
SAIN: A Community-Wide Software Architecture
INfrastructure

1st Joshua Garcia
University of Calfornia Irvine

joshug4@uci.edu

2nd Mehdi Mirakhorli
Rochester Institute of Technology

mxmvse@rit.edu

3rd Lu Xiao
Stevens Institute of Technology

lxiao6@stevens.edu

4th Sam Malek
University of Calfornia Irvine

malek@uci.edu

5th Rick Kazman
University of Hawaii
kazman@hawaii.edu

6th Yuanfang Cai
Drexel University

yfcai@cs.drexel.edu

7th Nenad Medvidović
University of Southern California

neno@usc.edu

Index Terms—software architecture, reproducible, empirical
software engineering

I. INTRODUCTION

Software Architecture is the most important determinant of

the functional and non-functional attributes of a system [1]–

[3]. Put simply, software systems “live and die” by their

architectures [4]. Despite the importance, the architecture of a

software system is often not explicitly documented, especially

in the prevalent Agile methods in the past decades. Instead,

the architecture of a system often becomes hidden in the

myriad system implementation details, and gradually decays

and accumulates grime—causing significant challenges to its

long-term evolution and maintenance [5]–[8]. Recovering,

understanding, and updating a system’s architecture is an

important facet of overcoming this challenge to support the

evolution and maintenance of long-lived software systems.

Responding to the above challenge, software architecture

research has yielded many different tools and techniques in

the past two decades. However, the disjoint research effort and

diverse lab environments where different tools and techniques

are created have impeded technology transfer for reproducible

empirical studies for the community. In other words, there is a

lack of shared infrastructure with available tools and datasets

for systematic synthesis and empirical validation of new or

existing techniques. As such, researchers and practitioners in

need of cutting-edge tools tend to re-invent, re-implement

research infrastructure, or ignore particular research avenues

altogether.

To address these challenges of reusability, reproducibility,

and replicability of software architecture research, we have

produced Software Architecture INstrument (SAIN), a first-

of-its-kind framework for assembling tools in support of

architecture-based software maintenance. SAIN’s capabilities

have been motivated by directly engaging the software re-

searcher and practitioner communities, in the form of three

workshops as well as a survey conducted by the authors.

SAIN is delivered as a web-based platform consisting of three

Identify applicable funding agency here. If none, delete this.

principal components: 1) a catalogued library of cutting-

edge tools for reverse engineering and analyzing software

systems’ architectures; these tools are either provided by their

original authors or reproduced from literature; 2) a plug-
and-play instrument for integrating the tools and techniques

to facilitate empirical studies of software architectures; and

3) reproducibility wizards to set up experiment templates,

produce replication packages, and release them in easy-to-run

and modify formats.

In this technical briefing, we will present SAIN, demonstrate

how to employ the three components of SAIN mentioned above

for repeating existing as well as developing new research ideas,

and provide participants with a hands-on experience/tutorial

guided by members of our team. The technical briefing will

contain three sessions:

• We will introduce the basic functions of SAIN, as well

the tools and the datasets available on SAIN. The latter

include, 13 architecture recovery components, 8 components

for computing architectural metrics or analyses, 2 fact

extractors, and 9 utility components from those tool suites.

• We will then demo two case studies that can be easily repli-

cated using the plug-and-play instrument of SAIN. These

include one compact case study of SAIN run on a game

engine project called Mage and another detailed case study

of SAIN run on Hadoop 2.5.0; and the empirical results

of the detailed case study, which analyzes the relationships

between architectural smells, architectural tactics, and error-

proneness.

• We will let the participants reproduce case studies them-

selves by using the reproducibility wizards of SAIN.

In the end, we will collect feedback from the participants

regarding how we could keep improving SAIN to better serve

the community.

II. RELEVANCE TO SOFTWARE ENGINEERING

COMMUNITY

SAIN and its capabilities have been motivated by directly

engaging a large segment of the software researcher and

practitioner communities. They included three workshops—

conducted in Los Angeles, CA in January 2017; in Buenos

336

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00095

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 C

om
pa

ni
on

 P
ro

ce
ed

in
gs

 (I
CS

E-
Co

m
pa

ni
on

) |
 9

79
-8

-3
50

3-
22

63
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-C
O

M
PA

N
IO

N
58

68
8.

20
23

.0
00

95

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on December 16,2023 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

Aires, Argentina in May 2017 (collocated with ICSE 2017);

and in Urbana-Champaign, IL in November 2017 (collocated

with ASE 2017)—that led to the identification of SAIN’s

core requirements and its baseline architecture. These activities

were followed by a survey of an additional 130 researchers to

prioritize and identify any additional requirements.

SAIN will provide a critical resource to software engineering

researchers, enabling extensive empirical research. By pro-

viding a large repository of architectural artifacts, researchers

will be able to compare and contrast their techniques using

the same datasets. This will, in turn, enable researchers to

establish a common understanding of the relative accuracy of

different techniques, identify gaps and sources of inaccuracy,

and develop new solutions to incrementally or fundamentally

improve the results. SAIN will also be an important resource to

practitioners. SAIN will provide practitioners an infrastructure

where they can obtain and try the various tools, provide

feedback, contribute to the repository of architectural artifacts,

and generally influence the research conducted in academia

and research labs.

In terms of the usage of SAIN so far, we ran a school

allowing users to learn more about SAIN, which included over

40 registrants and attendees from across the world (including

the US, Europe, and China). Additionally, the SAIN user base

has grown to nearly 100 users from all over the world.

III. TECHNICAL BRIEFING AGENDA

We plan to host a 180 minute program with two modular 90

minutes sessions. Following we describe the agenda for our

sessions:

a) Introduction and General Discussions: We are

proposing to have the first 90-minute session to start with

an introduction to software architecture, and a brief presen-

tation of the state of the art and practice on this topic from

three complementary perspectives of (i) software engineering

problems addressed, (ii) existing tools and techniques previ-

ously developed and used, and (iii) types and characteristics

of available datasets. The introduction will take roughly 45

minutes.

After the introduction, we will hold a General Discussions.

This technical briefing will be highly interactive in order

to encourage discussion between participants. It will feature

“three-minute madness” talks from participants to share their

experiences and initial thoughts on the topic. The idea is

that the participants will be given three minute to talk to the

audience about their interests, challenges, or questions. This

part will take roughly 45 minutes (assuming 15 participants).

We plan to adjust the time given to each participant, depending

on the number of participants we get.

b) Demo and Experiment Session: The secnond 90 min-

utes session will include a demo of SAIN, as well as the

“hands-on” exercises for the participants. We will demo the

three key components of SAIN: 1) a catalogued library of

cutting-edge tools for reverse engineering and analyzing soft-

ware systems’ architectures; these tools are either provided by

their original authors or reproduced from literature; 2) a plug-
and-play instrument for integrating the tools and techniques

to facilitate empirical studies of software architectures; and

3) reproducibility wizards to set up experiment templates,

produce replication packages, and release them in easy-to-run

and modify formats.

c) Experiment Session: We will engage the participants

to replicate experiments on SAIN, levering its reproducibility
wizards. These include one compact case study of SAIN run on

a game engine project called Mage and another detailed case

study of SAIN run on Hadoop 2.5.0; and the empirical results

of the detailed case study, which analyzes the relationships

between architectural smells, architectural tactics, and error-

proneness.

d) Feedback: Finally, we will invite participants to share

their feedback of using SAIN. We will ask participants to

submit a survey to evaluate the functions of SAIN. We will

also invite participants to share their insights regarding how

we should improve and maintain SAIN as a community.

IV. TARGET PARTICIPANTS

The target audience includes researchers interested in soft-

ware architecture, software maintenance, empirical software

engineering, and reproducibility. Researchers and practitioners

who are developing/using methods, techniques, and tools to

analyze software architecture will be particularly interested

in this technical briefing. We also target practitioners who

face the challenge of finding empirically validated solutions

for the software engineering problems they are addressing.

Furthermore, our target audience includes SE educators inter-

ested in developing course materials in this area. No specific

background will be required. Participation in the technical

briefing will be open to all ICSE 2023 participants.

REFERENCES

[1] M. Shaw and D. Garlan, Software architecture: perspectives on an
emerging discipline. Prentice Hall Englewood Cliffs, 1996, vol. 1.

[2] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley, 2013.

[4] “Analysis: It experts question architecture of obamacare website,”
http://www.reuters.com/article/us-usa-healthcare-technology-analysis-
idUSBRE99407T20131005, 2013.

[5] A. Telea and L. Voinea, “Visual software analytics for the build
optimization of large-scale software systems,” Computational Statistics,
vol. 26, no. 4, pp. 635–654, Dec. 2011. [Online]. Available:
http://link.springer.com/10.1007/s00180-011-0248-2

[6] T. A. Standish, “An Essay on Software Reuse,” IEEE Transactions
on Software Engineering, vol. SE-10, no. 5, pp. 494–497, Sep. 1984,
conference Name: IEEE Transactions on Software Engineering.

[7] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989, conference Name:
IBM Systems Journal.

[8] S. Yau and J. Collofello, “Some Stability Measures for Software Mainte-
nance,” IEEE Transactions on Software Engineering, vol. SE-6, no. 6, pp.
545–552, Nov. 1980, conference Name: IEEE Transactions on Software
Engineering.

337

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on December 16,2023 at 07:46:42 UTC from IEEE Xplore. Restrictions apply.

