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SUMMARY

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-
function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq)
that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale elec-
trical activity and profile single-cell gene expression from the same cells across intact biological networks,
including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardi-
omyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysi-
ology and gene expression at the cellular level, jointly defining cell states and developmental trajectories.
Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysi-
ology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of
gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be
applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of

cell types and gene programs responsible for electrophysiological function and dysfunction.

INTRODUCTION

Paired charting of single-cell gene expression and electrophysi-
ology in intact cells and tissues across time and space is crucial
to understanding gene-to-function relationships in fields ranging
from developmental biology to cardiology and neuroscience.’™®
Such multimodal methods require stable and continuous
recording of individual cell electrical activity with high spatio-
temporal resolution across three-dimensional (3D) biological
samples, multiplexed profiling of a large number of genes in elec-
trically recorded cells, and multimodal and cross-modal compu-
tational analysis.

Large-scale single-cell electrical recording®® and high-
throughput single-cell sequencing®™'' have enabled system-
level investigation of single-cell electrophysiology and gene
expression, respectively. However, existing multimodal
methods either lack high spatiotemporal resolution or cannot
chronically stably measure electrical activities across 3D biolog-
ical samples. For example, combining calcium imaging with RNA
hybridization'? reveals the correlation between calcium activity
and molecularly defined cell types but only permits the recording
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of cell activity on the scale of seconds and profiling of a limited
number of genes. On the other hand, patch-sequencing
(patch-seq) method'® quantifies cell activity with millisecond
resolution and profiles the transcriptomes of recorded cells,
but it assays cells one at a time and requires membrane disrup-
tion for electrical measurement, precluding 3D multiplexed and
long-term stable electrical activity mapping.

Recent progress in thin-film flexible bioelectronics has
enabled the development of flexible and stretchable “tissue-
like” electronics capable of seamlessly integrating with tissue
networks for long-term, stable, millisecond-timescale, single-
cell electrical mapping.’®™"” Meanwhile, current imaging-based
in situ sequencing methods'® can achieve end-point spatial
analysis of thousands of genes at subcellular resolution across
intact biological samples. Here, we combine flexible and stretch-
able tissue-like bioelectronics with in situ sequencing in a
method termed “in situ electro-sequencing (electro-seq)” that
enables scalable and paired profiling of single-cell gene expres-
sion and electrophysiology in intact biological networks,
including human-induced pluripotent stem cell (hiPSC)-derived
cardiac patches and cultured mouse neural patches.



mailto:xwangx@mit.edu
mailto:jia_liu@seas.harvard.edu
https://doi.org/10.1016/j.cell.2023.03.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2023.03.023&domain=pdf

Cell ¢ CellPress

A i. Real-time ii. Whole-tissue clearing
electrophysiological recording and electrode position registration iii. In situ sequencing

Cells after

X r Cells with
tissue clearing

DNA amplicons

Living cells

\" Electrical interconnect QO Electrode M E-barcode

iv. Multimodal data analysis

Cluster 1 Cluster 2 Joi ’ i , Gene 1 @
~ oint clustering Inference Spatial mapping Gene2 @

o2fPe |
=1 ‘*.*.*‘ Genen @

Cluster 3 Cluster 4

Electrophysiological features

0
B
Hybridization Ligation Amplification
Gene-unique DNA
|dentlf|elr amplicon
< Primer [ ‘Padlock Amplify —
e K %) mRNA
To| SU& o
3 e Extracellular Pol meritation
Pt black coated __, - action potential y 2] )
Pt electrode - IO
Au interconnect —/>// / o
N -41#\- Recorded /iy
Bottom SU8 — ;'g-i, signal § of 9
500 um 4
Decoded genes Readout
Gene 1 AGTG —— AANN —
(o] I g g g =1000 (binary) D , Gene 2 GCAG CITARG:
. 10 0 GAGA
= T
= e
% Genen CATC vy
Fsom ~—*Probes
(0]
% H Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
o0 SR o LY RN CNRINGE-
- = — ; —CNNGC —
4 3/G_XXXG ~Z ¢ LGTT_CXG X ¥ &rrcce X ° 3‘

—GTTXXG < —GITCGG

10
Frequency (Hz)

F .
~10°
)
g 104
=10
@)10
8
o1
B,
210
E
1 2 3 4 10770 710 20 30 40 50 60 70
Sample number Incubation time (days)

(legend on next page)

Cell 186, 2002-2017, April 27, 2023 2003



¢? CellPress

RESULTS

In situ electro-seq platform

We applied stretchable sub-micrometer-thick mesh electronics
with cellular size electrodes to seamlessly integrate with cardiac
and neural patches for continuous electrical recording and to pre-
vent potential cell-to-electrode dislocation during cell culture,
sample preparation, and multiple cycles of in situ sequencing (Fig-
ure 1A). Then, we embedded the sample into a hydrogel to form a
cell-electronics-hydrogel network that is compatible with the in
situ sequencing protocol and capable of co-deformation during
volume change. To precisely identify the electrically recorded cells
in 3D cell networks, we used photolithography to pattern the thin-
film microscale polymeric structures with distinct fluorescent
electronic barcodes (E-barcodes), which were paired with each
individual electrode to label its recording channel during fluores-
cence imaging cycles of in situ sequencing. The E-barcodes
served to trace each electrode and identify the electrically re-
corded cells with precise 3D coordinates, allowing for the integra-
tion of electrical recording with gene expression.

Briefly, in situ electro-seq consists of four key steps (Fig-
ure 1A): (1) the mesh electronics with E-barcoded electrodes
are embedded in the biological samples, such as cardiac and
neural patches for continuous electrical recording; (2) the entire
cell-electronics hybrid is fixed, embedded in hydrogels, and
cleared for in situ sequencing; (3) gene identities and
E-barcodes are simultaneously read out by multiple cycles of
fluorescence imaging to integrate electrical recording with
gene expression profiling at single-cell resolution; and (4) the in-
tegrated data are analyzed using multimodal and cross-modal
visualization and correlation to reconstruct spatiotemporal
gene-to-function relationships.

In situ electro-seq integrates single-cell transcriptional
and electrophysiological states of hiPSC-derived
cardiac patches

We applied in situ electro-seq to hiPSC-derived cardiomyocyte
(hiPSC-CM) patches to map electrophysiology and gene expres-
sion from the same cells. First, our representative mesh elec-
tronics had 64 electrodes, each 25 um in diameter (Figures 1B
and S1), and were designed, based on recent reports,® 71922
to record localized, single-cell-level electrophysiology'®?" with
low noise level (root mean square voltage < 10 uV) and reliable
single-unit separation (amplitude > 60 uV). A pair of center-sym-
metric fluorescent E-barcodes with distinct binary codes was
patterned with each electrode at the center (Figures 1C, S1F,
and S1G). Characterizing electrode impedance (Figure 1D)
showed stable performance across different samples (Figure 1E)
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and over 2 months in the physiological solution (Figure 1F) for
long-term electrical recording.

Then, hiPSC-CMs were generated and integrated with mesh
electronics to form a cardiac patch, as described previously.'*'”
We used immunostaining and calcium imaging to characterize
the quality of hiPSC-CMs (Figures S2A and S2B). The immuno-
staining results showed that approximately 95% of the cells
were CMs marked by troponin T (TNT), a-actinin, myosin heavy
chain 6 (MYH6), and hyperpolarization-activated cyclic nucleo-
tide-gated cation channel 4 (HCN4), demonstrating that our pro-
tocol generated hiPSC-CMs with high purity and little batch-to-
batch variation (Figures S2C and S2D). The calcium imaging
results further showed that the calcium waveform kept evolving
from day 12 to 21 and stabilized from day 21 to 64
(Figures S2E-S2I), consistent with previous findings.?® After
co-culturing hiPSC-CMs with mesh electronics, we immuno-
stained TNT and a-actinin on hiPSC-CM patch-electronics hy-
brids. Results demonstrated that the integrated mesh elec-
tronics had negligible effects on hiPSC-CM development
(Figures S2J-S2R). Finally, we fixed hiPSC-CM patch-elec-
tronics hybrids and applied the in situ sequencing protocol
(see STAR Methods) to spatially profile a targeted set of cardiac
genes, including the 201 most differentially expressed genes
during cardiac development, extracted from the previous sin-
gle-cell RNA sequencing (scRNA-seq) data.’*’ Specifically,
RNA-derived DNA amplicons with pre-designed gene-specific
identifiers were synthesized in situ by probe hybridization, enzy-
matic amplification, and immobilization in the cleared hiPSC-CM
patch-electronics-hydrogel network (Figure 1G), and gene-spe-
cific identifiers were then decoded through five sequencing cy-
cles.”® To evaluate potential cell-to-electrode dislocation
during sample preparation and multiple cycles of in situ
sequencing, we calculated the change in the distances from
cells to electrodes before and after sample preparation to be
0.51 + 0.43 pm, which is orders of magnitude smaller than the
size of one cell, and thus negligible (Figures S3A-S3D). Addition-
ally, the microscale distances among E-barcodes, cells, and am-
plicons remained unchanged during the multiple cycle imaging
(Figure 1H).

Next, we tested in situ electro-seq in the hiPSC-CM patches
(Figures 2A-2D). The electrical recording was performed, and
single-spike field potential waveforms were identified, pre-pro-
cessed, averaged, and down-sampled to extract features.
Figures 2E and 2F show representative voltage traces and sin-
gle-spike waveforms, respectively. The uniform manifold
approximation and projection (UMAP)?® visualization (Figure 2F,
inset) of extracted features from each channel showed the het-
erogeneity of hiPSC-CM electrophysiology. We also used drug

Figure 1. In situ electro-seq platform
(A) Schematics summarizing the in situ electro-seq method.

(B) Representative photograph of flexible mesh electronics. Inset: schematic illustrates the multilayer structure of the electronics.

(C) Overlapped fluorescence and bright-field (BF) image of a pair of binary E-barcodes highlighted in red box in (B).

(D) Electrochemical impedance and phase from 0.1 to 10 kHz of a representative electrode.

(E and F) Electrochemical impedance at 1 kHz across five different samples (E) and over 2 months of incubation (F). Values are mean + SEM.

(G) In situ sequencing of a cell-electronics hybrid (see STAR Methods).

(H) Representative images of five rounds of sequencing overlaid with E-barcode. X, unknown base; red underline, decoded sequence; Ch1 to Ch4, fluorescence

channels; E-barcodes labeled with R6G.

2004 Cell 186, 2002-2017, April 27, 2023



Cell ¢ CellPress

Reference & grounding B Cha Elec";’:ahtierZOQ'cal D

electrode | —|.— Ch1 | +
\' Electrical Electrode 5 Feature ch .. Spatial N
Cardiac recordlng —+'— alignment Ch2 -+'— extraction ., . mapping
patch \\_‘_:ﬂ_ = _— T
Ch3 Ch3 ..
Samaesil ofipu -t~ —t~ :

\U "\ Stretchable mesh interconnect O Electrode M E-barcode

Gene cot| | ]| spati
|dent|f|c:at|onC I .—]- mapping

A

C Sample collected / fixed

In situ RNA
seq uencing decodlng
Cycle 1

Alignment

Cell3 H
% @ < Cells after tissue clearing Cycle 5 @ @ <k Cells with DNA amplicons CeIIN - ® Electrically recorded cells
E F
— Ch1 Ch2 Ch3 Ch4 Ch5

cntl 4————tt1tr—t+—t—t—t 1+
Ch2 - A—f— —_—T —_
Ch3 1 | R (| el 1 1 1 1 A . - 1 e—

T T T T | L 0 1| 1y T T L3 UL T
Chd - Il | | | | Il Il | L | - L

e e S S E B B e e e o o e che
Chs  A——+— I 1 e i } Ché Ch7 Ch9 Ch10
e A N O A A —
ch? ettt ~ T

I I O ] I . . ,
Ch8 f———F—+—— T+ T — ch13 UMAP
ChEl = T T Ch12
ch10 +—F+—+—F+—"+—+T+r—+—F+—F+—+—F—F—+ —
ch1l +—f——t—+—F—+—t+—+— —t— t -
Chizd—— Ll ‘&'
en3 +————————————— (Chi4 chis chige |8
ch14 +———A————+—t——— f - ‘
ch1s +A—AH——A——"~A—4—+—t— o S

N , .
ch16 +—4————+——+H—+—~+— —t ; & Spike
RE R ‘ " " %3 le ‘ ® Averaged spike

H

Ch3

Device

Cell type map

CMs

criptional space

Electrophysiolog-

@ Averaged electrophysiology @ Recorded CMs

(legend on next page)

Cell 186, 2002-2017, April 27, 2023 2005



¢? CellPress

tests to confirm that the mechanical activities of hiPSC-
CMs cause no interruptions on the electrical recording
(Figures SSE-S3H). Then, in situ sequencing was applied imme-
diately after electrical recording (Figure 2G). After 3D cell seg-
mentation (Figures 2H and 21),>° we performed cell clustering
by Leiden clustering.>° The result showed two major cell types
(Figure 2J), CMs and cardiac fibroblasts (Fibs), which were
spatially mapped back to E-barcoded electrodes (Figure 2K).

To determine how to identify the cells recorded by the elec-
trodes, we conducted electrical recording and calcium imaging
in the same sample (Figures S3I-S3L) and tested the localization
of signals recorded from the mesh electronics. The results indi-
cated that, among all calcium signal-positive cells, only those
that directly contact electrodes can be recorded (Figure S3L).
Based on this data, we first built a computational pipeline to
automatically identify CMs that directly contact the electrode
as electrically recorded cells (Figures 2K, S3M, and S3N).
Then, the identification of E-barcodes registered the electro-
physiological features (E features) with gene expression of the
electrically recorded cells. The resulting heatmap (Figure 2L)
and joint UMAP (Figure 2M) visualizations showed the integrated
E features with the differentially expressed CM-related genes
and their multimodal distributions, respectively.

In situ electro-seq enables the multimodal spatial
mapping of neural patches

We applied the in situ electro-seq to neural patches by first inte-
grating stretchable mesh electronics with sparsely seeded pri-
mary mouse hippocampal neurons (Figure 3A). The electrical re-
cordings of single-neuron activity showed high heterogeneity in
their temporal firing patterns and spike waveforms (Figures 3B,
3C, and S4B). In situ sequencing was performed after electrical
recording. After 3D cell segmentation, we performed cell clus-
tering by Leiden clustering. The results showed five major cell
types (Figures 3F, S4C, and S4D): excitatory neurons, inhibitory
neurons, astrocytes, Fibs, and glial cells, all of which were then
spatially mapped back to their locations (Figure 3D). To ensure
correct identification of the electrically recorded neurons, we
considered only two scenarios: (1) only one neuron within
60-um of the corresponding electrode (the sensing area), or (2)
the same neural signal simultaneously captured by multiple elec-
trodes. Next, we performed spike sorting and identified the
neuron locations using electrode positions and corresponding
spike amplitudes, as previously described (Figures 3E and

Cell

S4A).%" The sparse distribution of seeded neurons among glial
cells enabled robust identification of the electrically recorded
neurons at single-cell resolution. The electrical waveforms
were then mapped to the associated electrically recorded neu-
rons (Figure 3E). Notably, we observed distinct gene expression
patterns between electrically recorded excitatory and inhibitory
neurons, with excitatory neurons showing high expression of
Sic17a6 and inhibitory neurons showing high expression of
Gad1 (Figures 3G, S4C, and S4D). Furthermore, by correlating
the cell type with electrical recording, we found that excitatory
and inhibitory neurons show a statistically significant difference
in electrical features such as peak-trough ratio (Figures 3G and
3H), which is consistent with the previous reports.*>>* Together,
these results demonstrated that the in situ electro-seq platform
is capable of correlating cell electrophysiology and gene expres-
sion at the single-cell level when applied to cultured neural
networks.

In situ electro-seq enabled multimodal joint clustering
We used in situ electro-seq to trace the development of hiPSC-
CM patches (Figure 4A). The cell electrophysiological signals
from days 12, 21, 46, and 64 of differentiation (Figures 4B and
4C) showed distinct features at these four stages. We next
applied the ClusterMap®® method to segment cells based on
RNA identities. UMAP visualizations of cell types across four dif-
ferentiation stages showed equivalent embedding distributions
between electronics-contacted and control cells, suggesting
the negligible effects of mesh electronics on hiPSC-CM develop-
ment and on the performance of in situ sequencing (Figures 4D
and 4E). We then performed Leiden clustering analysis on
all in situ sequenced samples across 4 stages and identified
5 cell clusters (Figure 4F). Based on the expression levels of
marker genes, four clusters can be characterized as CMs and
one as cardiac Fibs. Moreover, based on previous reports,”*>
the changing expression levels of marker genes (e.g., HCN4,
MYH6, MYH7, MYL7,MYL4, etc.) in these four types of CMs indi-
cated a transition from nodal-like through atrial-like to ventricu-
lar-like CMs (Figures 4G and 4H). Notably, the nodal marker
gene (HCN4) and atrial marker gene (MYH6) decreased at later
stages, while the ventricular maker gene (MYH?7) increased
(Figures 41 and 44J).

While gene expression clustering separates hiPSC-CMs into
four transcriptional states (t-states) that roughly correspond to
the samples collected at the four differentiation days, we noticed

Figure 2. In situ electro-seq integrates single-cell transcriptional and electrophysiological states of hiPSC-CM patches

(A-D) Schematics illustrating in situ electro-seq of a hiPSC-CM patch.

(E) Representative voltage traces recorded from the hiPSC-CM patch at day 46 of differentiation. The data is also included in Figure 4B to show the overall cardiac

electrophysiological activity changes from day 12 to day 64.

(F) Representative averaged single-spike waveform detected from (E) and highlighted in the blue box. Inset shows the UMAP visualization of the spike waveforms.
The data is also included in Figure 4C to show the overall cardiac electrophysiological activity changes from day 12 to day 64.
(G) 3D reconstructed fluorescence imaging of in-process in situ electro-seq of the entire hiPSC-CM patch-electronics hybrid. White arrows highlight the positions

of electrodes.

(H) Zoomed-in view of the fluorescent signals illustrating the representative electrode-embedded area from the white dashed box in (G).

(l) 3D cell segmentation map labeling cells with different colors.

(J) UMAP visualization representing major cell types across all sequenced cells clustered by Leiden clustering. The electrically recorded cells are highlighted.
(K) 3D cell-type map labeling each cell by its cell type with the same color code in (J). The electrically recorded cell is highlighted with deep red.

(L) Heatmap of the normalized electrophysiological features (blue) and differentially expressed genes (red) from the measured cells.

(M) Integration of electrophysiological features with gene expression features in UMAP visualizations.
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that CM t-states at days 46 and 64 of differentiation are less
separable (Figure 4F). Statistical testing showed that the separa-
bility of t-states of electrically recorded hiPSC-CMs was
worse (Figures 5A, S5A, and S5B) for days 21, 46, and 64 of dif-
ferentiation (Figures S5C and S5D), agreeing with previously re-
ported scRNA-seq clustering of hiPSC-CM t-states during
development.?* Using E features to cluster the electrically re-
corded cells, we identified two major electrophysiological states
(e-states) for hiPSC-CMs, one for days 12 and 21, and the other
for days 46 and 64. However, the separability of subgroups
within the two major groups was low (Figures 5B and S5E). Pre-
vious patch-seq results suggested that integrating gene expres-
sion with electrophysiology could improve the classification
of cell types.>® Thus, we used the weight nearest neighbor
(WNN)*® algorithm from Seurat v4 to integrate electrophysiolog-
ical and gene expression data as joint representation (see STAR
Methods). Using the joint features, hiPSC-CMs can be clustered
into four joint states (j-states) that well represent the distinct dif-
ferentiation days (Figures 5C and S5F). In addition, we applied
Monocle3®” to calculate pseudotime distributions of t-states,
e-states, and j-states. The results also showed that integrating
gene expression and electrophysiology data led to a better sep-
aration of pseudotime distributions for cells at distinct differenti-
ation stages (Figure 5D). The electrically recorded hiPSC-CMs
with their j-state pseudotimes were highlighted in the UMAP
visualization of hiPSC-CM t-states (Figure 5E) to show that the
j-states clearly recapitulated the continuous developmental tra-
jectory of hiPSC-CMs (Figures 4E and 4l). Additionally, we inves-
tigated the contribution of non-transcriptional factors to electro-
physiology, such as spatial information of cells and oscillator
coupling between hiPSC-CMs. The results showed that these
non-transcriptional factors also correlate with electrophysiology
but to a much lower extent in comparison with the transcriptional
factor (Figure S5G-S5J). Collectively, these data demonstrate
that the in situ electro-seq platform can efficiently characterize
the evolution of cell states over the time course of hiPSC-CM
development.

In situ electro-seq enabled cross-modal correlation and
inference

A capability of in situ electro-seq is the development of a model
for cross-modal inference, which can be used to (1) infer gene
expression at unmeasured time points from continuous electro-
physiological measurements and (2) change the expression
levels of individual genes or a combination of multiple genes to
infer their effects on electrophysiology. To achieve this, we
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used sparse reduced-rank regression (RRR) analysis, a statisti-
cal model successfully applied to analyze patch-seq data,*® to
(1) quantitatively investigate the correlations between individual
genes and changes in electrophysiological waveform features
during hiPSC-CM differentiation and development, and (2) select
a subset of genes that is most relevant to the temporal evolution
of these electrophysiological waveform features throughout
hiPSC-CM development (Figure 6A).

Specifically, we down-sampled the entire spike waveform and
extracted data points (Figure 6B) directly from the waveform as
input E features. Then, we plugged our paired electrophysiolog-
ical and transcriptional measurements into the sparse RRR
model, which aligned the electrophysiological and transcrip-
tional representations in the low-dimensional space and gener-
ated two corresponding biplots (Figure 6C).>>*® This allowed
us to directly pinpoint the correlations between certain E features
and certain gene transcripts by comparing the angles of pro-
jected lines (i.e., E features and gene transcripts, respectively)
between the two biplots.**>*® Next, we used the cosine distance
as the metrics to evaluate the correlations between gene tran-
scripts and E features in these biplots and generated a gene-
to-E feature correlation heatmap (Figures 6D and 6E). We found
that different genes correlated with different E features, which
were grouped based on the quadrants of the electrophysiolog-
ical biplot (Figure 6C). The analysis led to a distilled list of genes,
whose temporal dynamics are most correlated with the temporal
evolution of E features throughout hiPSC-CM development (Fig-
ure 6F). The model-selected genes include: (1) cardiac structural
genes, such as myosin heavy chain (MYH6, MYH?7), troponin
complex (TNNT2), and Z-disc (VCL, VIM); (2) ion-channel-related
genes, such as sodium-calcium exchangers (SLC8AT), calcium
signaling gene (RYR2), and potassium channels (KCND3); and
(3) metabolic genes, such as endoplasmic reticulum calcium
transporting genes (ATP2A2) and cytochrome ¢ oxidase subunit
8A (COX8A).

Next, to enable continuous electrophysiology-to-transcript
(E-to-T) and transcript-to-electrophysiology (T-to-E) inferences,
we constructed a coupled autoencoder®®“° to learn coordinated
representations of the E features and sparse RRR analysis-
selected gene transcripts from days 12, 21, 46, and 64 of differ-
entiation (Figure 7A). The coupled autoencoder consists of two
autoencoder networks, each comprising an encoder and a
decoder subnetwork that project the input E features or gene
transcripts into a low-dimensional representation and back to
the input data space. After learning the paired training data be-
tween E features and gene transcripts, the trained coupled

Figure 3. In situ electro-seq enables the multimodal spatial mapping of neural patches

(A) Schematics illustrating in situ electro-seq of neural patches.

(B) Representative voltage traces showing spike-bursting dynamics of mouse hippocampal neurons (i) with the bursting activity (i) and single-spike train (iii)

highlighted.

(C) Detected spike trains from continuous recording (left panel) and single spikes (right panel) from the dashed box highlighted region.
(D) Overlapped 3D cell-type and electrode maps. Gray color labels each individual electrode.
(E) Identified electrically recorded neurons. Colors label spikes identified from each neuron highlighted by white arrows. Zoomed-in image shows one neuron that

was simultaneously recorded by four electrodes.
(F) UMAP visualizations of all the sequenced cells.

(G) Heatmap showing the normalized electrophysiological features and marker gene expression profiles.
(H) Box and dot plots showing the peak-trough ratio between excitatory and inhibitory neurons.
n = 20 for excitatory neurons, n = 15 for inhibitory neurons, ** p < 0.01, two-tailed, unpaired t test.

2008 Cell 786, 2002-2017, April 27, 2023



Cell ¢ CellPress

A .
q ﬁ: = h Day 12 Day 21 Day 46 Day 64
Cardiac patch ‘ﬂc‘ ﬂ/’* =v * Day 12 ! aRnE
Electrical % % Feature QRS S
recording % J# Day 21 extraction €
—_— +_ _+'_ —_— é-
+— Day 46 ol 8
1 ¥ I8 o
—|"— P o
| Day 64 L R 1 it @
y 1 ! II‘ ll' }Ill::::*, e ‘"‘I L g’
of (AR Pnbmanl i i e e 2
fhgs
1583 R Y e ‘ jik
In situ ) Gene ip? ! o
N sequencing 5 identification g 2
ﬂ?., & ® 4 Living cells - 5 Day 46 Day 64 —_— é
O Electrode [ E-barcode )
3 . Electrical I 1 iy
interconnect o [ Mk i D
by o o g —
B Day 12 Day 21 Day 46 Days4 C  Day12 Day 21

e o e i A e
e P s A AN
A A A
e =

= AN A e =SS
|
= ﬁ‘,}"& -‘/§ wmfAw ¥V i
| s s
Y R
g ) 1 2 =/ ﬁ%’*
10s 3 10s 3 152
D E With device Without device
=
[$)
& & o
< \, ; < =
[S)
> UMAP > UMAP1 ®Day 12@Day 21@Day 46® Day 64
F Overlay Day 12 Day 21 Day 46 Day 64 )
’ i =
4 o
<
=
[S)
o
[
®CM1 ®CM2 ©CM3 ©CM4 ®Fib
] J @ Day 12 @ Day 21 @ Day 46 @ Day64
NKx25{ o o o o |@ 100 = Day 12 GATA4 TNNT2 ATP2A2
% | = Day 21 0] . o %l ed 2R
HAND2{ O O O O | @ 80 {|mpayas g g 10 10
GATAMM1 000 0| @ 60 = Day 64 g s s 5 4 45
™2 000®| g 1 g ] = £ 1
° 20 " Day 12 3 5 =
TNNI3{ o © O © 9 = Day 21 i = 3
[} w
HCN41 O @@ O 3 = Day 46 0.1 0.1
TBX3{ o o 0 o & g0 MAABRRNANTN L = Day 64 MYH6 MYH7
o b
wHs{ @ @@ @ Interval group
c
w1 @O0 @ @ S 5 10 S 10
wi{ 000 o 2 $ $ === 3
MYH7{ 0 0 @ @ 20 u% S Tjemecoccrcmm £ g
>
rR4{Q0Q@@0| M 20 ) i
10 0.1 {sesommassmes 0.1 {mww = comomms 0.1 {pesmmeswess
P 0 0 10 20 30 0 10 20 30 0 10 20 30
3333 Pseudotime Pseudotime Pseudotime

(legend on next page)

Cell 186, 2002-2017, April 27, 2023 2009



¢? CellPress

autoencoder was able to successfully project the high-dimen-
sional transcriptional (Xf) and electrophysiological (Xe) data to
aligned low-dimensional representations (Zt and Ze) (Figure 7B).
This suggests that a common latent representation exists be-
tween the gene expression and electrophysiology modalities,
and that we could potentially infer one modality from the
other.®?° To test this, we applied the pre-trained coupled au-
toencoder to a validation dataset and successfully inferred tran-
scriptional data from electrophysiological data (Figure 7C).
5-fold cross-validation showed high inference performance of
the coupled autoencoder (Figures 7D-7F; STAR Methods).
These results suggested that electrophysiological data gener-
ated by in situ electro-seq can be used to infer the expression
of electrophysiology-related gene programs and vice versa.*®*°

After confirming the performance of the model, we first applied
the pre-trained coupled autoencoder to infer temporal gene
expression change from the continuous electrical recording of
the same sample (Figures 7G, S5M, and S5N). Because the
gene expression measurement is an end-point measurement
that requires sample fixation, it is difficult to directly measure tem-
poral gene expression profiles from the same sample over the
time course of development. However, our flexible electronics
can record cell electrical activity from the same sample over a
period of months. Then, our coupled autoencoder-based model
offers the possibility of inferring a temporal gene expression profile
from the long-term electrical recording of the same sample (Fig-
ure 7Gi). Specifically, Figures 7Gi-7Giii show that the electrical ac-
tivity of a hiPSC-CM sample was measured by the embedded
electrodes from day 17 to 64 of differentiation. A temporal gene
expression profile from day 17 to 64 of differentiation was then in-
ferred (Figures 7Giv and 7Gv). To validate the inferred result, we
measured the gene expression from the sample after the long-
term electrical measurement on the last day of recording—day
64 of differentiation. Comparing the measured gene expression
with the inferred gene expression reveals a Pearson’s r of 0.68 +
0.11 (mean + SD) (Figure 7Gv), which can be considered as
good results based on previous studies.**%%*

Finally, we applied the pre-trained coupled autoencoder
model to dilated cardiomyopathy (DCM) patient-derived LMNA
(lamin A/C protein) mutant cells.*” We used the gene expression
changes in LMNA-mutant hiPSC-CMs from previously reported
data to infer the electrophysiological waveform (Figures 7Hi-
7Hiii). Compared with the electrophysiological waveform from
healthy hiPSC-CMs, the inferred LMNA-mutant hiPSC-CM
waveform showed distinct E features, including (1) missed sharp
up/down stroke, (2) declined depolarization upstroke and repo-
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larization downstroke amplitude in phase 0/1, and (3) increased
afterdepolarization amplitude in phase 2/3 (Figures T7Hiv).
To experimentally validate whether the inferred LMNA-mutant
hiPSC-CM electrophysiological waveform can successfully
recapitulate the real electrical activity of LMNA-mutant hiPSC-
CMs, we cultured the LMNA-mutant hiPSC-CMs on the mesh
electronics and recorded their electrical activities. The results
showed that the inferred waveform aligned well with the
measured waveform (Figure 7Hiv), with a Pearson’s r correlation
of 0.63 (Figure 71). In contrast, the waveform inference results af-
ter random shuffling of LMNA-mutant hiPSC-CMs’ gene expres-
sion showed a low Pearson’s r correlation of —0.14 with the
measured LMNA-mutant waveform (Figure 7I). These results
provide further indication of the potential value of our model,
specifically in the context of cardiac diseases, where the testing
samples involve the same cell types to those used in the training
samples.

We noted that current machine learning or statistical learning
models for cross-modal inference were built solely on the
training data. Such a model can achieve satisfactory inference
results when the testing data has similar characteristics to the
training data. For example, in this case, the LMNA-mutant
hiPSC-CMs at a later developmental stage showed similar elec-
trophysiological waveform characteristics to the training sam-
ples (healthy hiPSC-CMs) at early developmental stages, so
our pre-trained coupled autoencoder model was still able to infer
its electrophysiological waveform. However, we noted that the
current machine-learning-based model may not be directly
applied to infer electrophysiological waveforms of samples
with characteristics substantially different from the training sam-
ple distribution. As a result, increasing the training datasets to
cover a wider range of time points across longer development
periods and more diverse hiPSC-CM samples (including
different mutation and disease samples) may potentially improve
the applicability of the model, particularly for inferring electro-
physiological changes resulting from multiple gene expression
changes in cardiac diseases, wherein testing samples involve
identical cell types to those in the training data.

DISCUSSION

We demonstrate that in situ electro-seq is capable of integrating
electrophysiology and gene expression at single- and multi-cell
levels (Figures S6 and S7), providing (1) multimodal joint cell clus-
tering for identification of cell states and trajectories, which cannot
be directly traced by previous approaches, (2) cross-modal

Figure 4. In situ electro-seq enables multimodal tracing of cell states in hiPSC-CM development
(A) Overview schematics showing in situ electro-seq of hiPSC-CM patches at different developmental stages.

(B) Representative voltage traces recorded from the hiPSC-CM patches.
(C) Representative single-spike activities.

(D and E) UMAP visualizations of all electronics-contacted cells and control cells.
(F) UMAP visualizations highlighting the cell types clustered by Leiden clustering and their distributions.

(G) Heatmaps of normalized differentially expressed genes for each cell type.
(H) Dot plots of selected marker gene expressions.

(I) Top: UMAP visualizations showing the representative trajectory of hiPSC-CM development. Colors correspond to days of differentiation. Middle: stacked bar
plot showing the percentage of cells across inferred pseudotime. Bottom: UMAP visualizations showing the representative trajectory of hiPSC-CM development.

Colors correspond to inferred pseudotime.
(J) Kinetics plots showing relative expressions of marker genes.

2010 Cell 786, 2002-2017, April 27, 2023



Cell ¢ CellPress

A . )
0] v
@ Day 12 .a.f".., TS1TS2 TS3 TS4
o | @ Day21 -’...‘3 Day 12 |
g Day4s ¢ A @7 Q32) (5
T | ®Day64 e ° Day 21
g oo 800 (40) O@ar e
Blge taet 00 % Day 46
o ° 0 )®_ & ay s
Bt o, T ) (1) © () 20 16)
= e e° .. @wee (7(5”00
° Day 64
W o 06 80 0 (39) *a=2%m
B . .
o | @ Day 12 i . ES1ES2ES3 ES4
g @ Day 21 .o Day 12 |
B Day 46 e (37) (36) (1)
-2 | @ Day 64 )
g A 00 O
2 2 1 W Day 46 o o
2liee,* “8) 39) (7
= 28 8o
% & Jo 30;933 Day 64 e @
> (39) 9) (30)
c . i
' i JS1 JS2 JS3 JS4
Day 12
2 @n° @) 6)
g Day 21
17} o °
3 @) ) Gag) )
£ Day 46
5 @®Js1 o) ()(46)
© Day 21 ®Js2
Day 46 ) JS3 Day 64 - @
@ Day 64 *m’ JS 4 9 (4) 7(35)
b ©25% @50% @75% @100%
E
e : i
== Dal J/ gl 32
z | “payie [\ 12
% 0.6| ==Day 64 I — g
/ \ o
D040 4 B 5
i 0.5 1.0 g
i Transcriptional pseudotime s
02
1.0
z : :
% [
a ) ) I1 g-
0.0 . °
0.0 0.5 1.0 g
30 Electrophysiological pseudotime @
220 e
2% [ pay 46 I =
© —~ o}
8 y \ PN <> Daye4 |l 5
i 0.0 05 E}
Joint clustering pseudotime ®

Figure 5. In situ electro-seq enables joint clustering of cell states in hiPSC-CM development

(A) hiPSC-CM transcriptional states (t-states, TS) defined by gene expression. UMAP visualization of gene expression of electrically recorded CMs, color-coded
by differentiation days (i) and t-states defined by Leiden clustering (ii). Comparison of t-states and differentiation days by river plot (iii) and dot plot (iv).

(B) hiPSC-CM electrophysiological states (e-states, ES) defined by electrophysiology and analyzed in the same way as in (A).

(C) hiPSC-CM transcriptional and electrophysiological joint states (j-states, JS) defined by weighted nearest neighbor (WNN)-integrated representations from
gene expression and electrophysiology and analyzed in the same way as in (A).

(D) Distribution plots showing pseudotime distributions of all the electrically recorded hiPSC-CMs. Gene expression (i), electrophysiology (i), and WNN-integrated
representations of gene expression and electrophysiology (iii).

(E) Electrically recorded cells highlighted in the UMAP visualization of gene expressions from all cells, with colors encoding joint pseudotime in (Diii). Cells
sequenced from all the samples across four stages are shown as gray embedding (the same as Figure 4F). Insets show representative single-spike waveforms.

inference that uses continuous electrical measurements to infer Our imaging and electrical data suggest that electrical
cell gene expression profiles, and (3) identification of gene pro-  signals are primarily recorded from the hiPSC-CMs that have
grams directly relevant to electrophysiology. the largest direct contact area with the electrode. However, we
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Figure 6. In situ electro-seq enables cross-modal visualization and correlation

(A) Schematics illustrating the overview of sparse reduced-rank regression (RRR) analysis for paired electrophysiological and transcriptional measurements.
(B) Representative electrophysiological (E) features extracted from each spike. 1.6-s waveforms are sampled in 22 bins. Inset shows 0.15-s fast spikes sampled in
40 bins.

(C) Sparse RRR model that visualizes and aligns transcriptional states and electrophysiological states of cells (see STAR Methods).

(D) Schematics showing the calculation of cosine distance between E features and genes from the sparse RRR model in (C).

(E) Heatmap showing the correlation calculated by cosine distance between E features and genes from the sparse RRR model in (C).

(F) Heatmap showing the normalized extracted E features and expressions of the sparse RRR model-selected genes.
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Figure 7. Machine-learning-based cross-modal inference

(A) Schematic showing the structure of a coupled autoencoder for electrophysiology-to-transcript (E-to-T) and transcript-to-electrophysiology (T-to-E) inference.
(B and C) Coupled autoencoder-encoded low-dimensional representations of the training data of in situ electro-seq samples at days 12, 21, 46, and 64 (B) and of
the validation data split from days 12, 21, 46, and 64 data (C).

(D) Statistical summary of the performance of cross-modality (Xt — Xe or Xe — Xt) inference. Error bars show mean + SD over 5-fold cross-validation.

(E) Heatmap of normalized gene expression inferred from electrophysiological features.

(F) Heatmap of normalized electrophysiological features inferred from gene expression.

(G) Application of the pre-trained coupled autoencoder model to infer temporal dynamics of gene expression from the long-term recording of electrophysiological
activity. () Schematics showing the long-term recording of electrophysiological activity. (ii) Electrophysiological waveforms measured from the sample. (iii)
Heatmap showing normalized single-cell electrophysiological features. (iv) E-to-T inference. (v) Heatmap showing normalized single-cell gene expression profiles
inferred by the coupled autoencoder (left panel) and measured results of gene expression (right panel).

(H) Application of the pre-trained coupled autoencoder model to infer the electrophysiology of patient-derived iPSC-CMs. (i) Schematic showing iPSC-CMs
generated from a patient with LMNA-mutation-related DCM. (i) Representative normalized gene expression profiles of LMNA-mutant and healthy hiPSC-CMs. (jii)

(legend continued on next page)
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acknowledge that neighboring CMs coalesce through gap junc-
tions and adhesive junctions to form the myocardium during
development*®** and that hiPSC-CMs show a progressively
organized ultrastructure during development.***“® As a result,
extracellular electrical recordings could also reflect the activities
of hiPSC-CM groups surrounding the electrode. We then tested
an alternative computational pipeline by identifying all the
cells surrounding the electrode for a multi-cell data analysis
(Figure SB6A). The multi-cell analysis recapitulates the same
hiPSC-CM developmental trajectory, cell clustering, and electro-
physiology-to-gene correlations (Figures S6 and S7) as the sin-
gle-cell analysis, suggesting that single- and multi-cellular-level
analysis may lead to consistent results when analyzing hiPSC-
CM patches with relatively homogeneous cell composition.**#°
The ability to record the single-cell activity was also tested and
supported by primary neuron culture with diverse cell types (Fig-
ures 3 and S4), where single-cell resolution is necessary to reg-
ister single-neuron electrophysiological activities with molecular
cell types and states.

Future work may address potential opportunities. For
example, integrating different flexible electronics with intracel-
lular electrodes*® and multifunctional sensors and stimulators
(e.g., electrical, mechanical, optical, chemical, etc.)*” with in
situ sequencing of different biomolecules (e.g., RNA or DNA)
could open up unlimited access to different biological systems.
Incorporating STARmap Plus (~2,700 genes panels)*® into our
current in situ electro-seq platform could also obtain more in-
depth genetic information. Further scaling up the multiplexity
of electrode arrays and increasing the electrode density in
mesh electronics can increase the number and percentage of
recorded cells per sample. Furthermore, integrating comple-
mentary metal-oxide-semiconductor multiplexing circuits
could also substantially increase the number of cells that can
be simultaneously measured.”® Mesh nanoelectronics have
already been used for the recording of electrical activity in 3D
organoids' and behaving animals."®">*° Further development
of in situ electro-seq may map single-cell gene expression
and functions in organoids and in vivo tissue samples''%:°°
during both healthy and diseased states. For example, tissue-
wide electrophysiological dysfunction can be correlated with
cell-level gene expression variation in models of neuropsychi-
atric diseases®'*? (e.g., autism spectrum disorder, bipolar dis-
orders, etc.) and cardiac diseases® (e.g., atrial fibrillation, ven-
tricular tachycardia, etc.).

Limitations of the study

It is also noteworthy that, although we have successfully con-
ducted cross-modal correlation and inference (Figures 6 and
7), the resulting gene-to-electrophysiology relationship should
be interpreted as correlation, not causality. Further genetic
perturbation or molecular inhibition experiments are needed to
fully establish the causal relationship and underlying mecha-
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nisms between genes and their functions. In particular, the elec-
trophysiological patterns may lag behind the change of RNA
expression profiles because extra time is needed for mRNA to
be translated to proteins, for proteins to be transported to their
functional loci, and for single cells to grow and form biological
networks. In our study, we sampled cell electrophysiology every
3 days, whereas the mRNAs typically only last for a few hours in-
side cells. Thus, at such a temporal resolution of 3 days, the tem-
poral profiles of RNA can be reliably correlated with the paired
recorded cell electrophysiology. However, for biological systems
with fast kinetics at the scale of hours (e.g., embryonic develop-
ment, acute genetic perturbation), the molecular cell states
defined by RNA may not reflect the functional cell states
measured at the same time, and vice versa. Therefore, develop-
ments of computational methods and theoretical models with
the spatiotemporal and mechanistic information from RNA
to protein to function, and their incorporation in electro-seq anal-
ysis, will further advance our understanding of cellular dynamics
and cell-state transition in biological cells, organoids, and
tissues.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
O Cell lines
O Primary cells
e METHOD DETAILS
Fabrication of stretchable mesh electrode array
Connection of mesh electrode array with cable
Electrochemical measurements
Cell culture and cardiomyocytes differentiation
Calcium imaging
Integration of mesh electronics with cardiac and neural
patches
Electrophysiological measurement
Immunostaining and imaging
In situ sequencing
Calcium imaging analysis
Sarcomere analysis
In situ sequencing analysis
Locating recorded hiPSC-CMs
hiPSC-CM electrophysiology data processing
Spike sorting
Locating recorded neurons
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T-to-E inference of healthy and patient iPSC-CMs. (iv) Inferred results (left panel) and measured results (right panel) of healthy (top panel) and LMNA-mutant iPSC-

CMs (bottom panel).

(I) Performance on the T-to-E inference using gene expression profiles from healthy and LMNA-mutant iPSC-CMs, and random shuffling of LMNA-mutant
iPSC-CM gene expression profiles, measured in terms of Pearson’s r. Error bars show mean + SD, n = 5 or 10, ** p < 0.01, two-tailed, unpaired t test.
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O Weighted Nearest Neighbor (WNN)
O Pseudotime analysis
O Sparse reduced-rank regression (RRR) model and
bibiplot
O Coupled autoencoder model
o QUANTIFICATION AND STATISTICAL ANALYSIS
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Supplemental information can be found online at https://doi.org/10.1016/j.cell.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-HCN4 antibody Sigma-Aldrich Cat#AB5808; RRID: AB_11214197
Mouse monoclonal anti-MYH6 antibody Sigma-Aldrich Cat#AMAB90950; RRID: AB_2665730
Mouse cardiac troponin T monoclonal antibody (13-11) Invitrogen Cat#MA5-12960; RRID: AB_11000742
Mouse monoclonal anti-alpha-actinin antibody Sigma-Aldrich Cat#A7811; RRID: AB_476766

Alexa Fluor 594 AffiniPure Donkey Anti-Mouse IgG (H+L) Jackson Immuno Research Labs Cat#NC0322938; RRID: AB_2340854
Alexa Fluor™ Plus 647 Donkey anti-Mouse IgG (H+L) Invitrogen Cat#A32787; RRID: AB_2762830
Alexa Fluor™ 594 Donkey anti-Rabbit IgG (H+L) Invitrogen Cat#A-21207; RRID: AB_141637

Biological samples

Mouse primary hippocampal neurons Broad Institute of MIT and Harvard C57BL/6 mice
Chemicals, peptides, and recombinant proteins

4’,6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich Cat#D9542
Rhodamine 6G powder Sigma-Aldrich Cat#989-38-8
Chloroplatinic acid (H,PtCle) solution Sigma-Aldrich Cat#16941-12-1

Essential 8 medium

RPMI 1640 medium
B27-insulin supplement
CHIR99021

IWR1

B27 supplement

NbActiv4 (NB4)

Oregon Green®488 BAPTA-1
Poly-D-lysine

Matrigel

Trypsin-EDTA

Trypan blue solution, 0.4%
Rock inhibitor (Y27632)
Blebblistatin

Norepinephrine

Glass-bottom 12-well plates
Gel slick solution

PlusOne bind-silane

Acetic acid

Circular cover glass

16% PFA, EM grade
Triton-X-100, 10% solution
OminiPur formamide
OmniPur SDS, 20%

20xSSC buffer

Glycine

Ribonucleoside vanadyl complex
Proteinase K Solution (20 mg/mL), RNA grade
Yeast tRNA (10 mg/mL)
SUPERase-In RNase Inhibitor
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Gibco Life Technologies
Gibco Life Technologies
Gibco Life Technologies
BioVision

Cayman Chemical Company
Gibco Life Technologies
BrainBits

Invitrogen

Sigma-Aldrich

Corning

Gibco Life Technologies
Gibco Life Technologies
Tocris Bioscience
Sigma-Aldrich
Sigma-Aldrich

Mattek

Lonza

GE Healthcare
Sigma-Aldrich

Electron Microscope Sciences
Electron Microscope Sciences
Sigma-Aldrich

Calbiochem

Calbiochem

Sigma-Aldrich
Sigma-Aldrich

New England Biolabs
Invitrogen

Thermo Fisher Scientific
Invitrogen

Cat#A1517001
Cat#11875093
Cat#A1895601
Cat#1677; CAS: 252917-06-9
13659; CAS: 1127442-82-3
Cat#17504044

Cat# NB4

Cat# 06807

Cat# P7280-5X5MG
Cat# 08-774-552
Cat# 25200056

Cat# 15-250-061
Cat# 12-541-0

Cat# 856925-71-8
Cat# 48-935-0100MG
Cat# P12G-1.5-14-F
Cat# 50640

Cat# 17-1330-01
Cat# A6283-100ML
Cat# 72226-01

Cat# 15710-S

Cat# 93443

Cat# 4610-OP

Cat# 7990-OP

Cat# S6639

Cat# 50046-250G
Cat# S1402S

Cat# 25530049

Cat# AM7119

Cat# AM2696

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

T4 DNA ligase Thermo Fisher Scientific Cat# EL0O011
Phi29 DNA polymerase Thermo Fisher Scientific Cat# EP0094
dNTP mix Invitrogen Cat# 100004893

BSA, molecular biology grade
5-(3-aminoallyl)-dUTP

Methacrylic acid N-hydroxysuccinimide ester, 98%
DMSO, anhydrous

Acrylamide solution, 40%

Bis solution, 2%

Ammonium persulfate
N,N,N’,N’-Tetramethylethylenediamine
Antarctic phosphatase

10xPBS, pH7.4

1xPBS, pH7.4

Ethanol

DNase/RNase-Free Distilled Water

New England Biolabs
Invitrogen
Sigma-Aldrich

Thermo Fisher Scientific
Bio-Rad

Bio-Rad

Sigma-Aldrich
Sigma-Aldrich

New England Biolabs
Thermo Scientific
Thermo Fisher Scientific
VWR

Thermo Fisher Scientific

Cat# B9000S
Cat# AM8439
Cat# 730300-1G
Cat# D12345
Cat# 161-0140
Cat# 161-0142
Cat# A3678
Cat# T9281
Cat# M0289L
Cat# 70011044
Cat# 10010049
Cat# 89125-170
Cat# 10977023

Experimental models: Cell lines

Human induced pluripotent stem cells WiCell Research Institute hiPSC-IMR90-1
Oligonucleotides

Probe sequences for cardiac tissue IDT See Table S1
Probe sequences for neuron tissue IDT See Table S2

Deposited data and code

In situ sequencing data

Single Cell Portal

https://singlecell.broadinstitute.org/
single_cell/study/SCP1346

Multimodal data and Code Github https://github.com/LiuLab-Bioelectronics-
Harvard/electro-seq

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/
matlab.html

R R Core https://www.r-project.org/

Python Python Software Foundation https://www.python.org/

Monocle 3 Caoetal.®’ https://github.com/cole-trapnell-lab/
monocle3

Uniform manifold approximation and projection (UMAP) Mclnnes et al.”® https://github.com/Imcinnes/umap

ClusterMap He et al.?® https://github.com/wanglab-broad/
ClusterMap

Scanpy v1.6.0 Wolf et al.>* https://scanpy.readthedocs.io/en/stable/

Combat

Leiden clustering
PyWavelets v1.1.0

Seurat v4
Sparse reduced-rank regression (RRR)

Coupled autoencoder

MountainSort

Johnson et al.>®

Traag et al.*°

Lee et al.*®

Hao et al.*®
Kobak et al.*®

Gala et al.*®

Chung et al.®’

http://www.bioconductor.org/packages/
release/bioc/html/sva.html

https://github.com/vtraag/leidenalg

https://github.com/PyWavelets/pywt/
blob/master/doc/release/1.1.0-notes.rst

https://satijalab.org/seurat/
https://github.com/berenslab/patch-
seq-rrr
https://github.com/Alleninstitute/
coupledAE-patchseq
https://github.com/flatironinstitute/
mountainsort

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Spikelnterface v0.9 Buccino et al.”® https://github.com/Spikelnterface

Fiji Image J https://imagej.net/software/fiji/

ChimeraX ChimeraX https://www.cgl.ucsf.edu/chimerax/

Blackroch Python-Utilities Blackroch Neurotech https://github.com/Blackrock
Neurotech/Python-Utilities

Blackrock research central software suite 7.04 Blackroch Neurotech https://blackrockneurotech.com/

Opencv-python v4.5.5.64 Bradski®® https://github.com/opencv/opencv-
python

Biorender Biorender https://biorender.com/

RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead Contact, Jia Liu
(jia_liu@seas.harvard.edu).

Materials availability
This study did not generate new reagents.

Data and code availability
o All the in situ sequencing data are available in the Single Cell Portal at https://singlecell.broadinstitute.org/single_cell/study/
SCP1346 and are publicly available as of the date of publication. Microscopy data reported in this paper will be shared by
the lead contact upon request.
® All the code are available in the GitHub repository at https://github.com/LiuLab-Bioelectronics-Harvard/electro-seq and are
publicly available as of the date of publication.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

Human induced pluripotent stem cells (hiPSC, hiPSC-IMR90-1) were obtained from the WiCell Research Institute (Madison, WI,
USA). Authentication and testing for the mycoplasma were performed by the WiCell Research Institute. The use of Cells (hiPSC,
hiPSC-IMR90-1) was approved/provided by the University of Wisconsin, agreement number 19-W0280. The human iPSC line
(LMNA line) was obtained from Joseph C. Wu, MD, PhD at the Stanford Cardiovascular Institute. hiPSC and hiPSC-derived cardio-
myocytes (CMs) were cultured at 37 C and 5% CO, in Essential 8 medium (Gibco) and RPMI 1640 medium (Gibco) plus 1% B27
supplement (Gibco), respectively.

Primary cells
Primary hippocampal neurons were obtained from the Broad Institute of MIT and Harvard. The neurons were maintained at 37°C and
5% CO, in NbActiv4 (NB4, BrainBits) medium.

METHOD DETAILS

Fabrication of stretchable mesh electrode array

Fabrication of the ultra-flexible, stretchable mesh nanoelectronics was based on methods described previously.'*%17:5° Key steps
are described as follows: 4-inch glass wafers (Soda lime glass) were used as a transparent and insulating substrate for fabrication and
cell culture. The glass wafers were cleaned with piranha solution (3:1 mixture of sulfuric acid and 30% hydrogen peroxide), followed
by rinsing with deionized (DI) water and drying with the N». Hexamethyldisilazane (HMDS, MicroChem) was spin-coated at 4000 rpm
to increase the adhesion of photoresists with the substrate. LOR 3A (300 nm, MicroChem)/S1805 (500 nm, MicroChem) were spin-
coated at 4000 rpm/4000 rpm, followed by baking at 180°C for 5 mins and at 115 °C for 1 min, respectively. Ni sacrificial layer was
exposed by using a Karl Suss MA6 mask aligner with 365 nm ultraviolet (UV) light at 40 mJ/cm? and developed by CD-26 developer
(MICROPOSIT) for 70 s. O, plasma (Anatech Barrel Plasma System) was used for the removal of photoresist residues at 50 W for 30 s.
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Sharon Thermal Evaporator was used for the deposition of 100-nm-thick Ni followed by a standard lift-off procedure in remover PG
(MicroChem) for 2 hours. After patterning the Nilayer, SU-8 precursor (SU-8 2000.5, MicroChem) was spin-coated at 4000 rpm, pre-
baked at 65°C / 95°C for 2 mins each, exposed to 365 nm UV at 200 mJ/cm?, post-baked at 65°C / 95°C for 2 mins each, developed
using SU-8 developer (MicroChem) for 60 s, rinsed by isopropyl alcohol (IPA) for 30 s, blow for drying by N> gun, and hard-baked at
180°C for 40 mins to define mesh-like SU-8 400-nm-thick patterns as the bottom encapsulation layer. After patterning the SU-8 bot-
tom layer, HMDS/LOR3A/S1805 photoresist layers were spin-coated as described above, followed by depositing 5/40/5-nm-thick
chromium/gold/chromium (Cr/Au/Cr) by the electron-beam evaporator (Denton), and the standard lift-off procedure in the remover
PG (MicroChem) overnight to define the Cr/Au/Cr interconnects. Then, the same photolithography process was used to define 5/50-
nm-thick chromium/platinum (Cr/Pt) as electrodes. After patterning electrodes, the top SU-8 encapsulating layer was patterned us-
ing the same method described for patterning the bottom SU-8 layer. Finally, fluorescent E-barcodes were defined by patterning the
SU-8 structure doped by adding 0.004 wt9,, of Rhodamine 6G powder (Sigma-Aldrich) into the SU-8 precursor.

Connection of mesh electrode array with cable

Next, the flexible flat cable (FFC, Molex) was soldered onto the input/output pads using a flip-chip bonder (Finetech Fineplacer), fol-
lowed by gluing a culture chamber onto the substrate wafer to completely enclose the mesh part of the device using a biocompatible
adhesive (Kwik-Sil, WPI). Then, Pt black (PtB) was electroplated on the Pt electrode array using a precursor of 0.08 wt% chloropla-
tinic acid (H,PtClg) solution (Sigma-Aldrich) in H,O. The precursor was drop-casted onto the device, followed by passage of a
1 mA/cm? DC electric current density for 3 mins using mesh electrodes as anodes and an external Pt wire as the cathode. The device
was then rinsed with DI water for 30 s and dried by N.. Finally, the surface of the device was treated with oxygen plasma (Anatech 106
oxygen plasma barrel asher), followed by adding 1 mL of Ni etchant (type TFB, Transene) into the chamber for 2 to 4 hours to
completely release the mesh electronics from the glass substrate. The device was then ready for subsequent sterilization steps
before cell culture.

Electrochemical measurements

The electrochemical impedance spectra (EIS) of the electrodes were measured based on methods described previously.®’ The three-
electrodes setup was used to measure the EIS of each electrode. A standard silver/silver chloride (Ag/AgCI) electrode and platinum
wire (300 um in diameter, 1.5 cm in length immersed) were used as reference electrode and counter electrode, respectively. The
device was immersed in 1 X PBS solution (Thermofisher) during measurement. The SP-150 potentiostat (Bio-logic), along with its
commercial software EC-lab, was used to perform the measurements. For each measurement, at least three frequency sweeps
were measured from 1 MHz down to 1 Hz to obtain statistical results. A sinusoidal voltage of 100 mV peak-to-peak was applied.
For each data point, the response to 10 consecutive sinusoids (spaced out by 10% of the period duration) was accumulated and
averaged.

Cell culture and cardiomyocytes differentiation

Human induced pluripotent stem cells (hiPSC, hiPSC-IMR90-1) were obtained from the WiCell Research Institute (Madison, WI,
USA). Authentication and testing for the mycoplasma were performed by the WiCell Research Institute. The human iPSC line
(LMNA line) was obtained from Joseph C. Wu, MD, PhD at the Stanford Cardiovascular Institute. hiPSC cells were cultured on a Ma-
trigel-coated 6-well plate with Essential 8 medium (Gibco). The medium was changed daily. The cells were passaged every 3-4 days.
hiPSC-derived cardiomyocytes were generated according to the methods described previously with minor modification.**“?:%% The
hiPSC cells were cultured on a Matrigel-coated 6-well plate with Essential 8 medium to 70% - 80% confluency before initiating car-
diac differentiation. The first day was defined as Day 0. For cardiac differentiation, the cells were maintained in RPMI 1640 medium
(Gibco) plus 1% B27-insulin (Gibco). CHIR99021 (12 uM; BioVision) was applied on Day 0 for hiPSC-IMR90-1 cells while CHIR99021
(6 uM; BioVision) was applied on Day 0 to Day 1 for LMNA hiPSC cells according to the previous protocol;** IWR1 (5 uM; Cayman)
was applied from Day 3 to Day 4. The cardiac cells were maintained in RPMI 1640 medium plus 1% B27 (Gibco) from Day 7, and the
medium was changed every other day accordingly. Only the batches of hiPSC-CMs passed quality control - namely, showing clear
beating on Day 8 of differentiation, were used for in situ electro-seq experiments. Primary hippocampal neurons were obtained from
the Broad Institute of MIT and Harvard. The medium NbActiv4 (NB4, BrainBits) were used for the primary neuron cultures. All exper-
iments involving human cells were approved by the Harvard University IRB and ESCRO committees.

Calcium imaging

For 2D cardiomyocyte calcium imaging, the cells at Day 9 of differentiation were dissociated into single cells and seeded onto the
glass-bottom 12-well plate. On Day 12, Day 21, Day 46, and Day 64 of differentiation, 5 uM Oregon Green®488 BAPTA-1 (Invitrogen)
was applied for 30 min and washed with DPBS. Then the cells were imaged using Leica TCS SP8 confocal microscope. For locating
the electrical recorded cells, the cardiomyocytes were seeded onto the unreleased mesh electronics. After one week culture, 5 pM
Oregon Green®488 BAPTA-1 (Invitrogen) was applied for 30 mins and washed with DPBS. Electrical signal was recorded and then
the cells were imaged using Leica TCS SP8 confocal microscope.
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Integration of mesh electronics with cardiac and neural patches

First, the released stretchable mesh electronics in the culture chamber was rinsed with DI water, decontaminated by 70% ethanol
and incubated with Poly-D-lysine hydrobromide (0.01% w/v) overnight followed by coating with Matrigel solution (100 ug/mL) for
about 1 hour at 37 °C. Then, the device was pre-chilled on an ice bag in the biosafety hood, and then 70 pL Matrigel solution
(10 mg/mL) was added from the edge of the chamber, ensuring that the Matrigel covered the entire bottom substrate of the cell cul-
ture chamber underneath the stretchable mesh electronics. Next, the device was transferred into the incubator for at least 30 mins at
37°C to cure the Matrigel solution into a Matrigel hydrogel layer. Finally, hiPSC-CMs were incubated with 0.05% Trypsin-EDTA so-
lution (Gibco) for 5 mins and then dissociated into single cells. Cell counting and viability were assessed by trypan blue (Gibco) stain-
ing method. 4 million cells (live cell percentage > 85%) were suspended in 1 mL RPMI 1640 medium plus 1% B27 and then transferred
onto the cured electronics / Matrigel hybrids in the cell culture chamber and maintained at 37°C, 5% CO,. 5 uM rock inhibitor
(Y27632) was added to the medium in the first day to improve the cell viability. The CMs formed a continuous cell patch with the
stretchable mesh electronics embedded within 24-48 hours. The cell culture medium was changed every other day. For neural patch
integration, the primary hippocampal neurons were kindly obtained from the Broad Institute of MIT and Harvard. Single cells were
seeded onto the mesh electronics. Cells were cultured in NbActiv4 medium (NB4, BrainBits). No medium changes were done in
the first three days and then half were changed every other day afterwards.

Electrophysiological measurement

The Blackrock CerePlex Direct voltage amplifier along with a 32-channel Blackrock p digital headstage connected to the device were
used to record electrical activity from the samples. The culture medium was grounded by a Pt electrode. A second Pt electrode was
used as a reference electrode. During electrical measurement, samples were placed on a battery powered warming plate that main-
tained thermostatic 37°C. The measurement setup was placed into a Faraday cage. A sampling rate of 10,000 Hz was used for the
electrical recording. The cell electrical activities were recorded every 3 days. MATLAB and Python codes provided by Blackrock were
used to load, view, and convert raw data files into an accessible format for data analysis. For drug tests, "% the electrical signal was
recorded, and then 100 pM blebblistatin (Sigma-Aldrich) or 1 uM norepinephrine (Fisher) was injected into the cell culture medium of
the samples. The electrical signal before and after the drug application was recorded. Data analysis and statistical tests were per-
formed by GraphPad Prism.

Immunostaining and imaging

Cells maintained on 2D surfaces were fixed with 4% paraformaldehyde (PFA) at room temperature for 15 mins, permeabilized with
0.25% Triton X-100 for 15 mins and blocked with 5% donkey serum for 1 hour. Cells were then incubated with primary antibodies
(HCN4, AB5808, Sigma-Aldrich; MYH6, AMAB90950, Sigma-Aldrich; TNT, MA5-12960, Invitrogen; a-actinin, A7811, Sigma-Aldrich)
at 4'C overnight. After extensive washing, secondary antibodies were applied and incubated for another 2 hours at room tempera-
ture. Finally, 4’,6-diamidino-2-phenylindole (DAPI, D9542, Sigma-Aldrich) was added and stained for 10 mins at room temperature.
Cells were washed with PBS three times before imaging using Leica TCS SP8 confocal microscope. For cell-electronics hybrid stain-
ing, the samples were cleared and immunostained as previously described.'* The primary antibodies were stained for 4 days, and the
secondary antibodies were stained for 2 days, respectively. The samples were submerged in optical clearing solution overnight and
embedded in 1% agarose gel before imaging using Leica TCS SP8 confocal microscope. Imaging was analyzed by Fiji.

In situ sequencing

Probes for cardiac and neural patches in situ sequencing were listed in Tables S1 and S2, respectively. In situ sequencing experi-
ments were performed based on methods described previously with some modifications.'® Briefly, the custom padlock probe
and primer hybridize to mRNAs of the 3D cell-electronics hybrid, followed by enzymatic ligation and rolling circle amplification
(RCA) to construct in situ cDNA amplicons. The amplicons are then copolymerized with acrylamide, forming a hydrogel network.
A gene-specific identifier in the probe is amplified and decoded through multiple sequencing cycles (Figure 1G).

Glass-bottom 12-well plates (Mattek, P12G-1.5-14-F) were first treated with oxygen plasma for 5 mins (Anatech Barrel Plasma
System, 100W, 40% O,) followed by methacryloxypropyltrimethoxysilane (Bind-Silane) solution (88% ethanol, 10% acetic acid,
1% Bind-Silane, 1% H,0) treatment for 1 hour. The 12-well plates were then rinsed with ethanol for 3 times and were left to dry
at room temperature (R.T.) for 3 hours. The 12-well plates were further treated with 0.1 mg/mL of Poly-D-lysine solution for 1 hour
at R.T. followed by 3 times rinsing with H,O. The plates were air-dried for 1 hour at R.T. Micro cover glasses (12 mm) were pretreated
with Gel Slick at R.T. for 10 mins and were then air-dried before using.

The cardiac or neural patch was fixed with 1 mL 1.6% PFA for 30 mins at R.T. and then washed with PBS 3 times for 10 mins each
time. The sample was then transferred from the chamber to the 12-well plates and permeabilized with 1 mL (0.1 M glycine, 0.1 U/uL
SUPERase-In, 0.5% Triton-X 100 in PBS) for 30 mins. The sample was washed with 1 mL PBST (0.1% Triton-X 100 in PBS) 3 times for
10 mins each. The sample was then incubated in 1X hybridization buffer (2X SSC, 10% formamide, 1% Triton-X 100, 20 mM RVC,
0.1 mg/mL yeast tRNA, 0.2% SDS and pooled SNAIL probes at 20 nM per oligo) in a 40°C humidified oven with gentle shaking for 48
hours. The sample was washed with 1 mL PBSTV (1% RVC in PBST) at 37°C 3 times for 20 mins each and washed with high salt buffer
(4X SSC in PBST) for another 20 mins at 37°C, and then washed with PBST three times for 10 mins each at R.T. The sample was
then incubated in 1 mL ligation mixture (1:50 T4 DNA ligase, 1:100 BSA, 0.2 U/uL SUPERase-In) at R.T. overnight and then washed
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with 1 mL PBST three times for 10 mins each. The sample was incubated in 1 mL RCA mixture (1:50 Phi29 DNA polymerase, 250 uM
dNTP, 1:100 BSA, 0.2 U/uL SUPERase-In and 20 uM 5-(3-aminoallyl)-dUTP) at 4°C for 1 hour before incubating at 30°C for 6 hours
and then washed with 1 mL PBST 3 times for 10 mins each. The sample was incubated with 20 mM methacrylic acid
N-hydroxysuccinimide ester (dissolved in DMSO) in PBST for 3 hours at R.T. and washed with PBST 3 times for 10 mins each.
The sample was then incubated with monomer buffer (4% acrylamide, 0.2% bis-acrylamide, 2X SSC) overnight at R.T. The buffer
was then aspirated and 55 pL of polymerization mixture (0.2% ammonium persulfate, 0.2% tetramethylethylenediamine dissolved
in monomer buffer) was added to the sample. The Gel Slick coated coverslip was immediately put on the sample and the polymer-
ization was conducted in an N, container for 90 mins. The sample was then washed with PBST 3 times for 10 mins each.

Five cycles of sequencing experiments were performed to decode gene identity. Within each cycle, the sample was first treated
with a stripping buffer (60% formamide, 0.1% Triton-X-100) at R.T. for 6 times, 15 mins each, followed by PBST wash for 6 times,
10 mins each. Then the sample was incubated with the sequencing mixture (1:25 T4 DNA ligase, 1:100 BSA, 10 uM reading probe,
and 5 pM fluorescent oligos) at R.T. for 12 hours. Then the sample was washed by the washing and imaging buffer (2XSSC, 10%
formamide and 0.1% Triton-X-100) for 5 times, 10 mins each. DAPI was dissolved in PBST and used for nuclei staining for
20 mins. Finally, the sample was immersed in the washing and imaging buffer for imaging. Image acquisition was performed with
Leica TCS SP8 confocal microscope with 25X water-immersion objective (NA 0.95), with a voxel size around 230 nm X 230 nm
X570 nm.

Calcium imaging analysis

For hiPSC-CMs during development, the calcium image was first segmented using the watershed segmentation method; the calcium
signal trace was then normalized for each segmented cell. The findpeaks function in MATLAB(2019b) was used to detect each cal-
cium spike, and all detected spikes for the cell were averaged. The averaged spike for each cell was then used for principal compo-
nent analysis and clustering to determine calcium clusters with Seurat V4.

Sarcomere analysis

Sarcomere analysis was performed as previously described.®® Briefly, the a-actinin fluorescence image was segmented using the
watershed segmentation method. Then the sarcomere organization score was calculated for each segmented cell using the Haralick
correlation value, which is the correlation value of the co-occurrence matrix for given orientation and pixel pair offset distances. The
height of the highest peak among all the orientation and pixel offset distances is defined as the sarcomere organization score for
the cell.

In situ sequencing analysis

A customized computational pipeline was built with MATLAB (2019b) to decode gene identity and quantify the gene expression level
of each cell from the in situ sequencing images. First, sequencing fluorescence images were preprocessed with top-hat filtering by a
disk structuring element (radius = 3) to remove the background noise. Second, the contrast of the image for each channel from the
second to fifth sequencing cycle was adjusted to match the image from the first cycle with histogram matching function “imhist-
matchn”. Third, the composite fluorescence images for the second to fifth cycle were registered with the composite fluorescence
image from the first cycle using the phase correlation algorithm followed by local distortion registration with function “imregdemons”.
Fourth, the dots of amplicon locations were identified from images in the first cycle by a 3D regional maximum detection algorithm
implemented in function “imregionalmax”. Then the dominant color of every identified dot in each cycle was determined by a voxel
volume surrounding its centroid location. The color sequence for each dot was decoded as a gene barcode and compared with the
code-book. Fifth, cell segmentation was performed with ClusterMap,?® then RNA reads were assigned to the segmented cells
accordingly.

Python package Scanpy®* was used for the single-cell gene expression analysis. Cells expressing less than 40 gene counts or only
expressing three kinds of gene were filtered out. Gene counts of each cell were normalized so that the total count of all genes in each
cell equaled the median number of total counts across all cells. The normalized count value was then log-transformed with log (x+1).
Combat®® was used to remove the potential batch effect among different imaging positions. Each gene in the cell-by-gene matrix was
scaled to unit variance and zero mean followed by dimensionality reduction with principal components analysis (PCA). Based on the
explained variance ratio, the top principal-components were used to construct the k nearest neighbor (kNN) graph for Leiden clus-
tering.>° UMAP?® was used to visualize the 2D representation of each cell. Monocle 3°” was used to compute pseudotime along the
cell trajectory.

Locating recorded hiPSC-CMs

We used a custom-built pipeline based on scikit-image v0.19.2 and opencv-python v4.5.5.64.%° Electrode position was located using
the 3D electrode image collected by reflection-mode and bright-field imaging and identified by the E-barcode positions. The elec-
trode position in x and y coordinates was determined by the following steps: the electrode image was first projected to the x-y plane
by maximum intensity projection (MIP) and transferred to gray-scale (pixel value ranging from 0-255). Then the MIP image was filtered
with a global threshold of 50 to remove the non-electrode background. A 201-by-201 pixel size gaussian filter was applied to
adaptively filter out the non-circular area, which is the interconnect of the electrode. After locating the electrode in the x-y plane,
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the z coordinate of the electrode position was determined by fitting a 2D linear plane surface. The electrically recorded cell was further
determined by calculating the area of intersection between each neighborhood hiPSC-CM and the electrode. The cell with the largest
intersection area was identified as the electrically recorded cell. For hiPSC-CM samples, we used (i) high-density electrode arrays
(electrode-to-electrode distance of 60 um) to record 47% + 6% of hiPSC-CMs and (i) sparsely distributed electrode arrays (elec-
trode-to-electrode distance of 480 um) to record 3.4% + 0.9% of hiPSC-CMs. In our system, 12% of electrodes were in contact
with multiple cells, 53% of electrodes were in contact with single cells, and 35% of electrodes were in contact with small cell frag-
ments or had no contact with cells.

hiPSC-CM electrophysiology data processing

We followed the procedure of Spikelnterface v0.9°° to detect the spikes which passed the threshold in one channel. Each spike has a
fixed length of 1.6 second with the sampling rate of 10 kHz. After spike detection, the spikes were aligned at the minimum of the cor-
responding spike dv/dt, and then averaged to get a spike representation of that channel.

For each spike representation, we first denoised the spike with wavelet denoising using PyWavelets v1.1.0.°° Then, the spike fea-
tures were extracted through two cycles of down sampling operations. We first down sampled the whole 1.6 second length spike to
22 points (zoomed-out binning) and then down sampled the 0.15 second length spike near the minimum of the differentiated spike to
40 points (zoomed-in binning). In total, we generated 62 feature points for each spike representation of each channel.

Spike sorting

Neural patch electrical recordings were first bandpass filtered with the frequency range from 300 to 3,000 Hz. To obtain the spike
waveforms, the spike detection threshold was set as 5 times of standard deviations away from the mean and the minimum time be-
tween spikes was set as 3 ms. Segments in a time window of 3 ms with 1 ms before the trough of the waveform and 2 ms after the
trough were extracted. Spike sorting was then conducted with MountainSort®” and Spikelnterface.”®

Locating recorded neurons

To identify electrically recorded neurons, we computed the spatial average positions across channels that recorded the same neu-
rons and weighted the components with the square of the average waveform amplitude of each channel.®" For neuron samples, we
used high-density electrode arrays (electrode-to-electrode distance of 60 pm) to record 82% =+ 4% of neurons.

Weighted Nearest Neighbor (WNN)

The WNN,*j.e. FindMultiModalNeighbors function from Seurat v4, was used to integrate the gene expression and electrophysiology
data collected by in situ electro-seq. The principal component dimensionality for gene expression and electrophysiology was set as 7
and 6 (the elbow point in PCA variance), respectively. k = 20 was used to find the k nearest neighbor and calculate the modality-spe-
cific weights. AWNN graph integrating information of electrophysiology and gene expression was then built for downstream analysis
including joint clustering (Leiden),*® UMAP joint visualization and pseudotime derivation (Monocle3).

Pseudotime analysis

We used the R package Monocle3 for the pseudotime calculation of gene expression, electrophysiology features and the WNN joint
representation described above. A set of hyperparameters (Euclidean distance ratio = 2, geodesic distance ratio = % , minimal
branch length = 5) in function learn-graph was used to first learn a principal graph of development. The node at the position of earliest
stage was manually chosen as the root of principal graph to finalize the trajectory. Then the function order_cells was used to calculate
the pseudotime.

Sparse reduced-rank regression (RRR) model and bibiplot

For the sparse RRR analysis,*® we used 62 electrophysiological features across all electrically recorded hiPSC-CMs. Both electro-
physiological features and gene expression were normalized and z-scored as described above. In brief, sparse RRR finds a linear
mapping of gene expression levels to a low-dimensional latent representation, from which the electrophysiological features are
then inferred with another linear transformation. The results were visualized by paired and aligned electrophysiological biplot and
transcriptional biplot. Each biplot is composed of dots and lines. Each dot in the biplot represents a cell with paired measurements,
with the x and y coordinates respectively representing Components 1 and 2 values in the aligned electrophysiological and transcrip-
tional space. Each line in the biplot represents an E feature or gene. The sparse RRR model selected a set of genes for visualization in
the transcriptional biplot that best explains electrophysiological variability. The x and y coordinates of each line’s tip in the biplot indi-
cate the contribution of the corresponding E feature or gene to Component 1 and Component 2, respectively. Comparing the direc-
tions of lines between the electrophysiological and transcriptional biplot can suggest which E features are correlated with which
genes (Figure 6C). In Figures S5K and S5L, cross-validation was done by using 10 folds, elastic net a-values 0.25, 0.5, 0.75, and
1.0, and A-values from 0.2 to 6.0. In Figures 6C, a model with rank r = 5, ridge penalty (o« = 0.5), and lasso penalty (A = 1.5) was
used to yield a selection of genes. Following the method,**"*® we selected the most stable results from the sparse RRR analysis. Spe-
cifically, we run the sparse RRR in 100 repetitions, and only genes that appeared more than 50 times were selected for the down-
stream analysis.
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We used 10 times repeated 10-fold cross-validation to tune the regularization strength (Figures S5K and S5L). The selected model
chose genes with a 5-dimensional latent space and achieved a cross-validated R? of 0.2. The cross-validated correlation between
the first two pairs of projections was 0.69 and 0.49, respectively. These first two components roughly separate CM groups by their
days of differentiation. These different groups show distinct genes correlated with electrophysiology features.

Coupled autoencoder model

A coupled autoencoder®**° was used for cross-modal inference. Specifically, the following hyperparameters were used: latent loss
weight =1, Adam optimizer with learning rate = 0.0001, batch size = 10, training epoch = 15, epoch step = 1000. The latent dimen-
sionality was set to d = 2 in order to capture the variability in the dataset. The genes selected by the sparse RRR model, and all 62 elec-
trophysiological features were used as inputs for the coupled autoencoder.

To validate the cross-modal inference performance of the coupled autoencoder, 5-fold cross-validation was applied. Cells
collected on Day 12, Day 21, Day 46, and Day 64 were randomly divided into 5 equal subsets. The coupled autoencoder was trained
on 4 of the 5 subsets (training data), and then evaluated on the remaining 1 subset (validation data). This process was repeated 5
times, with each subset serving as the validation data exactly once. The performance across all 5 iterations was then used as the
overall performance in downstream evaluations.

After training the coupled autoencoder network, we applied the pre-trained coupled autoencoder to infer temporal gene expres-
sion change from the continuous electrical recording of the same sample (Figure 7G). Specifically, the electrical activity of a cardiac
sample was measured by the embedded electrodes from Day 17 to Day 64 of differentiation. Then a temporal gene expression profile
from Day 17 to Day 64 of differentiation was inferred.

To apply the pre-trained coupled autoencoder model to LMNA-mutant hiPSC-CMs, we used the gene expression changes in
LMNA-mutant hiPSC-CMs from previously reported data’® to infer the electrophysiological waveform (Figures 7H and 71). Then,
the inferred LMNA-mutant hiPSC-CM electrophysiological waveform was compared to the waveform of LMNA-mutant hiPSC-
CMs measured by mesh electronics. Additionally, random shuffle was performed as a negative control to further demonstrate
that the inference of LMNA-mutant hiPSC-CMs was not due to coincidence. The gene expression changes in LMNA-mutant
hiPSC-CMs were randomly shuffled and then used as input to the trained coupled autoencoder. The random shuffle was repeated
10 times for statistical reliability. We acknowledge that the randomness in the neural network training may lead to slight differences in
the results of sparse RRR and coupled autoencoder analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical analysis was performed by GraphPad Prism. The statistical details of experiments can be found in the figure legends. Sig-

nificant difference between two samples was evaluated by One-Way ANOVA or unpaired two-sided Student’s t test. p < 0.05 was
considered as statistically significant. *, **, and *** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001, respectively.
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Figure S1. Design and fabrication of stretchable mesh electronics, related to Figure 1
(A) Top-view schematic of stretchable mesh electronics.

(B) Exploded-view schematic of different layers of stretchable mesh electronics.

(C) Schematics showing the key steps of the fabrication flow.

(D) Photograph of stretchable mesh electronics fabricated on a glass wafer.

(E) Bright-field (BF) optical image of a representative electrode array.

(F) BF image of a representative electrode with the paired E-barcodes and interconnects.

(G) Representative design of binary E-barcodes for labeling 64 electrodes.
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Figure S2. Human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) differentiation and integration with stretchable mesh
electronics, related to Figure 2

(A) Schematics of the protocol for cardiac differentiation from hiPSCs.

(B) BF phase images showing the cell morphology at different differentiation days.

(C and D) Confocal fluorescence images (C) and corresponding statistical summary (D) of hiPSC-CMs at day 12 of differentiation. Values are mean + SEM; n.s.,
not significant; one-way ANOVA test.

(E and F) Fluorescence calcium image (E) and corresponding cell-segmented image (F) of hiPSC-CMs.

(G) Averaged spikes of calcium signal traces of hiPSC-CMs at different differentiation days.

(H) Comparison of calcium clusters and differentiation days by dot plot.

() Distribution plots of pseudotime distributions of all the segmented hiPSC-CMs.

(J and K) Confocal fluorescence images of representative hiPSC-CM patch-electronics hybrids and hiPSC-CM patches.

(L and M) Fluorescence (left panels) and segmented (right panels) images of sarcomeres in representative hiPSC-CM patches with (L) and without (M) the device
embedding.

(N and O) Haralick correlation computed at multiple offset distances and angles to determine the sarcomere organization score in the hiPSC-CM patches with
(N) and without (O) devices.

(P) Barplots of sarcomere organization score in the hiPSC-CM patches. Values are mean + SEM; n.s., not significant; ** p < 0.01, *** p < 0.001, two-tailed, unpaired
t test.

(Q and R) Distribution plots of sarcomere organization score in the hiPSC-CM patches with (Q) and without (R) devices.
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Figure S3. Electrical recording platform and measurement of hiPSC-CM patches, related to Figure 2

(A and B) Overlapped BF and fluorescence imaging of the same representative hiPSC-CM patch-electronics hybrid before (A) and after (B) the sample prepa-
ration. The zoomed-in view of the fluorescent image shows a representative electrode and its surrounding cells.

(C) Statistical summary of cell-to-electrode distances from the center of the DAPI signal to the center of the electrode. n.s., not significant; paired, t test.

(D) Probability distribution of the distance change after sample preparation.

(E and F) Photographs of the cell culture chamber connection (E) and Blackrock CerePlex direct voltage amplifier (F) showing the multiplexing recording setup.

(legend continued on next page)
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(G and H) Statistical summaries of the physical and electrical beating rates of hiPSC-CM patch-electronics hybrids before and after blebbistatin and norepi-
nephrine treatment. Values are mean + SD; n = 3; n.s. not significant; * p < 0.05, two-tailed, unpaired t test.

(I) Overlapped BF and calcium imaging of hiPSC-CMs embedded with the electrode array.

(J) Red circles highlighting the electrodes overlapped by cells that show positive calcium signals.

(K) Red circles highlighting the electrodes that record positive electrical signals.

(L) Comparison of the calcium and electrical signals by dot plot.

(M) Schematics illustrating the computational pipeline to automatically identify hiPSC-CMs that directly contact the electrode as electrically recorded cell.
Schematics for the multi-cell analysis (Figure S6A) is also generated from the same dataset.

(N) Statistical summary of contact cells per electrode.
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Figure S4. In situ electro-seq of neural patches, related to Figure 3

(A) Representative images showing the estimated neuron positions (red stars in i and iii) and finally determined electrically recorded neurons (red cells injiii and iv).
All neurons near the device are labeled with blue dots. Dashed lines highlight the stitching boundaries of each imaging tile.

(B) Representative raster plots showing spike trains (left panel) and zoomed-in views of individual spikes (right panel) of two additional biological replicates, as the
sample in Figure 3C.

(C) Heatmap of differentially expressed genes aligned with each cell cluster.

(D) Dot plot of selected marker gene expressions in neural patches.
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Figure S5. In situ electro-seq of hiPSC-CM development, related to Figures 4, 5, 6, and 7
(A) Heatmap of normalized differentially expressed genes aligned with each cell cluster.

(B) UMAP visualizations showing hiPSC-CM marker gene expressions.
(C—F) Matrix of silhouette scores measuring the separability of electrically recorded hiPSC-CMs. Gene expression of all hiPSC-CMs (C). Gene expression of
electrically recorded hiPSC-CMs (D). Electrophysiology of electrically recorded hiPSC-CMs (E). WNN joint representations from gene expression and electro-
physiology of electrically recorded hiPSC-CMs (F).
(G-J) Correlation of electrophysiological pseudotime with transcriptional pseudotime (G), hiPSC-CM synchronization level (H), fibroblast density (I), and cell

density (J).

(K) Test R? of “relaxed” and “naive” sparse reduced-rank regression (RRR) analysis.
(L) Cross-validated correlations of relaxed and naive sparse RRR analysis.

Z, (electrophysiological space)

(legend continued on next page)
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(M) Coupled autoencoder-encoded 2D representations of a day 64 sample replicate. Zt (circles) and Ze (dots) represent the distribution of transcriptional and

electrophysiological data, respectively.
(N) Coupled autoencoder-encoded 2D representation showing the distribution of electrophysiological data from a continuous electrical recording of the same

cardiac patch (Ze, dots; bottom panel) and corresponding cross-modal inferred gene expressions (Zt, circles; top panel).
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Figure S6. In situ electro-seq enables joint clustering of cell states by multiple contact cell analysis in hiPSC-CM development, related to

Figure 5

(A) Schematics showing how to identify all the cells contacting the electrode for the multi-cell analysis.

(B) hiPSC-CM transcriptional states (t-states, TS) defined by gene expression. UMAP visualization of the gene expression from hiPSC-CMs that are color-coded
by differentiation days (i) and t-states defined by Leiden clustering (ii). Comparison of t-states and differentiation days by river plot (jii) and dot plot (iv).

(C) hiPSC-CM electrophysiological states (e-states, ES) defined by electrophysiology and analyzed in the same way as in (B).

(D) hiPSC-CM transcriptional and electrophysiological joint states (j-states, JS) defined by weighted nearest neighbor (WNN)-integrated representations from
gene expression and electrophysiology and analyzed in the same way as in (B).

(legend continued on next page)
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(E) Distribution plots showing pseudotime distributions of all the electrically recorded hiPSC-CMs. Gene expression (i), electrophysiology (ii), and WNN-integrated
representations of gene expression and electrophysiology (iii).

(F) Electrically recorded cells highlighted in the UMAP visualization of gene expression, with colors encoding joint pseudotime in (Eiii). Cells sequenced from all the
samples across four stages are shown as gray embedding the same as Figure 4F. Insets show representative single-spike waveforms.

(G-J) Matrix of silhouette scores measuring the separability of electrically recorded multiple contact hiPSC-CMs. Gene expression of all hiPSC-CMs (G). Gene
expression of electrically recorded hiPSC-CMs (H). Electrophysiology of electrically recorded hiPSC-CMs (I). WNN joint representations from gene expression
and electrophysiology of electrically recorded hiPSC-CMs (J).
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Figure S7. Cross-modal visualization, correlation, and inference of in situ electro-seq results of electrically recorded multiple contact hiPSC-
CMs, related to Figures 6 and 7

(A) Test R? of relaxed and naive sparse RRR analysis.

(B) Cross-validated correlations of relaxed and naive sparse RRR analysis.

(C) Representative electrophysiological features extracted through downsampling of each spike waveform. 1.6-s waveforms are sampled in 22 bins. Inset shows
0.15-s fast spikes sampled in 40 bins.

(D) Sparse RRR model that visualizes and aligns transcriptional states (t-states) and electrophysiological states (e-states).

(E) Heatmap showing the correlation calculated by cosine distance between electrophysiological waveform features and genes from the sparse RRR analysis.
(F and G) Coupled autoencoder-encoded 2D representations of transcriptional (Zt, F) and electrophysiological (Ze, G) data trained by in situ electro-seq data.
(Hand I) Coupled autoencoder-encoded 2D representations showing the distribution of electrophysiological data from continuous electrical recording (Ze, H) and
the corresponding cross-modal inferred gene expressions (Zt, I).

(J and K) Coupled autoencoder-encoded 2D representations showing transcriptional data (J) and electrophysiological data (K) from samples across four
developmental stages.

(L and M) Heatmap of transcript-to-electrophysiology (T-to-E) inference and electrophysiology-to-transcript (E-to-T) inference from the coupled autoencoder.
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