
TYPE Original Research

PUBLISHED 30 November 2023

DOI 10.3389/fdata.2023.1296469

OPEN ACCESS

EDITED BY

Chenhao Ma,

The Chinese University of Hong Kong,

Shenzhen, China

REVIEWED BY

Xiaodong Li,

The University of Hong Kong, Hong Kong SAR,

China

Yuanyuan Zeng,

The Chinese University of Hong Kong,

Shenzhen, China

*CORRESPONDENCE

Keke Chen

keke.chen@marquette.edu

RECEIVED 18 September 2023

ACCEPTED 06 November 2023

PUBLISHED 30 November 2023

CITATION

Alam AKMM and Chen K (2023) TEE-Graph:

efficient privacy and ownership protection for

cloud-based graph spectral analysis.

Front. Big Data 6:1296469.

doi: 10.3389/fdata.2023.1296469

COPYRIGHT

© 2023 Alam and Chen. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

TEE-Graph: efficient privacy and
ownership protection for
cloud-based graph spectral
analysis

A. K. M. Mubashwir Alam and Keke Chen*

TAIC Lab, Computer Science, Marquette University, Milwaukee, WI, United States

Introduction: Big graphs like social network user interactions and customer rating

matrices require significant computing resources to maintain. Data owners are

now using public cloud resources for storage and computing elasticity. However,

existing solutions do not fully address the privacy and ownership protection needs

of the key involved parties: data contributors and the data owner who collects data

from contributors.

Methods: We propose a Trusted Execution Environment (TEE) based solution:

TEE-Graph for graph spectral analysis of outsourced graphs in the cloud.

TEEs are new CPU features that can enable much more efficient confidential

computing solutions than traditional software-based cryptographic ones. Our

approach has several unique contributions compared to existing confidential

graph analysis approaches. (1) It utilizes the unique TEE properties to ensure

contributors’ new privacy needs, e.g., the right of revocation for shared data. (2)

It implements efficient access-pattern protection with a differentially private data

encoding method. And (3) it implements TEE-based special analysis algorithms:

the Lanczos method and the Nystrom method for efficiently handling big graphs

and protecting confidentiality from compromised cloud providers.

Results: The TEE-Graph approach is much more efficient than software

crypto approaches and also immune to access-pattern-based attacks. Compared

with the best-known software crypto approach for graph spectral analysis,

PrivateGraph, we have seen that TEE-Graph has 103−105 times lower

computation, storage, and communication costs. Furthermore, the proposed

access-pattern protection method incurs only about 10%-25% of the overall

computation cost.

Discussion: Our experimentation showed that TEE-Graph performs significantly

better and has lower costs than typical software approaches. It also addresses

the unique ownership and access-pattern issues that other TEE-related graph

analytics approaches have not sufficiently studied. The proposed approach can

be extended to other graph analytics problemswith strong ownership and access-

pattern protection.

KEYWORDS

TEE, SGX, big graph, graph analytics, access pattern, ownership protection

1 Introduction

Graphs are widely used in many domains, e.g., modeling social networks, knowledge

graphs, and biological regulation networks (Backstrom et al., 2006; Chakrabarti and

Faloutsos, 2006; Butenko et al., 2009; Sheth et al., 2019). These graph data are often large

and sparse and may involve expensive analytics algorithms, such as graph spectral analysis

(Ng et al., 2001; Newman, 2013), which require extensive computing resources.

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1296469
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1296469&domain=pdf&date_stamp=2023-11-30
mailto:keke.chen@marquette.edu
https://doi.org/10.3389/fdata.2023.1296469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1296469/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

With the wide deployment of public clouds, cloud-based

solutions have been the top choice for most graph-data owners due

to the storage and computational elasticity, which, however, raises

several concerns. First, such graph data often involve sensitive

personal information, e.g., social interactions. Data contributors

have to trust that data owners can protect their privacy well when

using cloud resources. Second, data owners want to maintain the

confidentiality and ownership of their proprietary data as they

collect the data with significant costs and hold the responsibility

of protecting contributors’ privacy. More recently, privacy laws

such as GDPR (Chander et al., 2020; Zaeem and Barber, 2020)

also guarantee fine-grained privacy rights, e.g., contributors can

withdraw their data from sharing at any time: the right of

revocation. These challenges raise the standard for cloud-based

graph analytics solutions, which have not been comprehensively

addressed by any existing studies yet (Plimpton and Devine, 2011;

Meng et al., 2015; Shaon et al., 2017; Sharma et al., 2019; Sheth et al.,

2019; Du et al., 2023).

To enable secure processing on untrusted platforms,

researchers have been experimenting with novel crypto

approaches, such as homomorphic encryption (HE) (Brakerski

and Vaikuntanathan, 2011) and secure multi-party computation

(SMC) (Huang et al., 2011; Mohassel and Zhang, 2017). In

particular, Sharma et al. (2019) used novel protocol designs

for graph spectral analysis which can be implemented with

additive homomorphic encryption (Paillier, 1999) or somewhat

homomorphic encryption (Brakerski and Vaikuntanathan, 2011).

More recent advances in hybrid protocols (Mohassel and Zhang,

2017; Sharma and Chen, 2019) strive to reduce the overall costs

of the frameworks by blending multiple crypto primitives to

implement algorithmic components. However, all these pure

software-based cryptographic solutions are still too expensive to be

practical for most applications. As we will show, they often take

magnitudes of higher costs than our proposed approach.

Recently, the trusted execution environment (TEE) has

emerged as a more efficient approach to addressing secure

outsourced computation performance and usability issues. It

provides hardware support to create an isolated environment

within a potentially compromised cloud server, where the entire

system software stack, including the operating system and

hypervisor, can be compromised. TEEs enable the concept of secure

enclaves, which depends on hardware-assisted mechanisms to

preserve the confidentiality and integrity of enclave memory. Users

can pass encrypted data into the enclave, decrypt it, compute with

plaintext data, encrypt the result, and return it to untrusted cloud

components. TEEs have been available on many commodity CPUs

and supported by public clouds. Intel Software Guard Extension

(SGX) (Costan and Devadas, 2016) has been available in most

Intel CPUs since 2015 and moved to server CPUs since 2022

(Intel, 2023). AMD secure encrypted virtualization (SEV) has been

available in EPYC server CPUs since 2016. TEE-enabled servers are

available in public cloud services: Microsoft Azure (Pietervanhove,

2023) and Alibaba (Alibaba, 2023) have provided SGX-enabled

servers, and Google has adopted AMD SEV servers.

A few TEE-based studies have focused on graph data

analysis problems (Shaon et al., 2017; Du et al., 2023). SGX-

BigMatrix (Shaon et al., 2017) provides a general SGX-based

matrix computation framework that can perform graph analytics

FIGURE 1

A more practical framework for outsourced graph analysis.

with protected access patterns. It aims to reduce the difficulties

for developers to handle TEE-specific programming and access-

pattern protection. However, it does not address unique access-

pattern issues with sparse large graphs. In practice, large graphs

are often sparse, where sparse-matrix-based graph algorithms, e.g.,

spectral analysis on sparse matrices, might be used to achieve good

performance. Meanwhile, a sparse matrix stores the entries with

their indices, e.g., (i, j, v), where (i, j) is the index. Accessing by

the index exposes sensitive information, e.g., the specific edge in

the graph. Section 4.3 discusses the details of the problem. Thus,

processing sparse graphs involves an intricate trade-off between

privacy and performance.

Furthermore, most existing studies involve the data owner and

cloud provider only, where the data owner fully represents the

contributors, entirely ignoring the data contributors’ ownership

rights. They do not meet the new demands, e.g., guaranteeing the

contributors’ right to revoke the sharing of private data.

1.1 Scope of our research

To address the above problems, efficient processing of large

graphs, access-pattern protection, and contributors’ ownership,

we develop an approach based on a more practical cloud-centric

framework for graph analysis. We start with an example where a

social network service provider (data owner) collects users’ (data

contributors’) interactions to understand social communities (see

Figure 1). The users have the right to invoke the sharing of their

data at any time. The service provider uses the cloud to store the

interaction data and needs to preserve the data confidentiality at

rest and in processing to fulfill its responsibility for preserving users’

privacy and protecting its right to use the proprietary data.

The proposed approach will focus on complex graph analysis

algorithms, i.e., graph spectral analysis, to show the unique

advantages. Graph spectral analysis has numerous uses, including

network partitioning (Newman, 2013), spectral clustering (Fowlkes

et al., 2004), and web ranking (Berkhin, 2005). The specific analytics

problem is challenging to handle due to the high complexity

O(N3) for the complete solution andO(kN2) for top-k approximate

solutions, where N is the number of nodes. Furthermore, the

fundamental operation of the analysis task, eigendecomposition

of large matrices, has even more extensive applications, such as

dimensionality reduction (Jolliffe, 1986) and kernel-based learning

methods (Scholkopf and Smola, 2002).

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

Within the cloud-based framework, the three parties

collaborate to effectively collect and mine the graph data.

Data contributors are willing to share their sensitive data with

the data owner, who agrees to protect their data privacy1 and

ownership. Contributors also request the ability to revoke access to

their data at any point in time, e.g., a right guaranteed by certain

privacy regulations such as GDPR, but still worry about the data

owner may use their data even after the revocation. Meanwhile, the

data owner uses public cloud resources to manage and mine the

growing amount of contributors’ data. However, the data owner

does not trust the cloud provider can ensure data privacy and

ownership.

Our proposed approach has been tailored to meet the above

practical setup. (1) We use a TEE-based submission service to

seal the contributor submitted data, which can be revoked on

demand by the contributor. It also prevents data owner from

seeing plaintext data and copying it for other unauthorized

uses, e.g., selling data for profit. (2) We adopt a differentially

private data encoding method to prevent inference attacks

during data submission and access-pattern based attacks during

spectral analysis. We study two approximate algorithms for

confidential graph spectral analysis: the Lanczos method (Cullum

and Willoughby, 1985) and the Nyström method (Fowlkes et al.,

2004) for sparse graph data. The result will be compared with

our previous developed pure-software cryptographic approach:

PrivateGraph (Sharma et al., 2019).

In summary, our research has made four unique

contributions:

• We provided strong ownership and confidentiality protection

for both data contributors and owners, under the assumption

of a compromised cloud server.

• We addressed the challenges for conducting spectral analysis

on big graphs with TEE and design the TEE-Graph

framework. It requires small trusted memory consumption

and guarantees integrity protection of the graph.

• We meticulously analyzed the entire TEE-Graph framework

and identify potential access-pattern-based side channel

information during data submission and computation in TEE.

Then, we develop a differentially private graph encoding

method to protect privacy during graph submission and

efficiently hide sensitive access patterns during spectral

analysis with fully preserved data utility.

• Finally, we implemented TEE-Graph and measure cost

reductions for the three involved parties. Our method

performs 6000× to 150,000× faster than the baseline crypto

approaches in PrivateGraph.

In the remaining sections, we will first present the background

knowledge for our approach (Section 2), then we describe

architecture of TEE graph (Section 3.2, dive in the technical details

of the proposed approach (Section 4), discuss the evaluation result

(Section 5.1), and, finally, give the closely related work (Section 6).

1 In this paper, “data privacy” and “data confidentiality” are used

interchangeably.

1: b0 ← random N-dimensional vector;

2: for i ← 1 to t do

3: bi ← Abi−1; // the most expensive step

4: αi ← bTi bi−1;

5: wi ← bi − αibi − βi−1bi−2, bi = 0 for i < 0;

6: βi ←‖ wi−1 ‖;

7: bi ← wi−1/βi;

8: end for

9: αi and βi form a tridiagonal matrix Tt×t, the top-k

eigenvalues and eigenvectors of which are the

approximation of A’s.

Algorithm 1. Lanczos method.

2 Preliminaries

This section will give the background knowledge about

approximate spectral analysis algorithms for large graphs, a brief

description of trusted execution environment, and differential

privacy.

2.1 Graph spectral analysis

The core operation of graph spectral analysis is the

eigendecomposition of the graph matrix, which yields eigenvalues

and corresponding eigenvectors. Eigenvalues and eigenvectors

provide valuable information about the structure of the graph

matrix and have been used in many data mining algorithms, such

as social community detection (Newman, 2013), spectral clustering

(Fowlkes et al., 2004), web ranking (Berkhin, 2005), dimensionality

reduction (Jolliffe, 1986), and kernel-based methods (Scholkopf

and Smola, 2002). Specifically, for the graph adjacency matrix W

of a N-node undirected graph, its normalized Laplacian matrix

is defined as L = I − D−1W, where I is the N-dimensional

identify matrix and D is the diagonal degree matrix, i.e., the only

non-zero elements Dii are the node i’s degree. We want to find the

decomposition L = U3UT , where the matrix U consists of the

eigenvectors and 3 is a diagonal matrix with eigenvalues on the

diagonal.

A complete eigendecomposition of a N × N matrix possesses

a remarkable time complexity of O(N3). Hence, approximate

algorithms are often used for big N, including the power-iteration

Lanczos (Cullum and Willoughby, 1985) and matrix-sampling

based Nyström methods (Fowlkes et al., 2004). These algorithms

reduce the cost to O(kN2), k ≪ N and return only the top-k

eigenvectors and values. The core and most expensive operation

in these algorithms are matrix-vector multiplication (for power-

iteration methods) and small matrix-matrix multiplication (for

sampling methods). See Algorithms 1, 2 for the fundamental steps

of Lanczos and Nyström methods, respectively. These algorithms

reduce the complexity with some sacrifice in accuracy. A larger

number of Lanczos iterations or a larger sampling rate for

Nyström accounts for better accuracy, which however, increase the

computational cost.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

1: s ← generate random index set such that

‖s‖ = m < N;

2: CN×m ← sample m column vectors from A;

3: Wm×m← matrix with rows and column indices in s;

4: decompose Wm×m to get top k eigenvalues 3k×k and

eigen vectors Um×k;

5: compute CN×mUm×k3
−1
k×k

;

Algorithm 2. Nyströmmethod.

2.2 Trusted execution environment

Trusted execution environment (TEE) is a hardware-based

solution for executing code in a secure environment where

powerful adversaries cannot access code or data within this secure

area. Using TEEs, a user can run their sensitive computations

in the secure area called Enclave, which uses a hardware-assisted

mechanism to preserve the privacy and integrity of enclave

memory. With TEEs, users can pass encrypted data into the

Enclave, decrypt it, compute with plaintext data, encrypt the result,

and return it to the untrusted cloud components. TEEs isolate

private reserved memory for secure applications from other system

components, such as operating systems and hypervisors. Thus, a

powerful adversary controlling operating systems or hypervisors

cannot breach TEEs.

The remote attestation procedure establishes the trust between

the TEE hardware and the user via the CPU manufacturer’s

attestation server. The remote user must verify the correctness of

the cloud hardware and the user binary to trust a TEE claimed by

the cloud provider. Using remote attestation, the user can verify if

the cloud provider uses certified TEE hardware and if the program

running in an enclave is from a digitally signed binary.

Major cloud platforms have provided different types of

TEE-enabled servers. Intel SGX is one of the popular TEE

implementations. Since 2015, SGX has been available in most

Intel CPUs. Similarly, ARM has TrustZone, and AMD has secure

encrypted virtualization (SEV).

While all TEE implementations feature complete memory

isolations from the system components and remote attestation

to establish trust, they still suffer from side-channel attacks.

Passive adversaries can exploit some attacks (Cash et al., 2015;

Russakovsky et al., 2015; Zheng et al., 2017) by only observing

interactions between TEEs and other system components. Some

can even retrieve plaintext information directly from the Enclave

via side-channel attacks. Based on the attack strategies, these

attacks can be categorized as (i) memory/cache-targeted and (ii)

microarchitecture-level attacks. In memory/cache-targeted attacks,

the attacker exploits the interactions between TEEs and untrusted

memory or applications and observes enclavememory page loading

and CPU cache usages. Microarchitecture-level attacks utilize

modern CPU features, such as CPU transient memory execution

(Bulck et al., 2018), to retrieve fine-grained information from the

low-level cache lines. An important approach to addressing the

side-channel attacks is disguising access patterns known as data-

oblivious algorithms (Alam and Chen, 2023).

In this study, we use TEE to address the high costs associated

with the pure-software cryptographical approaches and use

differential privacy to disguise the access patterns in TEE-based

spectral analysis algorithms.

2.3 Differential privacy

Differential privacy (Dwork, 2006) is a standard notion in data

privacy, which protects individual’s privacy from inference attacks.

For two datasets A1 and A2 that differ in exactly one record, let

M(Ai) be the mechanism that outputs noisy statistics r ∈ R of

the datasets, then ǫ-differential privacy is satisfied if the following

condition holds:

Pr[M(A1) = r] <= exp(ǫ)Pr[M(A2) = r],

where ǫ is the privacy parameter—the smaller it is, the better the

preserved privacy. The basic idea is that with or without a victim

present in the dataset, and the attacker cannot infer any useful

private information from the noisy statistics M() about the victim.

The mechanism M is defined as the additive perturbation of a

specific query function f (x) that returns aggregate information of

the dataset, such as the COUNT function: M(A) = f (A)+ random

noise. The noise in the output is engineered to approximately

preserve the utility of the query function while preventing attackers

from inferring useful private information about any individual

records in the database. Laplacian noise is one of the popular

choices, where a noise is drawn from the Laplace distribution

Lap(0, b), the density function of which is 1
2b

exp(− |x|
b
). The

parameter b is determined by the user-specified parameter ǫ and

the sensitivity of query function: 1 = max |f (A1) − f (A2)| for any

pair ofA1 andA2 and b = 1/ǫ. For example, the COUNT function

has the sensitivity 1 = 1, and thus, the parameter b is set to 1/ǫ.

3 Privacy and ownership preserving
graph analysis in the cloud: the
architecture

We will first present the specific threat model that considers

more fine-grained confidentiality and ownership protection. Then,

we will present a TEE-based framework for confidential graph

spectral analysis in the cloud that receives encrypted data from data

contributors and conducts confidential analysis with TEE. Finally,

we discuss the technical challenges under the threat model.

3.1 Threat model

The cloud-based framework comprises three parties: (i) the

data owner who owns and analyzes data in the cloud, (ii) data

contributors who agree to the data owner’s privacy terms and

provide their private data via data owner’s data submission services,

and (iii) the cloud provider who offers computation and storage

services. Figure 1 shows the basic setting of the framework.

Different from software crypto approaches, we can upgrade

the threat model with a compromised, possibly malicious cloud

provider thanks to the cloud TEE, for which we will address

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

FIGURE 2

High-level overview of TEE-Graph architecture.

both the confidentiality and integrity issues while leaving out the

availability issue. Figure 2 illustrates our TEE-based framework. To

guarantee the GDPR-level user privacy rights, we ensure the data

owner’s data confidentiality (only accessible to the authorized data

owner) and the right of revocation. The data remain encrypted at

rest, and without dedicated TEE programs, no other use of the data

will be possible. Once a contributor revokes the sharing, the data

owner cannot use them sneakily, e.g., by making a copy of the data.

3.1.1 Assumptions about TEE
The TEE infrastructure (Costan and Devadas, 2016) provides

the basic protectionmechanism for the integrity and confidentiality

of the data and programs in the enclave. Some TEEs, e.g., Intel SGX,

have strong restrictions to achieve desired security. For example,

the enclave program in the protected enclave memory area cannot

access the file system APIs directly as the OS is not trusted. Thus,

the encrypted data must be loaded from the main (untrusted)

memory and then passed to the enclave. While adversaries cannot

directly access the enclave, they can still glean information via

side channels, such as memory access patterns and CPU caches.

However, since cache-based attacks target all CPUs (regardless

of having TEEs or not), we have to depend on manufacturers’

microarchitecture level fixes. In contrast, the exposure of memory

access patterns is inevitable as enclaves have to interact with the

untrusted memory area, which is the main target we aim to protect.

Figure 3 illustrates the TEE-specific threats.

3.1.2 Compromised cloud provider
The cloud provider hosts the TEE infrastructure and allows

remote attestation to verify the correctness of the TEE. Similar

to other TEE-enhanced services, the cloud provider’s memory is

divided into the Trusted Memory, protected by the TEE, and the

Untrusted Memory areas. The Cloud Provider has direct access to

all code and data in the disk and the untrusted memory. Thus,

data have to be encrypted in these areas. However, encryption does

not prevent exposing data statistics, e.g., data size and read/write

access patterns. The cloud provider cannot access trusted memory

directly. However, since it controls the operating system and

FIGURE 3

TEE, memory interactions, and side-channel vulnerabilities.

hypervisor, a compromised cloud provider may deploy system-

privilege code in the untrusted memory to explore side channels

of the TEE. It can also tamper with the data and program running

in the untrusted memory and force the generation of page faults for

enclave pages (Xu et al., 2015; Shinde et al., 2016).

3.1.3 Dishonest data owners
Honest data owners will follow the contract with the

contributors to use the data only for designated purposes. A

dishonest data owner may try to make a copy of the data to

circumvent contributors’ revocation of sharing.

3.1.4 Protected assets
We aim to ensure privacy and ownership guarantees for

contributors and the data owner. First, we aim to protect the

privacy rights of data contributors. Privacy laws such as GDPR

require that the data owner protects data privacy, and the data

contributor should have the right of revocation, i.e., stop the

sharing with the data owner at any time. A dishonest data owner

should not be able to continue to use the revoked data. Second,

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

data owners are responsible for preserving contributors’ data from

adversaries, e.g., a compromised cloud provider, in collecting and

processing data. Graph privacy includes edge privacy, e.g., whether

an edge exists, and node privacy, e.g., the node degree and the k-hop

neighborhood subgraphs.

3.1.5 Scope of side-channel attacks
We consider only the memory side channels, which can

be protected via protecting programs’ access patterns. We

assume although a cloud infrastructure can be compromised, the

attacker cannot physically access the machine, e.g., by attaching

a device to the server or touching the motherboard. Other

side-channel attacks utilizing the unique features of cache or

microarchitecture design, e.g., speculative execution (Brasser et al.,

2017; Götzfried et al., 2017; Bulck et al., 2018; Gamaarachchi and

Ganegoda, 2018; Van Bulck et al., 2020), will depend on CPU

manufacturers’ firmware fixes and thus are out of the scope of this

study.

The threat model outlined above is more powerful and provides

richer semantics of protection compared to the previous study

(Sharma et al., 2019).

3.2 TEE-Graph architecture

We aimed to design an efficient confidential graph analysis

framework. One of the key ideas of our framework is to leverage

trusted execution environment (TEE) as a trusted computing base

(TCB) to guarantee the confidentiality and integrity of the graph

analysis in the cloud. We show that TEE can enable stronger

and richer privacy protection and much more efficient solutions

compared to existing pure-software cryptographic approaches

(Sharma et al., 2019).

Figure 2 shows the core components and the workflow of the

TEE-Graph framework. In the following, we describe the detailed

role of each party in the collaborative computing scenario.

• Contributors (C). Before participating in the collaboration,

each contributor (Ci) agrees on the data owner’s privacy policy

and the usage of their data and receives a unique ID. The

contributor Ci first encrypts their portion of the graph Ai, e.g.,

Ci’s adjacency edges mapped to the ith row of the adjacency

matrix A. Then, Ci performs remote attestation with the data

submission service running in the cloud’s TEE to ensure the

correctness of the hardware and the trusted binary running in

the cloud. It also conducts the Diffie-Hellman Key Exchange

(DHKE) protocol to create a secure channel between TEE

and the Ci’s system. Ci sends Ai and other metadata via the

secure channel. The contributor may continuously update

their data, leading to an evolving graph. However, we focus

on the simpler case of a snapshot graph in this study.

• Cloud Provider (P). It hosts all the required components of

TEE-Graph, including storage, TEE infrastructure, and trusted

and untrusted codes. After instantiation, the TEE-based data

submission service engages with each Ci and establishes

secured channels via remote attestation. After receiving Ai

along with other meta data, the service stores encrypted data

in untrusted memory (disk) with ensured confidentiality and

integrity. Another TEE-based service, i.e., spectral analysis

service receives requests from the data owner and performs

on-demand graph analytics confidentially.

• Data Owner (O). After all the Ci submit their data, O requests

to conduct spectral analysis on the collected graph data.O also

performs a remote attestation with the spectral analysis service

and establishes a secure connection for receiving the result.

3.3 Technical challenges

With the threat model and each party’s role, we need to address

three technical challenges in the TEE-graph design.

• Ownership and Confidentiality Protection. In a cloud-based

environment, when data are submitted to the cloud, both

the data contributors and the data owner lose control of

the data as the cloud provider has the full control of the

data. Our goal is to safeguard the privacy and ownership

of the submitted data so that no other parties, including

malicious contributors or the cloud provider, can infer private

information or steal the data. With privacy regulations such

as GDPR, data contributors should also be able to revoke

sharing their private data at any time, without the concern

that dishonest data owners will continue to use their data.

Similarly, data owner wants to preserve confidentiality and

ownership of the collected data to conform the privacy law.

• Processing Big Graph with TEE restrictions. Trusted

execution environments (TEEs) have limitations, such

as memory constraints, computational overhead, and

interactions with untrusted parts of the system. We aim to

address these challenges, specifically for the Lanczos and

Nystrom methods.

• Protecting TEE Access Patterns . As explained in Section 2,

TEE is still vulnerable to access-pattern-based side-channel

attacks, which are difficult to mitigate. We will thoroughly

examine the TEE-Graph framework, identify data-dependent

access patterns, and create efficient obfuscation mechanisms

to mitigate the issue.

4 Technical details

We design the following solutions to address the three technical

challenges.

4.1 Maintaining ownership and
confidentiality of graph data

We leverage TEE to manage the ownership of both contributor

and data owner’s ownership on the data even after submitting the

data to untrusted cloud.We designed the TEE-Graph to ensure that

only the TEE has access to private data. Therefore, no other party,

including the cloud provider, can learn any sensitive information

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

during processing or while at rest. Before we describe the unique

feature, we give the graph encoding method used in our approach.

4.1.1 Graph encoding
Large graphs are often sparse. We use a simple sparse encoding

method for the graph adjacency list of each contributor. This

method assigns a unique identifier to each vertex and each vertex

(contributor) maintains a list of the neighboring vertices. Let us

consider a typical graphmatrix for spectral analysis: the normalized

Laplacian graph matrix L = I − D−1W (the definition in Section

2.1). It is clear to infer that L is still sparse if W is sparse. In sparse

encoding, the zero entries are skipped, while the non-zero ones are

encoded as (i, j, v) for entry index (i, j).

Each contributor will submit a sparse row of the matrix,

corresponding to the corresponding node’s outlinks in the graph.

Each contributor will also have a public key pair for signing their

submitted data, and the TEE maintains a public key database for

verification.With an established secure channel, a contributor signs

the list of their neighbors with a digital signature, Si, and submits

the graph data to the submission service. The contributor needs to

keep the signature Si for possible later revocation.

We used the 128-bit AES-CTR encryption mode to encrypt

the received list with a TEE-specific key, which will be discussed

later, and stored it in a block file. Due to AES, it does not increase

the ciphertext from the original plaintext data, a significant benefit

compared to the non-TEE approaches that depend on expensive

homomorphic encryptions (Sharma et al., 2019).

4.1.2 TEE-specific key
We implement the ownership and confidentiality protection

by leveraging a key feature of TEE: the TEE-specific private key.

Specifically, the TEE can generate a TEE-specific private key that

only the TEE can access, inaccessible even to the TEE owner. Let

KTEE denote such a private key, which will be used to encrypt

the graph data stored in the cloud. KTEE is encrypted and stored

on the disk with the sealing key that is bound to the TEE binary

and its collaterals, provided by the manufacturer. KTEE can only

be restored and decrypted when the same TEE wants to read

it; otherwise, no one can ever restore the key. This TEE-specific

private key management is a unique feature of TEE and has been

extensively used in practice (Karande et al., 2017; Van Schaik et al.,

2020). After instantiation of TEE-Graph, the submission service

TEE generates KTEE. KTEE is shared between the system services

and never gets out of the TEE. After receiving the data Ai from the

contributor Ci, the submission service encrypts it with KTEE and

store the encrypted data on the cloud storage.

We do not aim to hide each contributor’s submission activity,

which is also impossible. The sensitive part of the submission is

the specific edges and the node degree, e.g., who the contributor

interacts with and how many such neighbors are in the graph.

Section 4.3 discusses details about access-pattern protection in the

submission process and the spectral analysis.

The benefit of this procedure is two-fold. (1) The data owner

can only use the collected data for the specific graph analysis

service, which cannot be moved for other uses. It enforces the

agreement between the contributors and the data owner. A relaxed

access model can also be easily implemented on top of that, e.g.,

the data owner fully owns a specific contributor’s data, i.e., with

an owner provided KTEE. (2) Since the submitted data cannot

be moved for other uses, we allow a certain submitted data item

to be removed securely, guaranteeing the contributor’s right of

revocation. Thus, this procedure guarantees the ownership and

confidentiality of data for both the contributors and the data owner.

4.1.3 Revocation
The contributor can submit the signature of the specific

submission (with a specific submission ID) they want to revoke to

the revocation service. The service will verify the signature with

the stored Ci’s public key and delete the requested item. It does

need to record the information (contributor ID and submission

ID) together with the public key database to implement this

revocation operation. However, this cost is linear to the number

of contributors and highly acceptable. The access patterns of the

revocation operation do not reveal any private information in the

graph.

4.2 Handling big graphs with TEE

Processing large graphs in TEE presents multiple challenges

that must be addressed. One of the primary concerns is maintaining

the integrity of graph data throughout the lifecycle of TEE-Graph.

This necessitates implementing robust security measures to prevent

unauthorized access and tampering. Additionally, the limited TEE

memory for some TEEs, e.g., Intel SGX, poses a challenge in

efficiently processing vast amounts of data. In the following section,

we will outline the components of TEE-Graph and explain how

they work together to efficiently manage and analyze big graphs

with TEEs.

Components of TEE-Graph. We design TEE-Graph based

on the most popular TEE, Intel SGX. Intel SGX requires the

TEE application divided into to the trusted and untrusted parts.

Figure 4 shows the components of the framework. The untrusted

part only performs the initiation of TEE-Graph along with

basic read/write operations. The trusted part performs the core

operations, including the graph submission service and the spectral

analysis service.

• Untrusted Part. Since Intel SGX depends on untrusted

memory for network and IO operations, our design needs

to address the confidentiality of the data that depends on

the untrusted part. Therefore, our design involved minimal

tasks that relied on the untrusted part of the framework.

The untrusted part of the TEE-Graph instantiated the

framework. The remote attestation procedure guarantees that

the untrusted part honestly loaded the correct binary in TEE to

start the services in the enclave. Second, the IO operations, i.e.,

read/write data from TEE, depend on the untrusted part of the

framework. We maintain privacy-preserving data read/write

operations to hide all the sensitive information in processing

the graph.

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

FIGURE 4

Overview of the TEE-Graph Components.

• Trusted Part. Major components of the TEE-Graph remain

in the trusted part. The key management module maintains

the session key after each remote attestation performed by

either the contributors or data owner. This module also

securely generates the KTEE with the manufacturer’s crypto

module so that no side-channel information is leaked. TEE-

Graph’s crypto module performs all the encryption/decryption

of the submitted data, intermediate sensitive data, and spectral

analysis results. The Big Graph module maintains the Big

Graph’s read/write operations and on-demand loading of

subgraphs. The spectral analyzermodule performs the spectral

analysis algorithms upon the data owner’s request. This

module interacts with the Big Graphmodule and performs the

required operations, e.g., sparse matrix-vector multiplication.

The result is encrypted with the data owner’s private key and

returned to the data owner.

4.2.1 Integrity guarantee
We maintain the integrity of the graph data both in transit,

at rest, and during computation. While TEE assures the integrity

of enclave memory, data residing in untrusted memory remain

vulnerable and can be modified. The integrity of the data

transferred from the untrusted part will be verified inside the

enclave.

We consider three possible attacks to integrity: (1) modify a

data block, (2) shuffle a block with another block in the same file,

and (3) insert a block from a different file (or a phase’s output

that is encrypted with the same key). To address all the attacks,

we include the following attributes in the block: (i) Block ID, so

that block shuffling can be identified, (ii) File Id, so that no block

from different files can be inserted, and (iii) the block-level message

authentication code (MAC). At the end of each block, a MAC is

attached to guarantee the integrity of records, before the whole

block is encrypted. We also use the randomized encryption mode

AES-CTR to make sure identical blocks will be encrypted to non-

distinguishable ones so that adversaries cannot trace the generated

results in the TEE-Graph’s workflow. A simple verification program

runs inside the enclave that verifies the IDs and MAC after reading

and decrypting a block.

4.2.2 Efficiency
Some TEEs, i.e., Intel SGX, may have a very limited TEE

memory size. Designing TEE applications that use big graphs can

be quite challenging due to the limited memory of TEE. It is

important to consider the memory constraints when developing

such applications to ensure they run efficiently.

The main memory consumption for performing spectral

analysis is large for large graphs. To address the TEE memory

limitation, we use a stream processing method to process the graph:

only the requested part is processed in the enclave while the rest of

the graph remains in the encrypted form in the untrusted memory.

The core operation of the Lanczos method can be conveniently

converted to stream processing. Specifically, sparse matrix-vector

multiplication is streamlined by loading each row of the sparse

matrix sequentially (Figure 5). This also allows a big graph to be

partitioned and processed in parallel in multiple TEE threads. In

contrast, the Nystrom method depends on sampling to reduce the

large graph to amanageable size subgraph. Note that these activities

will not breach the private information embedded in the row if the

access pattern protection method is applied (details in Section 4.3).

The following methods can be used to further improve the

performance.

• Multi-threaded enclaves. In sparse matrix-vector

multiplication, each partition of the graph can also be

processed in parallel with multi-threaded enclaves. Most

TEE implementations such as SGX also enable multi-thread

confidential processing.

• GPU TEE. GPUs can significantly speed up large matrix

computation. However, when the task is moved out of

the TEE to a GPU, the security is not guaranteed. While

several methods (Hunt et al., 2020; Deng et al., 2022; Yudha

et al., 2022) have tried to incorporate GPUs in TEE-based

confidential computing, the performance gains of using GPUs

in these methods are quite limited. Nvidia recently launched

GPU TEE (e.g., H100) to enable TEE features at the hardware

level, which will be tested in our future work.

4.3 Access-pattern protection

One of the most challenging aspects of a TEE framework is

safeguarding data access patterns. We have carefully examined

the TEE-Graph framework, starting from contributors’ graph

submission to the data owner’s receipt of the results and developed

measures to protect these access patterns.

Note that we do not aim to hide which contributor submitted

which row. However, we try to protect the content (or the access

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

FIGURE 5

Sparse matrix-vector multiplication for big graphs in a small trusted computing base (TCB). TEE loads a small sub-graph, perform sparse

multiplication with the corresponding vector, and stores the positional value in the resultant vector.

FIGURE 6

Identifying access pattern vulnerability in TEE-Graph.

patterns) of the row elements, which breaches edge privacy and

node privacy. Figure 6 depicts the access points where access

patterns need to be protected. (1) During contributors’ graph

submission, the untrusted part of the submission service can infer

a contributor Ci’s node degree via the length of the submitted

data even though the data are fully encrypted. The node degree

might be used, e.g., in breaching the identity of Ci. (2) During

graph processing, each row of the matrix is loaded, again, the

length of which can be monitored to review the node degree of

Ci. (3) Finally, within the spectral analysis enclave, adversaries via

the compromised OS can observe the in-enclave page-level access

patterns to infer the node degree information and the indices of the

non-zero elements, which expose the topology of the graph.

Algorithm-specific memory access pattern. We have also

conducted a thorough analysis of the spectral analysis algorithms

utilized in both Lanczos and Nystrom methods (the detailed steps

are in Algorithms 1, 2 in Section 2).

During the computation of sparse matrix-vector multiplication

in the Lanczos method, we load each matrix row E(Ai) sequentially

in TEE and decrypt it. Note that the sparse encoding only keeps the

non-zero entries of the matrix row, and thus, the corresponding

positions in the vector will be revealed, which can be used to infer

the edge. Bymonitoring this information, the adversary can recover

the graph topology. Figure 7 shows the access pattern and attacker’s

view on the access patterns. Such an attack completely breaches the

confidentiality of graph structure during graph analysis.

The Nystrom method uses random sampling in the first

stage, where selecting or not selecting a node seems non-sensitive

information. However, for each selected row, the selected columns

need to be extracted, which again reveals the topology of the

sampled subgraph. Furthermore, the last step of Nystrom method

also accesses the complete columns of the graph matrix, which also

expose partial graph topology.

Compared to these operations, the eigen-decomposition of the

small matrix in these methods is less sensitive once the proposed

protection approach is applied.

4.3.1 Differentially private edge injection to
protect access patterns

Previously, we have proposed the bin-based localized

differentially private data submission method to disguise the

non-zero entries (Sharma et al., 2019). We have found that this

algorithm can also address the access pattern issues with the

TEE-based processing. To make it self-contained, we will briefly

describe the bin-based graph perturbation first and analyze how it

protects access patterns during spectral analysis.

Via the previous analysis, we have known that without

protection, the adversary can infer node degrees during data

submission and further infer the indices of non-zero entries in

spectral analysis. The basic idea is to inject fake non-zero entries,

i.e., encrypted zero entries, but the adversary cannot distinguish

them from them in the encrypted form. Apparently, a trade-off

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

FIGURE 7

Attacker estimates the neighboring nodes from memory page-level side-channel attack.

exists: the more the zero entries, the more the submission, storage,

and computation costs.

We turn to an efficient approach based on differential privacy

(Dwork, 2006). In the standard differential privacy definition, the

goal is to disguise any specific person among the entire set of

persons that are related to the database. Thus, the key factor,

the sensitivity of function, is applied to the whole dataset, which,

however, results in very large sensitivity for functions related to

node degree on graph datasets. As a result, data contributors have

to add many fake items to achieve the desired differential privacy,

which seriously impairs sparsity. Specifically, let the query function

F() about node degree, say finding the node degree ranked at k.

Let A and A′ be the neighboring graphs which differ by only one

node. Thus, the sensitivity1 = max{F(A)−F(A′)} is the difference

between the largest and the smallest node degree. For a graph of N

nodes, this sensitivity can be up to N.

To achieve a better balance between privacy and sparsity,

we use a bin-based method to achieve weaker contributor

indistinguishability, which is reduced from the whole graph to

a subset of nodes in a bin. Specifically, we sort the nodes by

their node degrees and then partition the degree distribution by

bins. The contributors in the same bin select the number of

fake edges with the bin-specific parameter, where the function

sensitivity can be much smaller. The node degree distribution can

be estimated with the node degrees of randomly sampled nodes.

This can be achieved by the data owner asking some randomly

selected data contributors to submit encrypted node degrees

before them submitting the graph data. The data owner can then

build a histogram to approximate the node degree distribution.

Apparently, this additional cost is quite low.

The method will generate an equi-height histogram with the

sample node degrees, e.g., for a 100-bin histogram, each bin

contains approximately 1% of the nodes. The number of bins

is chosen so that each bin contains a moderate number of

nodes, for example, a value in (50, 100) to provide satisfactory

indistinguishability. Let Ui be the maximum node degree in the

i-th bin, and Li be the minimum degree in the i-th bin. Now let

A and A′ be the neighboring graphs which differ from each other

by only one node in the bin. We can derive the sensitivity 1i =

max{F(A) − F(A′)} = Ui − Li, which should be much smaller

than N.

According to the noise design of differential privacy, we derive

that the parameter b of Laplace distribution Lap(0, b) to be (Ui −

Li)/ǫ. However, this noise can be negative, which does not make

sense, e.g., asking the contributor to remove real edges and thus

destroying the authenticity of data. To avoid this problem, we

add an offset to the noise to make it positive, which reduces the

overall sparsity but still satisfactorily preserves both privacy and

authenticity. For a specific b, we can always identify the bound p

for Pr(x < p) <= 0.01 (p ≈ −3.912 for b = 1 and p linearly scales

with b: p ≈ −3.912b), i.e., if we add an offset |p| to the distribution,

we can make sure the majority of population (> 99%) positive.

With such an offset, the number of fake edges, the number of fake

edges, ki,j, is chosen as follows:

ki,j = |pi| + δi,j,

where |pi| is the offset and δi,j is a random integer drawn from

Laplace(0, (Ui − Li)/ǫ) to make ki,j > 0. With such a noise

design, the nodes in the same bin satisfy ǫ-differential privacy on

node-degree based functions.

By preserving node-degree differential privacy, edge differential

privacy is also satisfied. We define A and A′ as a pair of neighboring

graphs, if they only differ by one edge. The problem of checking the

existence of an edge can be transformed to an edge counting query

function. Let us look at any arbitrary edge counting functions.

Clearly, the sensitivity of such a function is 1. Thus, Laplace(0, 1/ǫ)

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

is used to generate the noisy edges. Since the parameter (Ui − Li)/ǫ

used for disguising node degrees is no less than 1/ǫ, the fake links

generated for protecting the privacy of node degrees also protect

edge privacy.

Algorithm 3 gives the details of our privacy preserving sparse

submission algorithm.

1: input: H: histogram provided by the data owner.

ǫ: user selected parameter for ǫ-differential

privacy. di,j: the actual node degree.

2: find the bin that contains di,j, whose upper bound

and lower bound are Ui and Li, respectively;

3: b ← (Ui − Li)/ǫ;

4: p ← b ∗ (−3.912);// for p ≈ −3.912 for b = 1 the

p linearly scales with b: p ≈ −3.912b;

5: draw a value δi,j from the distribution Laplace

(0, b);

6: ki,j ← |p| + δi,j;

7: add the di,j real links to the list with the sparse

encoding;

8: randomly choose ki,j edges from the rest N − di,j edges

and encode them as the encrypted zero entries;

9: submit the items with index (i, j) for j ≥ i if it

is an undirected graph, otherwise submit all

di,j + kij items.

Algorithm 3. Privacy preserving sparse submission (H, ǫ, di,j).

The benefit of random fake edges also extends to the access-

pattern protection during spectral analysis. Specifically, when doing

matrix-vector multiplication, the fake edges are loaded as normal

ones and participate in the computation. The adversary does not

obtain additional information by observing these access patterns.

However, since their values are zero, the final computational result

does not change. We have observed that the increased costs by

using the differentially private fake edge injection are small.

5 Experimental evaluation

The evaluation will verify that (1) the TEE-Graph approach can

significantly reduce the costs of confidential graph spectral analysis,

compared to existing pure software cryptographic approaches, and

(2) with our unique design and a small extra cost, it can also

effectively disguise access patterns and thus protect frommany TEE

side-channel attacks.

Note that the proposed framework can adopt the exact

Lanczos and Nystrom algorithms and execute them just like in

plaintext computation. Our previous study (Sharma et al., 2019)

has evaluated the utility of these approximate spectral analysis

algorithms. Thus, we do not repeat this experiment here.

5.1 Experiment setup

5.1.1 Implementation
We have developed the major components of the TEE-Graph

framework with C++ and the Intel SGX SDK for Linux. The

TABLE 1 Describes the properties of the datasets used in the benchmark.

Datasets Nodes Edges Size

Facebook 4039 88234 854 KB

Twitter 81306 1768149 44 MB

Gplus 107614 13673453 1.34GB

framework operates entirely within the enclave, except for a small

part located outside the trusted area that handles block-level

read/write requests from within the enclave. To encrypt data blocks

in the untrusted memory, we use 128-bit AES-CTR encryption.

Our implementation of Lanczos and Nystrom methods is designed

to work within the functional limitations of TEEs. We utilize the

C++ implementation of the Eigen library for eigendecomposition

of small matrices in both methods. Additionally, we apply graph

perturbation technique using differential privacy to safeguard

graph submission information and in-enclave access patterns.

For comparisons with state-of-the-art crypto approaches, we

utilize the PrivateGraph methods developed in our previous work

(Sharma et al., 2019). Its Paillier method was implemented with

C++ using GMP big integer library and Armadillo linear algebra

library, and used the 80-bit security setup with 10 fractional-

digit precision for floating-integer conversion. The HELib library

(github.com/shaih/HElib) was used for the RLWE scheme with 32-

bit plaintext encoding and the ciphertext packing technique (Smart

and Vercauteren, 2012). Note that these settings are theoretically

weaker than 128-bit AES-CTR we used for TEE-Graph in security

guarantee.

Our experiments were performed on a Linuxmachine equipped

with an Intel(R) Core(TM) i7-8700K CPU of 3.70 GHz processor

and 16 GB of DRAM.

5.1.2 Benchmark measures
To benchmark and compare the Lanczos and Nystrom

methods, we measure the communication costs for both the data

contributors and the data owner for all compared methods. We

also analyze the storage and computation costs on the cloud side

for major operations in spectral analysis for different methods.

5.1.3 Datasets
To make the results comparable, we adopted the same three

graph datasets in the SNAP database (snap.stanford.edu) that were

used by pure-software cryptographic approaches (Sharma et al.,

2019). They were originally used to study social circles in the

three popular social networks—Facebook, Twitter, and GPlus. We

make the edges undirected for easier processing in the evaluation.

Table 1 describes the properties of the graph data we used in

the benchmark.

5.2 Result analysis

All the costs in the following discussion are based on the

differentially private graph element submission conducted by data

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://github.com/shaih/HElib
http://snap.stanford.edu/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

TABLE 2 Contributor’s average cost for sparse submission.

Method Encrypt Ai (s) Upload E(Ai) (MB)

FB Twitter GPlus FB Twitter GPlus

Paillier 0.04 0.03 0.22 0.006 0.005 0.032

RLWE 0.64 0.51 3.28 12.1 9.6 61.9

TEE-Graph 0.00005 0.00003 0.00009 0.0001 0.0002 0.001

TABLE 3 Data owner’s costs for confidential Lanczos methods.

Method Encryption cost (s) Communication cost (MB)

FB Twitter GPlus FB Twitter GPlus

Paillier 696 12,809 17,969 108 1,983 2,789

RLWE 30 2,915 443 2,201 2,915 4,673

TEE-Graph ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

contributors. The next section will focus on the optimal parameter

setting and extra costs associated with the differentially private

submission method.

5.2.1 Contributor’s cost
In Table 2, you can find the average cost for contributors

in different methods, including the encryption cost and the

amount data to be uploaded. The baseline PrivateGraph methods

Paillier and RLWE use additive homomorphic and somewhat

homomorphic encryption methods, respectively, which incur

significantly higher costs than the AES encryption used in TEE-

Graph. TEE-Graph uses a compressed encoding and block-based

encryption method, with a fixed block size of 4KB. This method

does not require element-wise encoding or complex cryptographic

protocols. Furthermore, AES does not increase the cipher text size,

which is significant for the data to be transferred to and stored in the

cloud. Therefore, contributors can benefit from significantly lower

encryption and data submission costs for TEE-Graph than those for

Paillier and RLWE.

5.2.2 Data owner’s costs
In PrivateGraph methods, the data owner needs to actively

participate in the iterative process of spectral analysis, which incurs

significant costs. For example, in each iteration of the Lanczos

process with the additive homomorphic encryption (AHE)-based

implementation, the data owner needs to mask/demask the

vector in confidential matrix-vector computation. In the Nystrom

method, the data owner needs to conduct the small matrix

decomposition locally. In contrast, TEE-Graph has everything

done within the TEE in the cloud and the data owner takes

almost zero cost in the process of spectral analysis (except

for submitting the service request and receiving the result).

For the experiment, we used 30 iterations and 10 clusters.

Table 3 displays the comparison of the accumulated costs

TABLE 4 Cloud storage costs with sparse submission.

Method Facebook Twitter GPlus

Paillier 24.4 MB 372.9 MB 3.2 GB

RLWE 47.8 GB 729.8 GB 6.3 TB

TEE-Graph 845 KB 44.6 MB 1.35 GB

KB, kilobytes; MB, megabytes; GB, gigabytes; TB, terabytes.

of encryption/decryption and communication for all methods.

Again, we see TEE-Graph has huge cost advantages for the

data owner.

5.2.3 Cloud storage cost
All these methods request the encrypted data stored in the

cloud for applying different analytics algorithms or evolving graph

analysis. The cloud storage cost is approximately the sum of all

Contributors’ submitted data. Recall that both Paillier and RLWE

encryption methods require elementwise encryption. Additionally,

due to constraints on the number of elements per ciphertext in

RLWE, these methods require significantly larger storage costs.

In TEE-Graph, we achieve much lower costs through block-wise

AES encryption that results in the approximately same size of

the plaintext data. Table 4 demonstrates the comparison on cloud

storage costs for all the methods.

5.2.4 Cloud computational cost
Figure 8 shows the comparison of computational cost

for running the spectral analysis algorithms. We take the

most representative operation: computing one matrix-vector

multiplication confidentially for comparison, which is used in

both Lanczos and Nystrom methods. All the pure-software

implementations demand expensive homomorphic operations

over encrypted data, which incurs much higher costs than

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

FIGURE 8

Comparing cloud cost for matrix-vector multiplication.

TABLE 5 Perturbation parameters and results.

Dataset nbins nodes/
bin

orig.
|E|

pert.
|E|

%
inc.

Facebook 100 40 84243 99965 18.66

Twitter 1,000 76 1242390 1527286 22.93

GPlus 2,000 52 12113501 13228599 9.21

“orig. |E|”, the number of original edges. “pert. |E|”, the number of edges after perturbation.

“%inc.”, percentage of increase.

decrypting AES-encrypted data and computing with plaintext data

inside the TEE. Our experiment shows that TEE-Graph performs

6,000× to 150,000× faster than baseline methods on the core

operation.

5.3 Cost of access pattern protection

In Section 3, we have analyzed the threats caused by exposing

the access patterns in the data submission and spectral analysis

computation stages. To address this vulnerability, we developed

the differentially private method to inject fake encrypted edges

(with zero weight value) in data submission. The fake edges can

effectively protect the confidentiality of access patterns as well in the

spectral analysis stage. In the following, we will show the additional

costs brought by this technique.

5.3.1 Graph perturbation cost
In the sparse format, the element will be encoded as (i, j, v). The

PrivateGraph methods have to keep (i, j) in plaintext, but encrypt

v; in contrast, TEE-Graph packs the entire entry in a block and

encrypts the entire block. Although the index is not revealed, but

the size of the block and the element-wise access patterns can still

reveal the confidential graph information. Section 4.3.1 presented

the differential privacy based method to determine the random

FIGURE 9

Access-pattern protection cost for sparse matrix-vector

multiplication in TEE-Graph.

number of zero elements to be added to the submitted rows of the

graph matrix. The total number of submitted elements depends on

the personalized privacy parameter ǫ. We select the number of bins

so that the number of nodes in each bin is in [50, 100] to provide

sufficient indistinguishability within the bin. With a well-accepted

privacy setting ǫ = 1.0, we have the results in Table 5. The numbers

in the column “|E| pert.” are the average of 10 runs. Apparently, the

increase of the total number of edges is quite acceptable.

5.3.2 Additional computational costs
With the added zero-weight edges, we evaluate the additional

costs in the spectral analysis. We use the core operation:

sparse matrix-vector multiplication, to show the performance

impact on TEE-Graph. Figure 9 shows the overhead for access

pattern protection is quite limited: about 10–25% of the

overall cost.

6 Related work

6.1 Cryptographic approaches

Most software approaches for confidential data mining utilize

homomorphic encryption, e.g., RLWE (Brakerski, 2012), or secure

multi-party computation (Yao, 1986; Huang et al., 2011; Mohassel

and Zhang, 2017), or combinations of these primitives. However,

the high communication overhead and execution time make them

are still impractical for larger datasets and complex algorithms.

Our previous study on confidential graph spectral analysis:

PrivateGraph (Sharma et al., 2019) employs a hybrid cryptographic

protocol to engage the three parties: the data contributor, the data

owner, and cloud provider to achieve the best performance for

pure software based confidential graph spectral analysis so far.

Additive homomorphic encryption and somewhat homomorphic

encryption were used in different implementation schemes and a

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

few novel ideas, e.g., masking/demasking vectors with the Learning

with Error problem (Regev, 2005). Despite the application of novel

ideas, the overall costs are still extremely high for all the three

parties.

We show in our TEE-Graph approach that by using the

hardware-assisted TEE approach, we are able to develop much

more cost-effective solutions than the pure-software approaches.

Furthermore, we can also offer richer privacy protections, e.g.,

guaranteeing data contributors’ right of revocation for shared data.

6.2 TEE-based approaches

TEE-based privacy-preserving frameworks become popular in

the last few years. Researchers have been exploring TEE-based

applications for mainly (i) data-intensive analytics (Dinh et al.,

2015; Schuster et al., 2015; Zheng et al., 2017; Alam et al., 2021)

and (ii) data management (Priebe et al., 2018; Antonopoulos et al.,

2020; Sun et al., 2021). VC3 (Schuster et al., 2015) and M2R (Dinh

et al., 2015) extends and utilizes theHadoop System, where themost

sensitive part of the computation takes place in TEE. However, it

still depends on a lot of untrusted data processing, which leaks

information. Opaque (Zheng et al., 2017) tries to revise Spark for

SGX. They focus on the data access patterns between computing

nodes and illustrate how adversaries can use these to infer sensitive

information in the encrypted data. Database systems such as

ObliDB (Eskandarian and Zaharia, 2019) perform an extensive

analysis on protecting user data during SQL operations. They

provide a set of oblivious methods for everyday SQL operations.

However, these methods have significant cost overhead compared

to unprotected database systems. On the other hand, Enclage (Sun

et al., 2021) and Always Encrypted (Antonopoulos et al., 2020)

provide a practical notion for TEE-based databases which tried

to give the balance between privacy and efficiencies where leaving

most critical side-channel attacks, e.g., controlled channel attacks

out of their scope, making it less secure compared to ObliDB.

While these frameworks have been designed for generic data,

and some might be applied to graph analytics, no significant work

has been done to address the specific challenges with confidential

graph analytics using TEE, especially, the access-pattern protection.

Du et al. (2023) proposed a graph encryption method focusing on

the shortest distance query. While this approach hides nodes and

edges using PRF, the graph’s topology remains the same. Using

multiple queries, adversaries can still observe the access pattern

during graph processing, making the graph and query vulnerable to

powerful adversaries. On the other hand, our approach provides a

complete solution for protecting the contributors’ and data owner’s

ownership control and access patterns during data submission and

computation in the cloud.

6.3 TEE access-pattern protection

Data access-pattern protection has been a major approach to

addressing many side-channel attacks. Our approach represents a

task-specificmore efficient protectionmethod, specifically designed

for graph spectral analysis. Data oblivious programming is a

more generic solution to protect access patterns. It contains three

major approaches: (1) Manually constructing solutions with data

oblivious primitives, such as ORAM for disguising data block

accesses (Sasy et al., 2018), CMOV instructions for disguising

branching statements (Ohrimenko et al., 2016) and specific data

oblivious algorithms (Batcher, 1968; Krastnikov et al., 2020).

However, it requires developers to re-examine every statement of

the program and revise with corresponding data oblivious method,

which is expensive and error prone. (2) Automated conversion

approaches, such as the circuit-based conversion (Büscher et al.,

2018; Ozdemir et al., 2022) or special compilers (Liu et al.,

2015; Rane et al., 2015) are still not mature. (3) Semi-automated

approaches, e.g., the framework-based SGX-MR (Alam et al., 2021),

might be a promising direction that hides the protection measures

in a framework such as MapReduce and the developer only needs

to handle much smaller and simpler pieces of code and access

patterns. There has been an extensive study for comparing these

approaches (Alam and Chen, 2023).

6.4 Application of differential privacy in
graph analysis

Privacy-preserving graph data publishing (Zhou et al., 2008)

is somewhat related to confidential graph data mining. However,

it differs from our approach by using a different threat model:

graph data publishing does not assume proprietary data sharing

but sharing data with the public. Thus, the adversaries will be

among potential dataminers. Consequently, differential privacy has

been applied to perturb the published graphs so that the privacy

of the individuals associated with the graph is properly protected

(Kasiviswanathan et al., 2013; Wang et al., 2013). Such perturbed

graphs can approximately preserve the information of the original

graph.

In a decentralized setting, local differential privacy (Duchi

et al., 2013) is a widely used technique that enables researchers

to safeguard data privacy without relying on a service provider.

The approach works by introducing random perturbations to data

locally before transmitting it to an untrusted service provider

or data owner. Real-world applications, such as Google Chrome

(Erlingsson et al., 2014) and macOS (Wang et al., 2017), have

already incorporated this method. However, when using local

differential privacy to collect graph data, employing randomized

responses (Warner, 1965; Du et al., 2023) to perturb each element

of the graph can result in excessive noise. To address this issue,

Qin et al. (2017) and Ye et al. (2020) proposed collecting the

graph structure in the form of degree vectors, which represent

the neighbors of the graph. In this technique, the service provider

initially divides all the nodes into k non-overlapping subsets.

Instead of using the actual connections of a node u, the degree

vector of u represents the number of connections u has for each

subset. Finally, noise is added to the degree vector to perturb the

number of connections. While these approaches reduce the overall

noise of the graph, they still significantlymodify the actual structure

of the graph.

In contrast, our objective is not to divulge graph structures

but to use randomization to inject zero-weight edges to disguise

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

sensitive information such as node degrees and access patterns. The

encrypted edges are not distinguishable, and the zero-weight edges

do not change the computational results.

7 Conclusion and future work

With big graphs collected, stored, and analyzed in the cloud,

data confidentiality and ownership are becoming an increasingly

concerned issue. Most recent studies on confidential graph analysis

have been focused on software cryptographic approaches. Only a

few studies are based on trusted execution environments (TEEs),

which have not sufficiently addressed the two critical issues: data

contributors’ ownership and access-pattern protection. We study

the problem of confidential graph spectral analysis for large graph

data in the cloud and design the TEE-Graph approach to address

these critical issues. Our experimental results show that TEE-Graph

performs much faster than software cryptographic approaches with

additional benefits in ownership and access-pattern protection.

The future work may include the following directions. (1)

Extend the analysis part to more tasks for big graphs and protecting

their access patterns efficiently. (2) Consider integrating more

convenient access-pattern protection frameworks, such as SGX-

MR (Alam et al., 2021). (3) Study the unique problems with

evolving graphs, e.g., access patterns and ownership protection.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found at: https://snap.stanford.edu/data/index.html#

socnets.

Author contributions

AA: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing—original draft. KC: Conceptualization, Formal analysis,

Funding acquisition, Methodology, Project administration,

Resources, Supervision, Writing—review & editing.

Funding

The author(s) declare that financial support was received

for the research, authorship, and/or publication of this article.

This research was partially supported by the National Science

Foundation (Award# 2232824).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the funders.

References

Alam, A. K. M. M., and Chen, K. (2023). “Making your program oblivious: a
comparative study for side-channel-safe confidential computing,” in 2023 IEEE 16th
International Conference on Cloud Computing (CLOUD), 282–289.

Alam, A. K. M. M., Sharma, S., and Chen, K. (2021). SGX-MR: regulating dataflows
for protecting access patterns of data-intensive SGX applications. Proc. Privacy Enhan.
Technol. 2021, 5–20. doi: 10.2478/popets-2021-0002

Alibaba (2023). Alibaba Cloud’s SGX Encrypted Computing Environment.
Available online at: https://www.alibabacloud.com/help/en/elastic-compute-service/
latest/build-an-sgx-encrypted-computing-environment/ (accessed November, 2023).

Antonopoulos, P., Arasu, A., Singh, K. D., Eguro, K., Gupta, N., Jain, R., et al.
(2020). “Azure SQL database always encrypted,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20 (New York,
NY: Association for Computing Machinery), 1511–1525.

Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. (2006). “Group formation
in large social networks: membership, growth, and evolution,” in Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
44–54.

Batcher, K. E. (1968). “Sorting networks and their applications,” in Proceedings of
the Spring Joint Computer Conference, AFIPS ’68 (New York, NY: ACM), 307–314.

Berkhin, P. (2005). A survey on pagerank computing. Internet Math. 2, 73–120.
doi: 10.1080/15427951.2005.10129098

Brakerski, Z. (2012). “Fully homomorphic encryption without modulus switching
from classical GapSVP,” in Annual Cryptology Conference (Springer), 868–886.

Brakerski, Z., and Vaikuntanathan, V. (2011). “Fully homomorphic
encryption from ring-LWE and security for key dependent
messages,” in Proceedings of the 31st Annual Conference on Advances
in Cryptology, CRYPTO’11 (Berlin; Heidelberg: Springer-Verlag),
505–524.

Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., and Sadeghi,
A.-R. (2017). “Software grand exposure: SGX cache attacks are practical,” in 11th
USENIX Workshop on Offensive Technologies (WOOT 17) (Vancouver, BC: USENIX
Association).

Bulck, J. V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., et al.
(2018). “Foreshadow: extracting the keys to the intel SGX kingdom with transient
out-of-order execution,” in 27th USENIX Security Symposium (USENIX Security 18)
(Baltimore, MD: USENIX Association), 991–1008.

Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., and Schneider, T.
(2018). “HYCC: compilation of hybrid protocols for practical secure computation,” in

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://snap.stanford.edu/data/index.html#socnets
https://snap.stanford.edu/data/index.html#socnets
https://doi.org/10.2478/popets-2021-0002
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment/
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/build-an-sgx-encrypted-computing-environment/
https://doi.org/10.1080/15427951.2005.10129098
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 847–861.

Butenko, S., Chaovalitwongse, W. A., and Pardalos, P. M. (2009). Clustering
Challenges in Biological Networks. World Scientific.

Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. (2015). “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15 (New York, NY: Association for
Computing Machinery), 668–679.

Chakrabarti, D., and Faloutsos, C. (2006). Graph mining: laws, generators,
and algorithms. ACM Comput. Surv. 38, 2. doi: 10.1145/1132952.11
32954

Chander, A., Kaminski, M. E., and McGeveran, W. (2020). Catalyzing privacy law.
Minn. L. Rev. 105, 1733. doi: 10.2139/ssrn.3433922

Costan, V., and Devadas, S. (2016). Intel SGX explained. IACR Cryptol. ePrint Arch.
2016, 86.

Cullum, J. K., andWilloughby, R. A. (1985). Lanczos Algorithms for Large Symmetric
Eigenvalue Computations: Vol. I: Theory. SIAM.

Deng, Y., Wang, C., Yu, S., Liu, S., Ning, Z., Leach, K., et al. (2022). “Strongbox: a
GPU tee on arm endpoints,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 769–783.

Dinh, T. T. A., Saxena, P., Chang, E., Ooi, B. C., and Zhang, C. (2015).
“M2R: enabling stronger privacy in MapReduce computation,” in USENIX Security
Symposium (USENIX Association), 447–462.

Du, M., Jiang, P., Wang, Q., Chow, S. S. M., and Zhao, L. (2023). Shielding graph
for eXact analytics with SGX. IEEE Trans. Depend. Sec. Comput. 20, 5102–5112.
doi: 10.1109/TDSC.2023.3241164

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. (2013). “Local privacy and
statistical minimax rates,” in Annual Symposium on Foundations of Computer Science,
429–438.

Dwork, C. (2006). “Differential privacy,” in International Colloquium on Automata,
Languages and Programming (Springer), 1–12.

Erlingsson, U., Pihur, V., and Korolova, A. (2014). “Rappor: randomized
aggregatable privacy-preserving ordinal response,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14 (New York,
NY: ACM), 1054–1067.

Eskandarian, S., and Zaharia, M. (2019). ObliDB: oblivious query processing
for secure databases. Proc. VLDB Endow. 13, 169–183. doi: 10.14778/3364324.33
64331

Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral grouping
using the nyström method. IEEE Trans. Pattern Anal. Mach. Intell. 26, 214–225.
doi: 10.1109/TPAMI.2004.1262185

Gamaarachchi, H., and Ganegoda, H. (2018). Power analysis based side channel
attack. arXiv preprint arXiv:1801.00932.

Götzfried, J., Eckert, M., Schinzel, S., and Müller, T. (2017). “Cache attacks on intel
SGX,” in Proceedings of the 10th European Workshop on Systems Security, EuroSec’17
(New York, NY: ACM), 2:1–2:6.

Huang, Y., Evans, D., Katz, J., and Malka, L. (2011). “Faster secure two-party
computation using garbled circuits,” in USENIX Conference on Security, 35.

Hunt, T., Jia, Z., Miller, V., Szekely, A., Hu, Y., Rossbach, C. J., et al. (2020).
“Telekine: Secure computing with cloud GPUs,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20) (Santa Clara, CA: USENIX
Association), 817–833.

Intel (2023). Intel’s Recent Server CPU with SGX Support. Available online at:
https://www.intel.com/content/www/us/en/products/details/processors/xeon/d/
products.html (accessed November, 2023).

Jolliffe, I. T. (1986). Principal Component Analysis. Springer.

Karande, V., Bauman, E., Lin, Z., and Khan, L. (2017). “SGX-Log: securing system
logs with SGX,” in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security.

Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and Smith, A.
(2013). “Analyzing graphs with node differential privacy,” in Proceedings
of 10th Theory of Cryptography Conference, TCC 2013 (Tokyo: Springer),
457–476.

Krastnikov, S., Kerschbaum, F., and Stebila, D. (2020). Efficient oblivious
database joins. Proc. VLDB Endow. 13, 2132–2145. doi: 10.14778/3407790.340
7814

Liu, C., Harris, A., Maas, M., Hicks, M., Tiwari, M., and Shi, E.
(2015). Ghostrider: a hardware-software system for memory trace oblivious
computation. ACM SIGPLAN Not. 50, 87–101. doi: 10.1145/2775054.269
4385

Meng, X., Kamara, S., Nissim, K., and Kollios, G. (2015). “GRECS: graph encryption
for approximate shortest distance queries,” in ACM CCS (New York, NY: ACM),
504–517.

Mohassel, P., and Zhang, Y. (2017). “SecureML: a system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP),
19–38.

Newman, M. E. J. (2013). Spectral methods for community detection and graph
partitioning. Phys. Rev. E 88, 042822. doi: 10.1103/PhysRevE.88.042822

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). “On spectral clustering: analysis and
algorithm,” in Proceedings of Neural Information Processing Systems (NIPS).

Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K.,
et al. (2016). “Oblivious Multi-Party machine learning on trusted processors,” in 25th
USENIX Security Symposium (USENIX Security 16) (Austin, TX: USENIXAssociation),
619–636.

Ozdemir, A., Brown, F., andWahby, R. S. (2022). “CIRC: compiler infrastructure for
proof systems, software verification, and more,” in 2022 IEEE Symposium on Security
and Privacy (SP) (IEEE), 2248–2266.

Paillier, P. (1999). “Public-key cryptosystems based on composite degree residuosity
classes,” in The Proceedings of EUROCRYPT, 223–238.

Pietervanhove (2023). Microsoft Azure Database. Available online at: https://learn.
microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?
view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves (accessed
November, 2023).

Plimpton, S., and Devine, K. (2011). Mapreduce in MPI for large-scale graph
algorithms. Parallel Comput. 37, 610–632. doi: 10.1016/j.parco.2011.02.004

Priebe, C., Vaswani, K., and Costa, M. (2018). “EnclaveDB - a secure database using
SGX,” in IEEE Symposium on Security and Privacy (IEEE).

Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., and Ren, K. (2017). “Generating
synthetic decentralized social graphs with local differential privacy,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security (New
York, NY: Association for Computing Machinery), 425–438.

Rane, A., Lin, C., and Tiwari, M. (2015). “Raccoon: closing digital side-channels
through obfuscated execution,” in Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’ 15 (USENIX Association), 431–446.

Regev, O. (2005). “On lattices, learning with errors, random linear codes, and
cryptography,” in Annual ACM symposium on Theory of computing, 84–93.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252.
doi: 10.1007/s11263-015-0816-y

Sasy, S., Gorbunov, S., and Fletcher, C. W. (2018). “Zerotrace : oblivious memory
primitives from intel SGX,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018 (San Diego, CA).

Scholkopf, B., and Smola, A. (2002). Learning with Kernels. MIT Press.

Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz, G.,
et al. (2015). “VC3: trustworthy data analytics in the cloud using SGX,” in 36th IEEE
Symposium on Security and Privacy.

Shaon, F., Kantarcioglu, M., Lin, Z., and Khan, L. (2017). “SGX-bigmatrix: a
practical encrypted data analytic framework with trusted processors,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
1211–1228.

Sharma, S., and Chen, K. (2019). “Confidential boosting with random linear
classifiers for outsourced user-generated data,” in Computer Security - ESORICS 2019 -
24th European Symposium on Research in Computer Security (Luxembourg), 41–65.

Sharma, S., Powers, J., and Chen, K. (2019). Privategraph: privacy-preserving
spectral analysis of encrypted graphs in the cloud. IEEE Trans. Knowledge Data Eng.
31, 981–995. doi: 10.1109/TKDE.2018.2847662

Sheth, A., Padhee, S., and Gyrard, A. (2019). Knowledge graphs and
knowledge networks: the story in brief. IEEE Internet Comput. 23, 67–75.
doi: 10.1109/MIC.2019.2928449

Shinde, S., Chua, Z. L., Narayanan, V., and Saxena, P. (2016). “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, ASIACCS16 (New York, NY: Association
for Computing Machinery), 317–328.

Smart, N., and Vercauteren, F. (2012). Fully homomorphic SIMD operations.
Designs Codes Cryptogr. 71, 57–81. doi: 10.1007/s10623-012-9720-4

Sun, Y., Wang, S., Li, H., and Li, F. (2021). Building enclave-native storage
engines for practical encrypted databases. Proc. VLDB Endow. 14, 1019–1032.
doi: 10.14778/3447689.3447705

Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M., Genkin, D.,
et al. (2020). LVI: Hijacking transient execution through microarchitectural load value
injection. In 41th IEEE Symposium on Security and Privacy (S&P’20).

Van Schaik, S., Kwong, A., Genkin, D., and Yarom, Y. (2020). SGAxe: How SGX Fails
in Practice. Available online at: https://sgaxe.com/files/SGAxe.pdf

Wang, T., Blocki, J., Li, N., and Jha, S. (2017). “Locally differentially private
protocols for frequency estimation,” in 26th USENIX Security Symposium (USENIX
Security 17). 729–745.

Wang, Y.,Wu, X., andWu, L. (2013). “Differential privacy preserving spectral graph
analysis,” in Advances in Knowledge Discovery and Data Mining, eds J. Pei, V. S. Tseng,
L. Cao, H. Motoda, and G. Xu (Berlin; Heidelberg: Springer), 329–340.

Frontiers in BigData 16 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.2139/ssrn.3433922
https://doi.org/10.1109/TDSC.2023.3241164
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1109/TPAMI.2004.1262185
https://www.intel.com/content/www/us/en/products/details/processors/xeon/d/products.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/d/products.html
https://doi.org/10.14778/3407790.3407814
https://doi.org/10.1145/2775054.2694385
https://doi.org/10.1103/PhysRevE.88.042822
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-enclaves-enable?view=azuresql&viewFallbackFrom=azuresql%2F&tabs=IntelSGXenclaves
https://doi.org/10.1016/j.parco.2011.02.004
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TKDE.2018.2847662
https://doi.org/10.1109/MIC.2019.2928449
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.14778/3447689.3447705
https://sgaxe.com/files/SGAxe.pdf
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Alam and Chen 10.3389/fdata.2023.1296469

Warner, S. L. (1965). Randomized response: A survey technique for eliminating
evasive answer bias. J. Am. Stat. Assoc. 60, 63–69.

Xu, Y., Cui, W., and Peinado, M. (2015). “Controlled-channel attacks: deterministic
side channels for untrusted operating systems,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15 (Washington, DC: IEEE Computer Society),
640–656.

Yao, A. C. (1986). “How to generate and exhange secrets,” in IEEE Symposium on
Foundations of Computer Science, 162–167.

Ye, Q., Hu, H., Au, M. H., Meng, X., and Xiao, X. (2020).
Lf-gdpr: A framework for estimating graph metrics with local
differential privacy. IEEE Trans. Knowledge and Data Eng. 34,
4905–4920.

Yudha, A. W. B., Meyer, J., Yuan, S., Zhou, H., and Solihin, Y. (2022). “Lite: a low-
cost practical inter-operable GPU tee,” in Proceedings of the 36th ACM International
Conference on Supercomputing, 1–13.

Zaeem, R. N., and Barber, K. S. (2020). The effect of the GDPR on privacy policies:
recent progress and future promise. ACM Trans. Manage. Inform. Syst. 12, 1–20.
doi: 10.1145/3389685

Zheng, W., Dave, A., Beekman, J. G., Popa, R. A., Gonzalez, J. E., and Stoica,
I. (2017). “Opaque: an oblivious and encrypted distributed analytics platform,” in
USENIX Symposium on Networked Systems Design and Implementation.

Zhou, B., Pei, J., and Luk, W. (2008). A brief survey on anonymization techniques
for privacy preserving publishing of social network data. SIGKDD Explor. Newsl. 10,
12–22. doi: 10.1145/1540276.1540279

Frontiers in BigData 17 frontiersin.org

https://doi.org/10.3389/fdata.2023.1296469
https://doi.org/10.1145/3389685
https://doi.org/10.1145/1540276.1540279
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	TEE-Graph: efficient privacy and ownership protection for cloud-based graph spectral analysis
	1 Introduction
	1.1 Scope of our research

	2 Preliminaries
	2.1 Graph spectral analysis
	2.2 Trusted execution environment
	2.3 Differential privacy

	3 Privacy and ownership preserving graph analysis in the cloud: the architecture
	3.1 Threat model
	3.1.1 Assumptions about TEE
	3.1.2 Compromised cloud provider
	3.1.3 Dishonest data owners
	3.1.4 Protected assets
	3.1.5 Scope of side-channel attacks

	3.2 TEE-Graph architecture
	3.3 Technical challenges

	4 Technical details
	4.1 Maintaining ownership and confidentiality of graph data
	4.1.1 Graph encoding
	4.1.2 TEE-specific key
	4.1.3 Revocation

	4.2 Handling big graphs with TEE
	4.2.1 Integrity guarantee
	4.2.2 Efficiency

	4.3 Access-pattern protection
	4.3.1 Differentially private edge injection to protect access patterns

	5 Experimental evaluation
	5.1 Experiment setup
	5.1.1 Implementation
	5.1.2 Benchmark measures
	5.1.3 Datasets

	5.2 Result analysis
	5.2.1 Contributor's cost
	5.2.2 Data owner's costs
	5.2.3 Cloud storage cost
	5.2.4 Cloud computational cost

	5.3 Cost of access pattern protection
	5.3.1 Graph perturbation cost
	5.3.2 Additional computational costs

	6 Related work
	6.1 Cryptographic approaches
	6.2 TEE-based approaches
	6.3 TEE access-pattern protection
	6.4 Application of differential privacy in graph analysis

	7 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

