2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) | 979-8-3503-2263-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSE-COMPANION58688.2023.00095

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

SAIN: A Community-Wide Software Architecture
INfrastructure

1% Joshua Garcia
University of Calfornia Irvine
joshug4 @uci.edu

5% Rick Kazman
University of Hawaii
kazman @hawaii.edu

4™ Sam Malek
University of Calfornia Irvine
malek @uci.edu

Index Terms—software architecture, reproducible, empirical
software engineering

[. INTRODUCTION

Software Architecture is the most important determinant of
the functional and non-functional attributes of a system [1]-
[3]. Put simply, software systems “live and die” by their
architectures [4]. Despite the importance, the architecture of a
software system is often not explicitly documented, especially
in the prevalent Agile methods in the past decades. Instead,
the architecture of a system often becomes hidden in the
myriad system implementation details, and gradually decays
and accumulates grime—causing significant challenges to its
long-term evolution and maintenance [5]-[8]. Recovering,
understanding, and updating a system’s architecture is an
important facet of overcoming this challenge to support the
evolution and maintenance of long-lived software systems.

Responding to the above challenge, software architecture
research has yielded many different tools and techniques in
the past two decades. However, the disjoint research effort and
diverse lab environments where different tools and techniques
are created have impeded technology transfer for reproducible
empirical studies for the community. In other words, there is a
lack of shared infrastructure with available tools and datasets
for systematic synthesis and empirical validation of new or
existing techniques. As such, researchers and practitioners in
need of cutting-edge tools tend to re-invent, re-implement
research infrastructure, or ignore particular research avenues
altogether.

To address these challenges of reusability, reproducibility,
and replicability of software architecture research, we have
produced Software Architecture INstrument (SAIN), a first-
of-its-kind framework for assembling tools in support of
architecture-based software maintenance. SAIN’s capabilities
have been motivated by directly engaging the software re-
searcher and practitioner communities, in the form of three
workshops as well as a survey conducted by the authors.
SAIN is delivered as a web-based platform consisting of three

Identify applicable funding agency here. If none, delete this.

2" Mehdi Mirakhorli
Rochester Institute of Technology
mxmvse@rit.edu

6™ Yuanfang Cai
Drexel University
yfcai@cs.drexel.edu

3" Lu Xiao
Stevens Institute of Technology
Ixiao6 @stevens.edu

7% Nenad Medvidovié
University of Southern California
neno@usc.edu

principal components: 1) a catalogued library of cutting-
edge tools for reverse engineering and analyzing software
systems’ architectures; these tools are either provided by their
original authors or reproduced from literature; 2) a plug-
and-play instrument for integrating the tools and techniques
to facilitate empirical studies of software architectures; and
3) reproducibility wizards to set up experiment templates,
produce replication packages, and release them in easy-to-run
and modify formats.

In this technical briefing, we will present SAIN, demonstrate
how to employ the three components of SAIN mentioned above
for repeating existing as well as developing new research ideas,
and provide participants with a hands-on experience/tutorial
guided by members of our team. The technical briefing will
contain three sessions:
¢ We will introduce the basic functions of SAIN, as well

the tools and the datasets available on SAIN. The latter

include, 13 architecture recovery components, 8 components
for computing architectural metrics or analyses, 2 fact
extractors, and 9 utility components from those tool suites.

« We will then demo two case studies that can be easily repli-
cated using the plug-and-play instrument of SAIN. These
include one compact case study of SAIN run on a game
engine project called Mage and another detailed case study
of SAIN run on Hadoop 2.5.0; and the empirical results
of the detailed case study, which analyzes the relationships
between architectural smells, architectural tactics, and error-
proneness.

« We will let the participants reproduce case studies them-
selves by using the reproducibility wizards of SAIN.

In the end, we will collect feedback from the participants
regarding how we could keep improving SAIN to better serve
the community.

II. RELEVANCE TO SOFTWARE ENGINEERING
COMMUNITY

SAIN and its capabilities have been motivated by directly
engaging a large segment of the software researcher and
practitioner communities. They included three workshops—
conducted in Los Angeles, CA in January 2017; in Buenos

979-8-3503-2263-7/23/$31.00 ©2023 IEEE 336
DOI 10.1109/ICSE-Companion58688.2023.00095
Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on December 16,2023 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

Aires, Argentina in May 2017 (collocated with ICSE 2017);
and in Urbana-Champaign, IL in November 2017 (collocated
with ASE 2017)—that led to the identification of SAIN’s
core requirements and its baseline architecture. These activities
were followed by a survey of an additional 130 researchers to
prioritize and identify any additional requirements.

SAIN will provide a critical resource to software engineering
researchers, enabling extensive empirical research. By pro-
viding a large repository of architectural artifacts, researchers
will be able to compare and contrast their techniques using
the same datasets. This will, in turn, enable researchers to
establish a common understanding of the relative accuracy of
different techniques, identify gaps and sources of inaccuracy,
and develop new solutions to incrementally or fundamentally
improve the results. SAIN will also be an important resource to
practitioners. SAIN will provide practitioners an infrastructure
where they can obtain and try the various tools, provide
feedback, contribute to the repository of architectural artifacts,
and generally influence the research conducted in academia
and research labs.

In terms of the usage of SAIN so far, we ran a school
allowing users to learn more about SAIN, which included over
40 registrants and attendees from across the world (including
the US, Europe, and China). Additionally, the SAIN user base
has grown to nearly 100 users from all over the world.

III. TECHNICAL BRIEFING AGENDA

We plan to host a 180 minute program with two modular 90
minutes sessions. Following we describe the agenda for our
sessions:

a) Introduction and General Discussions: We are
proposing to have the first 90-minute session to start with
an introduction to software architecture, and a brief presen-
tation of the state of the art and practice on this topic from
three complementary perspectives of (i) software engineering
problems addressed, (ii) existing tools and techniques previ-
ously developed and used, and (iii) types and characteristics
of available datasets. The introduction will take roughly 45
minutes.

After the introduction, we will hold a General Discussions.
This technical briefing will be highly interactive in order
to encourage discussion between participants. It will feature
“three-minute madness” talks from participants to share their
experiences and initial thoughts on the topic. The idea is
that the participants will be given three minute to talk to the
audience about their interests, challenges, or questions. This
part will take roughly 45 minutes (assuming 15 participants).
We plan to adjust the time given to each participant, depending
on the number of participants we get.

b) Demo and Experiment Session: The secnond 90 min-
utes session will include a demo of SAIN, as well as the
“hands-on” exercises for the participants. We will demo the
three key components of SAIN: 1) a catalogued library of
cutting-edge tools for reverse engineering and analyzing soft-
ware systems’ architectures; these tools are either provided by

337

their original authors or reproduced from literature; 2) a plug-
and-play instrument for integrating the tools and techniques
to facilitate empirical studies of software architectures; and
3) reproducibility wizards to set up experiment templates,
produce replication packages, and release them in easy-to-run
and modify formats.

c) Experiment Session: We will engage the participants
to replicate experiments on SAIN, levering its reproducibility
wizards. These include one compact case study of SAIN run on
a game engine project called Mage and another detailed case
study of SAIN run on Hadoop 2.5.0; and the empirical results
of the detailed case study, which analyzes the relationships
between architectural smells, architectural tactics, and error-
proneness.

d) Feedback: Finally, we will invite participants to share
their feedback of using SAIN. We will ask participants to
submit a survey to evaluate the functions of SAIN. We will
also invite participants to share their insights regarding how
we should improve and maintain SAIN as a community.

IV. TARGET PARTICIPANTS

The target audience includes researchers interested in soft-
ware architecture, software maintenance, empirical software
engineering, and reproducibility. Researchers and practitioners
who are developing/using methods, techniques, and tools to
analyze software architecture will be particularly interested
in this technical briefing. We also target practitioners who
face the challenge of finding empirically validated solutions
for the software engineering problems they are addressing.
Furthermore, our target audience includes SE educators inter-
ested in developing course materials in this area. No specific
background will be required. Participation in the technical
briefing will be open to all ICSE 2023 participants.

REFERENCES

[1] M. Shaw and D. Garlan, Software architecture: perspectives on an
emerging discipline. Prentice Hall Englewood Cliffs, 1996, vol. 1.

R. N. Taylor, N. Medvidovic, and E. M. Dashoty, Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley, 2013.

“Analysis: It experts question architecture of obamacare website,”
http://www.reuters.com/article/us-usa-healthcare-technology-analysis-
idUSBRE99407T20131005, 2013.

A. Telea and L. Voinea, “Visual software analytics for the build
optimization of large-scale software systems,” Computational Statistics,
vol. 26, no. 4, pp. 635-654, Dec. 2011. [Online]. Available:
http://link.springer.com/10.1007/s00180-011-0248-2

T. A. Standish, “An Essay on Software Reuse,” IEEE Transactions
on Software Engineering, vol. SE-10, no. 5, pp. 494-497, Sep. 1984,
conference Name: IEEE Transactions on Software Engineering.

T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294-306, 1989, conference Name:
IBM Systems Journal.

S. Yau and J. Collofello, “Some Stability Measures for Software Mainte-
nance,” IEEE Transactions on Software Engineering, vol. SE-6, no. 6, pp.
545-552, Nov. 1980, conference Name: IEEE Transactions on Software
Engineering.

[2]
[3]
[4]

[5]

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on December 16,2023 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

