& frontiers | Frontiers in Big Data

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Chenhao Ma,

The Chinese University of Hong Kong,
Shenzhen, China

REVIEWED BY

Xiaodong Li,

The University of Hong Kong, Hong Kong SAR,
China

Yuanyuan Zeng,

The Chinese University of Hong Kong,
Shenzhen, China

*CORRESPONDENCE
Keke Chen
keke.chen@marquette.edu

RECEIVED 18 September 2023
ACCEPTED 06 November 2023
PUBLISHED 30 November 2023

CITATION

Alam AKMM and Chen K (2023) TEE-Graph:
efficient privacy and ownership protection for
cloud-based graph spectral analysis.

Front. Big Data 6:1296469.

doi: 10.3389/fdata.2023.1296469

COPYRIGHT

© 2023 Alam and Chen. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiersin Big Data

TypE Original Research
PUBLISHED 30 November 2023
pol 10.3389/fdata.2023.1296469

TEE-Graph: efficient privacy and
ownership protection for
cloud-based graph spectral
analysis

A. K. M. Mubashwir Alam and Keke Chen*

TAIC Lab, Computer Science, Marquette University, Milwaukee, WI, United States

Introduction: Big graphs like social network user interactions and customer rating
matrices require significant computing resources to maintain. Data owners are
now using public cloud resources for storage and computing elasticity. However,
existing solutions do not fully address the privacy and ownership protection needs
of the key involved parties: data contributors and the data owner who collects data
from contributors.

Methods: We propose a Trusted Execution Environment (TEE) based solution:
TEE-Graph for graph spectral analysis of outsourced graphs in the cloud.
TEEs are new CPU features that can enable much more efficient confidential
computing solutions than traditional software-based cryptographic ones. Our
approach has several unique contributions compared to existing confidential
graph analysis approaches. (1) It utilizes the unique TEE properties to ensure
contributors’ new privacy needs, e.g., the right of revocation for shared data. (2)
It implements efficient access-pattern protection with a differentially private data
encoding method. And (3) it implements TEE-based special analysis algorithms:
the Lanczos method and the Nystrom method for efficiently handling big graphs
and protecting confidentiality from compromised cloud providers.

Results: The TEE-Graph approach is much more efficient than software
crypto approaches and also immune to access-pattern-based attacks. Compared
with the best-known software crypto approach for graph spectral analysis,
PrivateGraph, we have seen that TEE-Graph has 103-10% times lower
computation, storage, and communication costs. Furthermore, the proposed
access-pattern protection method incurs only about 10%-25% of the overall
computation cost.

Discussion: Our experimentation showed that TEE-Graph performs significantly
better and has lower costs than typical software approaches. It also addresses
the unique ownership and access-pattern issues that other TEE-related graph
analytics approaches have not sufficiently studied. The proposed approach can
be extended to other graph analytics problems with strong ownership and access-
pattern protection.

KEYWORDS

TEE, SGX, big graph, graph analytics, access pattern, ownership protection

1 Introduction

Graphs are widely used in many domains, e.g., modeling social networks, knowledge
graphs, and biological regulation networks (Backstrom et al, 2006; Chakrabarti and
Faloutsos, 2006; Butenko et al., 2009; Sheth et al.,, 2019). These graph data are often large
and sparse and may involve expensive analytics algorithms, such as graph spectral analysis
(Ng etal., 2001; Newman, 2013), which require extensive computing resources.

01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1296469
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1296469&domain=pdf&date_stamp=2023-11-30
mailto:keke.chen@marquette.edu
https://doi.org/10.3389/fdata.2023.1296469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1296469/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

With the wide deployment of public clouds, cloud-based
solutions have been the top choice for most graph-data owners due
to the storage and computational elasticity, which, however, raises
several concerns. First, such graph data often involve sensitive
personal information, e.g., social interactions. Data contributors
have to trust that data owners can protect their privacy well when
using cloud resources. Second, data owners want to maintain the
confidentiality and ownership of their proprietary data as they
collect the data with significant costs and hold the responsibility
of protecting contributors’ privacy. More recently, privacy laws
such as GDPR (Chander et al.,, 2020; Zaeem and Barber, 2020)
also guarantee fine-grained privacy rights, e.g., contributors can
withdraw their data from sharing at any time: the right of
revocation. These challenges raise the standard for cloud-based
graph analytics solutions, which have not been comprehensively
addressed by any existing studies yet (Plimpton and Devine, 2011;
Meng et al., 2015; Shaon et al., 2017; Sharma et al., 2019; Sheth et al.,
2019; Du et al., 2023).

To enable secure processing on untrusted platforms,
researchers have been experimenting with novel crypto
approaches, such as homomorphic encryption (HE) (Brakerski
and Vaikuntanathan, 2011) and secure multi-party computation
(SMC) (Huang et al, 2011; Mohassel and Zhang, 2017). In
particular, Sharma et al. (2019) used novel protocol designs
for graph spectral analysis which can be implemented with
additive homomorphic encryption (Paillier, 1999) or somewhat
homomorphic encryption (Brakerski and Vaikuntanathan, 2011).
More recent advances in hybrid protocols (Mohassel and Zhang,
2017; Sharma and Chen, 2019) strive to reduce the overall costs
of the frameworks by blending multiple crypto primitives to
implement algorithmic components. However, all these pure
software-based cryptographic solutions are still too expensive to be
practical for most applications. As we will show, they often take
magnitudes of higher costs than our proposed approach.

Recently, the trusted execution environment (TEE) has
emerged as a more efficient approach to addressing secure
outsourced computation performance and usability issues. It
provides hardware support to create an isolated environment
within a potentially compromised cloud server, where the entire
system software stack, including the operating system and
hypervisor, can be compromised. TEEs enable the concept of secure
enclaves, which depends on hardware-assisted mechanisms to
preserve the confidentiality and integrity of enclave memory. Users
can pass encrypted data into the enclave, decrypt it, compute with
plaintext data, encrypt the result, and return it to untrusted cloud
components. TEEs have been available on many commodity CPUs
and supported by public clouds. Intel Software Guard Extension
(SGX) (Costan and Devadas, 2016) has been available in most
Intel CPUs since 2015 and moved to server CPUs since 2022
(Intel, 2023). AMD secure encrypted virtualization (SEV) has been
available in EPYC server CPUs since 2016. TEE-enabled servers are
available in public cloud services: Microsoft Azure (Pietervanhove,
2023) and Alibaba (Alibaba, 2023) have provided SGX-enabled
servers, and Google has adopted AMD SEV servers.

A few TEE-based studies have focused on graph data
analysis problems (Shaon et al, 2017; Du et al, 2023). SGX-
BigMatrix (Shaon et al., 2017) provides a general SGX-based
matrix computation framework that can perform graph analytics

Frontiersin Big Data

10.3389/fdata.2023.1296469

a —4 — (=
On-demand

Processing Data

& Cluster Owner

Data
Contributors

Cloud

FIGURE 1
A more practical framework for outsourced graph analysis.

with protected access patterns. It aims to reduce the difficulties
for developers to handle TEE-specific programming and access-
pattern protection. However, it does not address unique access-
pattern issues with sparse large graphs. In practice, large graphs
are often sparse, where sparse-matrix-based graph algorithms, e.g.,
spectral analysis on sparse matrices, might be used to achieve good
performance. Meanwhile, a sparse matrix stores the entries with
their indices, e.g., (i,j,v), where (i,j) is the index. Accessing by
the index exposes sensitive information, e.g., the specific edge in
the graph. Section 4.3 discusses the details of the problem. Thus,
processing sparse graphs involves an intricate trade-off between
privacy and performance.

Furthermore, most existing studies involve the data owner and
cloud provider only, where the data owner fully represents the
contributors, entirely ignoring the data contributors’ ownership
rights. They do not meet the new demands, e.g., guaranteeing the
contributors’ right to revoke the sharing of private data.

1.1 Scope of our research

To address the above problems, efficient processing of large
graphs, access-pattern protection, and contributors’ ownership,
we develop an approach based on a more practical cloud-centric
framework for graph analysis. We start with an example where a
social network service provider (data owner) collects users’ (data
contributors’) interactions to understand social communities (see
Figure 1). The users have the right to invoke the sharing of their
data at any time. The service provider uses the cloud to store the
interaction data and needs to preserve the data confidentiality at
rest and in processing to fulfill its responsibility for preserving users’
privacy and protecting its right to use the proprietary data.

The proposed approach will focus on complex graph analysis
algorithms, i.e., graph spectral analysis, to show the unique
advantages. Graph spectral analysis has numerous uses, including
network partitioning (Newman, 2013), spectral clustering (Fowlkes
etal.,, 2004), and web ranking (Berkhin, 2005). The specific analytics
problem is challenging to handle due to the high complexity
O(N?) for the complete solution and O(kN?) for top-k approximate
solutions, where N is the number of nodes. Furthermore, the
fundamental operation of the analysis task, eigendecomposition
of large matrices, has even more extensive applications, such as
dimensionality reduction (Jolliffe, 1986) and kernel-based learning
methods (Scholkopf and Smola, 2002).

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

Within the cloud-based framework,
collaborate to effectively collect and mine the graph data.

the three parties

Data contributors are willing to share their sensitive data with
the data owner, who agrees to protect their data privacy' and
ownership. Contributors also request the ability to revoke access to
their data at any point in time, e.g., a right guaranteed by certain
privacy regulations such as GDPR, but still worry about the data
owner may use their data even after the revocation. Meanwhile, the
data owner uses public cloud resources to manage and mine the
growing amount of contributors’ data. However, the data owner
does not trust the cloud provider can ensure data privacy and
ownership.

Our proposed approach has been tailored to meet the above
practical setup. (1) We use a TEE-based submission service to
seal the contributor submitted data, which can be revoked on
demand by the contributor. It also prevents data owner from
seeing plaintext data and copying it for other unauthorized
uses, e.g., selling data for profit. (2) We adopt a differentially
private data encoding method to prevent inference attacks
during data submission and access-pattern based attacks during
spectral analysis. We study two approximate algorithms for
confidential graph spectral analysis: the Lanczos method (Cullum
and Willoughby, 1985) and the Nystrom method (Fowlkes et al.,
2004) for sparse graph data. The result will be compared with
our previous developed pure-software cryptographic approach:
PrivateGraph (Sharma et al., 2019).

In summary, research has made four

our unique

contributions:

e We provided strong ownership and confidentiality protection
for both data contributors and owners, under the assumption
of a compromised cloud server.

e We addressed the challenges for conducting spectral analysis
on big graphs with TEE and design the TEE-Graph
framework. It requires small trusted memory consumption
and guarantees integrity protection of the graph.

e We meticulously analyzed the entire TEE-Graph framework

and identify potential access-pattern-based side channel

information during data submission and computation in TEE.

Then, we develop a differentially private graph encoding

method to protect privacy during graph submission and

efficiently hide sensitive access patterns during spectral
analysis with fully preserved data utility.

Finally, we implemented TEE-Graph and measure cost

reductions for the three involved parties. Our method

performs 6000x to 150,000 faster than the baseline crypto
approaches in PrivateGraph.

In the remaining sections, we will first present the background
knowledge for our approach (Section 2), then we describe
architecture of TEE graph (Section 3.2, dive in the technical details
of the proposed approach (Section 4), discuss the evaluation result
(Section 5.1), and, finally, give the closely related work (Section 6).

1 In this paper, “data privacy” and “data confidentiality” are used

interchangeably.

Frontiersin Big Data

03

10.3389/fdata.2023.1296469

1: by < random N-dimensional vector;

2: for i < 1 to t do

3: b; < Ab;_;; // the most expensive step

4: o <— b,'Tbi—l H

5: w; < bj — a;jbj — Bi—1bi—2,bi =0 for i<0;

6: Pi<llwiarll;

7 b < wis1/Bi;

8: end for

9: «; and B; form a tridiagonal matrix Tyx;, the top-k

eigenvalues and eigenvectors of which are the

approximation of A’s.

Algorithm 1. Lanczos method.

2 Preliminaries

This section will give the background knowledge about
approximate spectral analysis algorithms for large graphs, a brief
description of trusted execution environment, and differential
privacy.

2.1 Graph spectral analysis

The core operation of graph spectral analysis is the
eigendecomposition of the graph matrix, which yields eigenvalues
and corresponding eigenvectors. Eigenvalues and eigenvectors
provide valuable information about the structure of the graph
matrix and have been used in many data mining algorithms, such
as social community detection (Newman, 2013), spectral clustering
(Fowlkes et al., 2004), web ranking (Berkhin, 2005), dimensionality
reduction (Jolliffe, 1986), and kernel-based methods (Scholkopf
and Smola, 2002). Specifically, for the graph adjacency matrix W
of a N-node undirected graph, its normalized Laplacian matrix
is defined as L I — D7'W, where I is the N-dimensional
identify matrix and D is the diagonal degree matrix, i.e., the only

non-zero elements D;; are the node i’s degree. We want to find the
decomposition L = UAUT, where the matrix U consists of the
eigenvectors and A is a diagonal matrix with eigenvalues on the
diagonal.

A complete eigendecomposition of a N x N matrix possesses
a remarkable time complexity of O(N?). Hence, approximate
algorithms are often used for big N, including the power-iteration
Lanczos (Cullum and Willoughby, 1985) and matrix-sampling
based Nystrom methods (Fowlkes et al., 2004). These algorithms
reduce the cost to O(kN2),k <« N and return only the top-k
eigenvectors and values. The core and most expensive operation
in these algorithms are matrix-vector multiplication (for power-
iteration methods) and small matrix-matrix multiplication (for
sampling methods). See Algorithms 1, 2 for the fundamental steps
of Lanczos and Nystrém methods, respectively. These algorithms
reduce the complexity with some sacrifice in accuracy. A larger
number of Lanczos iterations or a larger sampling rate for
Nystrom accounts for better accuracy, which however, increase the
computational cost.

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

1: s < generate random index set such that
llsl =m < N;
2: CNxm < sample m column vectors from A;
3: Wyxm< matrix with rows and column indices in s;
4: decompose Wpx, to get top k eigenvalues Agyx and

eigen vectors Upxk;
—1

5: compute CnwxmUmxkDp i

Algorithm 2. Nystrom method.

2.2 Trusted execution environment

Trusted execution environment (TEE) is a hardware-based
solution for executing code in a secure environment where
powerful adversaries cannot access code or data within this secure
area. Using TEEs, a user can run their sensitive computations
in the secure area called Enclave, which uses a hardware-assisted
mechanism to preserve the privacy and integrity of enclave
memory. With TEEs, users can pass encrypted data into the
Enclave, decrypt it, compute with plaintext data, encrypt the result,
and return it to the untrusted cloud components. TEEs isolate
private reserved memory for secure applications from other system
components, such as operating systems and hypervisors. Thus, a
powerful adversary controlling operating systems or hypervisors
cannot breach TEEs.

The remote attestation procedure establishes the trust between
the TEE hardware and the user via the CPU manufacturer’s
attestation server. The remote user must verify the correctness of
the cloud hardware and the user binary to trust a TEE claimed by
the cloud provider. Using remote attestation, the user can verify if
the cloud provider uses certified TEE hardware and if the program
running in an enclave is from a digitally signed binary.

Major cloud platforms have provided different types of
TEE-enabled servers. Intel SGX is one of the popular TEE
implementations. Since 2015, SGX has been available in most
Intel CPUs. Similarly, ARM has TrustZone, and AMD has secure
encrypted virtualization (SEV).

While all TEE implementations feature complete memory
isolations from the system components and remote attestation
to establish trust, they still suffer from side-channel attacks.
Passive adversaries can exploit some attacks (Cash et al.,, 2015;
Russakovsky et al., 2015; Zheng et al., 2017) by only observing
interactions between TEEs and other system components. Some
can even retrieve plaintext information directly from the Enclave
via side-channel attacks. Based on the attack strategies, these
attacks can be categorized as (i) memory/cache-targeted and (ii)
microarchitecture-level attacks. In memory/cache-targeted attacks,
the attacker exploits the interactions between TEEs and untrusted
memory or applications and observes enclave memory page loading
and CPU cache usages. Microarchitecture-level attacks utilize
modern CPU features, such as CPU transient memory execution
(Bulck et al., 2018), to retrieve fine-grained information from the
low-level cache lines. An important approach to addressing the
side-channel attacks is disguising access patterns known as data-
oblivious algorithms (Alam and Chen, 2023).

In this study, we use TEE to address the high costs associated
with the pure-software cryptographical approaches and use

Frontiersin Big Data

10.3389/fdata.2023.1296469

differential privacy to disguise the access patterns in TEE-based
spectral analysis algorithms.

2.3 Differential privacy

Differential privacy (Dwork, 2006) is a standard notion in data
privacy, which protects individual’s privacy from inference attacks.
For two datasets A; and A; that differ in exactly one record, let
M(A;) be the mechanism that outputs noisy statistics r € R of
the datasets, then e-differential privacy is satisfied if the following
condition holds:

Pr[M(A;) = r] <= exp(€)Pr[M(Az) =],

where € is the privacy parameter—the smaller it is, the better the
preserved privacy. The basic idea is that with or without a victim
present in the dataset, and the attacker cannot infer any useful
private information from the noisy statistics M() about the victim.
The mechanism M is defined as the additive perturbation of a
specific query function f(x) that returns aggregate information of
the dataset, such as the COUNT function: M(A) = f(A)+ random
noise. The noise in the output is engineered to approximately
preserve the utility of the query function while preventing attackers
from inferring useful private information about any individual
records in the database. Laplacian noise is one of the popular
choices, where a noise is drawn from the Laplace distribution
Lap(0,b), the density function of which is le exp(—%). The
parameter b is determined by the user-specified parameter € and
the sensitivity of query function: A = max [f(A;) — f(A2)| for any
pairof A and A, and b = A /e. For example, the COUNT function
has the sensitivity A = 1, and thus, the parameter b is set to 1/¢.

3 Privacy and ownership preserving
graph analysis in the cloud: the
architecture

We will first present the specific threat model that considers
more fine-grained confidentiality and ownership protection. Then,
we will present a TEE-based framework for confidential graph
spectral analysis in the cloud that receives encrypted data from data
contributors and conducts confidential analysis with TEE. Finally,
we discuss the technical challenges under the threat model.

3.1 Threat model

The cloud-based framework comprises three parties: (i) the
data owner who owns and analyzes data in the cloud, (ii) data
contributors who agree to the data owner’s privacy terms and
provide their private data via data owner’s data submission services,
and (iii) the cloud provider who offers computation and storage
services. Figure 1 shows the basic setting of the framework.

Different from software crypto approaches, we can upgrade
the threat model with a compromised, possibly malicious cloud
provider thanks to the cloud TEE, for which we will address

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

10.3389/fdata.2023.1296469

Data Contributors

! 1
1

1
' .
: ' Graph Public Cloud
, | Sensitive | @=» |Encrypted ' Submission Encrypted
1 |Graph Data Graph : :(Graph
1
Mmoo B;__/___ _!

° ue <::z
Query =

Processor

Graph Analysis

R |
Data Owner oo tEb
FIGURE 2

High-level overview of TEE-Graph architecture.

both the confidentiality and integrity issues while leaving out the
availability issue. Figure 2 illustrates our TEE-based framework. To
guarantee the GDPR-level user privacy rights, we ensure the data
owner’s data confidentiality (only accessible to the authorized data
owner) and the right of revocation. The data remain encrypted at
rest, and without dedicated TEE programs, no other use of the data
will be possible. Once a contributor revokes the sharing, the data
owner cannot use them sneakily, e.g., by making a copy of the data.

3.1.1 Assumptions about TEE

The TEE infrastructure (Costan and Devadas, 2016) provides
the basic protection mechanism for the integrity and confidentiality
of the data and programs in the enclave. Some TEEs, e.g., Intel SGX,
have strong restrictions to achieve desired security. For example,
the enclave program in the protected enclave memory area cannot
access the file system APIs directly as the OS is not trusted. Thus,
the encrypted data must be loaded from the main (untrusted)
memory and then passed to the enclave. While adversaries cannot
directly access the enclave, they can still glean information via
side channels, such as memory access patterns and CPU caches.
However, since cache-based attacks target all CPUs (regardless
of having TEEs or not), we have to depend on manufacturers’
microarchitecture level fixes. In contrast, the exposure of memory
access patterns is inevitable as enclaves have to interact with the
untrusted memory area, which is the main target we aim to protect.
Figure 3 illustrates the TEE-specific threats.

3.1.2 Compromised cloud provider

The cloud provider hosts the TEE infrastructure and allows
remote attestation to verify the correctness of the TEE. Similar
to other TEE-enhanced services, the cloud provider’s memory is
divided into the Trusted Memory, protected by the TEE, and the
Untrusted Memory areas. The Cloud Provider has direct access to
all code and data in the disk and the untrusted memory. Thus,
data have to be encrypted in these areas. However, encryption does
not prevent exposing data statistics, e.g., data size and read/write
access patterns. The cloud provider cannot access trusted memory
directly. However, since it controls the operating system and

Frontiersin Big Data

05

CPU
e (]

o

Trusted —
Enclave

\ ‘gSide-Channel

2 Attacks

Untrusted Server

FIGURE 3
TEE, memory interactions, and side-channel vulnerabilities.

hypervisor, a compromised cloud provider may deploy system-
privilege code in the untrusted memory to explore side channels
of the TEE. It can also tamper with the data and program running
in the untrusted memory and force the generation of page faults for
enclave pages (Xu et al., 2015; Shinde et al., 2016).

3.1.3 Dishonest data owners

Honest data owners will follow the contract with the
contributors to use the data only for designated purposes. A
dishonest data owner may try to make a copy of the data to
circumvent contributors’ revocation of sharing.

3.1.4 Protected assets

We aim to ensure privacy and ownership guarantees for
contributors and the data owner. First, we aim to protect the
privacy rights of data contributors. Privacy laws such as GDPR
require that the data owner protects data privacy, and the data
contributor should have the right of revocation, i.e., stop the
sharing with the data owner at any time. A dishonest data owner
should not be able to continue to use the revoked data. Second,

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

data owners are responsible for preserving contributors’ data from
adversaries, e.g., a compromised cloud provider, in collecting and
processing data. Graph privacy includes edge privacy, e.g., whether
an edge exists, and node privacy, e.g., the node degree and the k-hop
neighborhood subgraphs.

3.1.5 Scope of side-channel attacks

We consider only the memory side channels, which can
be protected via protecting programs access patterns. We
assume although a cloud infrastructure can be compromised, the
attacker cannot physically access the machine, e.g., by attaching
a device to the server or touching the motherboard. Other
side-channel attacks utilizing the unique features of cache or
microarchitecture design, e.g., speculative execution (Brasser et al.,
2017; Gotzfried et al., 2017; Bulck et al., 2018; Gamaarachchi and
Ganegoda, 2018; Van Bulck et al., 2020), will depend on CPU
manufacturers’ firmware fixes and thus are out of the scope of this
study.

The threat model outlined above is more powerful and provides
richer semantics of protection compared to the previous study
(Sharma et al., 2019).

3.2 TEE-Graph architecture

We aimed to design an efficient confidential graph analysis
framework. One of the key ideas of our framework is to leverage
trusted execution environment (TEE) as a trusted computing base
(TCB) to guarantee the confidentiality and integrity of the graph
analysis in the cloud. We show that TEE can enable stronger
and richer privacy protection and much more efficient solutions
compared to existing pure-software cryptographic approaches
(Sharma et al., 2019).

Figure 2 shows the core components and the workflow of the
TEE-Graph framework. In the following, we describe the detailed
role of each party in the collaborative computing scenario.

e Contributors (C). Before participating in the collaboration,
each contributor (C;) agrees on the data owner’s privacy policy
and the usage of their data and receives a unique ID. The
contributor C; first encrypts their portion of the graph A;, e.g.,
C;’s adjacency edges mapped to the ith row of the adjacency
matrix A. Then, C; performs remote attestation with the data
submission service running in the clouds TEE to ensure the
correctness of the hardware and the trusted binary running in
the cloud. It also conducts the Diffie-Hellman Key Exchange
(DHKE) protocol to create a secure channel between TEE
and the C;’s system. C; sends A; and other metadata via the
secure channel. The contributor may continuously update
their data, leading to an evolving graph. However, we focus
on the simpler case of a snapshot graph in this study.

e Cloud Provider (P). It hosts all the required components of
TEE-Graph, including storage, TEE infrastructure, and trusted
and untrusted codes. After instantiation, the TEE-based data
submission service engages with each C; and establishes
secured channels via remote attestation. After receiving A;

Frontiersin Big Data

10.3389/fdata.2023.1296469

along with other meta data, the service stores encrypted data
in untrusted memory (disk) with ensured confidentiality and
integrity. Another TEE-based service, i.e., spectral analysis
service receives requests from the data owner and performs
on-demand graph analytics confidentially.

e Data Owner (O). After all the C; submit their data, O requests
to conduct spectral analysis on the collected graph data. O also
performs a remote attestation with the spectral analysis service
and establishes a secure connection for receiving the result.

3.3 Technical challenges

With the threat model and each party’s role, we need to address
three technical challenges in the TEE-graph design.

e Ownership and Confidentiality Protection. In a cloud-based
environment, when data are submitted to the cloud, both
the data contributors and the data owner lose control of
the data as the cloud provider has the full control of the
data. Our goal is to safeguard the privacy and ownership
of the submitted data so that no other parties, including
malicious contributors or the cloud provider, can infer private
information or steal the data. With privacy regulations such
as GDPR, data contributors should also be able to revoke
sharing their private data at any time, without the concern
that dishonest data owners will continue to use their data.
Similarly, data owner wants to preserve confidentiality and
ownership of the collected data to conform the privacy law.

e Processing Big Graph with TEE restrictions. Trusted

(TEEs) have limitations,

computational

execution environments such
overhead, and

interactions with untrusted parts of the system. We aim to

as memory constraints,

address these challenges, specifically for the Lanczos and
Nystrom methods.

e Protecting TEE Access Patterns . As explained in Section 2,
TEE is still vulnerable to access-pattern-based side-channel
attacks, which are difficult to mitigate. We will thoroughly
examine the TEE-Graph framework, identify data-dependent
access patterns, and create efficient obfuscation mechanisms
to mitigate the issue.

4 Technical details

We design the following solutions to address the three technical
challenges.

4.1 Maintaining ownership and
confidentiality of graph data

We leverage TEE to manage the ownership of both contributor
and data owner’s ownership on the data even after submitting the
data to untrusted cloud. We designed the TEE-Graph to ensure that
only the TEE has access to private data. Therefore, no other party,
including the cloud provider, can learn any sensitive information

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

during processing or while at rest. Before we describe the unique
feature, we give the graph encoding method used in our approach.

4.1.1 Graph encoding

Large graphs are often sparse. We use a simple sparse encoding
method for the graph adjacency list of each contributor. This
method assigns a unique identifier to each vertex and each vertex
(contributor) maintains a list of the neighboring vertices. Let us
consider a typical graph matrix for spectral analysis: the normalized
Laplacian graph matrix L = I — D~'W (the definition in Section
2.1). It is clear to infer that L is still sparse if W is sparse. In sparse
encoding, the zero entries are skipped, while the non-zero ones are
encoded as (i, j, v) for entry index (i,).

Each contributor will submit a sparse row of the matrix,
corresponding to the corresponding node’s outlinks in the graph.
Each contributor will also have a public key pair for signing their
submitted data, and the TEE maintains a public key database for
verification. With an established secure channel, a contributor signs
the list of their neighbors with a digital signature, S;, and submits
the graph data to the submission service. The contributor needs to
keep the signature S; for possible later revocation.

We used the 128-bit AES-CTR encryption mode to encrypt
the received list with a TEE-specific key, which will be discussed
later, and stored it in a block file. Due to AES, it does not increase
the ciphertext from the original plaintext data, a significant benefit
compared to the non-TEE approaches that depend on expensive
homomorphic encryptions (Sharma et al., 2019).

4.1.2 TEE-specific key

We implement the ownership and confidentiality protection
by leveraging a key feature of TEE: the TEE-specific private key.
Specifically, the TEE can generate a TEE-specific private key that
only the TEE can access, inaccessible even to the TEE owner. Let
KTEE denote such a private key, which will be used to encrypt
the graph data stored in the cloud. K"PF is encrypted and stored
on the disk with the sealing key that is bound to the TEE binary
and its collaterals, provided by the manufacturer. K™ can only
be restored and decrypted when the same TEE wants to read
it; otherwise, no one can ever restore the key. This TEE-specific
private key management is a unique feature of TEE and has been
extensively used in practice (Karande et al., 2017; Van Schaik et al.,
2020). After instantiation of TEE-Graph, the submission service
TEE generates KTPE. KTFE is shared between the system services
and never gets out of the TEE. After receiving the data A; from the
contributor C;, the submission service encrypts it with KTEE and
store the encrypted data on the cloud storage.

We do not aim to hide each contributor’s submission activity,
which is also impossible. The sensitive part of the submission is
the specific edges and the node degree, e.g., who the contributor
interacts with and how many such neighbors are in the graph.
Section 4.3 discusses details about access-pattern protection in the
submission process and the spectral analysis.

The benefit of this procedure is two-fold. (1) The data owner
can only use the collected data for the specific graph analysis
service, which cannot be moved for other uses. It enforces the

Frontiersin Big Data

10.3389/fdata.2023.1296469

agreement between the contributors and the data owner. A relaxed
access model can also be easily implemented on top of that, e.g.,
the data owner fully owns a specific contributor’s data, i.e., with
an owner provided KTEE (2) Since the submitted data cannot
be moved for other uses, we allow a certain submitted data item
to be removed securely, guaranteeing the contributor’s right of
revocation. Thus, this procedure guarantees the ownership and
confidentiality of data for both the contributors and the data owner.

4.1.3 Revocation

The contributor can submit the signature of the specific
submission (with a specific submission ID) they want to revoke to
the revocation service. The service will verify the signature with
the stored C;’s public key and delete the requested item. It does
need to record the information (contributor ID and submission
ID) together with the public key database to implement this
revocation operation. However, this cost is linear to the number
of contributors and highly acceptable. The access patterns of the
revocation operation do not reveal any private information in the
graph.

4.2 Handling big graphs with TEE

Processing large graphs in TEE presents multiple challenges
that must be addressed. One of the primary concerns is maintaining
the integrity of graph data throughout the lifecycle of TEE-Graph.
This necessitates implementing robust security measures to prevent
unauthorized access and tampering. Additionally, the limited TEE
memory for some TEEs, e.g., Intel SGX, poses a challenge in
efficiently processing vast amounts of data. In the following section,
we will outline the components of TEE-Graph and explain how
they work together to efficiently manage and analyze big graphs
with TEEs.

Components of TEE-Graph. We design TEE-Graph based
on the most popular TEE, Intel SGX. Intel SGX requires the
TEE application divided into to the trusted and untrusted parts.
Figure 4 shows the components of the framework. The untrusted
part only performs the initiation of TEE-Graph along with
basic read/write operations. The trusted part performs the core
operations, including the graph submission service and the spectral
analysis service.

e Untrusted Part. Since Intel SGX depends on untrusted
memory for network and IO operations, our design needs
to address the confidentiality of the data that depends on
the untrusted part. Therefore, our design involved minimal
tasks that relied on the untrusted part of the framework.
The untrusted part of the TEE-Graph instantiated the
framework. The remote attestation procedure guarantees that
the untrusted part honestly loaded the correct binary in TEE to
start the services in the enclave. Second, the IO operations, i.e.,
read/write data from TEE, depend on the untrusted part of the
framework. We maintain privacy-preserving data read/write
operations to hide all the sensitive information in processing
the graph.

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

Vs

~
TEE

r N\

Spectral Analyzer Big Graph

Key Management Crypto

\ J

Submission Service| |Revocation Service

r D

TEE-Graph Controller

\

Query Processor] [Data Processor
& J

t

4)

[TEE-Graph Host] [Data I/O]
Untrusted Part)

.

FIGURE 4
Overview of the TEE-Graph Components.

e Trusted Part. Major components of the TEE-Graph remain
in the trusted part. The key management module maintains
the session key after each remote attestation performed by
either the contributors or data owner. This module also
securely generates the Krgp with the manufacturer’s crypto
module so that no side-channel information is leaked. TEE-
Graph’s crypto module performs all the encryption/decryption
of the submitted data, intermediate sensitive data, and spectral
analysis results. The Big Graph module maintains the Big
Graph's read/write operations and on-demand loading of
subgraphs. The spectral analyzer module performs the spectral
analysis algorithms upon the data owner’s request. This
module interacts with the Big Graph module and performs the
required operations, e.g., sparse matrix-vector multiplication.
The result is encrypted with the data owner’s private key and
returned to the data owner.

4.2.1 Integrity guarantee

We maintain the integrity of the graph data both in transit,
at rest, and during computation. While TEE assures the integrity
of enclave memory, data residing in untrusted memory remain
vulnerable and can be modified. The integrity of the data
transferred from the untrusted part will be verified inside the
enclave.

We consider three possible attacks to integrity: (1) modify a
data block, (2) shuffle a block with another block in the same file,
and (3) insert a block from a different file (or a phase’s output
that is encrypted with the same key). To address all the attacks,
we include the following attributes in the block: (i) Block ID, so
that block shuffling can be identified, (ii) File Id, so that no block
from different files can be inserted, and (iii) the block-level message
authentication code (MAC). At the end of each block, a MAC is

Frontiersin Big Data

10.3389/fdata.2023.1296469

attached to guarantee the integrity of records, before the whole
block is encrypted. We also use the randomized encryption mode
AES-CTR to make sure identical blocks will be encrypted to non-
distinguishable ones so that adversaries cannot trace the generated
results in the TEE-Graph's workflow. A simple verification program
runs inside the enclave that verifies the IDs and MAC after reading
and decrypting a block.

4.2.2 Efficiency

Some TEEs, i.e., Intel SGX, may have a very limited TEE
memory size. Designing TEE applications that use big graphs can
be quite challenging due to the limited memory of TEE. It is
important to consider the memory constraints when developing
such applications to ensure they run efficiently.

The main memory consumption for performing spectral
analysis is large for large graphs. To address the TEE memory
limitation, we use a stream processing method to process the graph:
only the requested part is processed in the enclave while the rest of
the graph remains in the encrypted form in the untrusted memory.
The core operation of the Lanczos method can be conveniently
converted to stream processing. Specifically, sparse matrix-vector
multiplication is streamlined by loading each row of the sparse
matrix sequentially (Figure 5). This also allows a big graph to be
partitioned and processed in parallel in multiple TEE threads. In
contrast, the Nystrom method depends on sampling to reduce the
large graph to a manageable size subgraph. Note that these activities
will not breach the private information embedded in the row if the
access pattern protection method is applied (details in Section 4.3).

The following methods can be used to further improve the
performance.

e Multi-threaded enclaves. In sparse matrix-vector
multiplication, each partition of the graph can also be
processed in parallel with multi-threaded enclaves. Most
TEE implementations such as SGX also enable multi-thread
confidential processing.

e GPU TEE. GPUs can significantly speed up large matrix
computation. However, when the task is moved out of
the TEE to a GPU, the security is not guaranteed. While
several methods (Hunt et al., 2020; Deng et al., 2022; Yudha
et al., 2022) have tried to incorporate GPUs in TEE-based
confidential computing, the performance gains of using GPUs
in these methods are quite limited. Nvidia recently launched
GPU TEE (e.g., H100) to enable TEE features at the hardware
level, which will be tested in our future work.

4.3 Access-pattern protection

One of the most challenging aspects of a TEE framework is
safeguarding data access patterns. We have carefully examined
the TEE-Graph framework, starting from contributors’ graph
submission to the data owner’s receipt of the results and developed
measures to protect these access patterns.

Note that we do not aim to hide which contributor submitted
which row. However, we try to protect the content (or the access

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

10.3389/fdata.2023.1296469

f Untrusted Memory \

FIGURE 5

TEE \
A11 A19A191 - - A1t >
Ar 12 Apgo Aog3p - Ao 2 \T‘ X D
[A332 A3191A3698 - - A3n3]7 I
Loading small @ \%
. _ ' !
AN 200 AN202AN990 - - - - ANnN sub-grap
Result R;
Big Graph Sparse Matrix-Vector

Sparse matrix-vector multiplication for big graphs in a small trusted computing base (TCB). TEE loads a small sub-graph, perform sparse
multiplication with the corresponding vector, and stores the positional value in the resultant vector.

/

Multiplication

node degree/graph size
of individual contributors

read/write access
pattern from storage

Graph
Submission

2

1
1
:
Contributor :
Storage 1
TEE :
%) Query Result S oPU :
' | Analysis €] -
Data Owner N S
In-Enclave acess patterns
due to page-fault
FIGURE 6

Identifying access pattern vulnerability in TEE-Graph.

patterns) of the row elements, which breaches edge privacy and
node privacy. Figure 6 depicts the access points where access
patterns need to be protected. (1) During contributors’ graph
submission, the untrusted part of the submission service can infer
a contributor C;s node degree via the length of the submitted
data even though the data are fully encrypted. The node degree
might be used, e.g., in breaching the identity of C;. (2) During
graph processing, each row of the matrix is loaded, again, the
length of which can be monitored to review the node degree of
C;. (3) Finally, within the spectral analysis enclave, adversaries via
the compromised OS can observe the in-enclave page-level access
patterns to infer the node degree information and the indices of the
non-zero elements, which expose the topology of the graph.

Algorithm-specific memory access pattern. We have also
conducted a thorough analysis of the spectral analysis algorithms
utilized in both Lanczos and Nystrom methods (the detailed steps
are in Algorithms 1, 2 in Section 2).

Frontiersin Big Data

During the computation of sparse matrix-vector multiplication
in the Lanczos method, we load each matrix row E(4A;) sequentially
in TEE and decrypt it. Note that the sparse encoding only keeps the
non-zero entries of the matrix row, and thus, the corresponding
positions in the vector will be revealed, which can be used to infer
the edge. By monitoring this information, the adversary can recover
the graph topology. Figure 7 shows the access pattern and attacker’s
view on the access patterns. Such an attack completely breaches the
confidentiality of graph structure during graph analysis.

The Nystrom method uses random sampling in the first
stage, where selecting or not selecting a node seems non-sensitive
information. However, for each selected row, the selected columns
need to be extracted, which again reveals the topology of the
sampled subgraph. Furthermore, the last step of Nystrom method
also accesses the complete columns of the graph matrix, which also
expose partial graph topology.

Compared to these operations, the eigen-decomposition of the
small matrix in these methods is less sensitive once the proposed
protection approach is applied.

4.3.1 Differentially private edge injection to
protect access patterns

Previously, we have proposed the bin-based localized
differentially private data submission method to disguise the
non-zero entries (Sharma et al., 2019). We have found that this
algorithm can also address the access pattern issues with the
TEE-based processing. To make it self-contained, we will briefly
describe the bin-based graph perturbation first and analyze how it
protects access patterns during spectral analysis.

Via the previous analysis, we have known that without
protection, the adversary can infer node degrees during data
submission and further infer the indices of non-zero entries in
spectral analysis. The basic idea is to inject fake non-zero entries,
i.e., encrypted zero entries, but the adversary cannot distinguish
them from them in the encrypted form. Apparently, a trade-oft

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

10.3389/fdata.2023.1296469

Operations on vector (V) indices with
only corresponding adjacent nodes of A;

ih vi

v2

v24
v25

[Az,z A224 A2 56
A

v56
v57

sub-part of sparse matrix-

vector multiplication X
—

\)
Actual computation in TEE

FIGURE 7

Attacker estimates the neighboring nodes from memory page-level side-channel attack.

estimating adjacent nodes
. from sparse multiplication

&

1 1
1 1

Attacker's view on memory

access due to due to page-

level access pattern

exists: the more the zero entries, the more the submission, storage,
and computation costs.

We turn to an efficient approach based on differential privacy
(Dwork, 2006). In the standard differential privacy definition, the
goal is to disguise any specific person among the entire set of
persons that are related to the database. Thus, the key factor,
the sensitivity of function, is applied to the whole dataset, which,
however, results in very large sensitivity for functions related to
node degree on graph datasets. As a result, data contributors have
to add many fake items to achieve the desired differential privacy,
which seriously impairs sparsity. Specifically, let the query function
F() about node degree, say finding the node degree ranked at k.
Let A and A’ be the neighboring graphs which differ by only one
node. Thus, the sensitivity A = max{F(A) — F(A’)} is the difference
between the largest and the smallest node degree. For a graph of N
nodes, this sensitivity can be up to N.

To achieve a better balance between privacy and sparsity,
we use a bin-based method to achieve weaker contributor
indistinguishability, which is reduced from the whole graph to
a subset of nodes in a bin. Specifically, we sort the nodes by
their node degrees and then partition the degree distribution by
bins. The contributors in the same bin select the number of
fake edges with the bin-specific parameter, where the function
sensitivity can be much smaller. The node degree distribution can
be estimated with the node degrees of randomly sampled nodes.
This can be achieved by the data owner asking some randomly
selected data contributors to submit encrypted node degrees
before them submitting the graph data. The data owner can then
build a histogram to approximate the node degree distribution.
Apparently, this additional cost is quite low.

The method will generate an equi-height histogram with the
sample node degrees, e.g., for a 100-bin histogram, each bin
contains approximately 1% of the nodes. The number of bins

Frontiersin Big Data 10

is chosen so that each bin contains a moderate number of
nodes, for example, a value in (50, 100) to provide satisfactory
indistinguishability. Let U; be the maximum node degree in the
i-th bin, and L; be the minimum degree in the i-th bin. Now let
A and A’ be the neighboring graphs which differ from each other
by only one node in the bin. We can derive the sensitivity A; =
max{F(A) — F(A")} = U; — L;, which should be much smaller
than N.

According to the noise design of differential privacy, we derive
that the parameter b of Laplace distribution Lap(0, b) to be (U; —
L;)/€. However, this noise can be negative, which does not make
sense, e.g., asking the contributor to remove real edges and thus
destroying the authenticity of data. To avoid this problem, we
add an offset to the noise to make it positive, which reduces the
overall sparsity but still satisfactorily preserves both privacy and
authenticity. For a specific b, we can always identify the bound p
for Pr(x < p) <= 0.01 (p ~ —3.912 for b = 1 and p linearly scales
with b: p & —3.912b), i.e., if we add an offset |p| to the distribution,
we can make sure the majority of population (> 99%) positive.
With such an offset, the number of fake edges, the number of fake
edges, k;j, is chosen as follows:

kij = |pil + 8ij»

where [p;] is the offset and §;; is a random integer drawn from
Laplace(0, (U; — L;)/€) to make k;; > 0. With such a noise
design, the nodes in the same bin satisfy e-differential privacy on
node-degree based functions.

By preserving node-degree differential privacy, edge differential
privacy is also satisfied. We define A and A’ as a pair of neighboring
graphs, if they only differ by one edge. The problem of checking the
existence of an edge can be transformed to an edge counting query
function. Let us look at any arbitrary edge counting functions.
Clearly, the sensitivity of such a function is 1. Thus, Laplace(0, 1/€)

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

is used to generate the noisy edges. Since the parameter (U; — L;)/€
used for disguising node degrees is no less than 1/¢, the fake links
generated for protecting the privacy of node degrees also protect
edge privacy.

Algorithm 3 gives the details of our privacy preserving sparse
submission algorithm.

1: input: H: histogram provided by the data owner.
€: user selected parameter for e-differential
privacy. d,-,j: the actual node degree.

2: find the bin that contains d whose upper bound

i
and lower bound are U; and L;,
3: b(*(U,'*L,‘)/S;

4: p<«bx(—=3912);// for p~ —3912 for b=1 the

respectively;

p linearly scales with b: p~ —3.912b;

5: draw a value 5,-,]- from the distribution Laplace
(0,b);

6: kij < |pl+3ij;

7: add the d;; real links to the list with the sparse

encoding;

and encode them as the encrypted zero entries;
9: submit the items with index (i,j) for j>i if it
is an undirected graph, otherwise submit all

dij+ ki items.

Algorithm 3. Privacy preserving sparse submission (H, ¢, d;;).

The benefit of random fake edges also extends to the access-
pattern protection during spectral analysis. Specifically, when doing
matrix-vector multiplication, the fake edges are loaded as normal
ones and participate in the computation. The adversary does not
obtain additional information by observing these access patterns.
However, since their values are zero, the final computational result
does not change. We have observed that the increased costs by
using the differentially private fake edge injection are small.

5 Experimental evaluation

The evaluation will verify that (1) the TEE-Graph approach can
significantly reduce the costs of confidential graph spectral analysis,
compared to existing pure software cryptographic approaches, and
(2) with our unique design and a small extra cost, it can also
effectively disguise access patterns and thus protect from many TEE
side-channel attacks.

Note that the proposed framework can adopt the exact
Lanczos and Nystrom algorithms and execute them just like in
plaintext computation. Our previous study (Sharma et al., 2019)
has evaluated the utility of these approximate spectral analysis
algorithms. Thus, we do not repeat this experiment here.

5.1 Experiment setup
5.1.1 Implementation

We have developed the major components of the TEE-Graph
framework with C++ and the Intel SGX SDK for Linux. The

Frontiersin Big Data

8: randomly choose k;; edges from the rest N —d;; edges

11

10.3389/fdata.2023.1296469

TABLE 1 Describes the properties of the datasets used in the benchmark.

Datasets Nodes Edges Size
Facebook 4039 88234 854 KB
Twitter 81306 1768149 44 MB
Gplus 107614 13673453 1.34GB

framework operates entirely within the enclave, except for a small
part located outside the trusted area that handles block-level
read/write requests from within the enclave. To encrypt data blocks
in the untrusted memory, we use 128-bit AES-CTR encryption.
Our implementation of Lanczos and Nystrom methods is designed
to work within the functional limitations of TEEs. We utilize the
C++ implementation of the Eigen library for eigendecomposition
of small matrices in both methods. Additionally, we apply graph
perturbation technique using differential privacy to safeguard
graph submission information and in-enclave access patterns.

For comparisons with state-of-the-art crypto approaches, we
utilize the PrivateGraph methods developed in our previous work
(Sharma et al., 2019). Its Paillier method was implemented with
C++ using GMP big integer library and Armadillo linear algebra
library, and used the 80-bit security setup with 10 fractional-
digit precision for floating-integer conversion. The HELib library
(github.com/shaih/HElib) was used for the RLWE scheme with 32-
bit plaintext encoding and the ciphertext packing technique (Smart
and Vercauteren, 2012). Note that these settings are theoretically
weaker than 128-bit AES-CTR we used for TEE-Graph in security
guarantee.

Our experiments were performed on a Linux machine equipped
with an Intel(R) Core(TM) i7-8700K CPU of 3.70 GHz processor
and 16 GB of DRAM.

5.1.2 Benchmark measures

To benchmark and compare the Lanczos and Nystrom
methods, we measure the communication costs for both the data
contributors and the data owner for all compared methods. We
also analyze the storage and computation costs on the cloud side
for major operations in spectral analysis for different methods.

5.1.3 Datasets

To make the results comparable, we adopted the same three
graph datasets in the SNAP database (snap.stanford.edu) that were
used by pure-software cryptographic approaches (Sharma et al.,
2019). They were originally used to study social circles in the
three popular social networks—Facebook, Twitter, and GPlus. We
make the edges undirected for easier processing in the evaluation.
Table 1 describes the properties of the graph data we used in
the benchmark.

5.2 Result analysis

All the costs in the following discussion are based on the
differentially private graph element submission conducted by data

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://github.com/shaih/HElib
http://snap.stanford.edu/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

TABLE 2 Contributor’s average cost for sparse submission.

10.3389/fdata.2023.1296469

Method Encrypt A; (s) Upload E(4;) (MB)

Twitter Twitter
Paillier 0.04 0.03 0.22 0.006 0.005 0.032
RLWE 0.64 051 3.28 12.1 9.6 61.9
TEE-Graph 0.00005 0.00003 0.00009 0.0001 0.0002 0.001

TABLE 3 Data owner’s costs for confidential Lanczos methods.

Method Encryption cost (s) Communication cost (MB)
Twitter Twitter GPlus
Paillier 696 12,809 17,969 108 1,983 2,789
RLWE 30 2,915 443 2,201 2,915 4,673
TEE-Graph ~0 ~0 ~0 ~0 ~0 ~0
contributors. The next section will focus on the optimal parameter TABLE 4 Cloud storage costs with sparse submission.
setting and extra costs associated with the differentially private ‘ Method Facebook Twitter GPlus ‘
submission method.
Paillier 24.4MB 372.9 MB 32GB
RLWE 47.8 GB 729.8 GB 6.3 TB
5.2.1 Contributor’s cost TEE-Graph 845 KB 44.6 MB 135GB

In Table 2, you can find the average cost for contributors
in different methods, including the encryption cost and the
amount data to be uploaded. The baseline PrivateGraph methods
Paillier and RLWE use additive homomorphic and somewhat
homomorphic encryption methods, respectively, which incur
significantly higher costs than the AES encryption used in TEE-
Graph. TEE-Graph uses a compressed encoding and block-based
encryption method, with a fixed block size of 4KB. This method
does not require element-wise encoding or complex cryptographic
protocols. Furthermore, AES does not increase the cipher text size,
which is significant for the data to be transferred to and stored in the
cloud. Therefore, contributors can benefit from significantly lower
encryption and data submission costs for TEE-Graph than those for
Paillier and RLWE.

5.2.2 Data owner’s costs

In PrivateGraph methods, the data owner needs to actively
participate in the iterative process of spectral analysis, which incurs
significant costs. For example, in each iteration of the Lanczos
process with the additive homomorphic encryption (AHE)-based
implementation, the data owner needs to mask/demask the
vector in confidential matrix-vector computation. In the Nystrom
method, the data owner needs to conduct the small matrix
decomposition locally. In contrast, TEE-Graph has everything
done within the TEE in the cloud and the data owner takes
almost zero cost in the process of spectral analysis (except
for submitting the service request and receiving the result).
For the experiment, we used 30 iterations and 10 clusters.
Table 3 displays the comparison of the accumulated costs

Frontiersin Big Data

KB, kilobytes; MB, megabytes; GB, gigabytes; TB, terabytes.

of encryption/decryption and communication for all methods.
Again, we see TEE-Graph has huge cost advantages for the
data owner.

5.2.3 Cloud storage cost

All these methods request the encrypted data stored in the
cloud for applying different analytics algorithms or evolving graph
analysis. The cloud storage cost is approximately the sum of all
Contributors’ submitted data. Recall that both Paillier and RLWE
encryption methods require elementwise encryption. Additionally,
due to constraints on the number of elements per ciphertext in
RLWE, these methods require significantly larger storage costs.
In TEE-Graph, we achieve much lower costs through block-wise
AES encryption that results in the approximately same size of
the plaintext data. Table 4 demonstrates the comparison on cloud
storage costs for all the methods.

5.2.4 Cloud computational cost

Figure 8 shows the comparison of computational cost
for running the spectral analysis algorithms. We take the
most representative operation: computing one matrix-vector
multiplication confidentially for comparison, which is used in
both Lanczos and Nystrom methods. All the pure-software
implementations demand expensive homomorphic operations
over encrypted data, which incurs much higher costs than

12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

10.3389/fdata.2023.1296469

: Il Paillier
~ 10" It RLWE-P
> I TEE-Graph
=
2 10°
(e
.S
5 10°
o
>
8
10!
Facebook Twitter GPlus
Dataset
FIGURE 8
Comparing cloud cost for matrix-vector multiplication.

TABLE 5 Perturbation parameters and results.

Dataset nbins nodes/ orig. pert.

bin |E] |E|
Facebook 100 40 84243 99965 18.66
Twitter 1,000 76 1242390 1527286 22,93
GPlus 2,000 52 12113501 | 13228599 9.21

“orig. |E|”, the number of original edges. “pert. |E|”, the number of edges after perturbation.
“%inc.”, percentage of increase.

decrypting AES-encrypted data and computing with plaintext data
inside the TEE. Our experiment shows that TEE-Graph performs
6,000x to 150,000x faster than baseline methods on the core
operation.

5.3 Cost of access pattern protection

In Section 3, we have analyzed the threats caused by exposing
the access patterns in the data submission and spectral analysis
computation stages. To address this vulnerability, we developed
the differentially private method to inject fake encrypted edges
(with zero weight value) in data submission. The fake edges can
effectively protect the confidentiality of access patterns as well in the
spectral analysis stage. In the following, we will show the additional
costs brought by this technique.

5.3.1 Graph perturbation cost

In the sparse format, the element will be encoded as (i, j, v). The
PrivateGraph methods have to keep (i,) in plaintext, but encrypt
v; in contrast, TEE-Graph packs the entire entry in a block and
encrypts the entire block. Although the index is not revealed, but
the size of the block and the element-wise access patterns can still
reveal the confidential graph information. Section 4.3.1 presented
the differential privacy based method to determine the random

Frontiersin Big Data

13

102
i TEEDP
IITEE Unprotected

100 J_I h

Facebook Twitter
Dataset

10!

Execution time (S)

GPlus

FIGURE 9
Access-pattern protection cost for sparse matrix-vector
multiplication in TEE-Graph.

number of zero elements to be added to the submitted rows of the
graph matrix. The total number of submitted elements depends on
the personalized privacy parameter €. We select the number of bins
so that the number of nodes in each bin is in [50, 100] to provide
sufficient indistinguishability within the bin. With a well-accepted
privacy setting € = 1.0, we have the results in Table 5. The numbers
in the column “|E| pert.” are the average of 10 runs. Apparently, the
increase of the total number of edges is quite acceptable.

5.3.2 Additional computational costs

With the added zero-weight edges, we evaluate the additional
costs in the spectral analysis. We use the core operation:
sparse matrix-vector multiplication, to show the performance
impact on TEE-Graph. Figure 9 shows the overhead for access
pattern protection is quite limited: about 10-25% of the
overall cost.

6 Related work
6.1 Cryptographic approaches

Most software approaches for confidential data mining utilize
homomorphic encryption, e.g., RLWE (Brakerski, 2012), or secure
multi-party computation (Yao, 1986; Huang et al., 2011; Mohassel
and Zhang, 2017), or combinations of these primitives. However,
the high communication overhead and execution time make them
are still impractical for larger datasets and complex algorithms.

Our previous study on confidential graph spectral analysis:
PrivateGraph (Sharma et al.,, 2019) employs a hybrid cryptographic
protocol to engage the three parties: the data contributor, the data
owner, and cloud provider to achieve the best performance for
pure software based confidential graph spectral analysis so far.
Additive homomorphic encryption and somewhat homomorphic
encryption were used in different implementation schemes and a

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

few novel ideas, e.g., masking/demasking vectors with the Learning
with Error problem (Regev, 2005). Despite the application of novel
ideas, the overall costs are still extremely high for all the three
parties.

We show in our TEE-Graph approach that by using the
hardware-assisted TEE approach, we are able to develop much
more cost-effective solutions than the pure-software approaches.
Furthermore, we can also offer richer privacy protections, e.g.,
guaranteeing data contributors’ right of revocation for shared data.

6.2 TEE-based approaches

TEE-based privacy-preserving frameworks become popular in
the last few years. Researchers have been exploring TEE-based
applications for mainly (i) data-intensive analytics (Dinh et al,
2015; Schuster et al., 2015; Zheng et al,, 2017; Alam et al,, 2021)
and (ii) data management (Priebe et al., 2018; Antonopoulos et al.,
2020; Sun et al., 2021). VC3 (Schuster et al., 2015) and M2R (Dinh
etal, 2015) extends and utilizes the Hadoop System, where the most
sensitive part of the computation takes place in TEE. However, it
still depends on a lot of untrusted data processing, which leaks
information. Opaque (Zheng et al., 2017) tries to revise Spark for
SGX. They focus on the data access patterns between computing
nodes and illustrate how adversaries can use these to infer sensitive
information in the encrypted data. Database systems such as
ObliDB (Eskandarian and Zaharia, 2019) perform an extensive
analysis on protecting user data during SQL operations. They
provide a set of oblivious methods for everyday SQL operations.
However, these methods have significant cost overhead compared
to unprotected database systems. On the other hand, Enclage (Sun
et al,, 2021) and Always Encrypted (Antonopoulos et al., 2020)
provide a practical notion for TEE-based databases which tried
to give the balance between privacy and efficiencies where leaving
most critical side-channel attacks, e.g., controlled channel attacks
out of their scope, making it less secure compared to ObliDB.

While these frameworks have been designed for generic data,
and some might be applied to graph analytics, no significant work
has been done to address the specific challenges with confidential
graph analytics using TEE, especially, the access-pattern protection.
Du et al. (2023) proposed a graph encryption method focusing on
the shortest distance query. While this approach hides nodes and
edges using PRE the graph’s topology remains the same. Using
multiple queries, adversaries can still observe the access pattern
during graph processing, making the graph and query vulnerable to
powerful adversaries. On the other hand, our approach provides a
complete solution for protecting the contributors’ and data owner’s
ownership control and access patterns during data submission and
computation in the cloud.

6.3 TEE access-pattern protection

Data access-pattern protection has been a major approach to
addressing many side-channel attacks. Our approach represents a
task-specific more efficient protection method, specifically designed
for graph spectral analysis. Data oblivious programming is a

Frontiersin Big Data

10.3389/fdata.2023.1296469

more generic solution to protect access patterns. It contains three
major approaches: (1) Manually constructing solutions with data
oblivious primitives, such as ORAM for disguising data block
accesses (Sasy et al, 2018), CMOV instructions for disguising
branching statements (Ohrimenko et al., 2016) and specific data
oblivious algorithms (Batcher, 1968; Krastnikov et al., 2020).
However, it requires developers to re-examine every statement of
the program and revise with corresponding data oblivious method,
which is expensive and error prone. (2) Automated conversion
approaches, such as the circuit-based conversion (Biischer et al.,
2018; Ozdemir et al., 2022) or special compilers (Liu et al,
2015; Rane et al., 2015) are still not mature. (3) Semi-automated
approaches, e.g., the framework-based SGX-MR (Alam et al., 2021),
might be a promising direction that hides the protection measures
in a framework such as MapReduce and the developer only needs
to handle much smaller and simpler pieces of code and access
patterns. There has been an extensive study for comparing these
approaches (Alam and Chen, 2023).

6.4 Application of differential privacy in
graph analysis

Privacy-preserving graph data publishing (Zhou et al., 2008)
is somewhat related to confidential graph data mining. However,
it differs from our approach by using a different threat model:
graph data publishing does not assume proprietary data sharing
but sharing data with the public. Thus, the adversaries will be
among potential data miners. Consequently, differential privacy has
been applied to perturb the published graphs so that the privacy
of the individuals associated with the graph is properly protected
(Kasiviswanathan et al., 2013; Wang et al., 2013). Such perturbed
graphs can approximately preserve the information of the original
graph.

In a decentralized setting, local differential privacy (Duchi
et al,, 2013) is a widely used technique that enables researchers
to safeguard data privacy without relying on a service provider.
The approach works by introducing random perturbations to data
locally before transmitting it to an untrusted service provider
or data owner. Real-world applications, such as Google Chrome
(Erlingsson et al., 2014) and macOS (Wang et al, 2017), have
already incorporated this method. However, when using local
differential privacy to collect graph data, employing randomized
responses (Warner, 1965; Du et al., 2023) to perturb each element
of the graph can result in excessive noise. To address this issue,
Qin et al. (2017) and Ye et al. (2020) proposed collecting the
graph structure in the form of degree vectors, which represent
the neighbors of the graph. In this technique, the service provider
initially divides all the nodes into k non-overlapping subsets.
Instead of using the actual connections of a node u, the degree
vector of u represents the number of connections u has for each
subset. Finally, noise is added to the degree vector to perturb the
number of connections. While these approaches reduce the overall
noise of the graph, they still significantly modify the actual structure
of the graph.

In contrast, our objective is not to divulge graph structures
but to use randomization to inject zero-weight edges to disguise

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

sensitive information such as node degrees and access patterns. The
encrypted edges are not distinguishable, and the zero-weight edges
do not change the computational results.

7 Conclusion and future work

With big graphs collected, stored, and analyzed in the cloud,
data confidentiality and ownership are becoming an increasingly
concerned issue. Most recent studies on confidential graph analysis
have been focused on software cryptographic approaches. Only a
few studies are based on trusted execution environments (TEEs),
which have not sufficiently addressed the two critical issues: data
contributors’ ownership and access-pattern protection. We study
the problem of confidential graph spectral analysis for large graph
data in the cloud and design the TEE-Graph approach to address
these critical issues. Our experimental results show that TEE-Graph
performs much faster than software cryptographic approaches with
additional benefits in ownership and access-pattern protection.

The future work may include the following directions. (1)
Extend the analysis part to more tasks for big graphs and protecting
their access patterns efficiently. (2) Consider integrating more
convenient access-pattern protection frameworks, such as SGX-
MR (Alam et al, 2021). (3) Study the unique problems with
evolving graphs, e.g., access patterns and ownership protection.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found at: https://snap.stanford.edu/data/index.html#
socnets.

Author contributions

AA: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Validation, Visualization,

References

Alam, A. K. M. M,, and Chen, K. (2023). “Making your program oblivious: a
comparative study for side-channel-safe confidential computing,” in 2023 IEEE 16th
International Conference on Cloud Computing (CLOUD), 282-289.

Alam, A. K. M. M,, Sharma, S., and Chen, K. (2021). SGX-MR: regulating dataflows
for protecting access patterns of data-intensive SGX applications. Proc. Privacy Enhan.
Technol. 2021, 5-20. doi: 10.2478/popets-2021-0002

Alibaba (2023). Alibaba Clouds SGX Encrypted Computing Environment.
Available online at: https://www.alibabacloud.com/help/en/elastic-compute-service/
latest/build-an-sgx-encrypted- computing-environment/ (accessed November, 2023).

Antonopoulos, P., Arasu, A., Singh, K. D., Eguro, K., Gupta, N, Jain, R,, et al.
(2020). “Azure SQL database always encrypted,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD °20 (New York,
NY: Association for Computing Machinery), 1511-1525.

Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. (2006). “Group formation
in large social networks: membership, growth, and evolution,” in Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
44-54.

Batcher, K. E. (1968). “Sorting networks and their applications,” in Proceedings of
the Spring Joint Computer Conference, AFIPS 68 (New York, NY: ACM), 307-314.

Frontiersin Big Data

10.3389/fdata.2023.1296469

Writing—original draft. KC: Conceptualization, Formal analysis,
Methodology, administration,
Resources, Supervision, Writing—review & editing.

Funding acquisition, Project

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this article.
This research was partially supported by the National Science
Foundation (Award# 2232824).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no impact
on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funders.

Berkhin, P. (2005). A survey on pagerank computing. Internet Math. 2, 73-120.
doi: 10.1080/15427951.2005.10129098

Brakerski, Z. (2012). “Fully homomorphic encryption without modulus switching
from classical GapSVP;” in Annual Cryptology Conference (Springer), 868-886.

Brakerski, Z., and Vaikuntanathan, V. (2011). “Fully homomorphic
encryption from ring-LWE and security for key dependent
messages,’” in Proceedings of the 3Ist Annual Conference on Advances
in Cryptology, CRYPTO’11 (Berlin; Heidelberg: Springer-Verlag),
505-524.

Brasser, F., Miiller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., and Sadeghi,
A.-R. (2017). “Software grand exposure: SGX cache attacks are practical,” in 11th
USENIX Workshop on Offensive Technologies (WOOT 17) (Vancouver, BC: USENIX
Association).

Bulck, J. V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., et al.
(2018). “Foreshadow: extracting the keys to the intel SGX kingdom with transient
out-of-order execution,” in 27th USENIX Security Symposium (USENIX Security 18)
(Baltimore, MD: USENIX Association), 991-1008.

Biischer, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., and Schneider, T.
(2018). “HYCC: compilation of hybrid protocols for practical secure computation,” in

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://snap.stanford.edu/data/index.html#socnets
https://snap.stanford.edu/data/index.html#socnets
https://doi.org/10.2478/popets-2021-0002
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment/
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment/
https://doi.org/10.1080/15427951.2005.10129098
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 847-861.

Butenko, S., Chaovalitwongse, W. A., and Pardalos, P. M. (2009). Clustering
Challenges in Biological Networks. World Scientific.

Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. (2015). “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS "15 (New York, NY: Association for
Computing Machinery), 668-679.

Chakrabarti, D., and Faloutsos, C. (2006). Graph mining: laws, generators,
and algorithms. ACM Comput. Surv. 38, 2. doi: 10.1145/1132952.11
32954

Chander, A., Kaminski, M. E., and McGeveran, W. (2020). Catalyzing privacy law.
Minn. L. Rev. 105, 1733. doi: 10.2139/ssrn.3433922

Costan, V., and Devadas, S. (2016). Intel SGX explained. IACR Cryptol. ePrint Arch.
2016, 86.

Cullum, J. K., and Willoughby, R. A. (1985). Lanczos Algorithms for Large Symmetric
Eigenvalue Computations: Vol. I: Theory. SIAM.

Deng, Y., Wang, C., Yu, S., Liu, S., Ning, Z., Leach, K,, et al. (2022). “Strongbox: a
GPU tee on arm endpoints,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 769-783.

Dinh, T. T. A., Saxena, P., Chang, E., Ooi, B. C, and Zhang, C. (2015).
“M2R: enabling stronger privacy in MapReduce computation,” in USENIX Security
Symposium (USENIX Association), 447-462.

Du, M, Jiang, P., Wang, Q., Chow, S. S. M., and Zhao, L. (2023). Shielding graph
for eXact analytics with SGX. IEEE Trans. Depend. Sec. Comput. 20, 5102-5112.
doi: 10.1109/TDSC.2023.3241164

Duchi, J. C,, Jordan, M. L, and Wainwright, M. J. (2013). “Local privacy and
statistical minimax rates,” in Annual Symposium on Foundations of Computer Science,
429-438.

Dwork, C. (2006). “Differential privacy,” in International Colloquium on Automata,
Languages and Programming (Springer), 1-12.

Erlingsson, U., Pihur, V., and Korolova, A. (2014). “Rappor: randomized
aggregatable privacy-preserving ordinal response,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS 14 (New York,
NY: ACM), 1054-1067.

Eskandarian, S., and Zaharia, M. (2019). ObliDB: oblivious query processing
for secure databases. Proc. VLDB Endow. 13, 169-183. doi: 10.14778/3364324.33
64331

Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral grouping
using the nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26, 214-225.
doi: 10.1109/TPAMI.2004.1262185

Gamaarachchi, H., and Ganegoda, H. (2018). Power analysis based side channel
attack. arXiv preprint arXiv:1801.00932.

Gotzfried, J., Eckert, M., Schinzel, S., and Miiller, T. (2017). “Cache attacks on intel
SGX.” in Proceedings of the 10th European Workshop on Systems Security, EuroSec’17
(New York, NY: ACM), 2:1-2:6.

Huang, Y., Evans, D., Katz, J., and Malka, L. (2011). “Faster secure two-party
computation using garbled circuits,” in USENIX Conference on Security, 35.

Hunt, T, Jia, Z., Miller, V., Szekely, A., Hu, Y., Rossbach, C. J., et al. (2020).
“Telekine: Secure computing with cloud GPUs,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20) (Santa Clara, CA: USENIX
Association), 817-833.

Intel (2023). Intel’s Recent Server CPU with SGX Support. Available online at:
https://www.intel.com/content/www/us/en/products/details/processors/xeon/d/
products.html (accessed November, 2023).

Jolliffe, I. T. (1986). Principal Component Analysis. Springer.

Karande, V., Bauman, E,, Lin, Z., and Khan, L. (2017). “SGX-Log: securing system
logs with SGX,” in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security.

Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and Smith, A.
(2013). “Analyzing graphs with node differential privacy,” in Proceedings
of 10th Theory of Cryptography Conference, TCC 2013 (Tokyo: Springer),
457-476.

Krastnikov, S., Kerschbaum, F., and Stebila, D. (2020). Efficient oblivious
database joins. Proc. VLDB Endow. 13, 2132-2145. doi: 10.14778/3407790.340
7814

Liu, C., Harris, A. Maas, M., Hicks, M., Tiwari, M., and Shi, E.
(2015). Ghostrider: a hardware-software system for memory trace oblivious
computation. ACM SIGPLAN Not. 50, 87-101. doi: 10.1145/2775054.269
4385

Meng, X., Kamara, S., Nissim, K., and Kollios, G. (2015). “GRECS: graph encryption

for approximate shortest distance queries,” in ACM CCS (New York, NY: ACM),
504-517.

Frontiersin Big Data

10.3389/fdata.2023.1296469

Mohassel, P., and Zhang, Y. (2017). “SecureML: a system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP),
19-38.

Newman, M. E. J. (2013). Spectral methods for community detection and graph
partitioning. Phys. Rev. E 88, 042822. doi: 10.1103/PhysRevE.88.042822

Ng, A. Y., Jordan, M. I, and Weiss, Y. (2001). “On spectral clustering: analysis and
algorithm,” in Proceedings of Neural Information Processing Systems (NIPS).

Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K.,
et al. (2016). “Oblivious Multi-Party machine learning on trusted processors,” in 25th
USENIX Security Symposium (USENIX Security 16) (Austin, TX: USENIX Association),
619-636.

Ozdemir, A., Brown, F., and Wahby, R. S. (2022). “CIRC: compiler infrastructure for
proof systems, software verification, and more,” in 2022 IEEE Symposium on Security
and Privacy (SP) (IEEE), 2248-2266.

Paillier, P. (1999). “Public-key cryptosystems based on composite degree residuosity
classes,” in The Proceedings of EUROCRYPT, 223-238.

Pietervanhove (2023). Microsoft Azure Database. Available online at: https://learn.
microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves- enable?
view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves (accessed
November, 2023).

Plimpton, S., and Devine, K. (2011). Mapreduce in MPI for large-scale graph
algorithms. Parallel Comput. 37, 610-632. doi: 10.1016/j.parco.2011.02.004

Priebe, C., Vaswani, K., and Costa, M. (2018). “EnclaveDB - a secure database using
SGX.” in IEEE Symposium on Security and Privacy (IEEE).

Qin, Z., Yu, T., Yang, Y., Khalil, I, Xiao, X., and Ren, K. (2017). “Generating
synthetic decentralized social graphs with local differential privacy,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security (New
York, NY: Association for Computing Machinery), 425-438.

Rane, A, Lin, C., and Tiwari, M. (2015). “Raccoon: closing digital side-channels
through obfuscated execution,” in Proceedings of the 24th USENIX Conference on
Security Symposium, SEC” 15 (USENIX Association), 431-446.

Regev, O. (2005). “On lattices, learning with errors, random linear codes, and
cryptography,” in Annual ACM symposium on Theory of computing, 84-93.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211-252.
doi: 10.1007/s11263-015-0816-y

Sasy, S., Gorbunov, S., and Fletcher, C. W. (2018). “Zerotrace : oblivious memory
primitives from intel SGX,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018 (San Diego, CA).

Scholkopf, B., and Smola, A. (2002). Learning with Kernels. MIT Press.

Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz, G.,
et al. (2015). “VC3: trustworthy data analytics in the cloud using SGX,” in 36th IEEE
Symposium on Security and Privacy.

Shaon, F., Kantarcioglu, M., Lin, Z., and Khan, L. (2017). “SGX-bigmatrix: a
practical encrypted data analytic framework with trusted processors,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
1211-1228.

Sharma, S., and Chen, K. (2019). “Confidential boosting with random linear
classifiers for outsourced user-generated data,” in Computer Security - ESORICS 2019 -
24th European Symposium on Research in Computer Security (Luxembourg), 41-65.

Sharma, S., Powers, J., and Chen, K. (2019). Privategraph: privacy-preserving
spectral analysis of encrypted graphs in the cloud. IEEE Trans. Knowledge Data Eng.
31, 981-995. doi: 10.1109/TKDE.2018.2847662

Sheth, A., Padhee, S., and Gyrard, A. (2019). Knowledge graphs and
knowledge networks: the story in brief. IEEE Internet Comput. 23, 67-75.
doi: 10.1109/MIC.2019.2928449

Shinde, S., Chua, Z. L., Narayanan, V., and Saxena, P. (2016). “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, ASTACCS16 (New York, NY: Association
for Computing Machinery), 317-328.

Smart, N., and Vercauteren, F. (2012). Fully homomorphic SIMD operations.
Designs Codes Cryptogr. 71, 57-81. doi: 10.1007/s10623-012-9720-4

Sun, Y., Wang, S., Li, H,, and Li, F. (2021). Building enclave-native storage
engines for practical encrypted databases. Proc. VLDB Endow. 14, 1019-1032.
doi: 10.14778/3447689.3447705

Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M., Genkin, D.,
et al. (2020). LVI: Hijacking transient execution through microarchitectural load value
injection. In 41th IEEE Symposium on Security and Privacy (S&P°20).

Van Schaik, S., Kwong, A., Genkin, D., and Yarom, Y. (2020). SGAxe: How SGX Fails
in Practice. Available online at: https://sgaxe.com/files/SGAxe.pdf

Wang, T., Blocki, J., Li, N, and Jha, S. (2017). “Locally differentially private
protocols for frequency estimation,” in 26th USENIX Security Symposium (USENIX
Security 17). 729-745.

Wang, Y., Wu, X, and Wu, L. (2013). “Differential privacy preserving spectral graph
analysis,” in Advances in Knowledge Discovery and Data Mining, eds J. Pei, V. S. Tseng,
L. Cao, H. Motoda, and G. Xu (Berlin; Heidelberg: Springer), 329-340.

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.2139/ssrn.3433922
https://doi.org/10.1109/TDSC.2023.3241164
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1109/TPAMI.2004.1262185
https://www.intel.com/content/www/us/en/products/details/processors/xeon/d/products.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/d/products.html
https://doi.org/10.14778/3407790.3407814
https://doi.org/10.1145/2775054.2694385
https://doi.org/10.1103/PhysRevE.88.042822
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves
https://doi.org/10.1016/j.parco.2011.02.004
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TKDE.2018.2847662
https://doi.org/10.1109/MIC.2019.2928449
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.14778/3447689.3447705
https://sgaxe.com/files/SGAxe.pdf
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen

Warner, S. L. (1965). Randomized response: A survey technique for eliminating
evasive answer bias. . Am. Stat. Assoc. 60, 63-69.

Xu, Y., Cui, W., and Peinado, M. (2015). “Controlled-channel attacks: deterministic
side channels for untrusted operating systems,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15 (Washington, DC: IEEE Computer Society),
640-656.

»
s

Yao, A. C. (1986). “How to generate and exhange secrets
Foundations of Computer Science, 162-167.

in IEEE Symposium on

Ye, Q, Hu, H, Au, M. H, Meng, X, and Xiao, X. (2020).
Lf-gdpr: A framework for estimating graph metrics with local
differential ~ privacy. IEEE Trans. Knowledge and Data Eng. 34,
4905-4920.

Frontiersin Big Data

17

10.3389/fdata.2023.1296469

Yudha, A. W. B, Meyer, J., Yuan, S., Zhou, H., and Solihin, Y. (2022). “Lite: a low-
cost practical inter-operable GPU tee;” in Proceedings of the 36th ACM International
Conference on Supercomputing, 1-13.

Zaeem, R. N, and Barber, K. S. (2020). The effect of the GDPR on privacy policies:
recent progress and future promise. ACM Trans. Manage. Inform. Syst. 12, 1-20.
doi: 10.1145/3389685

Zheng, W., Dave, A., Beekman, J. G., Popa, R. A., Gonzalez, J. E., and Stoica,
I. (2017). “Opaque: an oblivious and encrypted distributed analytics platform,” in
USENIX Symposium on Networked Systems Design and Implementation.

Zhou, B., Pei, J., and Luk, W. (2008). A brief survey on anonymization techniques
for privacy preserving publishing of social network data. SIGKDD Explor. Newsl. 10,
12-22. doi: 10.1145/1540276.1540279

frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://doi.org/10.1145/3389685
https://doi.org/10.1145/1540276.1540279
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	TEE-Graph: efficient privacy and ownership protection for cloud-based graph spectral analysis
	1 Introduction
	1.1 Scope of our research

	2 Preliminaries
	2.1 Graph spectral analysis
	2.2 Trusted execution environment
	2.3 Differential privacy

	3 Privacy and ownership preserving graph analysis in the cloud: the architecture
	3.1 Threat model
	3.1.1 Assumptions about TEE
	3.1.2 Compromised cloud provider
	3.1.3 Dishonest data owners
	3.1.4 Protected assets
	3.1.5 Scope of side-channel attacks

	3.2 TEE-Graph architecture
	3.3 Technical challenges

	4 Technical details
	4.1 Maintaining ownership and confidentiality of graph data
	4.1.1 Graph encoding
	4.1.2 TEE-specific key
	4.1.3 Revocation

	4.2 Handling big graphs with TEE
	4.2.1 Integrity guarantee
	4.2.2 Efficiency

	4.3 Access-pattern protection
	4.3.1 Differentially private edge injection to protect access patterns

	5 Experimental evaluation
	5.1 Experiment setup
	5.1.1 Implementation
	5.1.2 Benchmark measures
	5.1.3 Datasets

	5.2 Result analysis
	5.2.1 Contributor's cost
	5.2.2 Data owner's costs
	5.2.3 Cloud storage cost
	5.2.4 Cloud computational cost

	5.3 Cost of access pattern protection
	5.3.1 Graph perturbation cost
	5.3.2 Additional computational costs

	6 Related work
	6.1 Cryptographic approaches
	6.2 TEE-based approaches
	6.3 TEE access-pattern protection
	6.4 Application of differential privacy in graph analysis

	7 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

