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SUMMARY
Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-
function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq)
that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale elec-
trical activity and profile single-cell gene expression from the same cells across intact biological networks,
including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardi-
omyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysi-
ology and gene expression at the cellular level, jointly defining cell states and developmental trajectories.
Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysi-
ology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of
gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be
applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of
cell types and gene programs responsible for electrophysiological function and dysfunction.
INTRODUCTION

Paired charting of single-cell gene expression and electrophysi-

ology in intact cells and tissues across time and space is crucial

to understanding gene-to-function relationships in fields ranging

from developmental biology to cardiology and neuroscience.1–5

Such multimodal methods require stable and continuous

recording of individual cell electrical activity with high spatio-

temporal resolution across three-dimensional (3D) biological

samples, multiplexed profiling of a large number of genes in elec-

trically recorded cells, and multimodal and cross-modal compu-

tational analysis.

Large-scale single-cell electrical recording6–8 and high-

throughput single-cell sequencing9–11 have enabled system-

level investigation of single-cell electrophysiology and gene

expression, respectively. However, existing multimodal

methods either lack high spatiotemporal resolution or cannot

chronically stably measure electrical activities across 3D biolog-

ical samples. For example, combining calcium imaging with RNA

hybridization12 reveals the correlation between calcium activity

andmolecularly defined cell types but only permits the recording
2002 Cell 186, 2002–2017, April 27, 2023 ª 2023 Elsevier Inc.
of cell activity on the scale of seconds and profiling of a limited

number of genes. On the other hand, patch-sequencing

(patch-seq) method1,3 quantifies cell activity with millisecond

resolution and profiles the transcriptomes of recorded cells,

but it assays cells one at a time and requires membrane disrup-

tion for electrical measurement, precluding 3D multiplexed and

long-term stable electrical activity mapping.

Recent progress in thin-film flexible bioelectronics has

enabled the development of flexible and stretchable ‘‘tissue-

like’’ electronics capable of seamlessly integrating with tissue

networks for long-term, stable, millisecond-timescale, single-

cell electrical mapping.13–17 Meanwhile, current imaging-based

in situ sequencing methods18 can achieve end-point spatial

analysis of thousands of genes at subcellular resolution across

intact biological samples. Here, we combine flexible and stretch-

able tissue-like bioelectronics with in situ sequencing in a

method termed ‘‘in situ electro-sequencing (electro-seq)’’ that

enables scalable and paired profiling of single-cell gene expres-

sion and electrophysiology in intact biological networks,

including human-induced pluripotent stem cell (hiPSC)-derived

cardiac patches and cultured mouse neural patches.
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RESULTS

In situ electro-seq platform
We applied stretchable sub-micrometer-thick mesh electronics

with cellular size electrodes to seamlessly integrate with cardiac

and neural patches for continuous electrical recording and to pre-

vent potential cell-to-electrode dislocation during cell culture,

sample preparation, andmultiple cycles of in situ sequencing (Fig-

ure 1A). Then, we embedded the sample into a hydrogel to form a

cell-electronics-hydrogel network that is compatible with the in

situ sequencing protocol and capable of co-deformation during

volumechange. Toprecisely identify the electrically recordedcells

in 3D cell networks, we used photolithography to pattern the thin-

film microscale polymeric structures with distinct fluorescent

electronic barcodes (E-barcodes), which were paired with each

individual electrode to label its recording channel during fluores-

cence imaging cycles of in situ sequencing. The E-barcodes

served to trace each electrode and identify the electrically re-

corded cells with precise 3D coordinates, allowing for the integra-

tion of electrical recording with gene expression.

Briefly, in situ electro-seq consists of four key steps (Fig-

ure 1A): (1) the mesh electronics with E-barcoded electrodes

are embedded in the biological samples, such as cardiac and

neural patches for continuous electrical recording; (2) the entire

cell-electronics hybrid is fixed, embedded in hydrogels, and

cleared for in situ sequencing; (3) gene identities and

E-barcodes are simultaneously read out by multiple cycles of

fluorescence imaging to integrate electrical recording with

gene expression profiling at single-cell resolution; and (4) the in-

tegrated data are analyzed using multimodal and cross-modal

visualization and correlation to reconstruct spatiotemporal

gene-to-function relationships.

In situ electro-seq integrates single-cell transcriptional
and electrophysiological states of hiPSC-derived
cardiac patches
We applied in situ electro-seq to hiPSC-derived cardiomyocyte

(hiPSC-CM) patches tomap electrophysiology and gene expres-

sion from the same cells. First, our representative mesh elec-

tronics had 64 electrodes, each 25 mm in diameter (Figures 1B

and S1), and were designed, based on recent reports,6,7,19–22

to record localized, single-cell-level electrophysiology19,21 with

low noise level (root mean square voltage < 10 mV) and reliable

single-unit separation (amplitude > 60 mV). A pair of center-sym-

metric fluorescent E-barcodes with distinct binary codes was

patterned with each electrode at the center (Figures 1C, S1F,

and S1G). Characterizing electrode impedance (Figure 1D)

showed stable performance across different samples (Figure 1E)
Figure 1. In situ electro-seq platform

(A) Schematics summarizing the in situ electro-seq method.

(B) Representative photograph of flexible mesh electronics. Inset: schematic illus

(C) Overlapped fluorescence and bright-field (BF) image of a pair of binary E-bar

(D) Electrochemical impedance and phase from 0.1 to 10 kHz of a representative

(E and F) Electrochemical impedance at 1 kHz across five different samples (E) a

(G) In situ sequencing of a cell-electronics hybrid (see STAR Methods).

(H) Representative images of five rounds of sequencing overlaid with E-barcode. X

channels; E-barcodes labeled with R6G.
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and over 2 months in the physiological solution (Figure 1F) for

long-term electrical recording.

Then, hiPSC-CMs were generated and integrated with mesh

electronics to form a cardiac patch, as described previously.14,17

We used immunostaining and calcium imaging to characterize

the quality of hiPSC-CMs (Figures S2A and S2B). The immuno-

staining results showed that approximately 95% of the cells

were CMs marked by troponin T (TNT), a-actinin, myosin heavy

chain 6 (MYH6), and hyperpolarization-activated cyclic nucleo-

tide-gated cation channel 4 (HCN4), demonstrating that our pro-

tocol generated hiPSC-CMs with high purity and little batch-to-

batch variation (Figures S2C and S2D). The calcium imaging

results further showed that the calcium waveform kept evolving

from day 12 to 21 and stabilized from day 21 to 64

(Figures S2E–S2I), consistent with previous findings.23 After

co-culturing hiPSC-CMs with mesh electronics, we immuno-

stained TNT and a-actinin on hiPSC-CM patch-electronics hy-

brids. Results demonstrated that the integrated mesh elec-

tronics had negligible effects on hiPSC-CM development

(Figures S2J–S2R). Finally, we fixed hiPSC-CM patch-elec-

tronics hybrids and applied the in situ sequencing protocol

(see STAR Methods) to spatially profile a targeted set of cardiac

genes, including the 201 most differentially expressed genes

during cardiac development, extracted from the previous sin-

gle-cell RNA sequencing (scRNA-seq) data.24–27 Specifically,

RNA-derived DNA amplicons with pre-designed gene-specific

identifiers were synthesized in situ by probe hybridization, enzy-

matic amplification, and immobilization in the cleared hiPSC-CM

patch-electronics-hydrogel network (Figure 1G), and gene-spe-

cific identifiers were then decoded through five sequencing cy-

cles.18 To evaluate potential cell-to-electrode dislocation

during sample preparation and multiple cycles of in situ

sequencing, we calculated the change in the distances from

cells to electrodes before and after sample preparation to be

0.51 ± 0.43 mm, which is orders of magnitude smaller than the

size of one cell, and thus negligible (Figures S3A–S3D). Addition-

ally, themicroscale distances among E-barcodes, cells, and am-

plicons remained unchanged during the multiple cycle imaging

(Figure 1H).

Next, we tested in situ electro-seq in the hiPSC-CM patches

(Figures 2A–2D). The electrical recording was performed, and

single-spike field potential waveforms were identified, pre-pro-

cessed, averaged, and down-sampled to extract features.

Figures 2E and 2F show representative voltage traces and sin-

gle-spike waveforms, respectively. The uniform manifold

approximation and projection (UMAP)28 visualization (Figure 2F,

inset) of extracted features from each channel showed the het-

erogeneity of hiPSC-CM electrophysiology. We also used drug
trates the multilayer structure of the electronics.

codes highlighted in red box in (B).

electrode.

nd over 2 months of incubation (F). Values are mean ± SEM.

, unknown base; red underline, decoded sequence; Ch1 to Ch4, fluorescence



(legend on next page)

ll

Cell 186, 2002–2017, April 27, 2023 2005

Resource



ll
Resource
tests to confirm that the mechanical activities of hiPSC-

CMs cause no interruptions on the electrical recording

(Figures S3E–S3H). Then, in situ sequencing was applied imme-

diately after electrical recording (Figure 2G). After 3D cell seg-

mentation (Figures 2H and 2I),29 we performed cell clustering

by Leiden clustering.30 The result showed two major cell types

(Figure 2J), CMs and cardiac fibroblasts (Fibs), which were

spatially mapped back to E-barcoded electrodes (Figure 2K).

To determine how to identify the cells recorded by the elec-

trodes, we conducted electrical recording and calcium imaging

in the same sample (Figures S3I–S3L) and tested the localization

of signals recorded from the mesh electronics. The results indi-

cated that, among all calcium signal-positive cells, only those

that directly contact electrodes can be recorded (Figure S3L).

Based on this data, we first built a computational pipeline to

automatically identify CMs that directly contact the electrode

as electrically recorded cells (Figures 2K, S3M, and S3N).

Then, the identification of E-barcodes registered the electro-

physiological features (E features) with gene expression of the

electrically recorded cells. The resulting heatmap (Figure 2L)

and joint UMAP (Figure 2M) visualizations showed the integrated

E features with the differentially expressed CM-related genes

and their multimodal distributions, respectively.

In situ electro-seq enables the multimodal spatial
mapping of neural patches
We applied the in situ electro-seq to neural patches by first inte-

grating stretchable mesh electronics with sparsely seeded pri-

mary mouse hippocampal neurons (Figure 3A). The electrical re-

cordings of single-neuron activity showed high heterogeneity in

their temporal firing patterns and spike waveforms (Figures 3B,

3C, and S4B). In situ sequencing was performed after electrical

recording. After 3D cell segmentation, we performed cell clus-

tering by Leiden clustering. The results showed five major cell

types (Figures 3F, S4C, and S4D): excitatory neurons, inhibitory

neurons, astrocytes, Fibs, and glial cells, all of which were then

spatially mapped back to their locations (Figure 3D). To ensure

correct identification of the electrically recorded neurons, we

considered only two scenarios: (1) only one neuron within

60-mm of the corresponding electrode (the sensing area), or (2)

the same neural signal simultaneously captured bymultiple elec-

trodes. Next, we performed spike sorting and identified the

neuron locations using electrode positions and corresponding

spike amplitudes, as previously described (Figures 3E and
Figure 2. In situ electro-seq integrates single-cell transcriptional and

(A–D) Schematics illustrating in situ electro-seq of a hiPSC-CM patch.

(E) Representative voltage traces recorded from the hiPSC-CMpatch at day 46 of

electrophysiological activity changes from day 12 to day 64.

(F) Representative averaged single-spike waveform detected from (E) and highligh

The data is also included in Figure 4C to show the overall cardiac electrophysiol

(G) 3D reconstructed fluorescence imaging of in-process in situ electro-seq of the

of electrodes.

(H) Zoomed-in view of the fluorescent signals illustrating the representative elect

(I) 3D cell segmentation map labeling cells with different colors.

(J) UMAP visualization representing major cell types across all sequenced cells c

(K) 3D cell-type map labeling each cell by its cell type with the same color code

(L) Heatmap of the normalized electrophysiological features (blue) and differentia

(M) Integration of electrophysiological features with gene expression features in
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S4A).31 The sparse distribution of seeded neurons among glial

cells enabled robust identification of the electrically recorded

neurons at single-cell resolution. The electrical waveforms

were then mapped to the associated electrically recorded neu-

rons (Figure 3E). Notably, we observed distinct gene expression

patterns between electrically recorded excitatory and inhibitory

neurons, with excitatory neurons showing high expression of

Slc17a6 and inhibitory neurons showing high expression of

Gad1 (Figures 3G, S4C, and S4D). Furthermore, by correlating

the cell type with electrical recording, we found that excitatory

and inhibitory neurons show a statistically significant difference

in electrical features such as peak-trough ratio (Figures 3G and

3H), which is consistent with the previous reports.32,33 Together,

these results demonstrated that the in situ electro-seq platform

is capable of correlating cell electrophysiology and gene expres-

sion at the single-cell level when applied to cultured neural

networks.

In situ electro-seq enabled multimodal joint clustering
We used in situ electro-seq to trace the development of hiPSC-

CM patches (Figure 4A). The cell electrophysiological signals

from days 12, 21, 46, and 64 of differentiation (Figures 4B and

4C) showed distinct features at these four stages. We next

applied the ClusterMap29 method to segment cells based on

RNA identities. UMAP visualizations of cell types across four dif-

ferentiation stages showed equivalent embedding distributions

between electronics-contacted and control cells, suggesting

the negligible effects of mesh electronics on hiPSC-CMdevelop-

ment and on the performance of in situ sequencing (Figures 4D

and 4E). We then performed Leiden clustering analysis on

all in situ sequenced samples across 4 stages and identified

5 cell clusters (Figure 4F). Based on the expression levels of

marker genes, four clusters can be characterized as CMs and

one as cardiac Fibs. Moreover, based on previous reports,24,34

the changing expression levels of marker genes (e.g., HCN4,

MYH6,MYH7,MYL7,MYL4, etc.) in these four types of CMs indi-

cated a transition from nodal-like through atrial-like to ventricu-

lar-like CMs (Figures 4G and 4H). Notably, the nodal marker

gene (HCN4) and atrial marker gene (MYH6) decreased at later

stages, while the ventricular maker gene (MYH7) increased

(Figures 4I and 4J).

While gene expression clustering separates hiPSC-CMs into

four transcriptional states (t-states) that roughly correspond to

the samples collected at the four differentiation days, we noticed
electrophysiological states of hiPSC-CM patches

differentiation. The data is also included in Figure 4B to show the overall cardiac

ted in the blue box. Inset shows the UMAP visualization of the spike waveforms.

ogical activity changes from day 12 to day 64.

entire hiPSC-CMpatch-electronics hybrid. White arrows highlight the positions

rode-embedded area from the white dashed box in (G).

lustered by Leiden clustering. The electrically recorded cells are highlighted.

in (J). The electrically recorded cell is highlighted with deep red.

lly expressed genes (red) from the measured cells.

UMAP visualizations.
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that CM t-states at days 46 and 64 of differentiation are less

separable (Figure 4F). Statistical testing showed that the separa-

bility of t-states of electrically recorded hiPSC-CMs was

worse (Figures 5A, S5A, and S5B) for days 21, 46, and 64 of dif-

ferentiation (Figures S5C and S5D), agreeing with previously re-

ported scRNA-seq clustering of hiPSC-CM t-states during

development.24 Using E features to cluster the electrically re-

corded cells, we identified two major electrophysiological states

(e-states) for hiPSC-CMs, one for days 12 and 21, and the other

for days 46 and 64. However, the separability of subgroups

within the two major groups was low (Figures 5B and S5E). Pre-

vious patch-seq results suggested that integrating gene expres-

sion with electrophysiology could improve the classification

of cell types.35 Thus, we used the weight nearest neighbor

(WNN)36 algorithm from Seurat v4 to integrate electrophysiolog-

ical and gene expression data as joint representation (see STAR

Methods). Using the joint features, hiPSC-CMs can be clustered

into four joint states (j-states) that well represent the distinct dif-

ferentiation days (Figures 5C and S5F). In addition, we applied

Monocle337 to calculate pseudotime distributions of t-states,

e-states, and j-states. The results also showed that integrating

gene expression and electrophysiology data led to a better sep-

aration of pseudotime distributions for cells at distinct differenti-

ation stages (Figure 5D). The electrically recorded hiPSC-CMs

with their j-state pseudotimes were highlighted in the UMAP

visualization of hiPSC-CM t-states (Figure 5E) to show that the

j-states clearly recapitulated the continuous developmental tra-

jectory of hiPSC-CMs (Figures 4E and 4I). Additionally, we inves-

tigated the contribution of non-transcriptional factors to electro-

physiology, such as spatial information of cells and oscillator

coupling between hiPSC-CMs. The results showed that these

non-transcriptional factors also correlate with electrophysiology

but to amuch lower extent in comparison with the transcriptional

factor (Figure S5G–S5J). Collectively, these data demonstrate

that the in situ electro-seq platform can efficiently characterize

the evolution of cell states over the time course of hiPSC-CM

development.

In situ electro-seq enabled cross-modal correlation and
inference
A capability of in situ electro-seq is the development of a model

for cross-modal inference, which can be used to (1) infer gene

expression at unmeasured time points from continuous electro-

physiological measurements and (2) change the expression

levels of individual genes or a combination of multiple genes to

infer their effects on electrophysiology. To achieve this, we
Figure 3. In situ electro-seq enables the multimodal spatial mapping o

(A) Schematics illustrating in situ electro-seq of neural patches.

(B) Representative voltage traces showing spike-bursting dynamics of mouse h

highlighted.

(C) Detected spike trains from continuous recording (left panel) and single spikes

(D) Overlapped 3D cell-type and electrode maps. Gray color labels each individu

(E) Identified electrically recorded neurons. Colors label spikes identified from eac

was simultaneously recorded by four electrodes.

(F) UMAP visualizations of all the sequenced cells.

(G) Heatmap showing the normalized electrophysiological features and marker g

(H) Box and dot plots showing the peak-trough ratio between excitatory and inh

n = 20 for excitatory neurons, n = 15 for inhibitory neurons, ** p < 0.01, two-taile
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used sparse reduced-rank regression (RRR) analysis, a statisti-

cal model successfully applied to analyze patch-seq data,38 to

(1) quantitatively investigate the correlations between individual

genes and changes in electrophysiological waveform features

during hiPSC-CMdifferentiation and development, and (2) select

a subset of genes that is most relevant to the temporal evolution

of these electrophysiological waveform features throughout

hiPSC-CM development (Figure 6A).

Specifically, we down-sampled the entire spike waveform and

extracted data points (Figure 6B) directly from the waveform as

input E features. Then, we plugged our paired electrophysiolog-

ical and transcriptional measurements into the sparse RRR

model, which aligned the electrophysiological and transcrip-

tional representations in the low-dimensional space and gener-

ated two corresponding biplots (Figure 6C).35,38 This allowed

us to directly pinpoint the correlations between certain E features

and certain gene transcripts by comparing the angles of pro-

jected lines (i.e., E features and gene transcripts, respectively)

between the two biplots.35,38 Next, we used the cosine distance

as the metrics to evaluate the correlations between gene tran-

scripts and E features in these biplots and generated a gene-

to-E feature correlation heatmap (Figures 6D and 6E). We found

that different genes correlated with different E features, which

were grouped based on the quadrants of the electrophysiolog-

ical biplot (Figure 6C). The analysis led to a distilled list of genes,

whose temporal dynamics are most correlated with the temporal

evolution of E features throughout hiPSC-CM development (Fig-

ure 6F). The model-selected genes include: (1) cardiac structural

genes, such as myosin heavy chain (MYH6, MYH7), troponin

complex (TNNT2), and Z-disc (VCL, VIM); (2) ion-channel-related

genes, such as sodium-calcium exchangers (SLC8A1), calcium

signaling gene (RYR2), and potassium channels (KCND3); and

(3) metabolic genes, such as endoplasmic reticulum calcium

transporting genes (ATP2A2) and cytochrome c oxidase subunit

8A (COX8A).

Next, to enable continuous electrophysiology-to-transcript

(E-to-T) and transcript-to-electrophysiology (T-to-E) inferences,

we constructed a coupled autoencoder39,40 to learn coordinated

representations of the E features and sparse RRR analysis-

selected gene transcripts from days 12, 21, 46, and 64 of differ-

entiation (Figure 7A). The coupled autoencoder consists of two

autoencoder networks, each comprising an encoder and a

decoder subnetwork that project the input E features or gene

transcripts into a low-dimensional representation and back to

the input data space. After learning the paired training data be-

tween E features and gene transcripts, the trained coupled
f neural patches

ippocampal neurons (i) with the bursting activity (ii) and single-spike train (iii)

(right panel) from the dashed box highlighted region.

al electrode.

h neuron highlighted by white arrows. Zoomed-in image shows one neuron that

ene expression profiles.

ibitory neurons.

d, unpaired t test.
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autoencoder was able to successfully project the high-dimen-

sional transcriptional (Xt) and electrophysiological (Xe) data to

aligned low-dimensional representations (Zt and Ze) (Figure 7B).

This suggests that a common latent representation exists be-

tween the gene expression and electrophysiology modalities,

and that we could potentially infer one modality from the

other.39,40 To test this, we applied the pre-trained coupled au-

toencoder to a validation dataset and successfully inferred tran-

scriptional data from electrophysiological data (Figure 7C).

5-fold cross-validation showed high inference performance of

the coupled autoencoder (Figures 7D–7F; STAR Methods).

These results suggested that electrophysiological data gener-

ated by in situ electro-seq can be used to infer the expression

of electrophysiology-related gene programs and vice versa.39,40

After confirming the performance of the model, we first applied

the pre-trained coupled autoencoder to infer temporal gene

expression change from the continuous electrical recording of

the same sample (Figures 7G, S5M, and S5N). Because the

gene expression measurement is an end-point measurement

that requires sample fixation, it is difficult to directly measure tem-

poral gene expression profiles from the same sample over the

time course of development. However, our flexible electronics

can record cell electrical activity from the same sample over a

period of months. Then, our coupled autoencoder-based model

offers the possibility of inferring a temporal geneexpressionprofile

from the long-term electrical recording of the same sample (Fig-

ure 7Gi). Specifically, Figures 7Gi–7Giii show that the electrical ac-

tivity of a hiPSC-CM sample was measured by the embedded

electrodes from day 17 to 64 of differentiation. A temporal gene

expression profile from day 17 to 64 of differentiation was then in-

ferred (Figures 7Giv and 7Gv). To validate the inferred result, we

measured the gene expression from the sample after the long-

term electrical measurement on the last day of recording—day

64 of differentiation. Comparing the measured gene expression

with the inferred gene expression reveals a Pearson’s r of 0.68 ±

0.11 (mean ± SD) (Figure 7Gv), which can be considered as

good results based on previous studies.35,39,41

Finally, we applied the pre-trained coupled autoencoder

model to dilated cardiomyopathy (DCM) patient-derived LMNA

(lamin A/C protein) mutant cells.42 We used the gene expression

changes in LMNA-mutant hiPSC-CMs from previously reported

data42 to infer the electrophysiological waveform (Figures 7Hi–

7Hiii). Compared with the electrophysiological waveform from

healthy hiPSC-CMs, the inferred LMNA-mutant hiPSC-CM

waveform showed distinct E features, including (1) missed sharp

up/down stroke, (2) declined depolarization upstroke and repo-
Figure 4. In situ electro-seq enables multimodal tracing of cell states

(A) Overview schematics showing in situ electro-seq of hiPSC-CM patches at dif

(B) Representative voltage traces recorded from the hiPSC-CM patches.

(C) Representative single-spike activities.

(D and E) UMAP visualizations of all electronics-contacted cells and control cells

(F) UMAP visualizations highlighting the cell types clustered by Leiden clustering

(G) Heatmaps of normalized differentially expressed genes for each cell type.

(H) Dot plots of selected marker gene expressions.

(I) Top: UMAP visualizations showing the representative trajectory of hiPSC-CM d

plot showing the percentage of cells across inferred pseudotime. Bottom: UMAP v

Colors correspond to inferred pseudotime.

(J) Kinetics plots showing relative expressions of marker genes.
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larization downstroke amplitude in phase 0/1, and (3) increased

afterdepolarization amplitude in phase 2/3 (Figures 7Hiv).

To experimentally validate whether the inferred LMNA-mutant

hiPSC-CM electrophysiological waveform can successfully

recapitulate the real electrical activity of LMNA-mutant hiPSC-

CMs, we cultured the LMNA-mutant hiPSC-CMs on the mesh

electronics and recorded their electrical activities. The results

showed that the inferred waveform aligned well with the

measured waveform (Figure 7Hiv), with a Pearson’s r correlation

of 0.63 (Figure 7I). In contrast, the waveform inference results af-

ter random shuffling of LMNA-mutant hiPSC-CMs’ gene expres-

sion showed a low Pearson’s r correlation of �0.14 with the

measured LMNA-mutant waveform (Figure 7I). These results

provide further indication of the potential value of our model,

specifically in the context of cardiac diseases, where the testing

samples involve the same cell types to those used in the training

samples.

We noted that current machine learning or statistical learning

models for cross-modal inference were built solely on the

training data. Such a model can achieve satisfactory inference

results when the testing data has similar characteristics to the

training data. For example, in this case, the LMNA-mutant

hiPSC-CMs at a later developmental stage showed similar elec-

trophysiological waveform characteristics to the training sam-

ples (healthy hiPSC-CMs) at early developmental stages, so

our pre-trained coupled autoencoder model was still able to infer

its electrophysiological waveform. However, we noted that the

current machine-learning-based model may not be directly

applied to infer electrophysiological waveforms of samples

with characteristics substantially different from the training sam-

ple distribution. As a result, increasing the training datasets to

cover a wider range of time points across longer development

periods and more diverse hiPSC-CM samples (including

different mutation and disease samples) may potentially improve

the applicability of the model, particularly for inferring electro-

physiological changes resulting from multiple gene expression

changes in cardiac diseases, wherein testing samples involve

identical cell types to those in the training data.

DISCUSSION

We demonstrate that in situ electro-seq is capable of integrating

electrophysiology and gene expression at single- and multi-cell

levels (Figures S6 and S7), providing (1) multimodal joint cell clus-

tering for identification of cell states and trajectories, which cannot

be directly traced by previous approaches, (2) cross-modal
in hiPSC-CM development

ferent developmental stages.

.

and their distributions.

evelopment. Colors correspond to days of differentiation. Middle: stacked bar

isualizations showing the representative trajectory of hiPSC-CMdevelopment.



Figure 5. In situ electro-seq enables joint clustering of cell states in hiPSC-CM development

(A) hiPSC-CM transcriptional states (t-states, TS) defined by gene expression. UMAP visualization of gene expression of electrically recorded CMs, color-coded

by differentiation days (i) and t-states defined by Leiden clustering (ii). Comparison of t-states and differentiation days by river plot (iii) and dot plot (iv).

(B) hiPSC-CM electrophysiological states (e-states, ES) defined by electrophysiology and analyzed in the same way as in (A).

(C) hiPSC-CM transcriptional and electrophysiological joint states (j-states, JS) defined by weighted nearest neighbor (WNN)-integrated representations from

gene expression and electrophysiology and analyzed in the same way as in (A).

(D) Distribution plots showing pseudotime distributions of all the electrically recorded hiPSC-CMs. Gene expression (i), electrophysiology (ii), andWNN-integrated

representations of gene expression and electrophysiology (iii).

(E) Electrically recorded cells highlighted in the UMAP visualization of gene expressions from all cells, with colors encoding joint pseudotime in (Diii). Cells

sequenced from all the samples across four stages are shown as gray embedding (the same as Figure 4F). Insets show representative single-spike waveforms.
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inference that uses continuous electrical measurements to infer

cell gene expression profiles, and (3) identification of gene pro-

grams directly relevant to electrophysiology.
Our imaging and electrical data suggest that electrical

signals are primarily recorded from the hiPSC-CMs that have

the largest direct contact area with the electrode. However, we
Cell 186, 2002–2017, April 27, 2023 2011



Figure 6. In situ electro-seq enables cross-modal visualization and correlation

(A) Schematics illustrating the overview of sparse reduced-rank regression (RRR) analysis for paired electrophysiological and transcriptional measurements.

(B) Representative electrophysiological (E) features extracted from each spike. 1.6-s waveforms are sampled in 22 bins. Inset shows 0.15-s fast spikes sampled in

40 bins.

(C) Sparse RRR model that visualizes and aligns transcriptional states and electrophysiological states of cells (see STAR Methods).

(D) Schematics showing the calculation of cosine distance between E features and genes from the sparse RRR model in (C).

(E) Heatmap showing the correlation calculated by cosine distance between E features and genes from the sparse RRR model in (C).

(F) Heatmap showing the normalized extracted E features and expressions of the sparse RRR model-selected genes.
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Figure 7. Machine-learning-based cross-modal inference

(A) Schematic showing the structure of a coupled autoencoder for electrophysiology-to-transcript (E-to-T) and transcript-to-electrophysiology (T-to-E) inference.

(B and C) Coupled autoencoder-encoded low-dimensional representations of the training data of in situ electro-seq samples at days 12, 21, 46, and 64 (B) and of

the validation data split from days 12, 21, 46, and 64 data (C).

(D) Statistical summary of the performance of cross-modality ðXt / Xe or Xe / XtÞ inference. Error bars show mean ± SD over 5-fold cross-validation.

(E) Heatmap of normalized gene expression inferred from electrophysiological features.

(F) Heatmap of normalized electrophysiological features inferred from gene expression.

(G) Application of the pre-trained coupled autoencoder model to infer temporal dynamics of gene expression from the long-term recording of electrophysiological

activity. (i) Schematics showing the long-term recording of electrophysiological activity. (ii) Electrophysiological waveforms measured from the sample. (iii)

Heatmap showing normalized single-cell electrophysiological features. (iv) E-to-T inference. (v) Heatmap showing normalized single-cell gene expression profiles

inferred by the coupled autoencoder (left panel) and measured results of gene expression (right panel).

(H) Application of the pre-trained coupled autoencoder model to infer the electrophysiology of patient-derived iPSC-CMs. (i) Schematic showing iPSC-CMs

generated from a patient with LMNA-mutation-relatedDCM. (ii) Representative normalized gene expression profiles of LMNA-mutant and healthy hiPSC-CMs. (iii)

(legend continued on next page)
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acknowledge that neighboring CMs coalesce through gap junc-

tions and adhesive junctions to form the myocardium during

development43,44 and that hiPSC-CMs show a progressively

organized ultrastructure during development.4,43,45 As a result,

extracellular electrical recordings could also reflect the activities

of hiPSC-CM groups surrounding the electrode. We then tested

an alternative computational pipeline by identifying all the

cells surrounding the electrode for a multi-cell data analysis

(Figure S6A). The multi-cell analysis recapitulates the same

hiPSC-CMdevelopmental trajectory, cell clustering, and electro-

physiology-to-gene correlations (Figures S6 and S7) as the sin-

gle-cell analysis, suggesting that single- and multi-cellular-level

analysis may lead to consistent results when analyzing hiPSC-

CM patches with relatively homogeneous cell composition.43,45

The ability to record the single-cell activity was also tested and

supported by primary neuron culture with diverse cell types (Fig-

ures 3 and S4), where single-cell resolution is necessary to reg-

ister single-neuron electrophysiological activities with molecular

cell types and states.

Future work may address potential opportunities. For

example, integrating different flexible electronics with intracel-

lular electrodes46 and multifunctional sensors and stimulators

(e.g., electrical, mechanical, optical, chemical, etc.)47 with in

situ sequencing of different biomolecules (e.g., RNA or DNA)

could open up unlimited access to different biological systems.

Incorporating STARmap Plus (�2,700 genes panels)48 into our

current in situ electro-seq platform could also obtain more in-

depth genetic information. Further scaling up the multiplexity

of electrode arrays and increasing the electrode density in

mesh electronics can increase the number and percentage of

recorded cells per sample. Furthermore, integrating comple-

mentary metal-oxide-semiconductor multiplexing circuits

could also substantially increase the number of cells that can

be simultaneously measured.49 Mesh nanoelectronics have

already been used for the recording of electrical activity in 3D

organoids14 and behaving animals.13,15,50 Further development

of in situ electro-seq may map single-cell gene expression

and functions in organoids and in vivo tissue samples13,15,50

during both healthy and diseased states. For example, tissue-

wide electrophysiological dysfunction can be correlated with

cell-level gene expression variation in models of neuropsychi-

atric diseases51,52 (e.g., autism spectrum disorder, bipolar dis-

orders, etc.) and cardiac diseases53 (e.g., atrial fibrillation, ven-

tricular tachycardia, etc.).

Limitations of the study
It is also noteworthy that, although we have successfully con-

ducted cross-modal correlation and inference (Figures 6 and

7), the resulting gene-to-electrophysiology relationship should

be interpreted as correlation, not causality. Further genetic

perturbation or molecular inhibition experiments are needed to

fully establish the causal relationship and underlying mecha-
T-to-E inference of healthy and patient iPSC-CMs. (iv) Inferred results (left panel) an

CMs (bottom panel).

(I) Performance on the T-to-E inference using gene expression profiles from he

iPSC-CM gene expression profiles, measured in terms of Pearson’s r. Error bars

2014 Cell 186, 2002–2017, April 27, 2023
nisms between genes and their functions. In particular, the elec-

trophysiological patterns may lag behind the change of RNA

expression profiles because extra time is needed for mRNA to

be translated to proteins, for proteins to be transported to their

functional loci, and for single cells to grow and form biological

networks. In our study, we sampled cell electrophysiology every

3 days, whereas the mRNAs typically only last for a few hours in-

side cells. Thus, at such a temporal resolution of 3 days, the tem-

poral profiles of RNA can be reliably correlated with the paired

recorded cell electrophysiology. However, for biological systems

with fast kinetics at the scale of hours (e.g., embryonic develop-

ment, acute genetic perturbation), the molecular cell states

defined by RNA may not reflect the functional cell states

measured at the same time, and vice versa. Therefore, develop-

ments of computational methods and theoretical models with

the spatiotemporal and mechanistic information from RNA

to protein to function, and their incorporation in electro-seq anal-

ysis, will further advance our understanding of cellular dynamics

and cell-state transition in biological cells, organoids, and

tissues.
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integrated silicon probes for high-density recording of neural activity. Na-

ture 551, 232–236. https://doi.org/10.1038/nature24636.

7. Musk, E.; Neuralink (2019). An integrated brain-machine interface platform

with thousands of channels. J. Med. Internet Res. 21, e16194. https://doi.

org/10.2196/16194.

8. Viventi, J., Kim, D.H., Moss, J.D., Kim, Y.S., Blanco, J.A., Annetta, N.,

Hicks, A., Xiao, J., Huang, Y., Callans, D.J., et al. (2010). A conformal,

bio-interfaced class of silicon electronics for mapping cardiac electro-

physiology. Sci. Transl. Med. 2, 24ra22. https://www.science.org/doi/10.

1126/scitranslmed.3000738.

9. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E.,

Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., et al. (2017).

The human cell atlas. eLife 6, e27041. https://doi.org/10.7554/eL-

ife.27041.

10. Stuart, T., and Satija, R. (2019). Integrative single-cell analysis. Nat. Rev.

Genet. 20, 257–272. https://doi.org/10.1038/s41576-019-0093-7.

11. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X.,

Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-seq whole-tran-

scriptome analysis of a single cell. Nat. Methods 6, 377–382. https://doi.

org/10.1038/nmeth.1315.

12. Xu, S., Yang, H., Menon, V., Lemire, A.L., Wang, L., Henry, F.E., Turaga,

S.C., and Sternson, S.M. (2020). Behavioral state coding by molecularly

defined paraventricular hypothalamic cell type ensembles. Science 370,

eabb2429. https://doi.org/10.1126/science.abb2494.

13. Fu, T.M., Hong, G., Zhou, T., Schuhmann, T.G., Viveros, R.D., and Lieber,

C.M. (2016). Stable long-term chronic brain mapping at the single-neuron

level. Nat. Methods 13, 875–882. https://doi.org/10.1038/nmeth.3969.

14. Li, Q., Nan, K., Le Floch, P., Lin, Z., Sheng, H., Blum, T.S., and Liu, J.

(2019). Cyborg organoids: implantation of nanoelectronics via organogen-

esis for tissue-wide electrophysiology. Nano Lett. 19, 5781–5789. https://

doi.org/10.1021/acs.nanolett.9b02512.

15. Liu, J., Fu, T.M., Cheng, Z., Hong, G., Zhou, T., Jin, L., Duvvuri, M., Jiang,

Z., Kruskal, P., Xie, C., et al. (2015). Syringe-injectable electronics. Nat.

Nanotechnol. 10, 629–636. https://doi.org/10.1038/nnano.2015.115.

16. Liu, J., Xie, C., Dai, X., Jin, L., Zhou,W., and Lieber, C.M. (2013). Multifunc-

tional three-dimensional macroporous nanoelectronic networks for smart

materials. Proc. Natl. Acad. Sci. USA 110, 6694–6699. https://doi.org/10.

1073/pnas.1305209110.

17. Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R.,

Kohane, D.S., and Lieber, C.M. (2012). Macroporous nanowire nanoelec-

tronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994. https://doi.

org/10.1038/nmat3404.

18. Wang, X., Allen,W.E.,Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna,

S., Evans, K., Liu, C., Ramakrishnan, C., Liu, J., et al. (2018). Three-dimen-

sional intact-tissue sequencing of single-cell transcriptional states. Sci-

ence 361, eaat5691. https://doi.org/10.1126/science.aat5691.

19. Feiner, R., Engel, L., Fleischer, S., Malki, M., Gal, I., Shapira, A., Shacham-

Diamand, Y., and Dvir, T. (2016). Engineered hybrid cardiac patches with
Cell 186, 2002–2017, April 27, 2023 2015

https://doi.org/10.1016/j.cell.2023.03.023
https://doi.org/10.1016/j.cell.2023.03.023
http://Biorender
https://doi.org/10.1038/nbt.3445
https://doi.org/10.1038/nbt.3445
https://doi.org/10.1038/s41586-021-03950-0
https://doi.org/10.1038/nbt.3443
https://doi.org/10.1016/j.cels.2021.05.001
https://doi.org/10.1016/j.stem.2017.07.007
https://doi.org/10.1038/nature24636
https://doi.org/10.2196/16194
https://doi.org/10.2196/16194
https://www.science.org/doi/10.1126/scitranslmed.3000738
https://www.science.org/doi/10.1126/scitranslmed.3000738
https://doi.org/10.7554/eLife.27041
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1126/science.abb2494
https://doi.org/10.1038/nmeth.3969
https://doi.org/10.1021/acs.nanolett.9b02512
https://doi.org/10.1021/acs.nanolett.9b02512
https://doi.org/10.1038/nnano.2015.115
https://doi.org/10.1073/pnas.1305209110
https://doi.org/10.1073/pnas.1305209110
https://doi.org/10.1038/nmat3404
https://doi.org/10.1038/nmat3404
https://doi.org/10.1126/science.aat5691


ll
Resource
multifunctional electronics for online monitoring and regulation of tissue

function. Nat. Mater. 15, 679–685. https://doi.org/10.1038/nmat4590.

20. Henze, D.A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K.D., and Buz-
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M., Beau, M., Bhagat, J., Böhm, C., Broux, M., et al. (2021). Neuropixels

2.0: a miniaturized high-density probe for stable, long-term brain record-

ings. Science 372, eabf4588. https://doi.org/10.1126/science.abf4588.

23. Hwang, H.S., Kryshtal, D.O., Feaster, T.K., Sánchez-Freire, V., Zhang, J.,

Kamp, T.J., Hong, C.C., Wu, J.C., and Knollmann, B.C. (2015). Compara-

ble calcium handling of human iPSC-derived cardiomyocytes generated

by multiple laboratories. J. Mol. Cell. Cardiol. 85, 79–88. https://doi.org/

10.1016/j.yjmcc.2015.05.003.

24. Churko, J.M., Garg, P., Treutlein, B., Venkatasubramanian, M., Wu, H.,

Lee, J., Wessells, Q.N., Chen, S.Y., Chen, W.Y., Chetal, K., et al. (2018).

Defining human cardiac transcription factor hierarchies using integrated

single-cell heterogeneity analysis. Nat. Commun. 9, 4906. https://doi.

org/10.1038/s41467-018-07333-4.

25. Cui, Y., Zheng, Y., Liu, X., Yan, L., Fan, X., Yong, J., Hu, Y., Dong, J., Li, Q.,

Wu, X., et al. (2019). Single-cell transcriptome analysis maps the develop-

mental track of the human heart. Cell Rep. 26, 1934–1950.e5. https://doi.

org/10.1016/j.celrep.2019.01.079.

26. Friedman, C.E., Nguyen, Q., Lukowski, S.W., Helfer, A., Chiu, H.S., Miklas,

J., Levy, S., Suo, S., Han, J.J., Osteil, P., et al. (2018). Single-cell transcrip-

tomic analysis of cardiac differentiation from human PSCs reveals HOPX-

dependent cardiomyocyte maturation. Cell Stem Cell 23. 586.e8–598.e8.

https://doi.org/10.1016/j.stem.2018.09.009.

27. Ruan, H., Liao, Y., Ren, Z., Mao, L., Yao, F., Yu, P., Ye, Y., Zhang, Z., Li, S.,

Xu, H., et al. (2019). Single-cell reconstruction of differentiation trajectory

reveals a critical role of ETS1 in human cardiac lineage commitment.

BMC Biol. 17, 89. https://doi.org/10.1186/s12915-019-0709-6.

28. McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: uniform

manifold approximation and projection. J. Open Source Softw. 3, 861.

https://doi.org/10.21105/joss.00861.

29. He, Y., Tang, X., Huang, J., Ren, J., Zhou, H., Chen, K., Liu, A., Shi, H., Lin,

Z., Li, Q., et al. (2021). ClusterMap for multi-scale clustering analysis of

spatial gene expression. Nat. Commun. 12, 5909. https://doi.org/10.

1038/s41467-021-26044-x.

30. Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Lei-

den: guaranteeing well-connected communities. Sci. Rep. 9, 5233.

https://doi.org/10.1038/s41598-019-41695-z.

31. Schoonover, C.E., Ohashi, S.N., Axel, R., and Fink, A.J.P. (2021). Repre-

sentational drift in primary olfactory cortex. Nature 594, 541–546.

https://doi.org/10.1038/s41586-021-03628-7.

32. Li, L.Y., Xiong, X.R., Ibrahim, L.A., Yuan, W., Tao, H.W., and Zhang, L.I.

(2015). Differential receptive field properties of parvalbumin and somato-

statin inhibitory neurons in mouse auditory cortex. Cereb. Cortex 25,

1782–1791. https://doi.org/10.1093/cercor/bht417.

33. Jia, X., Siegle, J.H., Bennett, C., Gale, S.D., Denman, D.J., Koch, C., and

Olsen, S.R. (2019). High-density extracellular probes reveal dendritic

backpropagation and facilitate neuron classification. J. Neurophysiol.

121, 1831–1847. https://doi.org/10.1152/jn.00680.2018.

34. Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L.B., Azarin, S.M., Raval,

K.K., Zhang, J., Kamp, T.J., and Palecek, S.P. (2012). Robust cardiomyo-

cyte differentiation from human pluripotent stem cells via temporal modu-

lation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109, E1848–

E1857. https://doi.org/10.1073/pnas.1200250109.
2016 Cell 186, 2002–2017, April 27, 2023
35. Scala, F., Kobak, D., Bernabucci, M., Bernaerts, Y., Cadwell, C.R., Castro,

J.R., Hartmanis, L., Jiang, X., Laturnus, S., Miranda, E., et al. (2021).

Phenotypic variation of transcriptomic cell types in mouse motor cortex.

Nature 598, 144–150. https://doi.org/10.1038/s41586-020-2907-3.

36. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis

of multimodal single-cell data. Cell 184. 3573.e29–3587.e29. https://doi.

org/10.1016/j.cell.2021.04.048.

37. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang,

F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. (2019). The single-

cell transcriptional landscape of mammalian organogenesis. Nature 566,

496–502. https://doi.org/10.1038/s41586-019-0969-x.

38. Kobak, D., Bernaerts, Y., Weis, M.A., Scala, F., Tolias, A.S., and Berens, P.

(2021). Sparse reduced-rank regression for exploratory visualization of

paired multivariate data. J. R. Stat. Soc. C 70, 980–1000. https://doi.org/

10.1111/rssc.12494.

39. Gala, R., Budzillo, A., Baftizadeh, F., Miller, J., Gouwens, N., Arkhipov, A.,

Murphy, G., Tasic, B., Zeng, H., Hawrylycz, M., and Sümbül, U. (2021).
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Antibodies

Rabbit polyclonal anti-HCN4 antibody Sigma-Aldrich Cat#AB5808; RRID: AB_11214197

Mouse monoclonal anti-MYH6 antibody Sigma-Aldrich Cat#AMAB90950; RRID: AB_2665730

Mouse cardiac troponin T monoclonal antibody (13-11) Invitrogen Cat#MA5-12960; RRID: AB_11000742

Mouse monoclonal anti-alpha-actinin antibody Sigma-Aldrich Cat#A7811; RRID: AB_476766

Alexa Fluor 594 AffiniPure Donkey Anti-Mouse IgG (H+L) Jackson Immuno Research Labs Cat#NC0322938; RRID: AB_2340854

Alexa FluorTM Plus 647 Donkey anti-Mouse IgG (H+L) Invitrogen Cat#A32787; RRID: AB_2762830

Alexa FluorTM 594 Donkey anti-Rabbit IgG (H+L) Invitrogen Cat#A-21207; RRID: AB_141637

Biological samples

Mouse primary hippocampal neurons Broad Institute of MIT and Harvard C57BL/6 mice

Chemicals, peptides, and recombinant proteins

4’,6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich Cat#D9542

Rhodamine 6G powder Sigma-Aldrich Cat#989-38-8

Chloroplatinic acid (H2PtCl6) solution Sigma-Aldrich Cat#16941-12-1

Essential 8 medium Gibco Life Technologies Cat#A1517001

RPMI 1640 medium Gibco Life Technologies Cat#11875093

B27-insulin supplement Gibco Life Technologies Cat#A1895601

CHIR99021 BioVision Cat#1677; CAS: 252917-06-9

IWR1 Cayman Chemical Company 13659; CAS: 1127442-82-3

B27 supplement Gibco Life Technologies Cat#17504044

NbActiv4 (NB4) BrainBits Cat# NB4

Oregon Green�488 BAPTA-1 Invitrogen Cat# O6807

Poly-D-lysine Sigma-Aldrich Cat# P7280-5X5MG

Matrigel Corning Cat# 08-774-552

Trypsin-EDTA Gibco Life Technologies Cat# 25200056

Trypan blue solution, 0.4% Gibco Life Technologies Cat# 15-250-061

Rock inhibitor (Y27632) Tocris Bioscience Cat# 12-541-0

Blebblistatin Sigma-Aldrich Cat# 856925-71-8

Norepinephrine Sigma-Aldrich Cat# 48-935-0100MG

Glass-bottom 12-well plates Mattek Cat# P12G-1.5-14-F

Gel slick solution Lonza Cat# 50640

PlusOne bind-silane GE Healthcare Cat# 17-1330-01

Acetic acid Sigma-Aldrich Cat# A6283-100ML

Circular cover glass Electron Microscope Sciences Cat# 72226-01

16% PFA, EM grade Electron Microscope Sciences Cat# 15710-S

Triton-X-100, 10% solution Sigma-Aldrich Cat# 93443

OminiPur formamide Calbiochem Cat# 4610-OP

OmniPur SDS, 20% Calbiochem Cat# 7990-OP

203SSC buffer Sigma-Aldrich Cat# S6639

Glycine Sigma-Aldrich Cat# 50046-250G

Ribonucleoside vanadyl complex New England Biolabs Cat# S1402S

Proteinase K Solution (20 mg/mL), RNA grade Invitrogen Cat# 25530049

Yeast tRNA (10 mg/mL) Thermo Fisher Scientific Cat# AM7119

SUPERase$In RNase Inhibitor Invitrogen Cat# AM2696
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T4 DNA ligase Thermo Fisher Scientific Cat# EL0011

Phi29 DNA polymerase Thermo Fisher Scientific Cat# EP0094

dNTP mix Invitrogen Cat# 100004893

BSA, molecular biology grade New England Biolabs Cat# B9000S

5-(3-aminoallyl)-dUTP Invitrogen Cat# AM8439

Methacrylic acid N-hydroxysuccinimide ester, 98% Sigma-Aldrich Cat# 730300-1G

DMSO, anhydrous Thermo Fisher Scientific Cat# D12345

Acrylamide solution, 40% Bio-Rad Cat# 161-0140

Bis solution, 2% Bio-Rad Cat# 161-0142

Ammonium persulfate Sigma-Aldrich Cat# A3678

N,N,N0,N0-Tetramethylethylenediamine Sigma-Aldrich Cat# T9281

Antarctic phosphatase New England Biolabs Cat# M0289L

103PBS, pH7.4 Thermo Scientific Cat# 70011044

13PBS, pH7.4 Thermo Fisher Scientific Cat# 10010049

Ethanol VWR Cat# 89125-170

DNase/RNase-Free Distilled Water Thermo Fisher Scientific Cat# 10977023

Experimental models: Cell lines

Human induced pluripotent stem cells WiCell Research Institute hiPSC-IMR90-1

Oligonucleotides

Probe sequences for cardiac tissue IDT See Table S1

Probe sequences for neuron tissue IDT See Table S2

Deposited data and code

In situ sequencing data Single Cell Portal https://singlecell.broadinstitute.org/

single_cell/study/SCP1346

Multimodal data and Code Github https://github.com/LiuLab-Bioelectronics-

Harvard/electro-seq

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

R R Core https://www.r-project.org/

Python Python Software Foundation https://www.python.org/

Monocle 3 Cao et al.37 https://github.com/cole-trapnell-lab/

monocle3

Uniform manifold approximation and projection (UMAP) McInnes et al.28 https://github.com/lmcinnes/umap

ClusterMap He et al.29 https://github.com/wanglab-broad/

ClusterMap

Scanpy v1.6.0 Wolf et al.54 https://scanpy.readthedocs.io/en/stable/

Combat Johnson et al.55 http://www.bioconductor.org/packages/

release/bioc/html/sva.html

Leiden clustering Traag et al.30 https://github.com/vtraag/leidenalg

PyWavelets v1.1.0 Lee et al.56 https://github.com/PyWavelets/pywt/

blob/master/doc/release/1.1.0-notes.rst

Seurat v4 Hao et al.36 https://satijalab.org/seurat/

Sparse reduced-rank regression (RRR) Kobak et al.38 https://github.com/berenslab/patch-

seq-rrr

Coupled autoencoder Gala et al.39 https://github.com/AllenInstitute/

coupledAE-patchseq

MountainSort Chung et al.57 https://github.com/flatironinstitute/

mountainsort
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SpikeInterface v0.9 Buccino et al.58 https://github.com/SpikeInterface

Fiji Image J https://imagej.net/software/fiji/

ChimeraX ChimeraX https://www.cgl.ucsf.edu/chimerax/

Blackroch Python-Utilities Blackroch Neurotech https://github.com/Blackrock

Neurotech/Python-Utilities

Blackrock research central software suite 7.04 Blackroch Neurotech https://blackrockneurotech.com/

Opencv-python v4.5.5.64 Bradski59 https://github.com/opencv/opencv-

python

Biorender Biorender https://biorender.com/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead Contact, Jia Liu

(jia_liu@seas.harvard.edu).

Materials availability
This study did not generate new reagents.

Data and code availability
d All the in situ sequencing data are available in the Single Cell Portal at https://singlecell.broadinstitute.org/single_cell/study/

SCP1346 and are publicly available as of the date of publication. Microscopy data reported in this paper will be shared by

the lead contact upon request.

d All the code are available in the GitHub repository at https://github.com/LiuLab-Bioelectronics-Harvard/electro-seq and are

publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Human induced pluripotent stem cells (hiPSC, hiPSC-IMR90-1) were obtained from the WiCell Research Institute (Madison, WI,

USA). Authentication and testing for the mycoplasma were performed by the WiCell Research Institute. The use of Cells (hiPSC,

hiPSC-IMR90-1) was approved/provided by the University of Wisconsin, agreement number 19-WO280. The human iPSC line

(LMNA line) was obtained from Joseph C. Wu, MD, PhD at the Stanford Cardiovascular Institute. hiPSC and hiPSC-derived cardio-

myocytes (CMs) were cultured at 37
�
C and 5% CO2 in Essential 8 medium (Gibco) and RPMI 1640 medium (Gibco) plus 1% B27

supplement (Gibco), respectively.

Primary cells
Primary hippocampal neurons were obtained from the Broad Institute of MIT and Harvard. The neurons were maintained at 37

�
C and

5% CO2 in NbActiv4 (NB4, BrainBits) medium.

METHOD DETAILS

Fabrication of stretchable mesh electrode array
Fabrication of the ultra-flexible, stretchable mesh nanoelectronics was based on methods described previously.14,15,17,60 Key steps

are described as follows: 4-inch glasswafers (Soda lime glass) were used as a transparent and insulating substrate for fabrication and

cell culture. The glass wafers were cleaned with piranha solution (3:1 mixture of sulfuric acid and 30% hydrogen peroxide), followed

by rinsing with deionized (DI) water and drying with the N2. Hexamethyldisilazane (HMDS, MicroChem) was spin-coated at 4000 rpm

to increase the adhesion of photoresists with the substrate. LOR 3A (300 nm, MicroChem)/S1805 (500 nm, MicroChem) were spin-

coated at 4000 rpm/4000 rpm, followed by baking at 180�C for 5 mins and at 115 �C for 1 min, respectively. Ni sacrificial layer was

exposed by using a Karl Suss MA6 mask aligner with 365 nm ultraviolet (UV) light at 40 mJ/cm2 and developed by CD-26 developer

(MICROPOSIT) for 70 s. O2 plasma (Anatech Barrel Plasma System) was used for the removal of photoresist residues at 50W for 30 s.
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Sharon Thermal Evaporator was used for the deposition of 100-nm-thick Ni followed by a standard lift-off procedure in remover PG

(MicroChem) for 2 hours. After patterning the Ni layer, SU-8 precursor (SU-8 2000.5, MicroChem) was spin-coated at 4000 rpm, pre-

baked at 65�C / 95�C for 2 mins each, exposed to 365 nm UV at 200 mJ/cm2, post-baked at 65�C / 95�C for 2 mins each, developed

using SU-8 developer (MicroChem) for 60 s, rinsed by isopropyl alcohol (IPA) for 30 s, blow for drying by N2 gun, and hard-baked at

180�C for 40 mins to define mesh-like SU-8 400-nm-thick patterns as the bottom encapsulation layer. After patterning the SU-8 bot-

tom layer, HMDS/LOR3A/S1805 photoresist layers were spin-coated as described above, followed by depositing 5/40/5-nm-thick

chromium/gold/chromium (Cr/Au/Cr) by the electron-beam evaporator (Denton), and the standard lift-off procedure in the remover

PG (MicroChem) overnight to define the Cr/Au/Cr interconnects. Then, the same photolithography process was used to define 5/50-

nm-thick chromium/platinum (Cr/Pt) as electrodes. After patterning electrodes, the top SU-8 encapsulating layer was patterned us-

ing the samemethod described for patterning the bottom SU-8 layer. Finally, fluorescent E-barcodes were defined by patterning the

SU-8 structure doped by adding 0.004 wt& of Rhodamine 6G powder (Sigma-Aldrich) into the SU-8 precursor.

Connection of mesh electrode array with cable
Next, the flexible flat cable (FFC, Molex) was soldered onto the input/output pads using a flip-chip bonder (Finetech Fineplacer), fol-

lowed by gluing a culture chamber onto the substrate wafer to completely enclose the mesh part of the device using a biocompatible

adhesive (Kwik-Sil, WPI). Then, Pt black (PtB) was electroplated on the Pt electrode array using a precursor of 0.08 wt% chloropla-

tinic acid (H2PtCl6) solution (Sigma-Aldrich) in H2O. The precursor was drop-casted onto the device, followed by passage of a

1mA/cm2 DC electric current density for 3 mins using mesh electrodes as anodes and an external Pt wire as the cathode. The device

was then rinsedwith DI water for 30 s and dried by N2. Finally, the surface of the device was treated with oxygen plasma (Anatech 106

oxygen plasma barrel asher), followed by adding 1 mL of Ni etchant (type TFB, Transene) into the chamber for 2 to 4 hours to

completely release the mesh electronics from the glass substrate. The device was then ready for subsequent sterilization steps

before cell culture.

Electrochemical measurements
The electrochemical impedance spectra (EIS) of the electrodesweremeasured based onmethods described previously.61 The three-

electrodes setup was used to measure the EIS of each electrode. A standard silver/silver chloride (Ag/AgCl) electrode and platinum

wire (300 mm in diameter, 1.5 cm in length immersed) were used as reference electrode and counter electrode, respectively. The

device was immersed in 1 X PBS solution (Thermofisher) during measurement. The SP-150 potentiostat (Bio-logic), along with its

commercial software EC-lab, was used to perform the measurements. For each measurement, at least three frequency sweeps

were measured from 1 MHz down to 1 Hz to obtain statistical results. A sinusoidal voltage of 100 mV peak-to-peak was applied.

For each data point, the response to 10 consecutive sinusoids (spaced out by 10% of the period duration) was accumulated and

averaged.

Cell culture and cardiomyocytes differentiation
Human induced pluripotent stem cells (hiPSC, hiPSC-IMR90-1) were obtained from the WiCell Research Institute (Madison, WI,

USA). Authentication and testing for the mycoplasma were performed by the WiCell Research Institute. The human iPSC line

(LMNA line) was obtained from Joseph C. Wu, MD, PhD at the Stanford Cardiovascular Institute. hiPSC cells were cultured on a Ma-

trigel-coated 6-well plate with Essential 8 medium (Gibco). The mediumwas changed daily. The cells were passaged every 3-4 days.

hiPSC-derived cardiomyocytes were generated according to the methods described previously with minor modification.34,42,62 The

hiPSC cells were cultured on a Matrigel-coated 6-well plate with Essential 8 medium to 70% - 80% confluency before initiating car-

diac differentiation. The first day was defined as Day 0. For cardiac differentiation, the cells were maintained in RPMI 1640 medium

(Gibco) plus 1% B27-insulin (Gibco). CHIR99021 (12 mM; BioVision) was applied on Day 0 for hiPSC-IMR90-1 cells while CHIR99021

(6 mM; BioVision) was applied on Day 0 to Day 1 for LMNA hiPSC cells according to the previous protocol;42 IWR1 (5 mM; Cayman)

was applied from Day 3 to Day 4. The cardiac cells were maintained in RPMI 1640 medium plus 1% B27 (Gibco) from Day 7, and the

medium was changed every other day accordingly. Only the batches of hiPSC-CMs passed quality control - namely, showing clear

beating on Day 8 of differentiation, were used for in situ electro-seq experiments. Primary hippocampal neurons were obtained from

the Broad Institute of MIT and Harvard. The medium NbActiv4 (NB4, BrainBits) were used for the primary neuron cultures. All exper-

iments involving human cells were approved by the Harvard University IRB and ESCRO committees.

Calcium imaging
For 2D cardiomyocyte calcium imaging, the cells at Day 9 of differentiation were dissociated into single cells and seeded onto the

glass-bottom 12-well plate. On Day 12, Day 21, Day 46, and Day 64 of differentiation, 5 mMOregon Green�488 BAPTA-1 (Invitrogen)

was applied for 30 min and washed with DPBS. Then the cells were imaged using Leica TCS SP8 confocal microscope. For locating

the electrical recorded cells, the cardiomyocytes were seeded onto the unreleased mesh electronics. After one week culture, 5 mM

Oregon Green�488 BAPTA-1 (Invitrogen) was applied for 30 mins and washed with DPBS. Electrical signal was recorded and then

the cells were imaged using Leica TCS SP8 confocal microscope.
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Integration of mesh electronics with cardiac and neural patches
First, the released stretchable mesh electronics in the culture chamber was rinsed with DI water, decontaminated by 70% ethanol

and incubated with Poly-D-lysine hydrobromide (0.01% w/v) overnight followed by coating with Matrigel solution (100 mg/mL) for

about 1 hour at 37
�
C. Then, the device was pre-chilled on an ice bag in the biosafety hood, and then 70 mL Matrigel solution

(10 mg/mL) was added from the edge of the chamber, ensuring that the Matrigel covered the entire bottom substrate of the cell cul-

ture chamber underneath the stretchable mesh electronics. Next, the device was transferred into the incubator for at least 30 mins at

37�C to cure the Matrigel solution into a Matrigel hydrogel layer. Finally, hiPSC-CMs were incubated with 0.05% Trypsin-EDTA so-

lution (Gibco) for 5 mins and then dissociated into single cells. Cell counting and viability were assessed by trypan blue (Gibco) stain-

ingmethod. 4million cells (live cell percentage > 85%)were suspended in 1mLRPMI 1640mediumplus 1%B27 and then transferred

onto the cured electronics / Matrigel hybrids in the cell culture chamber and maintained at 37�C, 5% CO2. 5 mM rock inhibitor

(Y27632) was added to the medium in the first day to improve the cell viability. The CMs formed a continuous cell patch with the

stretchable mesh electronics embedded within 24-48 hours. The cell culture medium was changed every other day. For neural patch

integration, the primary hippocampal neurons were kindly obtained from the Broad Institute of MIT and Harvard. Single cells were

seeded onto the mesh electronics. Cells were cultured in NbActiv4 medium (NB4, BrainBits). No medium changes were done in

the first three days and then half were changed every other day afterwards.

Electrophysiological measurement
The Blackrock CerePlex Direct voltage amplifier along with a 32-channel Blackrock m digital headstage connected to the device were

used to record electrical activity from the samples. The culture medium was grounded by a Pt electrode. A second Pt electrode was

used as a reference electrode. During electrical measurement, samples were placed on a battery powered warming plate that main-

tained thermostatic 37�C. The measurement setup was placed into a Faraday cage. A sampling rate of 10,000 Hz was used for the

electrical recording. The cell electrical activities were recorded every 3 days.MATLAB andPython codes provided by Blackrock were

used to load, view, and convert raw data files into an accessible format for data analysis. For drug tests,17,63 the electrical signal was

recorded, and then 100 mM blebblistatin (Sigma-Aldrich) or 1 mM norepinephrine (Fisher) was injected into the cell culture medium of

the samples. The electrical signal before and after the drug application was recorded. Data analysis and statistical tests were per-

formed by GraphPad Prism.

Immunostaining and imaging
Cells maintained on 2D surfaces were fixed with 4% paraformaldehyde (PFA) at room temperature for 15 mins, permeabilized with

0.25% Triton X-100 for 15 mins and blocked with 5% donkey serum for 1 hour. Cells were then incubated with primary antibodies

(HCN4, AB5808, Sigma-Aldrich; MYH6, AMAB90950, Sigma-Aldrich; TNT, MA5-12960, Invitrogen; a-actinin, A7811, Sigma-Aldrich)

at 4
�
C overnight. After extensive washing, secondary antibodies were applied and incubated for another 2 hours at room tempera-

ture. Finally, 4’,6-diamidino-2-phenylindole (DAPI, D9542, Sigma-Aldrich) was added and stained for 10 mins at room temperature.

Cells were washed with PBS three times before imaging using Leica TCS SP8 confocal microscope. For cell-electronics hybrid stain-

ing, the samples were cleared and immunostained as previously described.14 The primary antibodies were stained for 4 days, and the

secondary antibodies were stained for 2 days, respectively. The samples were submerged in optical clearing solution overnight and

embedded in 1% agarose gel before imaging using Leica TCS SP8 confocal microscope. Imaging was analyzed by Fiji.

In situ sequencing
Probes for cardiac and neural patches in situ sequencing were listed in Tables S1 and S2, respectively. In situ sequencing experi-

ments were performed based on methods described previously with some modifications.18 Briefly, the custom padlock probe

and primer hybridize to mRNAs of the 3D cell-electronics hybrid, followed by enzymatic ligation and rolling circle amplification

(RCA) to construct in situ cDNA amplicons. The amplicons are then copolymerized with acrylamide, forming a hydrogel network.

A gene-specific identifier in the probe is amplified and decoded through multiple sequencing cycles (Figure 1G).

Glass-bottom 12-well plates (Mattek, P12G-1.5-14-F) were first treated with oxygen plasma for 5 mins (Anatech Barrel Plasma

System, 100W, 40% O2) followed by methacryloxypropyltrimethoxysilane (Bind-Silane) solution (88% ethanol, 10% acetic acid,

1% Bind-Silane, 1% H2O) treatment for 1 hour. The 12-well plates were then rinsed with ethanol for 3 times and were left to dry

at room temperature (R.T.) for 3 hours. The 12-well plates were further treated with 0.1 mg/mL of Poly-D-lysine solution for 1 hour

at R.T. followed by 3 times rinsing with H2O. The plates were air-dried for 1 hour at R.T. Micro cover glasses (12 mm) were pretreated

with Gel Slick at R.T. for 10 mins and were then air-dried before using.

The cardiac or neural patch was fixed with 1 mL 1.6% PFA for 30 mins at R.T. and then washed with PBS 3 times for 10 mins each

time. The sample was then transferred from the chamber to the 12-well plates and permeabilized with 1 mL (0.1 M glycine, 0.1 U/mL

SUPERase$In, 0.5%Triton-X 100 in PBS) for 30mins. The sample waswashedwith 1mLPBST (0.1%Triton-X 100 in PBS) 3 times for

10 mins each. The sample was then incubated in 1X hybridization buffer (2X SSC, 10% formamide, 1% Triton-X 100, 20 mM RVC,

0.1 mg/mL yeast tRNA, 0.2% SDS and pooled SNAIL probes at 20 nM per oligo) in a 40
�
C humidified oven with gentle shaking for 48

hours. The samplewaswashedwith 1mLPBSTV (1%RVC in PBST) at 37�C3 times for 20mins each andwashedwith high salt buffer

(4X SSC in PBST) for another 20 mins at 37�C, and then washed with PBST three times for 10 mins each at R.T. The sample was

then incubated in 1 mL ligation mixture (1:50 T4 DNA ligase, 1:100 BSA, 0.2 U/mL SUPERase$In) at R.T. overnight and then washed
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with 1 mL PBST three times for 10 mins each. The sample was incubated in 1 mL RCAmixture (1:50 Phi29 DNA polymerase, 250 mM

dNTP, 1:100 BSA, 0.2 U/mL SUPERase$In and 20 mM 5-(3-aminoallyl)-dUTP) at 4�C for 1 hour before incubating at 30�C for 6 hours

and then washed with 1 mL PBST 3 times for 10 mins each. The sample was incubated with 20 mM methacrylic acid

N-hydroxysuccinimide ester (dissolved in DMSO) in PBST for 3 hours at R.T. and washed with PBST 3 times for 10 mins each.

The sample was then incubated with monomer buffer (4% acrylamide, 0.2% bis-acrylamide, 2X SSC) overnight at R.T. The buffer

was then aspirated and 55 mL of polymerization mixture (0.2% ammonium persulfate, 0.2% tetramethylethylenediamine dissolved

in monomer buffer) was added to the sample. The Gel Slick coated coverslip was immediately put on the sample and the polymer-

ization was conducted in an N2 container for 90 mins. The sample was then washed with PBST 3 times for 10 mins each.

Five cycles of sequencing experiments were performed to decode gene identity. Within each cycle, the sample was first treated

with a stripping buffer (60% formamide, 0.1% Triton-X-100) at R.T. for 6 times, 15 mins each, followed by PBST wash for 6 times,

10 mins each. Then the sample was incubated with the sequencing mixture (1:25 T4 DNA ligase, 1:100 BSA, 10 mM reading probe,

and 5 mM fluorescent oligos) at R.T. for 12 hours. Then the sample was washed by the washing and imaging buffer (2XSSC, 10%

formamide and 0.1% Triton-X-100) for 5 times, 10 mins each. DAPI was dissolved in PBST and used for nuclei staining for

20 mins. Finally, the sample was immersed in the washing and imaging buffer for imaging. Image acquisition was performed with

Leica TCS SP8 confocal microscope with 25X water-immersion objective (NA 0.95), with a voxel size around 230 nm X 230 nm

X 570 nm.

Calcium imaging analysis
For hiPSC-CMs during development, the calcium imagewas first segmented using thewatershed segmentationmethod; the calcium

signal trace was then normalized for each segmented cell. The findpeaks function in MATLAB(2019b) was used to detect each cal-

cium spike, and all detected spikes for the cell were averaged. The averaged spike for each cell was then used for principal compo-

nent analysis and clustering to determine calcium clusters with Seurat V4.

Sarcomere analysis
Sarcomere analysis was performed as previously described.64 Briefly, the a-actinin fluorescence image was segmented using the

watershed segmentation method. Then the sarcomere organization score was calculated for each segmented cell using the Haralick

correlation value, which is the correlation value of the co-occurrence matrix for given orientation and pixel pair offset distances. The

height of the highest peak among all the orientation and pixel offset distances is defined as the sarcomere organization score for

the cell.

In situ sequencing analysis
A customized computational pipeline was built withMATLAB (2019b) to decode gene identity and quantify the gene expression level

of each cell from the in situ sequencing images. First, sequencing fluorescence images were preprocessed with top-hat filtering by a

disk structuring element (radius = 3) to remove the background noise. Second, the contrast of the image for each channel from the

second to fifth sequencing cycle was adjusted to match the image from the first cycle with histogram matching function ‘‘imhist-

matchn’’. Third, the composite fluorescence images for the second to fifth cycle were registered with the composite fluorescence

image from the first cycle using the phase correlation algorithm followed by local distortion registration with function ‘‘imregdemons’’.

Fourth, the dots of amplicon locations were identified from images in the first cycle by a 3D regional maximum detection algorithm

implemented in function ‘‘imregionalmax’’. Then the dominant color of every identified dot in each cycle was determined by a voxel

volume surrounding its centroid location. The color sequence for each dot was decoded as a gene barcode and compared with the

code-book. Fifth, cell segmentation was performed with ClusterMap,29 then RNA reads were assigned to the segmented cells

accordingly.

Python package Scanpy54 was used for the single-cell gene expression analysis. Cells expressing less than 40 gene counts or only

expressing three kinds of gene were filtered out. Gene counts of each cell were normalized so that the total count of all genes in each

cell equaled the median number of total counts across all cells. The normalized count value was then log-transformed with log (x+1).

Combat55 was used to remove the potential batch effect among different imaging positions. Each gene in the cell-by-genematrix was

scaled to unit variance and zero mean followed by dimensionality reduction with principal components analysis (PCA). Based on the

explained variance ratio, the top principal-components were used to construct the k nearest neighbor (kNN) graph for Leiden clus-

tering.30 UMAP28 was used to visualize the 2D representation of each cell.Monocle 337 was used to compute pseudotime along the

cell trajectory.

Locating recorded hiPSC-CMs
Weused a custom-built pipeline based on scikit-image v0.19.2 and opencv-python v4.5.5.64.59 Electrode position was located using

the 3D electrode image collected by reflection-mode and bright-field imaging and identified by the E-barcode positions. The elec-

trode position in x and y coordinates was determined by the following steps: the electrode image was first projected to the x-y plane

bymaximum intensity projection (MIP) and transferred to gray-scale (pixel value ranging from 0-255). Then theMIP imagewas filtered

with a global threshold of 50 to remove the non-electrode background. A 201-by-201 pixel size gaussian filter was applied to

adaptively filter out the non-circular area, which is the interconnect of the electrode. After locating the electrode in the x-y plane,
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the z coordinate of the electrode positionwas determined by fitting a 2D linear plane surface. The electrically recorded cell was further

determined by calculating the area of intersection between each neighborhood hiPSC-CM and the electrode. The cell with the largest

intersection area was identified as the electrically recorded cell. For hiPSC-CM samples, we used (i) high-density electrode arrays

(electrode-to-electrode distance of 60 mm) to record 47% ± 6% of hiPSC-CMs and (ii) sparsely distributed electrode arrays (elec-

trode-to-electrode distance of 480 mm) to record 3.4% ± 0.9% of hiPSC-CMs. In our system, 12% of electrodes were in contact

with multiple cells, 53% of electrodes were in contact with single cells, and 35% of electrodes were in contact with small cell frag-

ments or had no contact with cells.

hiPSC-CM electrophysiology data processing
We followed the procedure of SpikeInterface v0.958 to detect the spikes which passed the threshold in one channel. Each spike has a

fixed length of 1.6 second with the sampling rate of 10 kHz. After spike detection, the spikes were aligned at the minimum of the cor-

responding spike dv/dt, and then averaged to get a spike representation of that channel.

For each spike representation, we first denoised the spike with wavelet denoising using PyWavelets v1.1.0.56 Then, the spike fea-

tures were extracted through two cycles of down sampling operations. We first down sampled the whole 1.6 second length spike to

22 points (zoomed-out binning) and then down sampled the 0.15 second length spike near the minimum of the differentiated spike to

40 points (zoomed-in binning). In total, we generated 62 feature points for each spike representation of each channel.

Spike sorting
Neural patch electrical recordings were first bandpass filtered with the frequency range from 300 to 3,000 Hz. To obtain the spike

waveforms, the spike detection threshold was set as 5 times of standard deviations away from the mean and the minimum time be-

tween spikes was set as 3 ms. Segments in a time window of 3 ms with 1 ms before the trough of the waveform and 2 ms after the

trough were extracted. Spike sorting was then conducted with MountainSort57 and SpikeInterface.58

Locating recorded neurons
To identify electrically recorded neurons, we computed the spatial average positions across channels that recorded the same neu-

rons and weighted the components with the square of the average waveform amplitude of each channel.31 For neuron samples, we

used high-density electrode arrays (electrode-to-electrode distance of 60 mm) to record 82% ± 4% of neurons.

Weighted Nearest Neighbor (WNN)
TheWNN,36 i.e. FindMultiModalNeighbors function from Seurat v4, was used to integrate the gene expression and electrophysiology

data collected by in situ electro-seq. The principal component dimensionality for gene expression and electrophysiology was set as 7

and 6 (the elbow point in PCA variance), respectively. k = 20 was used to find the k nearest neighbor and calculate the modality-spe-

cific weights. AWNN graph integrating information of electrophysiology and gene expression was then built for downstream analysis

including joint clustering (Leiden),30 UMAP joint visualization and pseudotime derivation (Monocle3).

Pseudotime analysis
We used the R packageMonocle3 for the pseudotime calculation of gene expression, electrophysiology features and the WNN joint

representation described above. A set of hyperparameters (Euclidean distance ratio = 2, geodesic distance ratio = 2/3 , minimal

branch length = 5) in function learn-graphwas used to first learn a principal graph of development. The node at the position of earliest

stage wasmanually chosen as the root of principal graph to finalize the trajectory. Then the function order_cellswas used to calculate

the pseudotime.

Sparse reduced-rank regression (RRR) model and bibiplot
For the sparse RRR analysis,38 we used 62 electrophysiological features across all electrically recorded hiPSC-CMs. Both electro-

physiological features and gene expression were normalized and z-scored as described above. In brief, sparse RRR finds a linear

mapping of gene expression levels to a low-dimensional latent representation, from which the electrophysiological features are

then inferred with another linear transformation. The results were visualized by paired and aligned electrophysiological biplot and

transcriptional biplot. Each biplot is composed of dots and lines. Each dot in the biplot represents a cell with paired measurements,

with the x and y coordinates respectively representing Components 1 and 2 values in the aligned electrophysiological and transcrip-

tional space. Each line in the biplot represents an E feature or gene. The sparse RRRmodel selected a set of genes for visualization in

the transcriptional biplot that best explains electrophysiological variability. The x and y coordinates of each line’s tip in the biplot indi-

cate the contribution of the corresponding E feature or gene to Component 1 and Component 2, respectively. Comparing the direc-

tions of lines between the electrophysiological and transcriptional biplot can suggest which E features are correlated with which

genes (Figure 6C). In Figures S5K and S5L, cross-validation was done by using 10 folds, elastic net a-values 0.25, 0.5, 0.75, and

1.0, and l-values from 0.2 to 6.0. In Figures 6C, a model with rank r = 5, ridge penalty (a = 0.5), and lasso penalty (l = 1.5) was

used to yield a selection of genes. Following themethod,35,38 we selected themost stable results from the sparse RRR analysis. Spe-

cifically, we run the sparse RRR in 100 repetitions, and only genes that appeared more than 50 times were selected for the down-

stream analysis.
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We used 10 times repeated 10-fold cross-validation to tune the regularization strength (Figures S5K and S5L). The selected model

chose genes with a 5-dimensional latent space and achieved a cross-validated R2 of 0.2. The cross-validated correlation between

the first two pairs of projections was 0.69 and 0.49, respectively. These first two components roughly separate CM groups by their

days of differentiation. These different groups show distinct genes correlated with electrophysiology features.

Coupled autoencoder model
A coupled autoencoder39,40 was used for cross-modal inference. Specifically, the following hyperparameters were used: latent loss

weight =1, Adam optimizer with learning rate = 0.0001, batch size = 10, training epoch = 15, epoch step = 1000. The latent dimen-

sionality was set to d = 2 in order to capture the variability in the dataset. The genes selected by the sparse RRRmodel, and all 62 elec-

trophysiological features were used as inputs for the coupled autoencoder.

To validate the cross-modal inference performance of the coupled autoencoder, 5-fold cross-validation was applied. Cells

collected on Day 12, Day 21, Day 46, and Day 64 were randomly divided into 5 equal subsets. The coupled autoencoder was trained

on 4 of the 5 subsets (training data), and then evaluated on the remaining 1 subset (validation data). This process was repeated 5

times, with each subset serving as the validation data exactly once. The performance across all 5 iterations was then used as the

overall performance in downstream evaluations.

After training the coupled autoencoder network, we applied the pre-trained coupled autoencoder to infer temporal gene expres-

sion change from the continuous electrical recording of the same sample (Figure 7G). Specifically, the electrical activity of a cardiac

sample wasmeasured by the embedded electrodes fromDay 17 to Day 64 of differentiation. Then a temporal gene expression profile

from Day 17 to Day 64 of differentiation was inferred.

To apply the pre-trained coupled autoencoder model to LMNA-mutant hiPSC-CMs, we used the gene expression changes in

LMNA-mutant hiPSC-CMs from previously reported data42 to infer the electrophysiological waveform (Figures 7H and 7I). Then,

the inferred LMNA-mutant hiPSC-CM electrophysiological waveform was compared to the waveform of LMNA-mutant hiPSC-

CMs measured by mesh electronics. Additionally, random shuffle was performed as a negative control to further demonstrate

that the inference of LMNA-mutant hiPSC-CMs was not due to coincidence. The gene expression changes in LMNA-mutant

hiPSC-CMs were randomly shuffled and then used as input to the trained coupled autoencoder. The random shuffle was repeated

10 times for statistical reliability. We acknowledge that the randomness in the neural network trainingmay lead to slight differences in

the results of sparse RRR and coupled autoencoder analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed by GraphPad Prism. The statistical details of experiments can be found in the figure legends. Sig-

nificant difference between two samples was evaluated by One-Way ANOVA or unpaired two-sided Student’s t test. p < 0.05 was

considered as statistically significant. *, **, and *** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001, respectively.
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Figure S1. Design and fabrication of stretchable mesh electronics, related to Figure 1

(A) Top-view schematic of stretchable mesh electronics.

(B) Exploded-view schematic of different layers of stretchable mesh electronics.

(C) Schematics showing the key steps of the fabrication flow.

(D) Photograph of stretchable mesh electronics fabricated on a glass wafer.

(E) Bright-field (BF) optical image of a representative electrode array.

(F) BF image of a representative electrode with the paired E-barcodes and interconnects.

(G) Representative design of binary E-barcodes for labeling 64 electrodes.
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Figure S2. Human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) differentiation and integration with stretchable mesh

electronics, related to Figure 2

(A) Schematics of the protocol for cardiac differentiation from hiPSCs.

(B) BF phase images showing the cell morphology at different differentiation days.

(C and D) Confocal fluorescence images (C) and corresponding statistical summary (D) of hiPSC-CMs at day 12 of differentiation. Values are mean ± SEM; n.s.,

not significant; one-way ANOVA test.

(E and F) Fluorescence calcium image (E) and corresponding cell-segmented image (F) of hiPSC-CMs.

(G) Averaged spikes of calcium signal traces of hiPSC-CMs at different differentiation days.

(H) Comparison of calcium clusters and differentiation days by dot plot.

(I) Distribution plots of pseudotime distributions of all the segmented hiPSC-CMs.

(J and K) Confocal fluorescence images of representative hiPSC-CM patch-electronics hybrids and hiPSC-CM patches.

(L and M) Fluorescence (left panels) and segmented (right panels) images of sarcomeres in representative hiPSC-CM patches with (L) and without (M) the device

embedding.

(N and O) Haralick correlation computed at multiple offset distances and angles to determine the sarcomere organization score in the hiPSC-CM patches with

(N) and without (O) devices.

(P) Barplots of sarcomere organization score in the hiPSC-CMpatches. Values aremean ±SEM; n.s., not significant; ** p < 0.01, *** p < 0.001, two-tailed, unpaired

t test.

(Q and R) Distribution plots of sarcomere organization score in the hiPSC-CM patches with (Q) and without (R) devices.
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Figure S3. Electrical recording platform and measurement of hiPSC-CM patches, related to Figure 2

(A and B) Overlapped BF and fluorescence imaging of the same representative hiPSC-CM patch-electronics hybrid before (A) and after (B) the sample prepa-

ration. The zoomed-in view of the fluorescent image shows a representative electrode and its surrounding cells.

(C) Statistical summary of cell-to-electrode distances from the center of the DAPI signal to the center of the electrode. n.s., not significant; paired, t test.

(D) Probability distribution of the distance change after sample preparation.

(E and F) Photographs of the cell culture chamber connection (E) and Blackrock CerePlex direct voltage amplifier (F) showing the multiplexing recording setup.

(legend continued on next page)
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(G and H) Statistical summaries of the physical and electrical beating rates of hiPSC-CM patch-electronics hybrids before and after blebbistatin and norepi-

nephrine treatment. Values are mean ± SD; n = 3; n.s. not significant; * p < 0.05, two-tailed, unpaired t test.

(I) Overlapped BF and calcium imaging of hiPSC-CMs embedded with the electrode array.

(J) Red circles highlighting the electrodes overlapped by cells that show positive calcium signals.

(K) Red circles highlighting the electrodes that record positive electrical signals.

(L) Comparison of the calcium and electrical signals by dot plot.

(M) Schematics illustrating the computational pipeline to automatically identify hiPSC-CMs that directly contact the electrode as electrically recorded cell.

Schematics for the multi-cell analysis (Figure S6A) is also generated from the same dataset.

(N) Statistical summary of contact cells per electrode.
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Figure S4. In situ electro-seq of neural patches, related to Figure 3

(A) Representative images showing the estimated neuron positions (red stars in i and iii) and finally determined electrically recorded neurons (red cells in iii and iv).

All neurons near the device are labeled with blue dots. Dashed lines highlight the stitching boundaries of each imaging tile.

(B) Representative raster plots showing spike trains (left panel) and zoomed-in views of individual spikes (right panel) of two additional biological replicates, as the

sample in Figure 3C.

(C) Heatmap of differentially expressed genes aligned with each cell cluster.

(D) Dot plot of selected marker gene expressions in neural patches.
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Figure S5. In situ electro-seq of hiPSC-CM development, related to Figures 4, 5, 6, and 7

(A) Heatmap of normalized differentially expressed genes aligned with each cell cluster.

(B) UMAP visualizations showing hiPSC-CM marker gene expressions.

(C–F) Matrix of silhouette scores measuring the separability of electrically recorded hiPSC-CMs. Gene expression of all hiPSC-CMs (C). Gene expression of

electrically recorded hiPSC-CMs (D). Electrophysiology of electrically recorded hiPSC-CMs (E). WNN joint representations from gene expression and electro-

physiology of electrically recorded hiPSC-CMs (F).

(G–J) Correlation of electrophysiological pseudotime with transcriptional pseudotime (G), hiPSC-CM synchronization level (H), fibroblast density (I), and cell

density (J).

(K) Test R2 of ‘‘relaxed’’ and ‘‘naive’’ sparse reduced-rank regression (RRR) analysis.

(L) Cross-validated correlations of relaxed and naive sparse RRR analysis.

(legend continued on next page)
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(M) Coupled autoencoder-encoded 2D representations of a day 64 sample replicate. Zt (circles) and Ze (dots) represent the distribution of transcriptional and

electrophysiological data, respectively.

(N) Coupled autoencoder-encoded 2D representation showing the distribution of electrophysiological data from a continuous electrical recording of the same

cardiac patch (Ze, dots; bottom panel) and corresponding cross-modal inferred gene expressions (Zt, circles; top panel).
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Figure S6. In situ electro-seq enables joint clustering of cell states by multiple contact cell analysis in hiPSC-CM development, related to

Figure 5

(A) Schematics showing how to identify all the cells contacting the electrode for the multi-cell analysis.

(B) hiPSC-CM transcriptional states (t-states, TS) defined by gene expression. UMAP visualization of the gene expression from hiPSC-CMs that are color-coded

by differentiation days (i) and t-states defined by Leiden clustering (ii). Comparison of t-states and differentiation days by river plot (iii) and dot plot (iv).

(C) hiPSC-CM electrophysiological states (e-states, ES) defined by electrophysiology and analyzed in the same way as in (B).

(D) hiPSC-CM transcriptional and electrophysiological joint states (j-states, JS) defined by weighted nearest neighbor (WNN)-integrated representations from

gene expression and electrophysiology and analyzed in the same way as in (B).

(legend continued on next page)
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(E) Distribution plots showing pseudotime distributions of all the electrically recorded hiPSC-CMs. Gene expression (i), electrophysiology (ii), andWNN-integrated

representations of gene expression and electrophysiology (iii).

(F) Electrically recorded cells highlighted in the UMAP visualization of gene expression, with colors encoding joint pseudotime in (Eiii). Cells sequenced from all the

samples across four stages are shown as gray embedding the same as Figure 4F. Insets show representative single-spike waveforms.

(G–J) Matrix of silhouette scores measuring the separability of electrically recorded multiple contact hiPSC-CMs. Gene expression of all hiPSC-CMs (G). Gene

expression of electrically recorded hiPSC-CMs (H). Electrophysiology of electrically recorded hiPSC-CMs (I). WNN joint representations from gene expression

and electrophysiology of electrically recorded hiPSC-CMs (J).
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(legend on next page)
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Figure S7. Cross-modal visualization, correlation, and inference of in situ electro-seq results of electrically recordedmultiple contact hiPSC-

CMs, related to Figures 6 and 7

(A) Test R2 of relaxed and naive sparse RRR analysis.

(B) Cross-validated correlations of relaxed and naive sparse RRR analysis.

(C) Representative electrophysiological features extracted through downsampling of each spike waveform. 1.6-s waveforms are sampled in 22 bins. Inset shows

0.15-s fast spikes sampled in 40 bins.

(D) Sparse RRR model that visualizes and aligns transcriptional states (t-states) and electrophysiological states (e-states).

(E) Heatmap showing the correlation calculated by cosine distance between electrophysiological waveform features and genes from the sparse RRR analysis.

(F and G) Coupled autoencoder-encoded 2D representations of transcriptional (Zt, F) and electrophysiological (Ze, G) data trained by in situ electro-seq data.

(H and I) Coupled autoencoder-encoded 2D representations showing the distribution of electrophysiological data from continuous electrical recording (Ze, H) and

the corresponding cross-modal inferred gene expressions (Zt, I).

(J and K) Coupled autoencoder-encoded 2D representations showing transcriptional data (J) and electrophysiological data (K) from samples across four

developmental stages.

(L and M) Heatmap of transcript-to-electrophysiology (T-to-E) inference and electrophysiology-to-transcript (E-to-T) inference from the coupled autoencoder.
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