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A B S T R A C T   

Many materials have a network of fibers as their main structural component and are referred to as 
network materials. Their strength and toughness are important in both engineering and biology. 
In this work we consider stochastic model fiber networks without pre-existing cracks and study 
their rupture mechanism. These materials soften as the crosslinks or fibers fail and exhibit either 
brittle failure immediately after the peak stress, or a more gradual, ductile rupture in the post 
peak regime. We observe that ductile failure takes place at constant energy release rate defined in 
the absence of pre-existing cracks as the strain derivative of the specific energy released. The 
network parameters controlling the energy release rate are identified and discussed in relation to 
the Lake-Thomas theory which applies to crack growth situations. We also observe a ductile to 
brittle failure transition as the network becomes more affine and relate the embrittlement to the 
reduction of mechanical heterogeneity of the network. Further, we confirm previous reports that 
the network strength scales linearly with the bond strength and with the crosslink density. The 
present results extend the Lake-Thomas theory to networks without pre-existing cracks which fail 
by the gradual accumulation of distributed damage and contribute to the development of a 
physical picture of failure in stochastic network materials.   

1. Introduction 

The class of network materials includes many engineering and biological materials. These have in common the fact that their 
mechanical behavior is dictated by an underlaying stochastic network of filaments. Paper, nonwovens, carbon nanotube buckypaper, 
gels and thermosets are examples of man-made materials, while collagen-based connective tissue, the dermis, the extracellular matrix 
and the cytoskeleton are biological network materials. While the nature of the filaments (molecules, fibers of several microns diameter, 
etc), the nature of the network crosslinks (covalent or ionic bonding between molecules as in molecular networks, mesoscale contacts 
stabilized by H-bonding as in paper, branching of fiber bundles as in collagen networks), and the presence and type of matrix differ 
substantially from case to case, the failure of these materials is defined by the way the network ruptures. 

The behavior of network materials subjected to uniaxial tension can be divided in two groups: type I networks, which exhibit a yield 
point followed by softening, and type II, which exhibit hyperelastic response with continuous stiffening. Nonwovens (Patel and 
Kothari, 2001; Chen et al., 2016) and paper in humid environments (Malho et al., 2015) are of type I, while collagen-based connective 
tissue and the extracellular matrix are of type II (Ovaska et al., 2017; Meng et al., 2012; Huang et al., 2005; Mauri et al., 2015). Failure 
is either brittle, case in which catastrophic rupture is not preceded by softening, (Malho et al., 2015; Ovaska et al., 2017) or ductile, 

* Corresponding author. 
E-mail address: picuc@rpi.edu (R.C. Picu).  

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

https://doi.org/10.1016/j.jmps.2022.105176 
Received 23 July 2022; Received in revised form 21 November 2022; Accepted 9 December 2022   

mailto:picuc@rpi.edu
www.sciencedirect.com/science/journal/00225096
https://www.elsevier.com/locate/jmps
https://doi.org/10.1016/j.jmps.2022.105176
https://doi.org/10.1016/j.jmps.2022.105176
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2022.105176&domain=pdf
https://doi.org/10.1016/j.jmps.2022.105176


Journal of the Mechanics and Physics of Solids 172 (2023) 105176

2

case in which pronounced softening occurs before the ultimate loss of load carrying capacity (Chen et al., 2016; Rawal et al., 2013). In 
the brittle case, the ultimate tensile strength (UTS) coincides with the failure stress, while in the ductile case the UTS corresponds to the 
peak stress beyond which softening takes place. 

The resistance of network materials to fracture is often evaluated using edge cracked samples subjected to tension and the 
toughness is evaluated using fracture mechanics concepts (Tutwiler et al., 2020; Mao et al., 2017; Stachewicz et al., 2011). Other types 
of samples adequate for soft materials which deform extensively before the onset of crack growth have been developed in the early 
works on the mechanical behavior of rubber (Gent and Lindley, 1959; Gent and Tobias, 1982; Lake and Lindley, 1964, 1965). Many 
soft network materials, including collagen-based connective tissue (Oyen et al., 2004; Purslow, 1985; Stok and Oloyede, 2007) and 
double network gels (Li et al., 2014; Mai et al., 2018) are remarkably tough. Gels with toughness above 10,000 J /m2 have been 
reported (Li et al., 2014). On the other hand, densely crosslinked networks composed from stiff filaments, such as paper in dry 
environment (Alava and Niskanen, 2006; Popil, 2017) and networks of ceramic fibers (Shi et al., 2020) have low toughness of values 
close to 1 J/m2. The extreme difference between these two types of materials is due to the fact that soft networks sustain large de
formations and fibers realign in the vicinity of the crack tip in the direction orthogonal to the crack plane, therefore providing large 
resistance to crack growth (Koh et al., 2013). Due to this network reorganization, very large crack opening displacements are possible 
and the process zone at the crack tip may grow to dimensions comparable with the sample size. Under such conditions, the stress 
concentration effect of the pre-existing crack is drastically reduced and the network ruptures at a local stress which is comparable to 
the UTS of the virgin sample. 

In molecular networks, the toughness is typically rationalized based on the Lake-Thomas model (Lake and Thomas, 1967) which 
relates the energy release rate, G, to molecular network parameters. Specifically, this model indicates that G is proportional to the 
crosslink or molecular filament strength, the density of filaments crossing the crack plane, and the difference between the contour 
length of the filament between crosslinks and its equilibrium end-to-end length. An equivalent model applicable to cases without 
pre-existing cracks and in which damage accumulates gradually before the final failure is not available. Taking steps in this direction is 
the central goal of the present work. 

Most works focusing on the failure of network materials without pre-existing cracks report the UTS, but not the toughness. 
Experimentally, UTS was observed to increase approximately linearly with increasing network density (total length of fiber per unit 
volume, in 3D, or area, in 2D) (Alava and Niskanen, 2006; Fukasawa et al., 2010; Eriksson et al., 2006) or the crosslink density 
(Normand et al., 2000; Fang and Li, 2012). If the crosslink density scales linearly with the network density, the two parameters become 
equivalent for the purpose of UTS evaluation. A small number of attempts have been made to measure the strength of the inter-fiber 
bonds and to relate this parameter with the UTS of the respective networks. The only reports along these lines that seem to be available 
at this time are related to cellulose networks (Eriksson et al., 2006; Forsstrom et al., 2005). It is concluded that UTS scales linearly with 
the mean crosslink strength. Support for the idea that UTS is proportional to the crosslink density and with the crosslink strength was 
also provided by several computational works (Heyden, 2000; Heyden and Gustafsson, 1998; Borodulina et al., 2012; Borodulina et al., 
2018; Goutianos et al., 2018; Deogekar and Picu, 2018; Deogekar et al., 2019). It was also concluded that the fiber mechanical 
behavior or fiber tortuosity have little to no effect on UTS (Deogekar et al., 2019). These models also indicate that the fraction of 
crosslinks (or fibers) that fail before the peak stress is small (about 5%) and, at peak stress, either a major crack nucleates and grows 
leading to brittle failure, or a diffuse damage process sets in leading to gradual softening. 

Structural stochasticity favors the accumulation of diffuse damage. If network parameters are such that deformation is non-affine 
(low density and/or thin filaments that deform preferentially in the bending mode), (Head et al., 2003; Heussinger and Frey, 2006; 
Hatami-Marbini and Picu, 2008; Picu, 2011) local strains are different from the global, imposed strains, the energy and stress fields are 
highly fluctuating spatially, and hence damage may occur locally even at small applied global deformations. However, structural 
stochasticity has a stabilizing effect on the nucleated damage and hence promotes ductile deformation (Deogekar and Picu, 2018; 
Deogekar et al., 2019). Enhanced stochasticity in the vicinity of stiffness percolation (in these works the system is maintained in the 
vicinity of the critical point by controlling the mean network connectivity, z) was shown to lead to ductile behavior (Berthier and 
Kollmer, 2019; Zhang and Rocklin, 2017). Fracture in heterogeneous materials was studied by the mechanics (Bazant et al., 1991; 
Waddoups et al., 1971) and statistical physics (Herrmann et al., 1981; Malakhovsky and Michels, 2007) communities. Most studies in 
the physics literature were performed using the random fuse (Arcangelis et al., 1989; Hansen et al., 1991) or random spring networks 
(Alava et al., 2008; Jagota and Bennison, 1994). These networks do not undergo large deformations and retain their initial geometry as 
damage evolves. Effects such as intermittency (Bonamy, 2009; Rosti et al., 2009) and the competition between distributed damage and 
localization (Alava et al., 2008; Isaksson and Hägglund, 2007) are observed. In models with pre-existing cracks, crack pinning, 
(Daguier et al., 1997; Rosti et al., 2001) crack path roughening (Roux et al., 2003) and strong size effects (Herrmann et al., 1981; 
Malakhovsky and Michels, 2007; Curtin, 1998) are observed. These works create a conceptual framework within which some aspects 
of the network materials failure can be understood, but do not account for the complexities associated with large deformations, strong 
geometric non-linearities and the intrinsic structural and mechanical heterogeneity of the network. 

The objective of this work is to explore the gradual failure process in the post peak regime. We consider athermal networks of large 
free volume, which are not embedded in matrix and in which damage is due to crosslink failure. We observe that the gradual rupture in 
the post peak regime takes place at constant energy release rate and identify the controlling network parameters. We also observe a 
transition from ductile to brittle behavior as the degree of non-affinity and the effective mechanical heterogeneity of the network 
decrease. The models, methods and parameters of interest are described in Section 2. The effect of the crosslink strength on the failure 
process is discussed in Section 3.1 and the structural parameters defining the UTS are reviewed in Section 3.2. The relation between the 
degree of non-affinity and network brittleness is presented in Section 3.3, while the analysis of the energy release rate is presented in 
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Section 3.4. The conclusions of the work are summarized in Section 4. 

2. Models, methods, and parametric space 

2.1. Models and parameters 

Stochastic athermal networks of Voronoi type are considered in this work. These are generated by defining in a cubic volume of 
edge size L a number of randomly positioned seed points. The volume is tessellated with the Voronoi procedure based on the seed 
points and the edges of the tessellation are retained as fiber segments, Fig. 1a. The network density, ρ, i.e. the total length of fiber per 
unit volume, is controlled by varying the density of seed points. The resulting fiber segments have no preferential orientation and are 
straight in the undeformed configuration. The connectivity number, z, represents the number of segments merging at a crosslink and is 
z = 4 in the bulk of the Voronoi network. The length of fiber segments is Poisson distributed and the mean fiber segment length, lc, is 
related to the density as ρl2c ≈ 0.95; this non-dimensional group takes different values if the Voronoi structure is perturbed stochas
tically (Deogekar et al., 2019). Voronoi networks resemble cellular structures with open cells (Jang et al., 2008) and have been used 
extensively to represent fibrous materials (Zhang et al., 2013; Shulmeister et al., 1998; Picu et al., 2018; Amjad and Picu, 2022). 

Given that four fiber segments meet at each crosslink, it is possible to view the crosslink as a bond connecting two continuous fibers, 
as done in (Deogekar and Picu, 2018; Deogekar et al., 2019) and (Deogekar and Picu, 2021). To define fibers composed from multiple 
fiber segments, the network is decomposed in paths that traverse the structure. The paths are truncated at a length L0 ≈ 4lc and each 
path becomes a fiber having, in average, 4 non-colinear but contiguous segments, which are the edges of the Voronoi tessellation. The 
procedure of breaking continuous paths across the network into fibers of finite length reduces the average connectivity of the network 
which, including the effect of surfaces, becomes 〈z〉 = 3.15. 

The crosslinks are represented by connectors of high stiffness which transmit both forces and moments between fibers. The con
nectors are characterized by axial and bending stiffnesses, Kf

b and Km
b , such that the force and moments transmitted are related to the 

relative displacements, Δui, and rotations, Δθi, of the respective fibers at the contact point as Fbi = Kf
bΔui and Mbi = Km

b Δθi, with i =
1,2, 3 representing the 3 directions of a local coordinate system tied to the crosslink, xbi (Fig. 1b), and having axis xb3 aligned with the 
connector. A physical model of the crosslink between fibers and its failure is presented in Deogekar and Picu (2018) and used here. In 
this view, a crosslink between two fibers is established by many small parallel fibrils, Fig. 1b. Failure of the crosslink in the opening and 
shear modes requires the simultaneous rupture of all these fibrils. Failure of the crosslink due to the relative fiber rotation, i.e. in the 
rolling or peeling mode, requires the gradual rupture of the fibrils. Such representation is supported by observations in cellulose 
networks (Heyden and Gustafsson, 1998; Schmied et al., 2013) in which nanoscale fibrils connect cellulose microfibers at inter-fiber 
contacts, and in collagen, e.g. (Sherman et al., 2015), where fibers have multiscale structure and are actually bundles of smaller scale 
fibrils. The connector used in the present models represents all the fibrils that may be present at a crosslink. 

This model leads to a failure criterion of the form Feq = fc, where fc is a characteristic parameter of the crosslink referred to as the 

bond strength, and F2
eq = F2

b1 + F2
b2 + 〈Fb3 −

6
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2
b1 + M2

b2

√

〉
2 

is the equivalent applied force (Deogekar and Picu, 2018; Deogekar et al., 
2019; Deogekar and Picu, 2021). The force in the xb3 local direction, Fb3, is reduced by the effect of the rotation of the fibers relative to 

Fig. 1. (a) Realization of a 3D network and (b) detail of the geometry at a crosslink including the local coordinate system xbi. The blue parallel lines 
represent the crosslink composed from multiple fibrils connecting two fibers (shown in black and red). The connector used to model the crosslink 
represents all fibrils forming the respective crosslink. (c) Boundary conditions and deformed configurations of the network. (d) Schematic repre
sentation of the 4 deformation regimes discussed in text. 
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each other since rupture of the crosslink requires the rupture of all fibrils, some of which are being compressed during fiber rolling. The 

effective rolling moment, 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2
b1 + M2

b2

√

, is divided by a length equal to the size of the contact spot, Db, which is taken here equal to d /6, 
where d is the fiber diameter. <> indicates the Macaulay bracket, which vanishes if the quantity in the bracket is negative and is equal 
to the respective quantity when it is positive. While the crosslink has finite torsional stiffness, it is assumed here to not fail in pure 
torsion and hence Mb3 does not appear in the failure criterion. The equivalent relative displacement of the two fibers forming the 
crosslink, Δueq, is related to the equivalent force in the crosslink, as discussed in Deogekar and Picu (2018), and it reaches a critical 
value, uc, at crosslink failure. 

Crosslink failure has been modeled in other works using the cohesive zone model (Goutianos et al., 2018; Kulachenko and Uesaka, 
2012) using connectors that rupture at a specific transmitted force or specific combination of transmitted force and moment (Berg
strom et al., 2019). Provided the crosslink stiffness is not too low, the crosslink deformation is minimal compared to the deformation of 
the fibers and a force-based criterion for crosslink failure is appropriate. This was emphasized in Chen et al. (2016) where cohesive 
zone elements were used to represent crosslink failure. An energy-based criterion is considered more adequate when the crosslink 
stiffness is low (Borodulina et al., 2012; Goutianos et al., 2018). 

The fiber material is considered linear elastic, of Young’s modulus Ef and Poisson ratio νf . The Poisson ratio of fibers, νf , is of little 
importance in the behavior of the network. Fiber plasticity is ignored since in networks of large free volume whose deformation is non- 
affine, as considered here, the strain in fibers is unlikely to reach the yield strain; the ratio between the strain at which fibers reach 
yielding to the strain at which the network yields in non-affine athermal networks with elastic-plastic fibers is proportional to the fiber 
aspect ratio, d/lc (Picu, 2022). The situation is opposite in dense and densely crosslinked networks, where the fiber strain is, by 
definition, approximately equal to the far field strain. When low density, non-affinely deforming networks are observed experimentally 
to deform plastically, the apparent plasticity is actually due to fiber rearrangements and to inter-fiber contacts and friction. While 
network rearrangement and large geometric nonlinearity are accounted for in the present models, friction at inter-fiber contacts is not 
captured and hence, in the absence of damage, these networks have reversible mechanical behavior. 

The primary structural parameters used to characterize the network are the density, ρ, the fiber diameter, d, and the crosslink 
strength, fc. Parameters derived from the primary ones are the mean length of a segment between crosslinks, lc (lc = 0.95 / ̅̅̅ρ√ for the 
Voronoi network, as indicated above), the crosslink density, ρb, which is related to the other parameters through the geometric relation 

ρ = ρbzlc/2, (1)  

and the effective crosslink deformation at crosslink failure, uc, which is related to fc via the crosslink stiffness. Here, z is the average 
connectivity number. 

The nondimensional parameter ρd2 (also written as w = log10(ρd2)) plays an important role in the mechanics of stochastic networks 
as it controls the transition from affine to non-affine behaviors (Deogekar and Picu, 2018; Head et al., 2003; Islam and Picu, 2018). 
Specifically, for Voronoi networks, when w > 1, the deformation is affine, the strain energy is stored primarily in the axial deformation 
mode of fibers and the small strain modulus, E0/Ef , is proportional to ρd2. For w < − 1, deformation is non-affine, with the degree of 
non-affinity increasing as w decreases, the strain energy is stored predominantly in the bending deformation mode of fibers and E0 /Ef 

is proportional to ρ2d4 (see e.g. the master plot relating E0/Ef to w in (Deogekar and Picu, 2018; Islam and Picu, 2018)). A transition 
regime between these two types of behavior takes place in the approximate range − 1 < w < 1. In an affinely deforming network, the 
strain and energy distributions are spatially uniform, while in a non-affine network these parameters have large spatial fluctuations. 
Therefore, while the affine networks behave mechanically similar to homogeneous materials despite their geometric heterogeneity, 
non-affine networks are mechanically heterogeneous. In this sense, parameter w controls the degree of mechanical heterogeneity of the 
network. Note that d/lc represents the slenderness ratio of the mean segment, which is related to w as w ≈ 2log10(d /lc) for these 
networks. 

In this work, the density was varied by a factor of 3, d was varied by 3 orders of magnitude and fc was varied by 5 orders of 
magnitude. This corresponds to w ranging from -3.84 to -0.82, i.e. spanning the non-affine regime and into the transition between the 
non-affine and affine regimes. 

2.2. Simulation parameters and methods 

The fiber segments (bounded by 2 consecutive crosslinks) are represented with one three-nodes Timoshenko beam element (B32) 
and hence a fiber is modeled with 4 such elements, in average. The model is loaded in uniaxial tension, Fig. 1c, by imposing dis
placements on two opposite faces, while keeping the other 4 faces traction free. The model is free to contract in the directions 
orthogonal to the loading direction, including at the two surfaces where displacements in the loading direction are prescribed. 

The crosslinks are represented using the connector element CONN3D2 and the connector section BUSHING in Abaqus, which allow 
controlling independently the translational and rotational stiffnesses of the crosslinks. The forces and moments transmitted by the 
connector are determined from the solution and the connector is allowed to separate when the failure condition Feq = fc is fulfilled. 

The solution is obtained with the commercial finite element solver Abaqus/Explicit, version 62.3. Dynamic and inertial effects 
occur with the solution scheme used, particularly after the onset of crosslink rupture. We use a numerical damping scheme (bulk 
viscosity) to minimize this effect. The loading rate is reduced after the onset of crosslink rupture and damping is adjusted such to 
maintain the kinetic energy of the model lower than 1% of the total energy prior to the onset of cross-link failure, and lower than 5% of 
the total energy after the peak stress. This ensures that the simulation is approximately quasi-static in each case considered. The 
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simulation provides the total force applied as a function of stretch and this is used to compute the nominal (first Piola-Kirchoff) stress. 
The nominal stress is used here since this is the parameter usually measured in experiments. Three replicas (different geometric 
configurations of the network) are considered for each case and the plots represent the average respective quantity at the given stretch. 

3. Results 

3.1. Effect of the bond strength 

The uniaxial deformation of network materials without matrix has been discussed extensively in the literature, see (Picu, 2022) for 
a review. Here we work with the nominal stress (first Piola-Kirchoff normal stress component in the loading direction, S) and the 
stretch, λ, which form a pair of work conjugate parameters. A typical stress-stretch curve of type II networks (as those studied here), in 
the absence of damage accumulation, may be divided into 3 regimes. Regime 1 is linear elastic, of small strain stiffness E0, and extends 
to about 2-3% strain. This regime may not be visible in experiments with very soft samples as the forces required for deformation in 
regime 1 may fall below the resolution limit of the load cell. The material stiffens exponentially in regime 2, i.e. the nominal tangent 
stiffness (computed as the derivative of the nominal stress with respect to the strain) is proportional to the stress, while in regime 3 the 
stiffening rate decreases and the nominal tangent stiffness is approximately proportional to the square root of the stress, see e.g. (Licup 
et al., 2016; Zagar et al., 2015). 

If crosslinks are allowed to rupture, the stress-stretch curve exhibits a peak after which continuous softening is observed. The stress 
corresponding to the peak (UTS) may be controlled by increasing the crosslink strength, fc. Fig. 2a shows S(λ) curves for strongly non- 
affine models with w = −3.84 and four values of the normalized bond strength, fc/(Ef d2), ranging from 1.1 × 10−3 to 7.6 × 10−3. The 
corresponding stress-stretch curve for the same type of network in which crosslinks do not rupture is shown with dashed red line in 
Fig. 2a. 

The curves corresponding to different fc values overlap for the most part of the pre-peak segment and exhibit little variability. The 
UTS increases with increasing fc, as previously reported (Heyden and Gustafsson, 1998; Borodulina et al., 2018; Goutianos et al., 2018; 
Deogekar and Picu, 2018; Deogekar et al., 2019). The decay of the stress beyond the peak occurs at rates which appear to scale with 

Fig. 2. (a) Nominal stress-stretch curves for networks with w = −3.84 and various values of the normalized crosslink strength, fc /Ef d2. Regimes 1, 
2, 2’ and 2” described in the text are shown for the (blue, circle symbols) curve with fc/Ef d2 = 3.8 × 10−3 . (b) Data in (a) shown after the 
normalization of the vertical axis with the UTS and of the horizontal axis with the stretch at peak stress, λUTS. Variation of (c) the fraction of failed 
crosslinks and (d) relative sample volume during deformation for all cases shown in (a). The transition between regimes 2’ and 2” corresponds to the 
peak stress, and approximately to the minimum volume and the inflection point of the nb/nb0 curve, as shown for the curves marked by cir
cle symbols. 
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UTS. In other words, the functional form of the softening regime appears to be independent of fc. This is demonstrated in Fig. 2b, where 
the curves in Fig. 2a are shown after normalization of the vertical axis with UTS and of the horizontal axis with the stretch at the peak, 
λUTS. The normalization removes the overlap in the pre-peak regime but allows the post-peak branches to come together. 

Four regimes of deformation may be identified and are marked with vertical dashed lines in Fig. 2 for the curve with fc /Ef d2 = 3.8 
×10−3 . The regimes are also shown schematically in Fig. 1d. Regimes 1 and 2 are identical to those of the network without failure, i.e. 
regime 1 is linear elastic and exponential stiffening is observed in regime 2. Regime 2’ spans from the onset of crosslink failure to the 
peak stress, while regime 2” is the post peak regime. 

Fig. 2c shows the variation during deformation of the fraction of ruptured crosslinks, nb/nb0, where nb is the number of failed 
crosslinks and nb0 is the number of crosslinks of the initial, unloaded structure. nb/nb0 is zero in the pre-peak regimes 1 and 2 and starts 
to increase at the beginning of regime 2’. The fraction of broken crosslinks at peak stress is in the range 5 to 7%. The peak stress 
corresponds approximately to the inflection point of the nb/nb0 curve. The nb/nb0(λ) curves are similar, although slightly translated in 
the horizontal direction due to the different onset stretch of crosslink rupture in systems with different fc. The fact that the rate at which 
crosslinks rupture is independent of fc is the mechanistic cause of the overlap of the stress-strain curves in the post-peak regime seen in 
Fig. 2b. 

nb/nb0 reaches values as high as 15%, which is close to the value of bond percolation on the Voronoi lattice, reported in Jerauld 
et al. (1984) to be 14.53%. This match is likely coincidental since bond percolation corresponds to the formation of percolated paths of 
failed crosslinks across the network, while full brittle failure requires the formation of an entire plane of ruptured bonds that traverses 
the network and separates the material in two parts. The emergence of such a plane through an entirely stochastic process takes place 
at much larger fractions of failed crosslinks (above 80%) (Pal and Picu, 2017). 

The variation of the sample volume V (normalized by the initial volume of the unloaded state, V0 = L3) during deformation is 
shown in Fig. 2d. The volume increases in regime 1, as expected for a linear elastic material with no damage. The effective Poisson ratio 
of the network in this regime is ~0.4. The network undergoes no structural changes at these small strains. The onset of the stiffening 
regime 2 is associated with internal instabilities that allow structural evolution. This causes an increase of the incremental Poisson ratio 
which may reach values as large as 6 in the absence of damage, as discussed previously (Picu et al., 2018) (the incremental Poisson 
ratio relative to the stretch direction in uniaxial loading is computed based on the true strain as νi = − dlnλ⊥/dlnλ, where λ and λ⊥ are 
stretches in the imposed deformation direction and perpendicular to it, respectively). This dramatic increase of the Poisson ratio was 
observed in experiments with collagen-based membranes (Mauri et al., 2015) and in felt (Kabla and Mahadevan, 2007). Therefore, the 
volume of the network decreases rapidly in regime 2. This trend continues in regime 2’, but at lower rate since crosslink rupture allows 
the structure to relax. V/V0 increases in regime 2”; this is somewhat an artifact of the way the volume is computed; the large pores that 
open within the network in regime 2” are still considered to be part of the network volume (see also Fig. 1c). This phenomenology is 
observed consistently for all fc. The incremental Poisson ratio increases during regime 2’ followed by a rapid decrease during regime 
2”, which is also observed in experiments if damage accumulation occurs (Kabla and Mahadevan, 2007; Bancelin et al., 2015). 

3.2. Parameters controlling the strength 

The relationship between network strength and the geometric and material parameters was discussed in the literature (Borodulina 
et al., 2018; Goutianos et al., 2018; Deogekar and Picu, 2018, 2021; Kulachenko and Uesaka, 2012). Here we outline a simple mean 
field explanation that leads to a structure-property relation of this type and show that the present dataset supports the respective 
conclusion. 

Fig. 3. Nominal network strength vs. fc/l2c for the entire range of parameters considered in this study.  
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Assuming that the force carried by the crosslinks, f , in a loaded equilibrium state is Poisson distributed with mean f and probability 
distribution p(f) = (1 /f)exp(− f /f), it is possible to evaluate the fraction of crosslinks loaded above their strength fc; this fraction 

becomes 
∫∞

fc

p(f)df = exp(− fc /f). According to the data in Fig. 2c, the peak stress is reached when this fraction becomes equal to a 

constant, β ≈ 0.05. Hence, when the peak stress is reached, the relation f = fc/(−lnβ) must hold. The nominal stress may be computed, 
in the mean field sense, as the mean force per crosslink divided by the area corresponding to a crosslink projected in the plane 
orthogonal to the loading direction in the reference configuration: S = fρblc (assuming that the mesh size is equal to the mean segment 
length, as is the case for the networks considered here). Therefore, one may use the expression for the mean force f corresponding to 
the peak stress to evaluate the strength: 

UTS ∼ fcρblc. (2) 

This expression can be rewritten using Eq. (1) and the relationship between ρ and lc as UTS ∼ fcρ ∼ fc/l2c . 
Fig. 3 shows the relation between UTS and fc/l2c , both quantities being normalized by Ef , for all 22 network types considered in this 

study, and for the entire range of fc, d and ρ mentioned in section 2, and w ranging from -3.84 to -0.82. The figure provides strong 
support for the linear scaling of the strength with fc/l2c . The coefficient of proportionality in UTS ∼ fc/l2c resulting from Fig. 3 is 0.09. 

Simulations of fiber networks that fail at small strains by Heyden (2000) indicate linear scaling of the strength with the density, 
provided the density is significantly larger than the stiffness percolation threshold. Models of paper reported in Borodulina et al. (2012) 
indicate an approximate linear relation between strength and the crosslink density. UTS is reported in Goutianos et al. (2018) to scale 
linearly with fc and somewhat sublinearly with ρb. Experimental proof of linear scaling of UTS with network density (concentration of 
molecular component forming the network) is provided in Fukasawa et al. (2010), Normand et al. (2000) for PEG gels, as well as in 
Eriksson et al. (2006) for cellulose networks (paper), and in Chen et al. (2016) for polymeric fiber nonwovens. Works with cellulose 
networks (Eriksson et al., 2006; Forsstrom et al., 2005) show that the strength of paper scales linearly with the crosslink strength, 
which was measured separately in dedicated experiments for the same samples. 

3.3. Brittle to ductile transition 

A significant change of network behavior results by changing w. Fig. 4a shows nominal stress-stretch curves for networks with w 
= −3.84, −2.84 and − 0.82. The first two cases are strongly non-affine, while the third case is in the transition to affine deformation. 
The variation of w is achieved here by keeping the density constant and increasing the fiber diameter, d. To maintain the stability of the 
simulation, fc is also increased in approximate proportion with d2. The non-affine networks are much softer than the close-to-affine one 

Fig. 4. (a) Nominal stress-stretch curves for networks with (a1) w = − 0.82, (a2) w = −2.84 and (a3) w = − 3.84. Regimes 1, 2, 2’ and 2” 
described in text are shown for all curves in (a) and for the case with w = −2.84 in (c) and (d). (b) Data in (a) after the normalization of the vertical 
axis with the UTS and of the horizontal axis with the stretch at peak stress. Variation of (c) the fraction of failed crosslinks and (d) sample volume 
during deformation for all cases shown in (a). 
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and exhibit the hyperelastic behavior described in section 3.1. However, the important observation is that the stretch at failure relative 
to the stretch at peak stress decreases as w increases, and the network with w = −0.82 exhibits rapid failure right after the peak stress. 
This behavior is shown more clearly in Fig. 4b, where the data in Fig. 4a is replotted after the normalization of the vertical axis by UTS 
and of the horizontal axis by the stretch at the peak, λUTS. This shows that the behavior becomes more brittle as the degree of non- 
affinity of the network decreases. Since fc has no effect on the functional form of the post-peak segment of the stress-stretch curve 
(Fig. 2b), the ductile to brittle transition is associated here with the increase of w. 

Fig. 4c shows the variation of the fraction of ruptured crosslinks, nb/nb0, for the three cases. The 4 regimes identified in Fig. 2 are 
shown in panels (c) and (d) of Fig. 4 for the network with w = − 2.84. The nb/nb0 curves differ significantly from those shown in 
Fig. 2c. The non-affine networks sustain the rupture of twice as many crosslinks before they lose the load carrying capacity compared 
with the more affine network with w = − 0.82. 

Fig. 4d shows the variation of the normalized sample volume. While the non-affine networks exhibit the strong volume reduction 
also observed in Fig. 2d, the network with w = −0.82 shows little volumetric variation in regimes 2 and 2’. This network has no regime 
2” since it fails abruptly after the peak stress. The lack of contraction is due to the inability of the close-to-affine network to rearrange 
during straining; it exhibits a long regime 1 and weak stiffening in regime 2. 

Ductile to brittle transitions are observed in both experiments and simulations. Driscoll et al. (2016) report simulations of spring 
lattices with disorder and observe that the behavior becomes more brittle as the fiber and/or crosslink density increases and the 
non-affinity of the deformation decreases. The ductility may be also controlled by adjusting the degree of sample confinement which, 
in turn, modifies the degree of non-affinity of the deformation field. Increasing confinement may be achieved either by increasing the 
network size or by applying restrictive boundary conditions. A size-induced ductile to brittle transition is reported in, (Dussi et al., 
2020) with the rupture becoming more brittle as the network size increases. A similar reduction of the strain at failure with increasing 
model size is reported in Kulachenko and Uesaka (2012). 

3.4. Energy release rate 

We analyze further the energy released as the network ruptures in the post-peak regime. To this end, we compute first the energy 
released per crosslink failure, Urpb, as the negative of the variation of the potential energy over a stretch increment divided by the 
number of crosslinks that rupture in the same stretch interval. Urpb is then normalized by the product fcuc, which is the work required to 
break one crosslink on the local scale. The normalized energy released per crosslink, Urpb/fcuc, is shown in Fig. 5a for all networks with 
w = −3.84 considered in Fig. 2. These networks have same ρ and d, but different fc. The figure shows that the energy released per 
crosslink failure increases during deformation. 

The energy released per crosslink failure is much larger than the work required to break one crosslink, Urpb ≫ fcuc. This implies that 
most of the energy released is stored strain energy and little is consumed to rupture the crosslinks. This is similar to crack growth in 
ductile metals, where most of the energy is dissipated and only a small fraction corresponds to the creation of new free surfaces. In the 
current problem there is no plastic dissipation; however, the strain energy released when a crosslink rupture is recovered as network 
vibrations, which are then damped by the algorithmic damping that ensures that the simulation remains quasistatic. This mesoscale 
dissipation mechanism is equivalent to nanoscale dissipation by heat production. In a physical network, damping is provided either or 
both by fiber-fiber friction (e.g. in polymeric networks of low free volume such as molecular networks above the glass transition 
temperature) and the interaction of fibers with a fluidic matrix (e.g. in polymeric networks of large free volume such as gels). 

It is further possible to compute the volume of the network from which the energy released per crosslink failure is extracted as vrpb =

VUrpb/SE, where V = V(λ) is the current volume of the sample (Fig. 2c) and SE = SE(λ) is the strain energy stored in the entire sample 

Fig. 5. (a) Variation of the energy released per crosslink failure, Urpb, normalized by the work required to separate a crosslink, fcuc, during regimes 
2’ and 2” of all networks shown in Fig. 2. The arrows indicate the position of the peak stress. (b) Diameter in the current configuration of a network 
subdomain containing strain energy equal to the energy released per crosslink failure, expressed in units of lc. The legend in (a) applies to both 
panels. The points represent values obtained with one realization, the shades show the range of fluctuations, and the lines show the means. 
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(SE/V is the mean strain energy density). The size of such subdomains expressed in multiples of lc is δrpb = v1/3
rpb /lc. This quantity is 

shown in Fig. 5b for all networks considered in Fig. 5a. It is observed that for these networks δrpb ≈ 4, which is independent of fc and is 
constant during deformation. Hence, the energy released per crosslink failure is equivalent to the strain energy stored in a network 
domain surrounding the respective crosslinks having diameter ∼ 4lc. 

The energy release rate is well-defined in fracture mechanics as the energy released per unit crack front length and unit crack 
advance. In the present situation, when no pre-existing cracks are present, we define the specific energy release rate, Gs, as the energy 
released per strain increment and per unit volume. This quantity is evaluated based on the mean energy released per crosslink failure, 
Urpb, and the rate of crosslink rupture, dnb/dλ: 

Gs =
1
V

dnb

dλ
Urpb (3) 

We emphasize the difference between the fracture mechanics energy release rate, G, and the present measure, Gs: G represents the 
energy released per unit crack advance and unit crack front length, while Gs is the energy released per unit stretch increment and per 
unit volume in the current configuration. Both are energy release rates in the sense that the control parameter in the fracture mechanics 
case is the crack length, while in the present case of diffuse damage, the control parameter is the applied stretch. The units of the two 
quantities are different, by definition: while G has units of J/m2, Gs has units of J/m3. In a generalized deformation situation, Gs may be 
defined as the derivative of the energy released with respect to the curvilinear coordinate in strain space along the deformation path, 
and per unit volume in the current configuration. 

Fig. 6a shows the values of Gs corresponding to all systems considered in Fig. 2, where Gs is rendered non-dimensional by 
normalization with Ef (Ef is identical for all models). Fig. 6b shows the same data after normalization of Gs with fc /l2c . The equivalent 
data for the systems of different w shown in Fig. 4 is presented in Fig. 6c and d. 

The specific energy release rate increases initially and remains approximately constant for the most part of the regime in which 
crosslinks rupture gradually (diffuse damage accumulation). The values of Gs in the various systems considered is very different, 
particularly when both w and fc are varied. However, the normalization of Gs with fc/l2c leads to the collapse of the curves, Fig. 6b and d. 
Therefore, it is possible to infer that Gs ∼ fc/l2c ∼ UTS, where the second relation is based on the data in Fig. 3. In the case of the brittle 
system with w = − 0.82, Gs corresponding to the last increments when the structure fails (not shown in Fig. 6c) is orders of magnitude 
larger than the specific energy release rate recorded before catastrophic failure. 

As in fracture mechanics, one may consider that gradual rupture takes place when the energy release rate becomes equal to the 

Fig. 6. Variation of the specific energy release rate Gs
c during deformation of networks with ((a) and (b)) w = −3.84 and various values of the 

normalized crosslink strength, fc/Ef d2, considered in Fig. 2, and ((c) and (d)) networks with w = − 3.84, −2.84 and −0.82 considered in Fig. 4. (a) 
and (c) show Gs

c normalized by Ef (Ef is identical for all systems considered), while (b) and (d) show Gs
c normalized by fc/l2c . The points represent 

values obtained with one realization, the shades show the range of fluctuations and the lines show the means. The vertical arrows indicate the 
position of peak stress. 
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network toughness, G = Gc, which is taken as a material property. One infers that the values shown in Fig. 6 are actually Gs
c and then 

the network toughness scales linearly with UTS, i.e. 

Gs
c ∼

fc

l2
c
∼ UTS ∼ ρbfc(ζlc) (4) 

The length parameter required by dimensional considerations in Eq. (4), ζlc, is expressed in units of lc. The coefficient of pro
portionality in the relation Gs

c ∼ fc/l2c that results from Fig. 6b and d is approximately 0.03. With the data in Fig. 3, this implies that 
Gs

c ≈ UTS/3 for the present networks. 
It is of interest to compare Eq. (4) with the Lake-Thomas theory which relates the fracture toughness of molecular networks to the 

network parameters. As indicated in the Introduction, the Lake-Thomas model applies to the growth of cracks and provides the energy 
required to rupture the molecular strands penetrating the crack plane. If a force fc is required to rupture a strand or a crosslink, and the 
number density of strands penetrating any plane that cuts the solid is ρ2D

# , the toughness results GLT
c = ρ2D

# fcL∗, where the length L∗ is 
required for dimensional consistency. The number density ρ2D

# may be written in terms of the crosslink density ρb by considering that 
the number density of strands in 3D is ρ3D

# = ρbz/2; then, ρ2D
# = ρ3D

# lc = ρbzlc/2. Note that when fiber segments are not straight, ρ2D
# =

ρ3D
# ξ, where ξ is the mean end-to-end distance of segments or the mesh size; in the present case ξ = lc since fiber segments are straight. 

Therefore, the Lake-Thomas energy release rate may be written as: 

GLT
c ∼ ρbzfclcL∗ (5) 

L∗ is a parameter which is typically fitted to the experimental data. However, it may be attributed a physical meaning. In order to 
develop in a molecular strand the rupture force, fc, it is necessary to stretch the strand tight. The length L∗ may be thought of as being 
the difference between the contour length of the strand and its end-to-end length in the undeformed configuration. This situation is 
contrasted with the physical picture underlying Griffith’s theory, case in which relative displacements of the order of the interatomic 
spacing need to be applied to separate atoms on the two sides of a crack. Clearly, the work performed to create the unit area of crack 
surface is much larger in the molecular network than in the brittle solid case since L∗ is much larger than the interatomic spacing. 

Eq. (4) has the same structure with the Lake-Thomas equation, Eq. (5). As indicated above, since no pre-existing crack exists in the 
present case, the units of the critical specific energy release rate Gs

c are J/m3, while the energy release rate associated with the growth 
of a crack, GLT

c , has units of J/m2. Other than this difference which emerges from the definition of the two quantities, the two ex
pressions are identical. The present results extend the Lake-Thomas theory to athermal networks and to materials without pre-existing 
cracks in which the network ruptures gradually. 

We note that the observation that the network ruptures at constant Gs applies in the regime in which damage accumulates 
gradually. When damage localizes and a major crack forms, Gs defined here increases abruptly and the energy release rate used in 
fracture mechanics should be used. 

Other dissipation mechanisms not considered in this work may contribute to the material toughness, and may even become 
dominant, in some network materials. Inter-filament friction produces dissipation and rate effects in polymeric networks. Friction of 
nanofibers may be considered viscous, (Das and Chastiotis, 2020) while friction between filaments of diameter larger than micron (e.g. 
in nonwovens) is generally Coulombic. In either case, this mechanism is important only in networks of low free volume such as rubber, 
entangled polymeric melts and dense nonwovens. Additional dissipation mechanisms may be activated if the network is embedded in a 
viscoelastic or viscoplastic matrix, as is the case with most biological tissue. 

4. Conclusions 

This study focuses on the rupture of stochastic network materials in the regime in which damage accumulates gradually leading to 
material softening. Crosslinks fail both before and after peak stress at rates that reach maximum values at the peak stress. The energy 
released per crosslink failure has two components, one associated with the separation of the crosslink and the other associated with the 
release of stored strain energy; the second component is much larger than the first. It is observed that the global rate of energy release is 
constant during the regime of incremental damage accumulation, which leads to the inference of a toughness measure applicable to 
materials without pre-existing cracks. This intrinsic network toughness is proportional to the ultimate tensile strength and scales 
linearly with the crosslinks strength and inversely with the square of the mean segment length. Although the toughness measure 
proposed here is different from that commonly used in fracture mechanics, the relation derived between the present toughness and 
network parameters is similar to the Lake-Thomas model developed for thermal molecular networks and applicable to crack growth 
situations. Therefore, the present work extends the Lake-Thomas theory to cases without pre-existing cracks in which damage ac
cumulates incrementally. 
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