that the target model
is a black-box image classification model1. The adversary
only knows the input image size and the output probabil-
ity vector without any knowledge about the domain of the
model. However, the adversary can apply the model to any
input in the desired format. We assume a bunch of public- or
private-domain datasets are available, which can be any im-
age datasets the adversary can find from a set of candidate
landmark domains. We focus on a fundamental ques-
tion which we call model domain inference: given a machine
learning model, estimate the most similar domain that the
model is likely trained on among the available landmark do-
mains. By introducing a method called latent domain rank-
ing, we show that even though the model is a black box to the
adversaries, it’s still possible to derive the target model’s rel-
ative domain similarities to the landmark domains. Further-
more, we find that the data from top-ranked similar domains

1Our current work focuses on the image classification problem.
However, it’s possible to extend the study to other learning prob-
lems and different types of data, where GAN or other generative
methods applies.



work well as the auxiliary data in model-inversion attacks.
A critical problem is estimating the domain similarity be-

tween the target model (no target domain data) and any
dataset from a candidate domain. We develop a genera-
tive adversarial network (GAN) based method for this pur-
pose. Specifically, we first train a GAN for a landmark do-
main with a well-known approach such as Wasserstein GAN
(WGAN) (Arjovsky, Chintala, and Bottou 2017). After the
GAN model converges, we make a snapshot, naming it the
Landmark GAN. Then, continue to train a copy of the GAN
with the latent-domain data and adjust it with the target
model via a particular network architecture (Section 4.4).
The target model’s response to the GAN-generated images
will be fed back to regulate GAN’s incremental training. Fi-
nally, we get a target-model adjusted GAN.

Intuitively, if the landmark domain is very different from
the target domain, the target model’s feedback will distract
the GAN training and misguide the GAN to generate “un-
real” records. Otherwise, the target model will be less dis-
tractive to the GAN training. The distraction level is mea-
sured by the similarity between the two datasets generated
by the original landmark GAN and the target-model dis-
tracted GAN, respectively. A smaller distance means the
landmark GAN is less distracted by the target model, which
implies that the landmark domain is more likely related to
the target model. Our experimental result shows this method
can effectively discover the top domains similar to the target
model.

We have also experimented with an alternative method
(less effective) for domain inference. We use an existing
model inversion method (Fredrikson, Jha, and Ristenpart
2015) to reconstruct the target domain’s training data with
a landmark dataset as the auxiliary data. Since the model
inversion method depends on the auxiliary data as the hint
to the target domain to guide the data reconstruction pro-
cess, each landmark dataset as the auxiliary data will re-
sult in a distinct reconstructed dataset. Then, we evaluate the
distance between each pair of the original landmark dataset
and its reconstructed. Intuitively, if the landmark domain is
similar to the target domain, the auxiliary data should work
well to help the model-inversion algorithm generate a good-
quality dataset. However, our evaluation shows this method
is not as good as the GAN-based method.

One may wonder whether it’s possible to mitigate the do-
main inference attack. Since the attacker implicitly looks at
the similarity between the target-domain training data and a
landmark dataset (without knowing the target-domain train-
ing data), a possible mitigation strategy is to transform the
training data. As a result, the attacker tries to find datasets
only similar to the transformed training data, which provides
an extra layer of protection for the original data. We have
identified two recently published data and model disguis-
ing methods that meet our needs: InstaHide (Huang et al.
2020) and RMT (Sharma, Alam, and Chen 2021). Experi-
mental results show that they can effectively protect mod-
els from domain inference attacks with a small sacrifice of
model quality.

In summary, our contributions include:
1. We are the first to study the domain inference problem,

which is critical to model-based attacks.
2. We have developed a GAN-based domain inference

method that can effectively infer the similarity of a
dataset to a model.

3. We have conducted extensive experiments to validate the
proposed method and explored possible mitigation meth-
ods to deter the domain inference attack.

We will introduce the notions and definitions in Section
2. In Section 4, we will present the threat modeling, the de-
tail of the domain inference attacks, and possible mitigation
methods. Then, we show the evaluation result of the attack
and mitigation methods in Section 5.

2 Preliminary
We introduce the primary notations, definitions, and neces-
sary background knowledge about GAN and dataset similar-
ity measures in this section.

2.1 Generative Adversarial Network (GAN)
A GAN consists of the generatorG and the discriminatorD.

Generator. A generator is a network mapping a random
vector to, e.g., a fake image. Its goal is to generate fake
data as close to the real data as possible, trying to fool the
discriminator. A loss function LG = Error(D(G(z)), 1)
serves this purpose.

Discriminator. The discriminator is a binary classifier
with a sigmoid function as the activation function. The
goal of the discriminator is to correctly separate the gen-
erated data labeled as 1 from the real training data labeled
as 0. It uses the loss function LD = Error(D(x), 1) +
Error(Dis(G(z)), 0), where D() is the discriminator out-
put, x is the real data, z is a latent vector, and G(z) is the
data generated by generator G. The Error function mea-
sures the distance between two functional parameters, e.g.,
cross-entropy or KL-divergence.

Optimization. The overall GAN optimization can also
be unified as one function: the generator minimizes, and
the discriminator maximizes the loss function log(D(x)) +
log(1 − D(G(z))). The min-max formulation intuitively
demonstrates the adversarial process of the competition be-
tween the generator and the discriminator.

Wasserstein GAN (WGAN). The basic GAN suffers
from several weaknesses such as slow convergence, van-
ishing gradient, and model collapse (Arjovsky and Bottou
2017; Weng 2019), which were addressed by the Wasser-
stein GAN (Arjovsky, Chintala, and Bottou 2017) later. As
a result, WGANs are easier to train and faster to converge,
and they also generate better-quality images.

2.2 Dataset Similarity Measures
Evaluating the similarity between domains is difficult. The
proposed approach will utilize the dataset-level similarity to
understand domain similarity. There have been many tools
designed for evaluating dataset-level similarity. However, in
our approach, the exact dataset similarity is not critical –
instead, we will look at the ranking of similarities to the tar-
get domain. We have adopted the Optimal Transport Dataset



Distance (OTDD) (Alvarez-Melis and Fusi 2020) in this pa-
per and found the result is satisfactory. OTDD is based on
a famous distribution transportation problem – moving one
distribution of mass to another as efficiently as possible.
It does not depend on pre-trained models, has many good
properties, and is relatively easy to compute.

Fréchet Inception Distance (FID) (Heusel et al. 2017)
is another famous measure popularly used for evaluating
the quality of GAN-generated synthetic data. Rather than
directly comparing images pixel by pixel between two
datasets, FID utilizes the Inception v3 network trained with
ImageNet to transform instances from the two datasets. Then
the distance is computed based on the mean and standard
deviation differences between the two sets of transformed
vectors. Since we cannot use the existing Inception-v3 di-
rectly for grayscale datasets, we decided not to use FID in
this paper. We might explore its use in our future work.

3 Related Work

Attacks on training/testing data for machine learning have
been extensively discussed in recent few years (Chakraborty
et al. 2018). However, model-based attacks are few, which
can be roughly categorized into model inversion attacks and
membership inference attacks.

Model inversion attacks try to reconstruct the training
examples given access only to a target model and other aux-
iliary information (e.g., the partial input, the model out-
put, the application domain, and samples from the same
domain). Fredrikson et al. (Fredrikson, Jha, and Ristenpart
2015) demonstrate successful attacks on low-capacity mod-
els (e.g., logistic regression and a shallow MLP network)
when partial input information was available to the attacker.
Hidano et al. (Hidano et al. 2017) study the scenario without
the partial input information. However, their method failed
on deep image classifiers. Model inversion attack based on
GAN can handle deep neural-network models (Zhang et al.
2020; Yang, Chang, and Liang 2019), which heavily depend
on the quality of the auxiliary dataset. However, no study
has shown how to identify the auxiliary data when the tar-
get model domain is unknown. Our domain inference attack
allows the attacker to explore similar domains and identify
reliable auxiliary data.

Membership inference attacks try to figure out the like-
lihood of a record coming from the training data. These
attacks assume the targeted record is from the known do-
main, and some also assume the data distribution is known.
Shokri et al. (Shokri et al. 2017) first propose the concept
of membership inference attack, assuming attackers have
strong attacking knowledge, which was relaxed by Salem
et al. (Salem et al. 2018). Long et al. (Long et al. 2020) pro-
pose a method to identify the vulnerable records and mod-
els to make the attack more focused. All the above attacks
assume attackers know the output probability vector, while
Christopher et al. (Choquette-Choo et al. 2021) explore the
label-only membership inference attack, where attackers can
only access the output class labels.

4 Model Domain Inference Attack
As most model inversion attacks depend on known domains,
we study the situation when attackers do not know the tar-
get model’s domain. The core problem here is how to infer
likely (or similar) domains for a target model. In this sec-
tion, we will discuss the threat model, define the domain in-
ference problem, and then present our attacks in detail. We
design two attacking methods: the model-inversion-based
method and the GAN-based method.

4.1 Threat Modeling
Adversarial knowledge. We hold a minimum assumption
that the adversaries can access the target model at least in a
black-box manner. However, most model-based attacks de-
pend on the adversarial prior knowledge about the model’s
domain, which we do not assume the adversaries have. The
closest practical setting is the attacker steals the model bi-
nary, or breaches the private model inference API, and wants
to figure out its secrets. Attackers cannot access the actual
training/testing datasets. Otherwise, it’s trivial to infer the
problem domain. However, they should know the input im-
age shape and the number of output classes, e.g., 28×28 im-
ages and ten output classes. They can choose arbitrary land-
mark datasets and apply the model to any input data match-
ing the desired format.

Attack target and threats. Domain information is vi-
tal for model-based attacks. Knowing the domain allows
the adversaries to select an appropriate auxiliary dataset to
enhance the attack performance (Zhang et al. 2020; Yang,
Chang, and Liang 2019). Most existing model-based attacks
assume that domain information is available, which is valid
for public model APIs. However, in practice, many models
are private or under restricted access. Attackers breach the
model access but do not have sufficient domain knowledge
about the model. Our study is to explore the limit of what
an adversary can do with the reduced adversarial knowl-
edge in these more restricted settings. For instance, can
the attacker identify appropriate auxiliary data to enhance
model-inversion attacks without knowing the domain? Our
experimental results show that the model domain informa-
tion is probably already embedded in the model itself, and
thus model-based attacks may relax the required adversarial
knowledge.

4.2 Definition of Domain Inference
The task of domain inference is to estimate the domain of
the target model with the help of a bunch of datasets from
candidate domains. We define the main concepts as follows.

Latent domain.We define the unknown domain behind
the target model as the latent domain. For simplicity, we in-
dicate the latent domain (dataset) as ST .

Landmark domains. We assume the attacker starts with
several possible domains {S1, . . . , Sk}, which we call land-
mark domains, to identify the most similar one. Each domain
is represented by one dataset -– for simplicity, we reuse the
notation, e.g., Si, to represent the dataset in the correspond-
ing domain.



Domain Similarity. Domain similarity is evaluated with
the dataset similarity, e.g., the OTDD (Alvarez-Melis and
Fusi 2020) between the sample datasets from two domains,
respectively. As the target model’s training data is not acces-
sible, we design two methods to derive approximate domain
similarity. The attacker may not need to find out the exact
domain similarity – a good-quality ranking of landmark do-
mains may serve the purpose sufficiently, as we will show.

4.3 Model-Inversion Based Domain Similarity
Estimation

Inspired by the model inversion attack, we design a data-
reconstruction-based domain similarity estimation method.
The model inversion attack tries to reconstruct the training
dataset from the target model with the help of an auxiliary
dataset. We can plug in a landmark dataset, e.g., Si, as the
auxiliary dataset. The intuition is that if the auxiliary dataset
is similar to the target domain data, it will boost the recon-
struction process, which in turn generates a dataset, ŜT,i,
possibly similar to the auxiliary data and the original training
data. By measuring the distance between the reconstructed
dataset and the landmark dataset, Dist(ŜT,i, Si), we can in-
fer which landmark dataset is more similar to the latent do-
main. Figure 1(a) shows the steps of this approach. However,
in experiments, we find it is not as effective as the GAN-
based method we will present next.
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(a) Model-Inversion Reconstruction
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(b) Differential Domain Similarity Estimation

Figure 1: Architectures of the two domain inference meth-
ods

4.4 GAN-based Differential Domain Similarity
Estimation

We design a GAN-based method to observe how the target
model distracts the landmark domain’s GAN training. Intu-
itively, if the landmark domain is closer to the latent domain
than others, the target model will distract the GAN training
less.

As shown in Figure 1(b), we first train a landmark WGAN
W 0

i on each landmark dataset, Si. After training the land-
mark WGAN, we make a copy of the trained WGAN for the
distracted learning process. A specific architecture is used to
distrac the continuous training process of the WGAN with
the target model, resulting in a distracted version W 1

i . By
observing the distance between the datasets: Ŝ0

i generated
by W 0

i , and Ŝ1
i generated by W 1

i , we can derive the differ-
ential domain similarity as Dist(Ŝ0

i , Ŝ
1
i ). We will discuss

the important steps as follows.
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Figure 2: The distracted learning architecture.

Distracted learning architecture. Starting with a copy
of the landmark WGAN, we use the target model to distract
the training of the backup WGAN through the “identity” loss
function Lid, which describes the probability of the top class
in the target model’s output: the lower the probability, the
more uncertain the prediction is and the more distractions
the generator should receive. We build a channel between
a trained generator G and the target model T , as shown by
Figure 2. G is thus influenced by both the identity loss Lid

and the discriminator’s loss LD.
Specifically, for landmark dataset Si and a record z in

the dataset, the target model will accept the generated im-
age G(z) and feedback an identity loss defined as Lid(z) =
−log[T (G(z))] where T (G(z)) is the probability of the pre-
dicted top class by the target model T . Meanwhile, the dis-
criminator feeds back a prior loss to G: LD = −D(G(z)).
Finally, we solve the following optimization for the genera-
tor G:

ẑ = argmin
z

LD(z) + λLid(z),

where λ is a predefined parameter representing the influence
of the target model.

Intuitively, the loss LD penalizes unrealistic images,
while the identity loss encourages the generated images to
have higher prediction top-class likelihood under the tar-
geted model. This distracted learning process tries to guide
the generated image ẑ towards the latent dataset ST . The



image will be distorted more if Si is less similar to ST and
change less otherwise.

Distance measurement. We have used the datasets gen-
erated by the two WGANs, respectively, for distance evalu-
ation. One may wonder why not use the original landmark
dataset Si, i.e., computing Dist(Si, Ŝ

1
i ) instead. The prob-

lem is that the WGAN training performs differently for dif-
ferent datasets. It works less effectively for some datasets,
e.g., CIFAR10, than others, such as MNIST. To eliminate the
quality difference caused by the underlying WGAN training,
we use the distance between Ŝ0

i and Ŝ1
i instead, which more

accurately measures the differential effect caused by the tar-
get model.

4.5 Potential Mitigation Methods
We look at various ways to protect target models and
datasets and mitigate the domain inference attack.

The first approach is to prevent adversarial access to mod-
els and data. CryptoNets (Gilad-Bachrach et al. 2016) uses
homomorphic encryption for encrypting data and models in
model inference to avoid leaking models and testing exam-
ples to adversaries. Several cryptographic protocols have im-
plemented confidential model training, such as SecureML
(Mohassel and Zhang 2017) and ConfidentialBoost (Sharma
and Chen 2019). They typically use hybrid constructions
of homomorphic encryption and secure multiparty compu-
tation primitives. More recently, trusted execution environ-
ments (TEEs), such as Intel SGX (Costan and Devadas
2016), have been used in confidential machine learning.
However, TEEs have not been implemented in GPUs yet,
and thus the performance of TEE-based deep learning is not
satisfactory (Tramer and Boneh 2019).

We also noticed the data and model disguising meth-
ods, including InstaHide (Huang et al. 2020) and Disguised-
Nets (Sharma, Alam, and Chen 2021). Both methods require
transforming the training data, which results in models that
work only on the transformed data. They share a unique ben-
efit compared to other methods: existing GPU-accelerated
model training methods can be applied to the transformed
data without modification.

InstaHide provides a randomized training data transfor-
mation method, which mixes up each private training im-
age with randomly selected and weighted private and pub-
lic ones. The sign of each mixed-up pixel is also randomly
flipped. The transformed images can be directly used to train
models. The same transformation method is applied when
the model is used for inference.

A simple method of DisguisedNets, randomized multi-
plicative transformation (RMT), uses a different approach.
It partitions each training image into multiple blocks with a
pre-defined scheme. A randomly generated invertible trans-
formation matrix corresponds to a block position and is
shared by all images serving as a secret key. It then trans-
forms the block at each position with the corresponding se-
cret matrix, e.g., using a noise-added linear transformation.
For example, we can partition a 32x32 image into 64 4x4
blocks. Each of the 64 positions uses a 4x4 randomly gen-
erated matrix as the key. The block-wise transformation is
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Figure 3: The effect of top-ranked datasets as the auxil-
iary data for the model-inversion attack. The better ranked
the dataset, the more contribution it makes to the attack.
Datasets: M, E, FM, C, L, Em, C10, C100 represent MNIST,
EMNIST, Fashion-MNIST, Clothing, Emotion, CIFAR10,
CIFAR100, respectively.

applied to each image.
Both InstaHide and RMT can preserve model accuracy

relatively well — about 2% - 7% reduction with a simple
network like ResNet-18 in our experiments. More sophis-
ticated networks can preserve model quality better. As the
models are trained on the transformed datasets, the domain
inference attack and even model-inversion attacks do not
work anymore. We will show whether they can protect mod-
els from domain inference attacks in experiments.

While models trained with InstaHide or RMT perturbed
data are safe from the MDI attack, users should be aware
that InstaHide and RMT methods are subject to other at-
tacks. In particular, an attack using image clustering and
pixel sign removing (Carlini et al. 2021) works effectively
on InstaHide. The regression attack can also be a concern
on RMT (Sharma, Alam, and Chen 2021) if the attacker
collects a sufficient number of original-transformed image
pairs, which, however, contradict the MDI’s threat model.
Readers may adopt these methods cautiously depending on
the threat model acceptable to a specific application.

5 Experiments
In this section, we conduct experiments to show that: (1)
How auxiliary data enhances the model inversion attack; (2)
How effective our MDI methods are; and (3) How the sug-
gested mitigation methods work against the MDI attack.

5.1 Setup
Datasets. We evaluate our method on eight well-known pub-
lic datasets: MNIST, EMNIST, LFW, Emotion2, CIFAR10,
CIFAR100, Fashion-MNIST, and Clothing (Grigorev 2020),
to make it easy to reproduce the results. We transform col-
ored datasets, e.g., CIFAR datasets, to greyscale datasets and
rescale all images to 36x36 pixels to unify the data formats.

2the facial image data used by AffectNet (Mollahosseini,
Hasani, and Mahoor 2017)
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Figure 4: The GAN-based method performs consistently better than the reconstruction method.
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Figure 5: Differential similarity is significantly better than the alternative similarity measure for the GAN-based method.

We also unify the number of classes with seven classes to
align with the Emotion dataset which has only seven classes.

Models. For simplicity, we implement all the target mod-
els with the ResNet-18 architecture. We pick one of the eight
datasets for each experiment to generate the target model
and use the remaining as landmark datasets. We use the
canonical WGAN (Arjovsky, Chintala, and Bottou 2017) for
the GAN-based method.

Training. We use the 8:2 training-testing random split for
each dataset and repeat it ten times for each specific exper-
iment. We train the target models with the SGD optimizer
with learning rate 10−2, batch size 100, momentum 0.9, and
learning rate decay 10−4. To train the landmark WGAN, we
randomly pick up 100 images from every class and use the
Adam optimizer with the learning rate 0.003, batch size 20,
β1 = 0.5 and β2 = 0.999. To train the distracted WGAN,
we set the target model weight λ = 500. Larger values will
allow the target model to influence the distracted images
more. λ = 500 is determined experimentally to balance the
target model’s effect on the generator learning. We use the
SGD optimizer with a learning rate of 0.02, batch size of 20,
and momentum of 0.9 for training the distracted WGAN.

5.2 Evaluation Metrics
Dataset similarity. As mentioned, we will use the OTDD
dataset distance to represent the dataset similarity.

Accuracy. To evaluate the impact of auxiliary data on
model-inversion attacks, we adopted the following method

(Zhang et al. 2020): we build up two reconstructed datasets
with 700 images (100 images for every class) with and with-
out auxiliary data, respectively, and then use the target model
to classify the two datasets. The better the reconstruction
quality, the higher accuracy the target model gives.

NDCG score. For each target model, we rank the land-
mark datasets by the corresponding distance measure in as-
cending order. The smaller distance, the more similar the
landmark domain is to the target domain. To evaluate the
ranking quality, we adopted the well-known measure: Nor-
malized Discounted cumulative gain (NDCG) (Croft, Met-
zler, and Strohman 2010).

Specifically, we first compute the pairwise distances be-
tween landmark datasets to derive the ground truth ranking
per target domain. Let Ri = [dmax− di,0, . . . , dmax− di,n]
to be the ground truth ranking scores for the target domain
Si, where di,j is the distance between Si and Sj and dmax

is the maximum distance used to convert the distances to
non-negative ranking scores (the larger the better). We de-
fine Rp

i = [rmax − ri,0, . . . , rmax − ri,n], where ri,j is
the inferred domain distance between Si and Sj and rmax

is the largest inferred distance. Using the standard algo-
rithm (Croft, Metzler, and Strohman 2010), we can compute
NDCGm for the top-m domains’ ranking quality.

5.3 Result Analysis
Effect of auxiliary data. In this set of experiments, we used
the GAN-based attack to derive the domain similarity rank-
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Figure 6: (left) DistanceWGAN means the distance between the WGAN generated data and the original data. The larger the
distance, the worse quality. CIFAR datasets have much lower quality WGANs than others. (mid) InstaHide and RMT can
significantly improve the resilience to the MDI attack. (right) However, InstaHide and RMT also slightly reduce model quality,
implying a trade-off between attack resilience and model quality.

ing. We choose the top-3 ranked datasets to show how they
contribute to the model inversion attack. As shown in Figure
3, the model inversion attack performs significantly better
with the top-ranked datasets as the auxiliary data. Interest-
ingly, the ranking is also consistent with their contributions
to the model inversion attack for these top-ranked ones. Note
that with or without the top-ranked auxiliary data, the attack-
ing performance difference can be up to ∼30%.

Domain Inference Methods. We compare the GAN-
based method with the model-inversion-based reconstruc-
tion method. For a clear presentation, we show only the
results of NDCG1 to NDCG3. Specifically, NDCG1 looks
at whether the top-1 result matches the ground truth, and
NDCGm looks at the top-m result’s ranking quality. Figure
5 shows that the GAN-based method performs consistently
better than the reconstruction method for all datasets at all
three levels. In Section 4.4, we mentioned using the differen-
tial domain similarity to eliminate the effect of GAN quality.
Figure 4 shows that the differential similarity performs bet-
ter consistently for every dataset than the distance between
the original landmark dataset and the data generated by the
distracted GAN (denoted as “Alternative” in the figure).

Effect of WGAN quality. We have observed that the MDI
attack performs better on simpler datasets, e.g., MNIST and
EMNIST than on the CIFAR datasets. A possible reason is
that WGAN does not learn well on CIFAR datasets, also
observed by previous studies (Terjék 2019). Figure 6 (left)
clearly supports this observation. As the WGANs do not
generate good-quality images, it’s difficult to tell the dis-
traction introduced by the target model or the GAN learning
process.

Mitigation methods against MDI. In Section 4.5, we
have discussed several ways to protect models from the MDI
attack. We are particularly interested in the low-cost model
disguising methods, such as InstaHide (Huang et al. 2020)
and RMT (Sharma, Alam, and Chen 2021). In this set of ex-
periments, we experiment with these methods to see whether
they can protect models from the domain inference attack
and how much model quality we will need to trade-off.

We use the RMT method to transform the training data

with the setting of blockcount = 4 and Noiselevel =
0, i.e., each image is partitioned to four equal-size 16x16
blocks without noise addition. For InstaHide, we set K = 2,
i.e., mixing up the target image with one public image —
here, we randomly select a random image from any land-
mark datasets. Then, we use the new target models to re-
peat the experiments earlier. Figure 6 (mid) shows that both
RMT and InstaHide significantly reduce the effectiveness of
the MDI attack. Furthermore, the large error bars also show
that the MDI attack results are volatile, indicating a strong
level of protection. However, these data and model disguis-
ing methods will also slightly reduce the model quality. Fig-
ure 6 (right) shows the reduction is around 5%. More sophis-
ticated networks might close up this gap (Huang et al. 2020;
Sharma, Alam, and Chen 2021).

6 Conclusion
Most model-based attacks assume the domain knowledge is
available to the adversary. In this paper, we study a criti-
cal problem: without explicitly knowing the model domain
whether the attacker can effectively estimate the domain
based on the model and any public or private datasets they
can collect. We present a GAN-based model domain infer-
ence (MDI) method to infer similar domains of a black-
box target model. Our approach aims to measure how the
target model affects the training of a landmark domain’s
GAN model. The intuition is the more related/similar the
target domain is to the landmark domain, the less the tar-
get model will disturb the GAN training. Our experimental
results show that the proposed attack is highly effective in
identifying similar domains: the auxiliary data from the top-
ranked domains can significantly improve model-inversion
attacks. We have empirically analyzed various factors affect-
ing the effectiveness of the domain inference, including dif-
ferent architectures for estimating the domain similarity, the
dataset similarity measures, and the effect of WGAN qual-
ity. We have also investigated the data and model disguising
methods as a promising mitigation mechanism to protect the
model from the MDI attack.
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