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Abstract

Cognitive Diagnostic Models (CDMs) are discrete latent variable models popular
in educational and psychological measurement. In this work, motivated by the advan-
tages of deep generative modeling and by identifiability considerations, we propose a
new family of DeepCDMs, to hunt for deep discrete diagnostic information. The new
class of models enjoys nice properties of identifiability, parsimony, and interpretability.
Mathematically, DeepCDMs are entirely identifiable, including even fully exploratory
settings and allowing to uniquely identify the parameters and discrete loading struc-
tures (the “Q-matrics”) at all different depths in the generative model. Statistically,
DeepCDMs are parsimonious, because they can use a relatively small number of pa-
rameters to expressively model data thanks to the depth. Practically, DeepCDMs are
interpretable, because the shrinking-ladder-shaped deep architecture can capture cogni-
tive concepts and provide multi-granularity skill diagnoses from coarse- to fine-grained
and from high-level to detailed. For identifiability, we establish transparent identifia-
bility conditions for various DeepCDMs. Our conditions impose intuitive constraints
on the structures of the multiple Q-matrices, and inspire a generative graph with in-
creasingly smaller latent layers when going deeper. For estimation and computation,
we focus on the confirmatory setting with known Q-matrices and develop Bayesian
formulations and efficient Gibbs sampling algorithms. Simulation studies and an ap-
plication to the TIMSS 2019 math assessment data demonstrate the usefulness of the
proposed methodology.

Keywords: Bayesian inference; Bayesian network; Cognitive Diagnostic Model; DeepCDM;
Deep generative model; Deep learning; Directed graphical model; Identifiability; Q-matrix.

1 Introduction

Cognitive Diagnostic Models (CDMs), or Diagnostic Classification Models (Rupp et al., 2010;

von Davier and Lee, 2019), are powerful and popular discrete latent variable models in edu-
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cational and psychological measurement. Based on subjects’ item responses, a CDM enables

fine-grained diagnostic inference on multiple discrete latent attributes. Usually, each at-

tribute is assumed to be binary and carries a specific meaning such as the mastery/deficiency

of a skill, or the presence/absence of a mental disorder. In educational settings, the diagnos-

tic feedback on the skill attributes provides details about students’ weaknesses and strengths,

and can facilitate targeted instructions. In the past two decades, CDMs have attracted in-

creasing research attention (e.g. Junker and Sijtsma, 2001; von Davier, 2008; Henson et al.,

2009; Rupp et al., 2010; de la Torre, 2011; Chen et al., 2015; von Davier and Lee, 2019).

In the early years after the inception of CDMs, they were mostly applied to settings

specifically designed for a diagnostic purpose, such as the celebrated fraction-subtraction

data first collected and analyzed by Tatsuoka (Tatsuoka, 1983). Recently, it is increasingly

attractive to gear the diagnostic modeling methodology to large-scale modern educational

assessments, such as the Trends in Mathematics and Science Study (TIMSS) or Programme

for International Student Assessment (PISA) (e.g., see von Davier, 2008; Chen and de la

Torre, 2014; George and Robitzsch, 2015; Gu and Xu, 2023). These applications create

new opportunities and also bring about new challenges. For example, in the TIMSS 2019

eighth-grade math assessment, each item measures multiple granularities of skills: Content /

Cognitive as the general ability domains, Number / Algebra / Geometry / Data and Proba-

bility as more specific skills under the Content domain, Knowing / Applying / Reasoning as

more specific skills under the Cognitive domain, etc. These large-scale complex assessments

call for new statistical and computational methods.

Reflecting on the current CDM (i.e., diagnostic modeling) literature, many studies adopt

the saturated model for the latent attributes, in which every configuration of the attributes

has a separate proportion parameter (e.g., Chen et al., 2015; Xu and Zhang, 2016; Chen et al.,

2018; Xu and Shang, 2018; Fang et al., 2019; Gu and Xu, 2019; Chen et al., 2020; Balamuta

and Culpepper, 2022). Though being fully flexible, the saturated attribute model is not

parsimonious, because it requires exponentially many parameters to describe the attribute

distribution (2K − 1 ones for K binary attributes). This lack of parsimony makes applying

CDMs to modern high-dimensional-attribute settings very challenging, both statistically and

computationally. There exist a few important exceptions to the saturated modeling practice,
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including the log-linear attribute model in Xu and von Davier (2008), the higher-order IRT-

based model in de la Torre and Douglas (2004), and the multivariate probit model with one

continuous factor in Templin et al. (2008). These models either include parameters that

are not straightforward to interpret (log-linear parameters in Xu and von Davier, 2008), or

employ only a small number of continuous latent variables to model the attributes (de la

Torre and Douglas, 2004; Templin et al., 2008).

The questions motivating this work are: Is there an even more flexible, yet still parsimo-

nious and interpretable way, to model the high-dimensional latent attributes? Is it possible

to fully retain the power and goal of diagnostic modeling, and provide discrete diagnoses

in multiple latent granularities (as desired in the aforementioned TIMSS application)? Is

it possible to establish identifiability guarantees for such models with complex latent struc-

tures? To address these questions, we propose a deep generative modeling framework for

cognitive diagnosis, which features multiple, potentially deep, entirely discrete latent lay-

ers. We name the new family of models Deep Cognitive Diagnostic Models (DeepCDMs),

to reflect that they can serve as tools to hunt for deep diagnostic information. DeepCDMs

enjoy several desirable properties simultaneously: parsimony and richness, interpretability,

and identifiability. We elaborate on these advantages in the following.

First, DeepCDMs are statistically parsimonious yet have rich representational power. On

the one hand, the parsimony comes from that a DeepCDM avoid the exponential complexity

of parameters in the saturated attribute model. In fact, a DeepCDM requires only a quadratic

or even linear number of parameters with respect to the number of latent variables. Such a

reduction of parameter complexity does not come at the cost of a less suitable model. On

the contrary, our model is well-motivated by the fact that the fine-grained latent attributes

often have structured dependence on each other due to some hidden mechanisms, for which

the deep architecture is well-suited to model. Indeed, the TIMSS assessment in which each

item targets multiple skill granularities provides practical evidence for this argument. On

the other hand, introducing multiple, potentially deep, latent layers can greatly enhance the

expressive and representational power of a model, as widely recognized in the deep learning

community (Bengio et al., 2013; Goodfellow et al., 2016; Ranganath et al., 2015).

Second, DeepCDMs are mathematically identifiable under intuitive conditions on the
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deep generative structure. Identifiability means that the parameters can be uniquely deter-

mined from the observed distribution. It is a highly desirable property and a prerequisite

for valid statistical estimation. Recently, there have been an emerging literature addressing

the identifiability issues of CDMs (Xu and Zhang, 2016; Xu, 2017; Culpepper, 2019b; Fang

et al., 2019; Chen et al., 2020; Gu and Xu, 2019, 2020). However, all of these works focus

on the saturated attribute model. It is unknown what conditions can ensure identifiability

when higher order latent structures are present in a CDM. We establish identifiability for

various DeepCDMs with an arbitrary number of latent layers. Our identifiability conditions

impose intuitive constraints on the between-layer graph structures captured by multiple “Q-

matrices”. These conditions directly inform how to design a DeepCDM – a ladder/pyramid

shaped sparse graphical model, with the observed item responses occupying the bottom

layer, and increasingly smaller sizes of latent layers when going deeper (see Figure 1).

Third, DeepCDMs are practically interpretable. The shrinking-ladder-shaped probabilis-

tic graphical model can capture cognitive concepts and provide diagnostics from coarse- to

fine-grained, and from high-level to detailed. In a DeepCDM, when climbing up the ladder

and going deeper, concepts become increasingly abstract and general, capturing the big pic-

ture of knowledge; when stepping down the ladder and going shallower, concepts become

increasingly concrete and specific, capturing the fine-grained details of knowledge. Therefore,

the proposed DeepCDM framework can characterize a complete picture of one’s knowledge

structure and provide diagnostic feedback in multiple different resolutions, with each layer

offering one particular resolution. Such diagnostic information can facilitate more effective

multi-resolution interventions than traditional CDMs with a saturated attribute model.

In summary, this paper makes the following contributions in theory, methodology, and

computation. First, we introduce a deep generative modeling framework for cognitive di-

agnosis for the first time, and propose a general class of interpretable and parsimonious

DeepCDMs. Second, we develop identifiability theory for various DeepCDMs, applicable

to both confirmatory and fully exploratory settings. Our identifiability conditions provide

insights into what deep generative graph one can fundamentally uncover in a DeepCDM: a

shrinking latent ladder when going deeper. Third, we propose Bayesian formulations and

Gibbs sampling algorithms for various DeepCDMs. In this initial paper, our Bayesian infer-
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ence methods are developed for the confirmatory setting with known and fixed Q-matrices.

Our algorithms enforce certain monotonicity constraints on parameters and produce inter-

pretable estimation results.

The rest of this paper is organized as follows. Section 2 reviews existing modeling ap-

proaches, proposes the general DeepCDM framework, and gives various specific examples.

Section 3 proposes transparent identifiability conditions for various DeepCDMs and discusses

their practical implications. Section 4 develops the Bayesian formulations of various Deep-

CDMs and their corresponding Gibbs sampling algorithms. Section 5 conducts simulations

studies that corroborate the identifiability theory and demonstrate the performance of the

proposed algorithms. Section 6 applies the DeepCDM methodology to data extracted from

the TIMSS 2019 math assessment. Finally, Section 7 provides concluding remarks. The

proofs of theorems and Gibbs sampling details are included in the Supplementary Material.

2 Deep Discrete Latent Variable Modeling for Diag-

nostic Purposes

2.1 Existing Approaches to Latent Attribute Modeling

A traditional CDM consists of two parts in the model: the measurement part and the la-

tent part. The measurement part describes how the observed responses measure the latent

attributes, and is closely related to the concept of theQ-matrix (Tatsuoka, 1983). Various di-

agnostic goals have led to different specific measurement models, including the Deterministic

Input Noisy output “And” gate model (DINA; Junker and Sijtsma, 2001), the Deterministic

Input Noisy output “Or” gate model (DINO; Templin and Henson, 2006), the main-effect

diagnostic models (DiBello et al., 1995; Maris, 1999; de la Torre, 2011), and the all-effect

general diagnostic models (von Davier, 2008; Henson et al., 2009; de la Torre, 2011). We

defer introducing the details of these measurement models to Section 2.3. Next, we briefly

review existing models for the latent part in a CDM; that is, models for the latent attributes.

We focus on the the commonly considered case of binary attributes. Denote the ith

subject’s latent attribute profile by Ai = (Ai,1, . . . , Ai,K), then each Ai takes one of the
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|{0, 1}K | = 2K possible configurations. In the current literature of CDMs, the most widely

used model for the latent attributes is the saturated model (Chen et al., 2015; Xu and

Zhang, 2016; Chen et al., 2018; Fang et al., 2019; Gu and Xu, 2019; Chen et al., 2020), which

assumes that each binary pattern α ∈ {0, 1}K has its separate proportion parameter pα with

P(Ai = α) = pα. These proportion parameters satisfy that pα ≥ 0 and
∑

α∈{0,1}K pα = 1.

Though being fully flexible and general, the saturated attribute model is not parsimonious,

because it requires 2K proportion parameters in π, an exponential parameter complexity.

There exist two important approaches for modeling the binary attributes through a

higher-order model. One approach is the higher-order latent trait model (HO-CDM) pro-

posed by de la Torre and Douglas (2004), which uses one or more continuous latent variables

to explain the binary attributes through an IRT-type model. In the unidimensional case,

each student is assumed to have a higher-order continuous ability θi, conditioned on which

the attributes Ai1, . . . , AiK are independently generated through a Rasch, 1PL, or 2PL model

(also see the GDINA R package and Ma and de la Torre, 2020). See more discussions on the

connections and differences between the HO-CDM and DeepCDMs in Section 5. Another

approach proposed by Templin et al. (2008) employs the multivariate probit model with a

one-dimensional continuous factor. This approach assumes that each binary attribute Ai,k

is obtained via dichotomizing a Normal random variable ηi,k by a cut-off point, and the K

Normal variables (ηi,1, . . . , ηi,K) are generated via a factor analysis model. Both of these two

approaches use a small number of continuous latent variables to model the binary attributes.

Other than the higher-order latent variable models, the independence model and the

log-linear model have also been considered for modeling the attributes (Maris, 1999; Xu and

von Davier, 2008). The independence attribute model is often overly simplistic in practice.

The log-linear model in Xu and von Davier (2008) is flexible, but employs parameters that

are not straightforward to interpret. Another different model for the latent attributes is

the attribute hierarchy method (AHM; Gierl et al., 2007; Templin and Bradshaw, 2014).

The AHM assumes that the mastery of certain skill attributes is a prerequisite for that of

others. As pointed out by Rupp et al. (2010), the existing AHMs are pattern classification

approaches rather than probabilistic measurement models.
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2.2 The New DeepCDM Framework

Motivated by the appeal to perform diagnostic modeling at multiple granularities, we propose

the deep cognitive diagnostic modeling framework. We adopt the probabilistic graphical

model (Wainwright et al., 2008; Koller and Friedman, 2009) terminology, specifically, a

directed graphical model, to rigorously define a DeepCDM. Graphical models use a graph as

the basis for compactly encoding a complex joint distribution of high-dimensional random

variables. In the graphical representation, the nodes correspond to the random variables,

and the edges correspond to direct probabilistic interactions between them.

A general Directed Acyclic Graph (DAG; also called a Bayesian network as in Pearl

(1988)), is defined as follows. In a DAG, every edge has a direction, and there are no

directed cycles. DAGs are well-suited to model the generative mechanism and causal relations

involving latent variables; see the book Almond et al. (2015) for using Bayesian networks in

educational assessment. Consider M random variables X1, . . . , XM as M nodes in a DAG. If

there is a directed edge from X` to Xm, then X` is said to be a parent of Xm and Xm a child

of X`. Let pa(m) ⊆ {1, . . . ,M} be the set of indices of all parents of Xm. Then according

to the general definition of a DAG, the joint distribution of the X1, . . . , XM factorizes as:

P(X1, . . . , XM) =
M∏

m=1

P(Xm | Xpa(m)), (1)

where P(Xm | Xpa(m)) is the conditional distribution of Xm given its parent variables Xpa(m).

The graph structure of a DAG encodes rich conditional dependence and independence rela-

tions among the node variables, as can be checked by examining (1). If a DAG consists of

latent variables, then these latent variables need to be marginalized out in the joint distri-

bution (1) in order to obtain the marginal distribution of the observed variables.

We next introduce the formulation and notation of a general DeepCDM. At the bottom

layer of a DeepCDM are the observed response variables to the J items, R = (R1, . . . , RJ).

The first (i.e., shallowest) latent layer adjacent to the bottom layer collects the most fine-

grained latent attributes, A(1) = (A
(1)
1 , . . . , A

(1)
K1
). Note that a CDM with a saturated at-

tribute model stops here and assumes the K1 attributes can be arbitrarily dependent on each
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other. In contrast, we model the generating mechanism of the attributes through deeper la-

tent layers. In a D-latent-layer DeepCDM, denote the dth latent layer (counting from the

bottom) by A(d) = (A
(d)
1 , . . . , A

(d)
Kd

) for each d = 1, 2, . . . , D. All edges in a DeepCDM are

pointing in the top-down direction, only potentially between two adjacent layers. See Figure

1 for an example of a DeepCDM with D = 3. The definition in (1) also implies that all the

variables in any specific layer of a DeepCDM are conditionally independent given the vari-

ables in the above layer. Such a graphical model intuitively describes how the more specific

latent skills are successively generated by the more general higher-level latent “meta-skills”.

To fully realize the diagnostic goal, a DeepCDM assumes all latent variables to be discrete.

Later, our identifiability theory will reveal that there should be smaller and smaller latent

layers when going deeper; that is, K1 > K2 > · · · > KD, another intuitive constraint.

A
(3)
1

· · · A
(3)
K3

A
(2)
1 A

(2)
2

· · · · · · A
(2)
K2

· · · · · ·

· · ·

A
(1)
1 A

(1)
2

· · · · · · · · · · · · · · · A
(1)
K1

R1 R2 · · · · · · · · · · · · · · · · · · · · · · · · · · · RJ

· · · · · · · · · · · · · · ·
Q(1) : J ×K1

Q(2) : K1 ×K2

Q(3) : K2 ×K3

Figure 1: A ladder-shaped three-latent-layer DeepCDM. Gray nodes are observed variables,
and white nodes are latent ones. Multiple layers of binary latent variables A(1), A(2), and
A(3) successively generate the observed binary responses R. Binary matrices Q(1), Q(2), and
Q(3) encode the sparse connection patterns between adjacent layers in the graph.

A key feature of a DeepCDM is the multiple “Q-matrices” at different depths of the

graphical model, as in Figure 1. In traditional cognitive diagnosis, the Q-matrix (Tatsuoka,

1983) is an important object that describes how the items measure the latent attributes.

For example, if J items are designed to measure K latent attributes, then the Q-matrix

Q = (qj,k) has size J × K, in which qj,k = 1 or 0 indicates whether or not the jth item

measures (i.e., directly depends on) the kth latent attribute. Recall that the edges in a

graphical model exactly captures the direct dependence between variables, so qj,k = 1 or
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0 also reflects whether or not the kth latent node is a parent of the jth observed node in

the graph. In other words, the traditional Q-matrix summarize the sparse bipartite graph

pattern between the latent attribute layer and the observed layer. This graphical perspective

implies that a DeepCDM with D latent layers should require D matrices, Q(1), Q(2), . . .,

Q(D), to summarize the graph structure. In particular, Q(1) =
(
q
(1)
j,k

)
has size J ×K1 and

resembles the traditional Q-matrix; whereas for each d = 2, . . . , D, the Kd−1 × Kd matrix

Q(d) =
(
q
(d)
k,`

)
is similar in spirit to Q(1), but describes how the variables in the (d − 1)th

latent layer depend on those in the layer above, the dth latent layer. Graphically, the entry

q
(d)
k,` = 1 or 0 indicates whether or not latent variable A

(d)
` is a parent of latent variable

A
(d−1)
k . In this work, we will focus on developing estimation methods for the confirmatory

DeepCDMs, where the Q-matrices are assumed to be fixed and known.

According to the general definition of DAGs in (1) and the DeepCDM setting specified

in the last paragraph, the joint distribution of all the variables, including the latent ones, is

P(R,A(1), . . . ,A(D)) = P(R | A(1),Q(1)) ·
D∏

d=2

P(A(d−1) | A(d),Q(d)) · P(A(D)); (2)

where P(R = r | A(1),Q(1)) =
J∏

j=1

PCDM(Rj = rj | A
(1), Q(1)), and (3)

P(A(d−1) = α(d−1) | A(d),Q(d)) =

Kd−1∏

k=1

PCDM(A
(d−1)
k = α

(d−1)
k | A(d), Q(d)), (4)

where we make explicit how the different Q-matrices appear in different factors in the joint

distribution. The generic superscript “CDM” in the conditional distributions in (3) and (4)

means that the conditional distribution conforms to a Cognitive Diagnostic Model, in each

layer of the potentially deep generative process. Marginalizing out all the latent variables

A(1), . . . ,A(D) in (2) gives the marginal distribution of the observed response vector R:

P(R = r) =
∑

α
(1)

· · ·
∑

α
(D)

P(R = r,A(1) = α(1), . . . ,A(D) = α(D)), (5)

where r is an observed response pattern, and α(d) is a latent pattern for the dth latent

layer. This work focuses on binary observed and latent variables with r ∈ {0, 1}J and
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α(d) ∈ {0, 1}Kd , where each observed variable denotes the correct/wrong response and each

latent variable denotes the presence/absence of a skill or a meta-skill.

We model the latent variables A(D) in the deepest latent layer of a DeepCDM using a

categorical distribution, similar to traditional CDMs. Specifically, we allow for two possible

generating mechanisms for A(D) and A(D−1) | A(D): the pyramid mechanism and the ladder

mechanism. In the pyramid case, A(D−1) follows a latent class model (Goodman, 1974) with

A(D) serving as the latent class variable; in this case KD = 1 and A(D) ranges in {1, . . . , B}

for some integer B. In the ladder case, A(D−1) follows yet another CDM with A(D) serving as

the highest order latent traits; in this case KD > 1 and A(D) ∈ {0, 1}KD . Both mechanisms

still use fully discrete latent variables and their corresponding distributions are:

P(A(D) = α) =




πladder
α

, ∀α ∈ {0, 1}KD , in a ladder-shaped DeepCDM;

πpyramid
α

, ∀α ∈ {1, . . . , B}, in a pyramid-shaped DeepCDM.

(6)

The proportion parameters satisfy
∑

α∈{0,1}KD πladder
α

= 1 or
∑B

b=1 π
pyramid
b = 1. Now we have

completed specifying a general DeepCDM.

It is worth noting that in the literature of factor analysis of continuous data, hierarchical

factor models (Schmid and Leiman, 1957) or higher-order factor models (Yung et al., 1999)

are important and popular models that also contain multiple layers of factors. These models

belong to the family of using continuous linear latent factors to model continuous responses,

in which the statistical dependence among variables can be just summarized as covariance

or correlation matrices. By contrast, the proposed DeepCDMs are a family of higher-order

discrete latent variable models for discrete data. DeepCDMs can model various nonlinear

and non-additive relationships among variables, e.g., DeepDINA with the interaction term

of higher-order attributes and DeepLLM with the logistic link. These complex dependen-

cies cannot be simply summarized by covariance or correlation matrices as in hierarchical

continuous linear factor models in Schmid and Leiman (1957) and Yung et al. (1999).
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2.3 Specific Examples of DeepCDMs

This subsection provides various specific examples of DeepCDMs under the general frame-

work put forth in Section 2.2. Recall Equation (2) states that the joint distribution of

all variables factorizes into the product of layerwise conditional distributions. As the su-

perscript “CDM” in the conditional distributions in (3)–(4) implies, each conditional dis-

tribution conforms to a CDM. With a slight abuse of notation, we next also write the

observed layer R as A(0), so that all of the layerwise conditionals can be written uniformly

as P(A(d−1) | A(d),Q(d)), for d = 1, . . . , D. In the following, we define specific DeepCDMs

based on which diagnostic model the layerwise conditionals follow.

Example 1 (DeepDINA). The DINA model proposed by Junker and Sijtsma (2001) is a

popular and fundamental model that adopts the conjunctive assumption. DINA assumes

that students are expected to answer an item correctly only when they possess all required

attributes of the item (i.e., the item’s parent attributes in the graphical model). Our Deep-

DINA model adopts the conjunctive assumption for each layer ’s conditional distribution. In

particular, the conditional distribution of A
(d−1)
j given its parent variables is

PDINA(A
(d−1)
j = 1 | A(d) = α, Q(d), c(d), g(d))

= (1− s
(d)
j ) · 1

(
α � q

(d)
j

)
+ g

(d)
j · 1

(
α � q

(d)
j

)
(7)

where the notation “�” means “elementwisely greater than or equal to”, and “�” means oth-

erwise. The 1(·) denotes a binary indicator function. The parameters s(d) = (s
(d)
1 , . . . , s

(d)
Kd−1

)

and g(d) = (g
(d)
1 , . . . , g

(d)
Kd−1

) can be thought of as “quasi” slipping and guessing parameters,

respectively. The interpretation of DeepDINA in an educational context is that, students

are expected to master a skill (or a meta-skill) only when they possess all its higher-order

parent skills in the probabilistic graphical model. Similar to Junker and Sijtsma (2001), we

assume g
(d)
j < 1 − s

(d)
j for each j and d. This constraint can be interpreted as: comparing

the subjects who master all the parent skills of an attribute A
(d−1)
j and the subjects who do

not, the former ones have higher probability of mastering this skill A
(d−1)
j itself.

The interpretation of DeepDINA in Example 1 that students are expected to master a
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skill when possessing all its higher-order parent skills may appear similar to the attribute

hierarchy method (AHM; Gierl et al., 2007; Templin and Bradshaw, 2014). However, we

point out that the AHM and DeepCDMs are not directly comparable, because the former

assumes that the attributes can be directly connected to items whereas the latter assume

high-order latent structures organized in multiple layers. Another modeling difference is that

DeepDINA does not impose hard constraints on which attribute patterns are permissible as

in AHMs. The quasi-guessing parameters g(d) in DeepDINA the probabilities that a student

masters lower-level skills even when lacking their parent meta-skills.

Example 2 (DeepDINO). The DINO model proposed by Templin and Henson (2006) adopts

a disjunctive assumption and assumes that subjects are expected to provide a positive re-

sponse to an item as long as they possess at least one parent attribute. The DeepDINO

model adopts the layerwise disjunctive assumption and has the following conditional:

PDINO(A
(d−1)
j = 1 | A(d) = α, Q(d), c(d), g(d)) (8)

= (1− s
(d)
j ) · 1

(
αk = 1 for some k for which q

(d)
j,k = 1

)

+ g
(d)
j · 1

(
αk = 0 for all k for which q

(d)
j,k = 1

)
.

As DINO is often applied to psychiatric diagnosis, the new DeepDINO can also be interpreted

in this context as follows: patients are expected to exhibit a symptom (or meta-symptom)

as long as they possess one of its higher-level “parent” symptoms or mental disorders.

Example 3 (Main-effect DeepCDMs). We use “Main-effect DeepCDMs” to generically re-

fer to DeepCDMs in which the layerwise conditionals follow a main-effect diagnostic model.

Specifically, a main-effect diagnostic model assumes that the probability of A
(d−1)
j = 1 de-

pends on the main effects of those parent attributes through a link function f(·):

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(
β
(d)
j,0 +

∑Kd

k=1
β
(d)
j,k

{
q
(d)
j,kαk

})
. (9)

Note that not all the β
(d)
j,k in the above equation are needed in the model specification. Only

if q
(d)
j,k = 1 will the corresponding β

(d)
j,k be incorporated in the model. When the link function

f is the identity, (9) gives the Additive Cognitive Diagnosis Model (ACDM; de la Torre,
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2011); when f is the inverse logit function, (9) gives the Logistic Linear Model (LLM; Maris,

1999); yet another parametrization of (9) gives rise to the Reduced Reparameterized Unified

Model (R-RUM; DiBello et al., 1995).

Example 4 (All-effect DeepCDMs). We use “All-effect DeepCDMs” to refer to DeepCDMs

in which the layerwise conditionals follow an all-effect diagnostic model. An all-effect diag-

nostic model assumes that the probability of A
(d−1)
j = 1 depends on all of the possible main

effects and interaction effects of the parent attributes:

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(
β
(d)
j,0 +

∑Kd

k=1
β
(d)
j,k

{
q
(d)
j,kαk

}
(10)

+
∑

1≤k1<k2≤Kd

β
(d)
j,k1k2

{
q
(d)
j,k1

αk1

}{
q
(d)
j,k2

αk2

}
+ · · ·+ β

(d)
j,12···Kd

∏Kd

k=1

{
q
(d)
j,kαk

})
.

Similar to Example (3), not all the β-coefficients in the above equation are needed to specify

the model. In particular, if q
(d)
j contains Kj ones, then 2Kj parameters are needed in (10).

When the link function f is the identity, (9) gives the Generalized DINA model (GDINA; de

la Torre, 2011); when f is the inverse logit, (9) gives the Log-linear CDM (LCDM; Henson

et al., 2009); see the General Diagnostic Model (GDM) framework in von Davier (2008).

The parameters c(d) and g(d), d = 1, . . . , D in Examples 1–2 and β(d), d = 1, . . . , D in

Examples 3–4 are continuous parameters that help specify the conditional distribution of

the binary variables in a DeepCDM. When d = 1, these parameters just resemble the item

parameters in a traditional CDM. In a DeepDINA or DeepDINO, the number of continuous

parameters required to model the latent attributes is 2
∑D−1

d=1 Kd+2KD − 1, while in a main-

effect DeepCDM, this number is at most
∑D−1

d=1 Kd(Kd+1 + 1) + 2KD − 1. We will discuss

more about the remarkable reduction of parameter complexity in a DeepCDM in the end of

Section 3, after our identifiability conditions imply upper bounds for K1, . . . , KD.

We emphasize that the most flexible feature of the DeepCDM framework is that, differ-

ent diagnostic models (including DINA, DINO, main-effect, and all-effect) can be flexibly

combined in different layers of a DeepCDM. For example, in some practical applications, it

may be desirable to adopt the most general all-effect diagnostic model for the bottom data

layer for its flexibility in modeling the effects of the fine-grained attributes, whereas adopt
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the simpler main-effect or DINA model in the deeper latent layers for their parsimony and

interpretability. We call such DeepCDMs the Hybrid DeepCDMs. Hybrid DeepCDMs allow

to balance the expressivity and parsimony of a model, and offer a wide range of possibilities

to construct a specific diagnostic model based on substantive considerations.

The proposed DeepCDMs cover the latent tree models (Mourad et al., 2013) as a special

case. In a latent tree model, each variable has at most one parent in a tree graph; whereas a

DeepCDM allows for a general DAG, in which each variable can have multiple parents (e.g.,

variable A
(1)
2 in Figure 1). In terms of the generative model, a pyramid-shaped DeepCDM

is closely related to the Bayesian Pyramid proposed in Gu and Dunson (2023) and can be

viewed as the latter adapted for diagnostic modeling goals. While the Bayesian Pyramid was

implemented under the main-effect model and applied to extract genetic latent traits from

DNA nucleotide sequences (Gu and Dunson, 2023), the DeepCDM framework is motivated

by the need to hunt for deep diagnostic information and provides useful psychometric tools to

this end. To better serve this goal, we develop a suite of methods and algorithms applicable

to various layerwise diagnostic modeling assumptions; see Section 4 for details.

3 Identifiability Theory of DeepCDMs

Recently, there has been an emerging literature addressing the identifiability issues of CDMs

(Xu and Zhang, 2016; Xu, 2017; Culpepper, 2019b; Fang et al., 2019; Chen et al., 2020;

Gu and Xu, 2019, 2020, 2021). However, all of the above works focus on the saturated

attribute model. The only exception in the CDM literature is Gu and Xu (2022), which

establishes identifiability of hierarchical CDMs under attribute hierarchies; but as aforemen-

tioned, a CDM with an attribute hierarchy is a not a fully probabilistic measurement model,

so their corresponding identifiability conditions do not apply to DeepCDMs. In this section,

we propose transparent identifiability conditions for various DeepCDMs. In the most gen-

eral exploratory model settings, our theory guarantees the identifiability of all Q-matrices

Q(1), . . . ,Q(D) and all continuous parameters in the model. When the Q-matrices are known

as in the confirmatory settings, all of our identifiability conclusions still directly apply.
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3.1 Sharp Strict Identifiability Result for DeepDINA

DINA is one of the most basic and popular models in cognitive diagnosis. We establish

sharp necessary and sufficient conditions for identifying the exploratory DeepDINA. Here

“exploratory” means that the Q-matrices Q(1), . . . ,Q(D) are not assumed to be known and

fixed. Such an identifiability notion will be the most flexible and useful one in practice;

see identifiability results for exploratory diagnostic models with a saturated attribute model

in Chen et al. (2015), Xu and Shang (2018), Culpepper (2019b), Chen et al. (2020), and

Gu and Xu (2021). Denote the parameter space for the deep proportion parameters πdeep

by ∆2KD−1 = {πdeep
α`

:
∑2KD−1

`=1 πdeep
α`

= 1, πdeep
α`

> 0}; throughout this work, we assume

πdeep
α`

> 0 holds for every deep latent pattern α` ∈ {0, 1}KD . This is a common assumption

also adopted for single-latent-layer CDMs. We next define the strict identifiability.

Definition 1 (Strict Identifiability). An exploratory DeepCDM model is said to be strictly

identifiable, if the distribution of the observed vector R in (5) uniquely determines all of the

following: all continuous parameters in the layerwise conditional distributions, the deepest

proportion parameters πDeep, and all Q-matrices at different depths Q(1), . . . ,Q(D), up to

some column/row permutation.

The identifiability notion in Definition 1 that each Q-matrix is identifiable up to some

column/row permutation is a trivial and inevitable phenomenon when there exist multiple

latent variables; see Chen et al. (2015) and Xu and Shang (2018).

Next, we summarize the existing necessary and sufficient identifiability conditions for the

traditional DINA model with a saturated attribute model. These conditions will also play

important roles in the identifiability of DeepDINA. Specifically, the following conditions (C),

(R), and (D) are known to be necessary and sufficient for strict identifiability of DINA, both

in the confirmatory case with a known Q-matrix (Gu and Xu, 2019) and in the exploratory

case with an unknown Q-matrix (Gu and Xu, 2021):

(C) Completeness. A Q-matrix with K columns contains an identity submatrix IK after

some row permutation. That is, the Q can be row-permuted to be Q = [IK , (Q
∗)>]>.

(R) Repeated-Measurement. Each of the K attributes is measured by at least three items.
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(D) Distinctness. Assuming Condition (C) holds, after removing the identity submatrix

IK from Q, the remaining submatrix Q∗ contains K distinct column vectors.

We will call the above three conditions the C-R-D conditions for short. Our next theorem

establishes sharp identifiability result for the exploratory DeepDINA with an arbitrary depth

D, by providing the necessary and sufficient conditions on the multiple Q-matrices.

Theorem 1 (DeepDINA). Consider a ladder-shaped exploratory DeepDINA model with D

latent layers and D between-layer Q-matrices Q(1), . . . ,Q(D). The model is strictly identifi-

able if and only if each Q(d), d = 1, . . . , D, satisfies the C-R-D conditions.

The conditions in Theorem 1 are also necessary and sufficient for identifying the Deep-

DINO model introduced in Example 2, because of the duality between DINA and DINO

(Chen et al., 2015). The sharp identifiability conditions in Theorem 1 put transparent con-

straints on the Q-matrices, and equivalently, transparent constraints on the between-layer

graphical structures. In a graphical model, define Xm to be an exclusive child of X` if the

former has the latter has its only parent. The deep C-R-D conditions in Theorem 1 can

be translated into graphical language as follows: each latent variable in the deep graphical

model should have at least one exclusive child (Condition (C)) and at least three children

in total (not necessarily all exclusive; Condition (R)) in the layer below; and after removing

one exclusive child for each latent variable, the remaining sets of children of the Kd latent

variables in the dth latent layer should be mutually distinct (Condition (D)) for d = 1, . . . , D.

The following Example 5 illustrates the theoretical result in Theorem 1.

Example 5. Consider a DeepDINA model with D = 2, and two Q-matrices Q(1), Q(2):

Q(1) =




I5
0 0 0 0 1
1 1 0 1 0
1 0 1 1 0
0 1 1 1 1




9×5

, Q(2) =




1 0
0 1
1 0
0 1
1 1




5×2

.

It is easy to verify that both Q(1) and Q(2) satisfy the C-R-D conditions. Therefore, a ladder-

shaped DeepDINA model with J = 9 observed response variables, K1 = 5 finest-grained latent

attributes, and K2 = 2 meta latent attributes in the deepest layer, is strictly identifiable. The
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identifiable quantities include Q-matrices Q(1), Q(2), deepest proportion parameters π
deep
4×1 ,

(quasi-)slipping and guessing parameters at both layers (s
(1)
9×1, g

(1)
9×1) and (s

(2)
5×1, g

(2)
5×1).

As can be seen from the toy example in Example 5, we have J > K1 > K2 under the

identifiable DeepDINA there. In general, if a Q-matrix of size J × K satisfies the C-R-

D conditions, then there is a natural constraint on how large K can be with respect to

J : J > K + dlog2(K)e (Gu and Xu, 2021). This means in an identifiable DeepDINA,

the sizes of the layers in the graphical model should satisfy J > K1 + dlog2(K1)e, and

Kd−1 > Kd + dlog2(Kd)e for d = 2, . . . , D. This suggests an increasingly shrinking ladder

architecture of the latent layers when going deeper.

3.2 Strict Identifiability Result for General DeepCDMs

This subsection provides fully general strict identifiability conditions for a arbitrary Deep-

CDM. These conditions are also applicable to Hybrid DeepCDMs introduced in Section 2.3.

From the identifiability result for DeepDINA in Theorem 1, one can see that it is those

between-layer Q-matrices that drive and deliver identifiability. In fact, this is correct intu-

ition that applies much more broadly. Next, we formalize this intuition by establishing a

general identifiability result for an arbitrary DeepCDM.

Theorem 2 (General DeepCDM). Consider an exploratory general DeepCDM with D latent

layers and D between-layer Q-matrices Q(1), . . . ,Q(D). Either Condition (S) or Condition

(S ∗) below suffices for strict identifiability of the model.

(S) Each Q(d) can be written as Q(d) = [IKd
, IKd

, IKd
, (Q(d)∗)>]> after some column/row

permutation, where Q(d)∗ is an arbitrary (Kd−1−3Kd)×Kd matrix (potentially empty).

(S ∗) This condition is the combination of both (S1 ∗) and (S2 ∗) below.

(S1 ∗) Each Q(d) can be written as Q(d) = [IKd
, IKd

, (Q(d)∗)>]> after some column/row

permutation, where Q(d)∗ is an arbitrary matrix (potentially empty).

(S2 ∗) For any two different Kd-dimensional latent patterns αc, α` ∈ {0, 1}Kd, there

exists some j > 2Kd such that P(A(d−1)
j = 1 | A(d) = αc, Q

(d), θ(d)) 6= P(A(d−1)
j =
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1 | A(d) = α`, Q(d), θ(d)), where θ(d) generically denotes continuous parameters

required to fully specify the conditional distribution.

Remark 1. Condition (S) in Theorem 2 is similar to the conditions in Theorem 4 in Gu

and Dunson (2023) for identifying the Bayesian Pyramid model there. Condition (S∗) in

Theorem 2 relaxes the requirement on Q-matrices compared to Condition (S), and impose

an additional requirement on the conditional probabilities to establish identifiability. Con-

dition (S∗) is similar to conditions (C1) and (C2) in Culpepper (2019b) imposed on the

traditional Q-matrix, which were proposed to identify an exploratory diagnostic model for

ordinal responses with a one-latent-layer saturated attribute model.

Theorem 2 is fully general, and is applicable regardless of which specific diagnostic model

each layer in a DeepCDM follows. According to the conditions in Theorem 2, the sizes of

the layers in the graphical model should satisfy J > 2K1, and Kd−1 > 2Kd for d = 2, . . . , D,

which also suggests an increasingly shrinking sparse latent ladder when going deeper.

Comparing the conditions in Theorems 1 and 2, one can see that the general sufficient

conditions for an arbitrary DeepCDM are stronger than those needed for identifying the

DeepDINA. The next proposition further guarantees that if a DeepCDM consists of a mix

of DINA-layers and main-effect/all-effect layers, then those Q-matrices corresponding to

the DINA-layers only need to satisfy the weaker C-R-D conditions, instead of the stronger

Conditions (S) or (S ∗) in Theorem 2.

Proposition 1 (Hybrid DeepCDM). Consider a Hybrid DeepCDM with D latent layers and

D between-layer Q-matrices Q(1), . . . ,Q(D). If each Q(d) satisfies the identifiability conditions

for the specific diagnostic model that A(d−1) | A(d) follows (i.e., C-R-D for DINA, (S) or

(S ∗) for main-effect or all-effect model), then the entire DeepCDM is strictly identifiable.

Proposition 1 reveals a key technical insight that our identifiability proofs leverage. That

is, identifiability of DeepCDMs can be examined and established in a layer-by-layer manner,

from the bottom up. This seemingly intuitive argument is rigorously true thanks to the

probabilistic formulation of the directed graphical model and the discreteness nature of all

the latent variables. See the proof of Theorem 1 in the Supplementary Material for details.
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3.3 Generic Identifiability of Main-effect and All-effect DeepCDMs

Strict identifiability is the strongest possible identifiability notion, requiring parameters to

be everywhere identifiable in their parameter space T . A slightly weaker notion called

generic identifiability (Allman et al., 2009), instead requires parameters to be identifiable

almost everywhere in T , allowing identifiability to fail on a measure-zero subset N of T . As

pointed out by Allman et al. (2009), generic identifiability often suffices for real data analyses

purposes and is a very useful identifiability notion in practice. In the CDM literature, Gu and

Xu (2020) and Chen et al. (2020) proposed generic identifiability conditions for variants of

CDMs with a saturated attribute model. Next, we build on the existing generic identifiability

conditions to establish generic identifiability of main-effect and all-effect DeepCDMs. We

define the main-effect-based DeepCDMs as follows.

Definition 2 (Main-effect-based DeepCDMs). A DeepCDM is said to be “main-effect-

based”, if the layerwise conditional distribution can be written as:

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(∑Kd

k=1
β
(d)
j,k

{
q
(d)
j,kαk

}
+ · · ·

)
.

where f(·) is a link function, and the “ · · · ” refers to potentially more terms such as the

interaction-effects of the αk’s and the intercept.

Note that DeepDINA and DeepDINO are not main-effect-based DeepCDMs, because they

do not contain the main-effect coefficients such as those β
(d)
j,k in Definition 2. These main-

effect coefficients are essential to generic identifiability and allow for relaxing the condition

that each Q(d) should contain a submatrix IKd
(Gu and Xu, 2020; Chen et al., 2020). We

next formally define and establish generic identifiability of main-effect-based DeepCDMs.

Definition 3. Define the allowable constrained parameter space for β(d) in Definition 2

under the binary matrix Q(d) as

Ωmain(β
(d); Q(d)) = {β(d)

j,k 6= 0 if q
(d)
j,k = 1; and β

(d)
j,k = 0 if q

(d)
j,k = 0}. (11)

The continuous parameters and the Q-matrices are said to be generically identifiable if the
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set of unidentifiable continuous parameters has measure zero with respect to the Lebesgue

measure on their parameter space ∪D
d=1Ωmain(β

(d); Q(d)) ∪∆2KD−1.

Theorem 3. Consider a main-effect-based DeepCDM. Suppose each Q(d) can be written as

Q(d) = [(Q
(d)
1 )>, (Q

(d)
2 )>, (Q(d)∗)>]> after some column/row permutation and satisfies the

following conditions. Then the main-effect-based DeepCDM is generically identifiable.

(G1) Each Q
(d)
m (m = 1, 2) has size Kd ×Kd and takes the following form:

Q(d)
m =




1 ∗ · · · ∗
∗ 1 · · · ∗
...

...
. . .

...
∗ ∗ · · · 1


 , m = 1, 2; d = 1, . . . , D.

That is, Q
(d)
1 and Q

(d)
2 each has all the diagonal entries equal to one, whereas any

off-diagonal entry is free to be either one or zero.

(G2) The (Kd−1 − 2Kd) × Kd submatrix Q(d)∗ in Q(d), d = 1, . . . , D, satisfies that each

column contains at least one entry of “1”.

Theorem 3 significantly relaxes the strict identifiability conditions in Theorem 2, by not

requiring any Q(d) to contain an identity submatrix IKd
. Note that these generic identifiabil-

ity conditions in Theorem 3 also imply a shrinking latent ladder when going deeper, because

(G1) and (G2) implicitly requires J > 2K1 and Kd > 2Kd+1 for d = 1, . . . , D − 1.

The natural upper bounds on the values of K1, K2, . . . given by all of our identifiability

conditions further confirms the statistical parsimony of DeepCDMs. For example, in a two-

latent-layer DeepCDM with K1 = 7 latent variables in the shallower latent layer and K2 = 2

ones in the deeper layer (which is the scenario in the real data analysis in Section 6), the

number of parameters required by DeepLLM is
∑K1

k=1(
∑K2

`=1 q
(2)
k,` + 1) + 2K2 − 1, which is

at most 24, and that required by DeepDINA is 2K1 + 2K2 − 1 = 17; whereas the number

of parameters required in a saturated attribute model would be 2K1 − 1 = 127. Such a

remarkable reduction of parameter complexity facilitates applying DeepCDMs when there is

a large number of fine-grained latent attributes but a relatively small sample size.
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The easily understandable and intuitively interpretable identifiability conditions pre-

sented in this section are an appealing property of DeepCDMs. We next provide some

insights into our proof strategy. The reason why we can establish identifiability in a layer-

by-layer manner is two-fold. First, in a mutilayer directed graphical model, when arrows

are all top-down and only occur between adjacent layers, marginalizing out all the latent

variables deeper than the shallowest layer result in a marginal restricted latent class model

(RLCM; Xu, 2017; Gu and Xu, 2020). Once the proportion parameters for this RLCM are

identifiable, this shallowest latent layer’s distribution is uniquely identified and can be theo-

retically treated as if observed when investigating identifiability of deeper layers. Second, we

exploit one key property of existing identifiability theory of RLCMs – identifiability holds

under conditions on the Q-matrix for arbitrary marginal distributions of the latent attributes.

This property allows us to extend the identifiability conclusion to very flexible deep mod-

els since deeper layers could induce quite complex marginal dependencies among the latent

attributes. Although proving identifiability is not technically very challenging upon realiz-

ing the above two key facts, we believe that uncovering these two facts to rigorously show

identifiability still contributes to our understanding about CDMs and their potential.

On a related note, the HO-CDM proposed by de la Torre and Douglas (2004) is a very

popular and widely used high-order CDM. However, whether and when parameters in a

general HO-CDM with multiple higher-order continuous latent traits are fully identifiable is

still unknown. So there currently lacks a rigorous statistical justification for valid parameter

estimation in that model. To our best knowledge, DeepCDMs are the first higher-order

CDMs that are shown to be fully identifiable.

4 Bayesian Inference for DeepCDMs

Recently, Bayesian formulation and estimation of CDMs have gained increasing interest; see

Culpepper (2015), Chen et al. (2018), Fang et al. (2019), Chen et al. (2020), and Liu et al.

(2020), among others. Bayesian approaches can incorporate prior beliefs into the model

formulation, and quantify the statistical uncertainty through the posterior distributions.

Moreover, in the CDM context, Bayesian estimation algorithms can conveniently incorpo-

21



rate meaningful constraints into the posterior sampling process, including the monotonicity

constraints on the model parameters (Culpepper, 2015) and the identifiability constraints

on the Q-matrix (Chen et al., 2018).

In this section, we propose Bayesian formulations for several DeepCDMs and develop their

corresponding efficient Gibbs sampling algorithms. As mentioned earlier, in this work we

focus on developing Bayesian inference methods for the confirmatory setting with fixed and

known Q-matrices. For simplicity of presentation but without loss of generality, this section

focuses on two-latent-layer DeepCDMs. We point out that all of our Bayesian inference

procedures can be extended to a DeepCDM with more latent layers; this is the case thanks to

both the conditional independence of non-adjacent layers in a DeepCDM and our layerwise

Gibbs sampling steps. Now consider a two-latent-layer DeepCDM with K1 fine-grained

attributes and K2 deeper meta attributes. With a sample of size N , denote the N×K1 first-

layer latent attribute matrix by (a
(1)
ij ), and denote the N ×K2 second-layer latent variable

matrix by (a
(2)
ij ). Denote the ith row of these two matrices by a

(1)
i and a

(2)
i , respectively.

Let θ(d) generically denote the continuous parameters needed to specify the conditional

distribution A(d−1) | A(d).

4.1 Bayesian Inference for DeepDINA

For any positive integer M , we denote [M ] = {1, . . . ,M}. The following continuous parame-

ters are needed to specify a two-latent-layer DeepDINA: item parameters θ(1) = (s
(1)
J×1, g

(1)
J×1),

quasi-item parameters θ(2) = (s
(2)
K1×1, g

(2)
K1×1), and deep proportion parameters πdeep =

(π1, . . . , π2K2 ). Consider a sample of size N and denote the observed N × J data matrix by

R = (rij). Define a K2-dimensional vector v(2) = (2K2−1, 2K2−2, . . . , 20)>, then v(2) induces a

bijection between the binary patterns and integers (Culpepper, 2019a), and we define binary

patterns α1, . . . ,α2K2 ∈ {0, 1}K2 such that α>
` v

(2) = `− 1, for ` = 1, . . . , 2K2 .

When Q(1) and Q(2) are fixed, DeepDINA has the following model formulation,

rij | a
(1)
i , q

(1)
j ,θ(1) ∼ Bernoulli

((
1− s

(1)
j

)ξ1,ij (
g
(1)
j

)1−ξ1,ij
)
, ξ1,ij = 1(a

(1)
i � q

(1)
j ); (12)
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a
(1)
ik | a(2)

i , q
(2)
k ,θ(2) ∼ Bernoulli

((
1− s

(2)
k

)ξ2,ik (
g
(2)
k

)1−ξ2,ik
)
, ξ2,ik = 1(a

(2)
i � q

(2)
k ); (13)

p(s
(d)
j , g

(d)
j ) ∝ (s

(d)
j )as−1(1− s

(d)
j )bs−1(g

(d)
j )ag−1(1− g

(d)
j )bg−1 · 1(g(d)j + s

(d)
j < 1),

j ∈ [J ] for d = 1, and j ∈ [K1] for d = 2; (14)

p(a
(2)
i | πdeep) ∝

2K2∏

`=1

π
1(a

(2)
i =α`)

` , 0 ≤ π` ≤ 1,
2K2∑

`=1

π` = 1; p(πdeep) =
2K2∏

`=1

πδ`−1
` . (15)

The prior for πdeep = (π1, . . . , π2K2 ) in (15) is the Dirichlet distribution with parameters

δ = (δ1, . . . , δL). The prior for s
(d)
j , g

(d)
j in (14) is a product of two truncated Beta densities

with hyperparameters (as, bs) and (ag, bg), respectively, similar to that in Culpepper (2015).

The monotonicity constraint g
(d)
j < 1 − s

(d)
j in (14) ensures each item or attribute provides

information to differentiate the capable and incapable subjects (Junker and Sijtsma, 2001).

The above Bayesian formulation of DeepDINA facilitates convenient posterior inference

via a Gibbs sampler. Specifically, we sample each entry a
(1)
i,k individually to better leverage

the multilayer generative process and to boost computational efficiency; this is different from

sampling the entire latent vector a
(1)
i as in many previous Bayesian estimation approaches

for CDMs. Define a
(1)
i,−k to be the (K1 − 1)-dimensional subvector of a

(1)
i containing entries

other than a
(1)
i,k . The full conditional distribution of a

(1)
i,k is:

k = 1, . . . , K1 : P(a(1)i,k = 1 | −) = P(a(1)i,k = 1 | ri,a
(2)
i ,θ(1),θ(2))

=
P(a(1)i,k = 1 | a(2)

i ,θ(2))P(ri | a
(1)
i,k = 1,a

(1)
i,−k,θ

(1))
∑

x=0,1 P(a
(1)
i,k = x | a(2)

i ,θ(2))P(ri | a
(1)
i,k = x,a

(1)
i,−k,θ

(1))
;

In the above display, the “−” in the conditioning set for a
(1)
i,k generically summarizes all of

the other quantities in the posterior, and the first equality is derived from the conditional

independence properties of the graphical model. As for the second latent layer a
(2)
i , we sample

it from the categorical posterior with 2K2 components. The full conditional distribution of

each element in s(1), g(1), s(2), and g(2) is a truncated Beta, and that of πdeep is a Dirichlet; we

provide the detailed forms of these conditional distributions in the Supplementary Material.
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4.2 Bayesian Inference for Hybrid GDINA-DINA

A two-latent-layer Hybrid GDINA-DINA model features a GDINA layer for modeling R |

A(1) and a DINA layer for modeling A(1) | A(2). Such a model may be useful in practical

scenarios when it is desirable to adopt the general diagnostic model in the bottom layer for

its flexibility and adopt a simpler DINA model in the deeper layer for its parsimony. The

Hybrid GDINA-DINA model has the following generative process,

rij | a
(1)
i , q

(1)
j ,θ(1) ∼ Bernoulli

(
β
(1)
j,0 +

∑Kd

k=1
β
(1)
j,k

{
q
(1)
j,ka

(1)
i,k

}
(16)

+
∑

1≤k1<k2≤Kd

β
(1)
j,k1k2

{
q
(1)
j,k1

a
(1)
i,k1

}{
q
(1)
j,k2

a
(1)
i,k1

}
+ · · ·+ β

(1)
j,12···Kd

Kd∏

k=1

{
q
(1)
j,ka

(1)
i,k

})
;

a
(1)
ik | a(2)

i , q
(2)
k ,θ(2) ∼ Bernoulli

((
1− s

(2)
k

)ξ2,ik (
g
(2)
k

)1−ξ2,ik
)
, ξ2,ik = 1

(
a
(2)
i � q

(2)
k

)
. (17)

SinceA(1) | A(2) follows the DINA model, we adopt the same truncated Beta priors as that in

(14) for the quasi-item parameters and enforce g
(2)
k < 1− s

(2)
k . As for the model for R | A(1),

we adopt the GDINA formulation proposed by de la Torre (2011) in (16) by using the identity

link function f(·) in the all-effect general diagnostic model. A general diagnostic model with

an identity link facilitates Gibbs sampling steps without data augmentation. Note that in

order to perform Gibbs sampling directly, it is not convenient to directly work with the

β-coefficients in (16) and sample from their posteriors. Instead, similar to the existing

GDINA EM algorithm in the literature, we adopt an invertible reparameterization of the

β-coefficients and define a set of θ-coefficients that directly correspond to conditional correct

response probabilities and are easy to sample from. Define Kj = {k ∈ [K] : q
(1)
j,k = 1},

which is the set of indices of the latent attributes that item j measures. Then each β-

coefficient in the GDINA layer in (16) can be equivalently written as β
(1)
j,S , where S is a

subset of Kj; for example, β
(1)
j,∅ = β

(1)
j,0 , β

(1)
j,{k} = β

(1)
j,k , and β

(1)
j,Kj

corresponds to the parameter

for highest order interaction effect of the required attributes. For any subset S ⊆ Kj, denote

by q
(1)
j,S := (q

(1)
j,k ; k ∈ S) the subvector of qj. We now define the θ-parameters as follows,

θ
(1)
j,S =

∑

S′⊆S

β
(1)
j,S′

(?)
= P(ri,j = 1 | a(1)>

i q
(1)
j,S = q

(1)>
j,S q

(1)
j,S), (18)
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∀S ⊆ Kj = {k ∈ [K] : q
(1)
j,k = 1},

where the equality indexed by “(?)” can be verified by simply following the definition of

the β-parameters. For example, θ
(1)
j,{k} = β

(1)
j,∅ + β

(1)
j,{k} represents the probability of providing

positive response to item j given that the subject only masters the kth latent attribute A
(1)
k .

With the above reparametrization and equality “(?)”, the θ-parameters directly represent

positive response probabilities of certain clearly defined latent classes in the population. This

structure implies that we can endow θj,S with a Beta prior and then have a Beta posterior.

In particular, let the prior for θ
(1)
j,S be Beta(aθ, bθ), then its posterior distribution is

Beta

(
aθ +

N∑

i=1

ri,j1
(
a
(1)>
i q

(1)
j,S = q

(1)>
j,S q

(1)
j,S

)
, bθ +

N∑

i=1

(1− ri,j)1
(
a
(1)>
i q

(1)
j,S = q

(1)>
j,S q

(1)
j,S

))
,

where S ranges in all the possible subsets of Kj. This completes the description on how to

sample the continuous parameters for the GDINA layer.

Interpretable monotonicity constraints can also be incorporated into the posterior sam-

pling of the θ
(1)
j,S parameters. For example, it may be reasonable to impose the constraint

that the main-effect parameters of the attributes, i.e, β
(1)
j,k in (9), are positive (Culpepper,

2019b). In our parametrization of θ
(1)
j,S, this constraint is equivalent to requiring θ

(1)
j,{k} > θ

(1)
j,∅

for each k = 1, . . . , K1. Such a constraint can be easily enforced by sampling θ
(1)
j,{k} from a

truncated Beta posterior as follows:

Beta

(
aθ +

N∑

i=1

ri,j1
(
a
(1)
i,k q

(1)
j,k = q

(1)
j,k

)
, bθ +

N∑

i=1

(1− ri,j)1
(
a
(1)
i,k q

(1)
j,k = q

(1)
j,k

))
· 1(θ(1)

j,{k} > θ
(1)
j,∅).

we provide the details of the Gibbs sampler for the Hybrid GDINA-DINA in the Supple-

mentary Material.

4.3 Bayesian Inference for DeepLLM

In this subsection, we consider the two-latent-layer Deep Logistic Linear Model (DeepLLM).

Let σ(x) = 1/(1+e−x) denote the inverse logit function (i.e., sigmoid function). For a
(i)
2 and
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πdeep, we adopt the same formulation and prior as (15). As for the additional parameters in

a DeepLLM, we adopt the following formulation,

rij | a
(1)
i , q

(1)
j ,θ(1) ∼ Bernoulli

(
σ
(
β
(1)
j,0 +

∑Kd

k=1
β
(1)
j,k q

(1)
j,kai,k

))
; (19)

a
(1)
ik | a(2)

i , q
(2)
k ,θ(2) ∼ Bernoulli

(
σ
(
β
(2)
k,0 +

∑K2

m=1
β
(2)
k,mq

(1)
k,mai,m

))
; (20)

β
(1)
j,k | q(1)j,k = 1 ∼ N(0, σ2

β) · 1(β
(1)
j,k > 0), β

(2)
k,m | q(2)k,m = 1 ∼ N(0, σ2

β) · 1(β
(2)
k,m > 0). (21)

The natural constraints imposed by the Q-matrices (β
(1)
j,k | q(1)j,k = 0) ≡ 0 and (β

(2)
k,m | q(2)k,m =

0) ≡ 0 can be readily enforced throughout the sampling process. In order to facilitate efficient

Gibbs sampling steps based on full conditional distributions of all the parameters, we propose

to use the Polya-Gamma data augmentation in Polson et al. (2013). This data augmentation

strategy was also recently adopted for Bayesian Pyramids for multivariate categorical data

in Gu and Dunson (2023) and for saturated CDMs in Balamuta and Culpepper (2022).

Different from these existing works, we apply Polya-Gamma augmentation not only for

observed data layer R, but also for the latent layer A(1), due to our multilayer logistic linear

model assumption. Specifically, we introduce auxiliary variables w
(1)
i,j for j ∈ [J ], w

(2)
i,k for

k ∈ [K1] that follow the Polya-Gamma prior PG (1, 0). Introduce the following notation:

φ
(1)
i,j = β

(1)
j,0 +

∑K1

k=1
β
(1)
j,k q

(1)
j,ka

(1)
i,k , φ

(2)
i,k = β

(2)
k,0 +

∑K2

m=1
β
(2)
k,mq

(2)
k,ma

(2)
i,m.

Denote the probability density function of PG(1, 0) by pPG(w | 1, 0). By the property of the

Polya-Gamma variables in Polson et al. (2013), we have the following identity for φ
(1)
i,j :

exp(φ
(1)
i,j ri,j)

1 + exp(φ
(1)
i,j )

= 2 exp
{
(ri,j − 1/2)φ

(1)
i,j

}∫ ∞

0

exp
{
−w

(1)
i,j (φ

(1)
i,j )

2/2
}
pPG(w

(1)
i,j | 1, 0)dw(1)

i,j ;

and there is a similar identity for φ
(2)
i,k . A nice consequence of the above equality is that

the conditional posterior distributions for all the β
(1)
j,0 and β

(1)
j,k are still Gaussian, and the

conditional posterior distribution of each w
(1)
i,j is still Polya-Gamma, with (w

(1)
i,j | −) ∼

PG(1, φ
(1)
i,j ). Similar posterior forms can be derived for β

(2)
k,m and w

(2)
i,k , which are also Gaussian
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and Poyla-Gamma, respectively. Such posterior distributions are easy to sample from and

are the building blocks of our efficient Gibbs sampler for a DeepLLM. We provide the details

of this Gibbs sampler for DeepLLM in the Supplementary Material.

We point out that our Gibbs samplers described in Sections 4.1–4.3 can be readily ex-

tended to deeper models containing more than two latent layers. To see this, note that

DeepCDMs have a nice property implied by the graphical model: given any layer A(d), the

layer above itA(d+1) and the layer below itA(d−1) are conditionally independent. This means

in a DeepCDM with an arbitrary number of layers, when sampling parameters and latent

structures for any specific layer, we only need to consider its two adjacent layers and derive

the full conditional distributions based on these local model information. This fact allows

straightforward extensions of our Gibbs sampling procedures to general hybrid DeepCDMs.

5 Simulation Studies

We conduct simulation studies for the three two-latent-layer DeepCDMs considered in Sec-

tion 4: DeepDINA in Section 4.1, Hybrid GDINA-DINA in Section 4.2, and DeepLLM in

Section 4.3. We also conduct two additional simulation studies, one comparing a DeepCDM

to a traditional CDM with a saturated attribute model, and one evaluating a DeepCDM’s

robustness to deeper layer model misspecification. The following three different generative

graphical structures (equivalently, forms of Q
(1)
J×K1

and Q
(2)
K1×K2

) are considered:

structure (a): Q
(1)
30×6 =




I6
I6
I6
I6

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0




, Q
(2)
6×2 =



I2
I2
I2


 ; (22)
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structure (b): Q
(1)
30×7 =




I7
I7
I7

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1




, Q
(2)
7×3 =




I3
1 1 0
1 0 1
0 1 1
1 1 1




; (23)

structure (c): Q
(1)
30×8 =




I8
I8
I8

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0




, Q
(2)
8×3 =




I3
I3

1 1 0
1 0 1


 . (24)

Denote the above three pairs of Q-matrices by {Q(1)
a ,Q

(2)
a }, {Q(1)

b ,Q
(2)
b }, and {Q(1)

c ,Q
(2)
c },

respectively. In all the simulation experiments, the Gibbs sampling algorithm is run for

15,000 iterations, with the first 10,000 iterations discarded as burn-in. Based on the last

5000 posterior samples, we calculate the posterior means of the continuous parameters as

their point estimators. We observed sufficiently good convergence and mixing behaviors of

all the Gibbs samplers through preliminary simulations.

Simulation Study I: Two-latent-layer DeepDINA. Under each of the three pairs

of Q-matrices in (22)–(24), we specify the true item/quasi-item parameters to be s
(1)
j =

g
(1)
j = 0.1 for all j ∈ [J ], and s

(2)
k = g

(2)
k = 0.25 for all k ∈ [K1]. We specify the true

deep proportion parameters to be πdeep = (1/2K2 , . . . , 1/2K2), that is, uniform over the 2K2

deep latent patterns. We consider three sample sizes N = 500, 1000, 2000, and carry out

100 independent simulation replicates in each of the nine resulting simulation settings. The

Q-matrices Q(1) and Q(2) are fixed to the ground truths during estimation. We consider the
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posterior means of the model parameters as their point estimators, and calculate the mean

Root Mean Squared Errors (RMSE) and mean absolute biases (aBias), each averaged across

the 100 simulation replicates. Here the mean absolute bias is a valid measure of the bias

performance of an estimator, which is both broadly used in statistics (Morris et al., 2019)

and also in previous studies about CDMs (Xu and Shang, 2018; Chen et al., 2020). Note

that directly averaging the bias itself (instead of the absolute bias that we consider) across

simulation replicates may give a misleading result, because positive and negative biases can

cancel out each other. Table 1 presents the simulation results of the average RMSE and

average aBias for the slipping and guessing parameters θ
(1)
DINA, for the quasi-slipping and

quasi-guessing parameters θ
(2)
DINA, and the deep proportion parameters πdeep.

Structure (J, K1, K2) N
RMSE aBias

θ
(1)
DINA θ

(2)
DINA πdeep θ

(1)
DINA θ

(2)
DINA πdeep

(a) in (22) (30, 6, 2)
500 0.021 0.060 0.063 0.017 0.050 0.050
1000 0.015 0.046 0.049 0.012 0.038 0.040
2000 0.011 0.038 0.040 0.009 0.031 0.032

(b) in (23) (30, 7, 3)
500 0.039 0.072 0.042 0.033 0.062 0.033
1000 0.033 0.070 0.047 0.029 0.061 0.038
2000 0.029 0.066 0.044 0.026 0.058 0.036

(c) in (24) (30, 8, 3)
500 0.031 0.064 0.038 0.026 0.054 0.030
1000 0.026 0.060 0.037 0.022 0.051 0.029
2000 0.021 0.054 0.032 0.019 0.047 0.026

Table 1: Two-latent-layer DeepDINA simulation results.

Note that the three generative graph structures in (22)–(24) all satisfy the strict identi-

fiability conditions for the DeepDINA model. Specifically, all the Q(1) and Q(2) satisfy the

C-R-D conditions, therefore Theorem 1 guarantees the strict identifiability of the param-

eters θ
(1)
DINA, θ

(2)
DINA, and πdeep. This identifiability conclusion is empirically confirmed by

the simulation results in Table 1, where the estimation errors of these identifiable quantities

measured through RMSE and aBias are all reasonably small.

Simulation Study II: Two-latent-layer Hybrid GDINA-DINA. Under the two-

latent-layer Hybrid GDINA-DINA model, we specify the deeper DINA-layer’s true parame-
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ters to be the same as that in the DeepDINA case with s
(2)
k = g

(2)
k = 0.25 for all k ∈ [K1],

and also specify the deep proportion parameters as πdeep = (1/2K2 , . . . , 1/2K2). As for the

GDINA-layer’s parameters, we specify them in the same way as the simulations in Xu and

Shang (2018) and Chen et al. (2020); that is, for each item j ∈ [J ], set the lowest correct

response probability to 0.2 for all-zero attribute profiles, set the highest correct response prob-

ability to 0.8 for all-one attribute profiles, and set all the main-effect and interaction-effect

parameters under the GDINA model to be equal. The above true parameter specification

can be equivalently written in the following mathematical form,

PGDINA(Rj = 1 | A(1) = α,β(1)) = θ
(1)
j,S =

∑

S⊆Kj

β
(1)
j,S , where Kj = {k ∈ [K] : q

(1)
j,k = 1};

β
(1)
j,∅ = 0.2, β

(1)
j,S = (0.8− 0.2)/(2|Kj | − 1) for S ⊆ Kj, S 6= ∅.

During the Bayesian posterior sampling process, we enforce the monotonicity constraint

described in Section 4.2 by sampling the transformed parameters θj,{k} = β
(1)
j,∅ + β

(1)
j,{k} from

the truncated Beta posteriors; this ensures the main-effect parameters β
(1)
j,{k} to be positive.

Table 2 presents the simulation results under the Hybrid GDINA-DINA model.

Structure (J, K1, K2) N
RMSE aBias

β
(1)
GDINA θ

(2)
DINA πdeep β

(1)
GDINA θ

(2)
DINA πdeep

(a) in (22) (30, 6, 2)
500 0.046 0.064 0.059 0.037 0.052 0.047
1000 0.035 0.056 0.056 0.028 0.045 0.046
2000 0.025 0.042 0.044 0.020 0.033 0.036

(b) in (23) (30, 7, 3)
500 0.056 0.073 0.045 0.045 0.058 0.036
1000 0.041 0.063 0.044 0.033 0.051 0.035
2000 0.030 0.052 0.039 0.024 0.042 0.031

(c) in (24) (30, 8, 3)
500 0.052 0.069 0.043 0.042 0.056 0.034
1000 0.039 0.062 0.039 0.032 0.050 0.031
2000 0.028 0.050 0.033 0.023 0.040 0.027

Table 2: Two-latent-layer Hybrid GDINA-DINA simulation results.

Table 2 shows that our method can accurately estimate all the parameters under the

Hybrid GDINA-DINA model and the estimation accuracy improves as sample size grows.
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Indeed, all the Q
(1)
a , Q

(1)
b , and Q

(1)
c satisfy the identifiability conditions for general diagnostic

models (condition S in Theorem 2), and all the Q
(2)
a , Q

(2)
b , and Q

(2)
c satisfy the C-R-D

conditions for identifying the DINA model. Therefore, Proposition 1 guarantees that all

the parameters β
(1)
GDINA, θ

(1)
DINA, and πdeep in this Hybrid DeepCDM are fully identifiable, as

supported by the numerical evidence in Table 2.

Simulation Study III: Two-latent-layer DeepLLM. We conduct simulations for the

DeepLLM, using the Gibbs sampler with the multilayer Polya-Gamma data augmentation

strategy developed in Section 4.3. The true parameters in the two-latent-layer DeepLLM

are specified as follows. Inside the inverse logit function, the intercept parameters for the

two layers are set to β
(1)
j,0 = −3 for all j ∈ [J ] and β

(2)
k,0 = −2 for all k ∈ [K1]; the shallower

layer’s main-effect parameters are set to β
(1)
j,k = 6/

(∑K1

k′=1 q
(1)
j,k′

)
for which q

(1)
j,k = 1, and

the deeper layer’s main-effect parameters are set to β
(2)
k,m = 4/

(∑K2

m′=1 q
(2)
k,m′

)
for which

q
(2)
k,m = 1. Note that these β-parameters in a DeepLLM are all inside the inverse logit

function f(x) = ex/(1 + ex) to generate the correct response probability, so they are on a

different scale than those probability parameters under the DINA or GDINA model. Table

3 presents the estimation accuracy results for the two-latent-layer DeepLLM model.

Structure (J, K1, K2) N
RMSE aBias

β
(1)
LLM β

(2)
LLM πdeep β

(1)
LLM β

(2)
LLM πdeep

(a) in (22) (30, 6, 2)
500 0.360 0.339 0.026 0.284 0.262 0.021
1000 0.247 0.215 0.016 0.196 0.171 0.013
2000 0.175 0.161 0.011 0.139 0.129 0.009

(b) in (24) (30, 7, 3)
500 0.362 0.514 0.031 0.284 0.402 0.025
1000 0.254 0.407 0.024 0.199 0.315 0.019
2000 0.181 0.303 0.018 0.144 0.228 0.015

(c) in (24) (30, 8, 3)
500 0.376 0.491 0.023 0.294 0.379 0.018
1000 0.264 0.352 0.017 0.208 0.272 0.014
2000 0.187 0.212 0.012 0.149 0.166 0.010

Table 3: Two-latent-layer DeepLLM simulation results.

The simulation results in Table 2 also show decreasing estimation errors with growing

sample sizes. We point out that the “RMSE” and “aBias” values in different tables are
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not directly comparable, because the logistic-scale parameters β
(2)
LLM and β

(2)
LLM in Table 3

have larger magnitudes than DINA/GDINA parameters in the previous Tables 1–2. The

three first-layer Q-matrix Q
(1)
a , Q

(1)
b , and Q

(1)
c all satisfy the identifiability conditions under

general diagnostic models which cover the LLM as a special case, so the β
(1)
LLM are always

identifiable across structures (a), (b), and (c) (see the layerwise identifiability argument in

Proposition 1). As for the second-layer Q-matrix in the three settings, Q
(2)
a and Q

(2)
c satisfy

the strict identifiability conditions for LLM while Q
(2)
c satisfies the generic identifiability

conditions for LLM. For quantities β
(2)
LLM and πdeep associated with Q(2), Table 3 shows that

their estimation errors in the generic identifiability case (b) are still reasonably small, though

slightly worse than those in the strictly identifiable cases (a) and (c). Overall, all the above

simulation results corroborate the identifiability conclusions about DeepCDMs, and also

provide evidence that our Bayesian estimation algorithms have good empirical performance.

In addition to the estimation performance of the population parameters, we also present

the attribute classification accuracy for different layers of attributes in Table 4. The numbers

in this table are calculated as follows: in each simulation replicate, we obtain the posterior

modes of each subject’s each attribute entry in the shallower-layer A(1) (similarly for the

deeper-layer A(2)), and then average them across the 100 simulation replicates to get the

attribute classification accuracy. For all three DeepCDMs and all three Q-matrices struc-

tures (a), (b), and (c), the attribute classification accuracy numbers remain reasonably high,

basically exceeding 90% for the shallower A(1) and exceeding 70% for the deeper A(2). The

classification accuracy for deeper attributes is lower than that for shallower ones, which is

an inevitable characteristic shared by all higher-order latent variable models widely used in

statistics. Despite this, the fact that the deeper attributes still have classification accuracies

beyond 70%, and even beyond 90% for DeepLLM, demonstrates that the estimation quality

of deeper attributes in our model does not degrade too much and is still acceptable. Fur-

thermore, Table 4 indicates that the DeepLLM has the best performance in classifying the

deeper A(2) and the smallest gap between the classification accuracies of A(1) and A(2). This

observation suggests that in the considered settings, DeepLLM may be a more preferrable

model among the DeepCDM family in terms of estimating the deeper latent attributes.
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Structure (J, K1, K2) N
DeepDINA Hybrid G-D DeepLLM

A(1) A(2) A(1) A(2) A(1) A(2)

(a) in (22) (30, 6, 2)
500 0.985 0.805 0.926 0.783 0.998 0.956
1000 0.984 0.822 0.928 0.786 0.998 0.960
2000 0.984 0.833 0.929 0.795 0.998 0.959

(b) in (22) (30, 7, 3)
500 0.969 0.738 0.903 0.706 0.994 0.873
1000 0.969 0.737 0.905 0.705 0.994 0.878
2000 0.969 0.737 0.906 0.712 0.995 0.881

(c) in (22) (30, 8, 3)
500 0.970 0.774 0.896 0.739 0.994 0.909
1000 0.971 0.774 0.898 0.740 0.994 0.913
2000 0.971 0.779 0.899 0.743 0.994 0.917

Table 4: Attribute classification accuracy across all of the simulation settings.

Structure (J, K1, K2) N
RMSE of π(1) Computation time (min)

Deep Saturated Ratio Deep Saturated Ratio

(a) in (22) (30, 6, 2)
500 0.004 0.012 34.6% 1.3 5.5 24.1%
1000 0.004 0.012 29.2% 2.5 10.5 24.2%
2000 0.003 0.012 22.0% 5.3 21.4 24.6%

(b) in (23) (30, 7, 3)
500 0.003 0.005 49.7% 1.7 10.3 16.5%
1000 0.003 0.005 54.6% 3.4 19.4 17.4%
2000 0.003 0.005 59.4% 6.6 37.4 17.6%

(c) in (24) (30, 8, 3)
500 0.001 0.004 26.2% 2.0 20.0 10.0%
1000 0.001 0.004 24.6% 4.6 48.5 9.5%
2000 0.001 0.004 21.5% 8.5 76.0 11.2%

Table 5: Comparisons between the two-latent-layer DeepDINA and the saturated DINA
model in terms of the RMSE of the proportions π(1) of the fine-grained latent attributes
A(1) and the computation time.

Simulation Study IV: Comparison to the saturated attribute model. In this simu-

lation study, we generate data using a DeepCDM (DeepDINA here) but estimate parameters

using both the DeepCDM and the traditional one-layer CDM (DINA here) with a saturated

attribute model. We compare (a) the computation time of the two models, and also (b) their

accuracy in recovering the proportions π(1) of the latent attributes A(1). The distribution of

A(1) can be parameterized by π(1) = (π
(1)
α ;α ∈ {0, 1}K1) where π

(1)
α = P(A(1) = α). Under

DINA with a traditional saturated attribute model, π(1) are directly treated as parame-

ters and estimated, while in the DeepDINA model, π(1) follows another higher-order DINA
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model and can be calculated after estimating these higher-order parameters. Here we focus

on comparing the accuracy of recovering the distribution of A(1) via π(1) because this is the

key difference between the two models. Table 5 displays the average RMSEs of π(1) and the

average computation time under the two models. In particular, the 6th column “Ratio” in

Table 5 displays the ratios of RMSEs under the deep and the saturated model (i.e., ratios

of numbers in the 4th and 5th columns in the table), and the 9th column “Ratio” displays

the ratio of computation time under the two models (i.e., ratios of numbers in the 7th and

8th columns in the table). Compared to the traditional estimation method for the one-layer

DINA model, our DeepDINA method yields 20%–60% of the RMSE in estimating π(1) and

takes 9%–25% of the computation time. These comparisons imply that appropriately tak-

ing into account higher-order discrete structures will lead to both more accurate estimation

and more efficient computation. Here, more accurate estimation is thanks to the suitable

modeling of the latent attribute dependence, and more efficient computation is thanks to the

statistical parsimony and our efficient Gibbs sampling steps of a fewer number of parameters.

Simulation Study V: Robustness of DeepCDM to deep layer misspecification.

We perform a simulation study to evaluate our method’s performance under a misspecified

higher-order model. Here we generate data from the HO-CDM in de la Torre and Douglas

(2004) that have higher-order continuous latent traits behind the binary latent attributes.

Consider structure (c) in (24) with J = 30 items, K1 = 8 attributes, and K2 = 3 higher-

order continuous latent traits (θ
(2)
1 , θ

(2)
2 , θ

(2)
3 ) =: θ(2). Let θ

(2)
1 , θ

(2)
2 , θ

(2)
3 follow independent

standard normal distributions. Given θ(2), the first-layer CDM parameters are set to be

the same in the previous DeepLLM simulation setting. Then we fit the data using our

Gibbs sampler developed for DeepLLM, and then examine the estimated shallower-layer

item parameters β(1) under this misspecified model. For better visualization, for a randomly

generated dataset, in Figure 2 we plot the heatmap of the estimated β(1) in the form of

J ×K1 matrix whose sparsity pattern is given by the Q-matrix Q(1) ∈ {0, 1}J×K1 . We can

see that the estimated coefficients β̂
(1)

under a misspecified higher-order model is still close

to the ground truth, even for a relatively small sample size N = 500. For a larger sample

size N = 2000, the estimated β̂
(1)

matrix becomes closer to the truth.
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Furthermore, we also look beyond a single simulation trial and carry out 100 independent

simulation replicates to assess our method’s average performance under model misspecifica-

tion. Figure 3 presents the boxplots of root mean squared errors (RMSEs) of the estimated

shallower-layer β(1) parameters based on the 100 replicates. This figure clearly shows a

decreasing trend of estimation errors of β(1) as sample size increases. Together with the

previous Figure 2, we have empirically demonstrated that our DeepCDM methodology has

some robustness to model misspecification of the deeper-layers.

Figure 2: Estimated first-layer parameters β(1) under a misspecified latent attribute model.
The data are generated from a continuous higher-order latent trait model but estimated
using our DeepLLM method.

We next offer more discussions between the connections and differences between the very

popular HO-CDM and the proposed DeepCDMs. As described in de la Torre and Douglas

(2004), the motivation for proposing the HO-CDM includes parsimony and interpretabil-

ity. For the HO-CDM, the parsimony comes from using an IRT model with continuous

latent traits to model the binary attributes, and the interpretability comes from defining a

plausible model for the relationship between general ability and specific knowledge. On one

hand, as mentioned in Section 1, DeepCDMs also similarly have the advantages of parsimony
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Figure 3: RMSE boxplots for the estimated first-layer parameters β(1) under a misspecified
latent attribute model. Results are based on 100 independent simulation replications for
each sample size.

and interpretability. On the other hand, there are also several key differences between the

HO-CDM and DeepCDMs. First, DeepCDMs use fully discrete latent layers, which offer

a different interpretation of multi-granularity skill diagnosis. Second, the above simulation

study implies that a special member in the DeepCDM family – DeepLLM – can serve as an

approximation to HO-CDM; our DeepLLM method can robustly estimate the item parame-

ters for data generated from HO-CDM. It is then worth emphasizing that DeepLLM is just a

special member of the DeepCDM family, and that other members in this family can flexibly

model structures well beyond the logistic linear form used in DeepLLM and HO-CDM. For

example, DeepDINA or Hybrid GDINA-DINA can model the nonlinear conjunctive relation-

ship or interaction effects of higher-order discrete attributes, and they are still identifiable

and easy to estimate via Gibbs sampling (see Section 4). However, there currently do not

exist extensions of HO-CDM to nonlinear higher-order latent variable settings.

6 Application to the TIMSS Assessment Data

We demonstrate the DeepCDM methodology by applying it to data extracted from the

TIMSS 2019 math assessment mentioned in Section 1; the data are accessed from the TIMSS
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2019 International Database (Fishbein et al., 2021). We use two-latent-layer DeepCDMs

to analyze the US student response data to item block No.2 in the eighth grade math

assessment. Prior to our analysis, the original student response data are converted into

binary correct/wrong responses as follows, based on the TIMSS 2019 Item Information

available in the online database (Fishbein et al., 2021). For multiple-choice items, a student

response is coded as one if the response matches the correct answer key, and coded as zero

otherwise; for constructed response items, a student response is coded as one if the number

of scores received is equal to the maximal score of the item, and coded as zero otherwise.

Among the US eighth grade participants, we consider students that took the math item

block No.2 and give responses to all the J = 28 items in this block. This results in a binary

observed data matrix containing responses from N = 972 students. The online TIMSS

2019 Item Information - Grade 8 provides details about which specific skills each test item

is measuring, and we use these information to construct the Q-matrices. There are four

content skills: α
(1)
1 : Number; α

(1)
2 : Algebra; α

(1)
3 : Geometry; and α

(1)
4 : Data and Probability;

and three cognitive skills: α
(1)
5 : Knowing; α

(1)
6 : Applying; and α

(1)
7 : Reasoning. These content

and cognitive skills can be viewed as subcompetences for which it is desirable to provide fine-

grained diagnoses. Therefore, we model these seven skills as K1 = 7 fine-grained attributes

in the shallower latent layer in a DeepCDM. In fact, each test item is listed as measuring

one content skill and one cognitive skill; for example, the first item in block No.2 measures

α
(1)
1 : Number, and α

(1)
5 : Knowing. We use such available item information to obtain the

first-layer J ×K1 Q-matrix Q
(1)
28×7 in Table 6. Further, as already implied by the above skill

descriptions, the seven specific skills naturally belong to two general domains: the content

domain and the cognitive domain. Here, the wordings of naming “content” and “cognitive”

as two “domains” are official terms defined by and provided in the online TIMSS 2019

Assessment Frameworks. Diagnosing a student’s states on these latent domains can reflect

their general strengths/weaknesses on these two broad aspects. So the deeper latent layer in

our DeepCDM has two domain attributes : α
(2)
1 : Content and α

(2)
2 : Cognitive. According to

the equivalence between the direct dependencies among variables and the Q-matrix entries,

we can use the above attribute information to construct a K1 ×K2 matrix Q
(2)
7×2 = (q

(2)
k,m),

shown in Table 7.
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Item ID
α
(2)
1 α

(2)
2 α

(2)
3 α

(2)
4 α

(2)
5 α

(2)
6 α

(2)
7

Number Algebra Geometry Data Prob. Knowing Applying Reasoning

1 1 0 0 0 1 0 0
2 1 0 0 0 1 0 0
3 1 0 0 0 1 0 0
4 1 0 0 0 1 0 0
5 1 0 0 0 1 0 0
6 1 0 0 0 1 0 0
7 1 0 0 0 0 1 0
8 1 0 0 0 0 0 1
9 1 0 0 0 1 0 0
10 0 1 0 0 1 0 0
11 0 1 0 0 1 0 0
12 0 1 0 0 0 1 0
13 0 1 0 0 0 1 0
14 0 1 0 0 0 1 0
15 0 0 1 0 0 1 0
16 0 0 1 0 0 0 1
17 0 0 1 0 0 0 1
18 0 0 1 0 0 0 1
19 0 0 1 0 0 0 1
20 0 0 1 0 0 0 1
21 0 0 1 0 0 0 1
22 0 0 1 0 0 0 1
23 0 0 0 1 1 0 0
24 0 0 0 1 0 1 0
25 0 0 0 1 0 1 0
26 0 0 0 1 0 1 0
27 0 0 0 1 0 1 0
28 0 0 0 1 0 0 1

Table 6: First-layer Q-matrix Q
(1)
28×7 for item block No.2 in TIMSS 2019 eighth grade math

assessment.

α
(1)
1 α

(1)
2

Content Domain Cognitive Domain

α
(2)
1 Number 1 0

α
(2)
2 Algebra 1 0

α
(2)
3 Geometry 1 0

α
(2)
4 Data and Probability 1 0

α
(2)
5 Knowing 0 1

α
(2)
6 Applying 0 1

α
(2)
7 Reasoning 0 1

Table 7: Second-layer Q-matrix Q
(2)
7×2 for TIMSS 2019 eighth grade math assessment.
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We then apply our Bayesian estimation method to the TIMSS data. DeepDINA is not

used here because Q(1) does not satisfy the C-R-D conditions (i.e., does not contain an

identity submatrix IK1), and hence does not give an identifiable DeepDINA model. As

for DeepLLM and Hybrid GDINA-DINA (abbreviated as Hybrid G-D hereafter), it is not

difficult to verify that Q
(1)
28×7 in Table 6 satisfies the generic identifiability conditions (G1)

and (G2) in Theorem 3 for main-effect-based models, and that Q
(2)
7×2 in Table 7 satisfies the

strict identifiability condition (S) in Theorem 2 for general diagnostic models. This means

all the parameters in DeepLLM and Hybrid G-D are all strictly or generically identifiable.

Note that Q(2) has all the rows each being either (1, 0) or (0, 1), in which case the Hybrid

G-D model in fact covers both DeepDINA and DeepLLM as special cases and offers a more

general alternative. Therefore we focus on the more general Hybrid G-D model next.

We run the Gibbs sampler for Hybrid G-D for 15,000 iterations and retain the last 5000

as our posterior samples, the same as in the simulation studies. Based on these samples,

the posterior means are calculated for all the continuous parameters in the model. The deep

proportion parameters’ posterior means are πdeep = (0.477, 0.033, 0.059, 0.430), which

correspond to deep latent patterns A(2) = (0, 0), (0, 1), (1, 0), (1, 1), respectively. This esti-

mated πdeep implies that the two domain attributes exhibit a relatively high correlation. As

for the quasi-item parameters characterizing P(A(1)
k | A(2),Q(2)) and item parameters char-

acterizing P(R(1)
j | A(1),Q(1)), we plot their posterior means in Figure 4. Specifically, Figure

4(a) shows the conditional attribute mastery probabilities given the domain attributes, with

its left column showing the quasi-guessing parameters g(2) = (g
(2)
1 , . . . , g

(2)
7 )>, and right col-

umn showing one minus the quasi-slipping parameters 17×1 − s(2) = (1− s
(2)
1 , . . . , 1− s

(2)
7 )>.

Figure 4(b) shows the conditional correct response probabilities given the fine-grained at-

tributes, that is, the θ-parameters in (18). For each item j, the column θ0 refers to θ
(1)
j,∅;

column θk refers to θ
(1)
j,{k} for k = 1, . . . , 7; column θ15 refers to the θ

(1)
j,{1,5}, etc. For a item

j ∈ {1, . . . , 28}, only those “effective” θ-parameters are ploted in Figure 4. For example, the

first item requires the first and the fifth attributes (i.e., Number and Knowing), so only four

θ-parameters are “effective” and shown in the first line in Figure 4(b): θ0, θ1, θ5, and θ15.

To further inspect the latent attributes’ mutual dependence, we calculate the element-

wise posterior modes of the discrete latent profiles and obtain the N × K1 binary matrix
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(a) based on θ
(2)
DINA

(b) based on θ
(1)
GDINA

Figure 4: TIMSS 2019 eighth-grade math assessment US data, item block No.2, estimated
parameters from the Hybrid-GDINA-DINA model. Plot (a): deeper DINA-layer parameters,
with the left column being g(2) and the right column being 17×1 − s(2); plot (b): conditional
correct response probabilities under GDINA.

Ā(1) = (ā
(1)
i,k ) and the N×K2 binary matrix Ā(2) = (ā

(1)
i,m). Specifically, each binary entry ā

(1)
i,k

is the posterior mode of a
(1)
i,k based on the retained posterior samples, and ā

(2)
i,m is similarly

obtained. Based on the K1 = 7 columns of Ā(1) and K2 = 2 columns of Ā(2), we generate the

scatterplot matrices in Figure 5. In this figure, the two plots on the left show the correlation

between the second-layer domain attributes (Figure 5(a)) and those between pairs of the

first-layer fine-grained attributes (Figure 5(c)). The two plots on the right panel of Figure

5 show the jittered versions of the scatterplot matrices, which more explicitly visualize the

pairwise joint distributions of latent variables. As expected, the seven fine-grained latent

skills show relatively high positive dependencies on each other, which supports using the

DeepCDM modeling framework. Moreover, the estimated posterior mode matrices Ā(1) and

Ā(2) provide multi-granularity diagnoses of students’ strengths/weaknesses on both the two

broader domain attributes and the seven more fine-grained attributes.

Next, we also perform a comparative analysis of a TIMSS 2019 fourth-grade math assess-
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(a) (b)

(c) (d)

Figure 5: TIMSS 2019 eighth-grade math assessment US data, item block No.2, estimated
latent profiles. In plots (b) and (d), the sample data points are jittered from zero/one.

ment dataset (item block No. 7) using both a DeepCDM and a traditional CDM to see their

difference. Specifically, we consider both the Hybrid G-D model (which is GDINA with a

higher-order DINA layer), and GDINA with a saturated latent attribute model. In terms of

statistical parsimony, our Hybrid G-D requires much fewer parameters than GDINA with a

saturated latent layer. In particular, to model K1 = 6 fine-grained latent attributes, the Hy-

brid G-D model uses only 3+6×2 = 15 parameters while the traditional saturated attribute

model uses a large number of 26 − 1 = 63 parameters. Such statistical parsimony implies

that our DeepCDM would require a smaller sample size to reach the same level of parameter

estimation precision. In terms of substantive interpretations, the correlation plots in Figure

6 show that the Hybrid G-D model gives a much more interpretable correlation structure
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among the fine-grained latent attributes (in the left panel) than GDINA with a saturated at-

tribute model (in the right panel). Specifically, recall that the first three attributes fall in the

“Content” domain and the last three attributes fall in the “Cognitive” domain. The nearly

block diagonal heatmap in Figure 6(a) shows that our DeepCDM induces much higher cor-

relations among attributes within a same domain than those across two different domains.

On the other hand, for the GDINA model with a saturated attribute model, Figure 6(b)

shows a somewhat counter-intuitive pattern: “Data” has a relatively small correlation with

all other attributes and there are no clear separation between the content-related attributes

and the cognitive-related ones.

(a) Hybrid GDINA-DINA model. (b) GDINA with a saturated attribute model.

Figure 6: Estimated attribute correlation plots given by the proposed Hybrid GDINA-DINA
model (i.e., GDINA model with a higher-order DINA layer) in (a) and GDINA with a
saturated attribute model in (b) for the TIMSS 2019 4th grade math booklet 7 dataset.

7 Discussion

In this work, we have proposed a new family of interpretable diagnostic models called Deep-

CDMs, established transparent identifiability conditions and general identifiability theory,

and developed Bayesian estimation methods for them. On one hand, DeepCDMs are well

motivated by the applied goal of uncovering rich and structured diagnostic information from
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educational and behavioral data. Through the estimated multilayer latent profiles, Deep-

CDMs enable multi-granularity diagnoses of latent attributes from coarse to fine-grained

and from high-level to detailed. On the other hand, in terms of discrete latent structures,

DeepCDMs share similarities with powerful deep learning models such as deep belief net-

works (Hinton et al., 2006) and deep Boltzmann machines (Salakhutdinov and Larochelle,

2010), and are expressive modeling tools. Distinctively, DeepCDMs are fully identifiable

under our conditions, which is a desirable property lacked by most deep learning models. In

a nutshell, our identifiability conditions can be summarized as: as long as each Q(d) satisfies

the identifiability condition under the CDM to which the shallower layer A(d−1) (or R if

d = 1) conforms, then the entire DeepCDM is identifiable. Our identifiability guarantees

form the very foundation for deriving interpretable and reliable insights in practical applica-

tions, and offer the very guidelines on adopting a shrinking-ladder-shaped generative graph

structure. Simulation results empirically corroborate the identifiability conclusions, and also

demonstrate the good practical performance of our Bayesian estimation algorithms.

In our real data example in Section 6 and other potential future applications, the deeper-

layer binary variables are not used in order to capture the person’s continuous variability

in the coarse-grained higher-order skills as in the HO-CDM in de la Torre and Douglas

(2004). Instead, the higher-order meta attributes provide an additional layer of discrete

diagnoses of the persons’ higher-order skills. Such a diagnostic modeling goal shares a

similar motivation with originally using CDMs as an alternative modeling tool to the classical

(multidimensional) IRT models with continuous latent traits. Historically, IRT has been the

dominating modeling methodology in educational and psychological measurement, thanks

to their excellent ability of capturing subjects’ latent variability. Nonetheless, in the recent

two decades, CDMs have also emerged as powerful alternative tools that provide fine-grained

discrete diagnoses of skills, instead of capturing the continuous variability. In this sense, we

view the proposed DeepCDMs as going further down the road of diagnostic classification,

by providing skill diagnoses with multiple layers of granularity. To fully realize the applied

potential of the proposed new framework, our far-reaching goal is for practitioners to design

new cognitive diagnostic assessments directly inspired by the DeepCDM identifiability theory.

DeepCDMs suppose that the latent variables follow a multilayer generative structure.
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In practice, admittedly, it may not always be the case that attributes follow multiple neat

layers as in a DeepCDM. On the other hand, however, we believe that in a number of CDM

modeling and application scenarios, the advantages of DeepCDMs in terms of statistical

parsimony, practical interpretability, and identifiability outweigh the induced limitation.

Our motivation for proposing DeepCDMs is not to replace, but to complement, other latent

structural models (including attribute hierarchy methods, higher-order continuous latent

trait models) in the CDM literature as an alternative family of interpretable and identifiable

models. Specifically, we expect DeepCDMs will be suitable for those applications where

multi-resolution discrete diagnoses of latent attributes are of interest. We hope this work

contributes a useful first step towards a versatile toolbox of providing statistically justified

multi-granularity diagnostic classification.

The proposed DeepCDM framework unlocks many interesting future research possibili-

ties. First, this paper has focused on binary responses and binary latent variables in all the

layers, but the DeepCDM framework can be readily extended to polytomous responses and

polytomous attributes (Chen and de la Torre, 2013; Gao et al., 2021). Similar identifiability

conditions on the between-layer Q-matrices may be obtained, and corresponding Bayesian

estimation methods can also be developed. To this end, the Bayesian Pyramid model and

its corresponding Bayesian estimation method in Gu and Dunson (2023) is an example,

which deals with multivariate unordered categorical data with binary latent layers. Second,

this paper develops Markov Chain Monte Carlo algorithms for estimation. In the future, it

would also be useful to develop more scalable variational Bayesian inference algorithms or

EM algorithms for DeepCDMs to enhance computational efficiency.

Another interesting future direction is to perform exploratory DeepCDM analysis and

estimate the Q-matrices from data. This initial work has focused on confirmatory scenarios

in which multi-granularity design information are available and can be directly translated

into the Q-matrices. Nevertheless, all of our identifiability results are fully general and

applicable to the exploratory settings with unknown Q-matrices. This means we have also

obtained identifiability guarantees for directly estimating all the Q-matrices in a DeepCDM.

In recent years, there has been an increasing interest in exploratory estimation of CDMs,

including those using Bayesian approaches (Culpepper, 2019b; Chen et al., 2020; Balamuta
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and Culpepper, 2022) and those using frequentist ones (Chen et al., 2015; Xu and Shang,

2018; Gu and Xu, 2023). Developing efficient methods to estimate the multiple Q-matrices

in a DeepCDM is important future work. Furthermore, in an even more exploratory setting,

it would also be interesting to study how to select the number of latent variables K1, K2,

etc. in each layer in a DeepCDM. Nonparametric Bayesian approaches can be useful tools

toward this end (e.g., Fang et al., 2019; Chen et al., 2021; Gu and Dunson, 2023).

On the application front, for modern large-scale educational assessments such as TIMSS

and PISA, we believe there is a promising future potential of using the DeepCDM method-

ology to model and analyze high-dimensional response data, to generate new insights into

student achievement, and to enhance multi-granularity instruction and intervention. Indeed,

the TIMSS 2019 eighth grade math assessment offers more levels of item information than

are used in our current data analysis. For example, under the “Number” skill, there are

still four different topic areas: Integers / Fractions and decimals / Ratio, proportion, and

percent, which are candidates for more fine-grained attributes. In the future, advancing and

refining the computational techniques for DeepCDMs with more layers can help extract even

more nuanced diagnoses about student subcompetences from large-scale assessment data.

On a final note, we would like to give a broader discussion on DeepCDMs’ implications.

In applied cognitive psychology, the concept of “higher order thinking skills” was put for-

ward (Brookhart, 2010; Schraw and Robinson, 2011) which includes problem solving, critical

thinking, creativity, and so on; in linguistics, the “ladder of abstraction” idea was proposed

(Hayakawa, 1947; Munson et al., 2011) to describe the way humans think and communicate

in varying degrees of abstraction through languages; and in deep learning, an influential

review article Bengio et al. (2013) pointed out that using deep architectures can poten-

tially lead to progressively more abstract features at higher layers of representations. Our

shrinking-ladder-shaped DeepCDMs attempt to offer principled and identifiable statistical

models to back up such substantive theory and deep learning heuristics. We hope the Deep-

CDM framework will be useful for practitioners, illuminating for theoreticians, and triggering

fruitful future research on using rigorous statistical methods to cross-fertilize the fields of

(deep) machine learning and psychometrics.
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Supplementary Material. The Supplementary Material contains the proofs of the identifi-

ability theorems and the details of the Gibbs sampling algorithms for posterior computation.

Acknowledgements. This work is partially supported by NSF Grant DMS-2210796. The

author thanks the editor Prof. Matthias von Davier and two anonymous reviewers for their

many helpful and constructive comments that helped improve this paper’s quality.

References

Allman, E. S., Matias, C., and Rhodes, J. A. (2009). Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6A):3099–
3132.

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D., and Williamson, D. M. (2015).
Bayesian networks in educational assessment. Springer.

Balamuta, J. J. and Culpepper, S. A. (2022). Exploratory restricted latent class models with
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Supplement to “Diving Deep in Diagnostic Modeling:
DeepCDMs”

In this Supplementary Material, Section S.1 presents the proofs of the identifiability

results of DeepCDMs, and Section S.2 provides the posterior computation details of the

Gibbs sampling algorithms for DeepCDMs.

S.1 Proofs of the Identifiability Results

All of our identifiability proofs leverage a key technical insight about DeepCDMs – that is,

identifiability can be examined and established in a layer-by-layer manner, from the bottom

up, thanks to the probabilistic formulation of the directed graphical model. This insight

was initially used in ? to establish identifiability of the deep Bayesian Pyramid model for

multivariate categorical data.

Proof of Theorem 1. Recall the joint distribution of all the random variables in a DeepCDM

(including a DeepDINA model and a Hybrid DeepCDM) is

P(R,A(1), . . . ,A(D)) = P(R | A(1)) ·
D∏

d=2

P(A(d−1) | A(d)) · P(A(D)).

The marginal distribution of the observed vector R is obtained by marginalizing out all the

latent variables A(1), . . . ,A(D) in the above joint distribution. According to the definition of

a general directed acyclic graph (DAG), the marginal distribution of each latent vector A(d)

for layer d = 1, . . . , D − 1 can be written as

P(A(d) = α(d)) (S.1)

=
∑

α
(d+1)∈{0,1}Kd+1

· · ·
∑

α
(D)∈{0,1}KD

D∏

m=d+1

P(A(m−1) = α(m−1) | A(m) = α(m)) · P(A(D) = α(D)).
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Now we specifically marginalize out all latent variables except the shallowest layer A(1) in

the joint distribution,

P(R = r)

=
∑

α
(1)∈{0,1}K1

· · ·
∑

α
(D)∈{0,1}KD

P(R = r,A(1) = α(1), . . . ,A(D) = α(D))

=
∑

α
(1)∈{0,1}K1

P(R = r | A(1) = α(1))×

∑

α
(2)∈{0,1}K2

· · ·
∑

α
(D)∈{0,1}KD

D∏

d=2

P(A(d−1) = α(d−1) | A(d) = α(d)) · P(A(D) = α(D))

︸ ︷︷ ︸
P(A(1)=α

(1))

=
∑

α
(1)∈{0,1}K1

P(R = r | A(1) = α(1)) · P(A(1) = α(1)), (S.2)

We introduce a notation π(1) =
(
π
(1)
α ; α ∈ {0, 1}K1

)
to collect the proportion parameters

of the categorical distribution that A(1) follows in (S.2):

P(A(1) = α) = π(1)
α
, ∀α ∈ {0, 1}K1 . (S.3)

Then π(1) lives in the (2K1 − 1)-dimensional probability simplex. Then based solely on

α(1) ∈ {0, 1}K1 , the probability mass function of the random vector R can be written as

follows for each r ∈ {0, 1}J ,

P(R = r | π(1), θ(1), Q(1)) =
∑

α
(1)∈{0,1}K1

π
(1)

α
(1)

J∏

j=1

P(Rj = rj | A
(1) = α(1), θ(1), Q(1)), (S.4)

where the notation θ(1) collects all the continuous parameters needed to specify the condi-

tional distribution of R | A(1) under Q(1). For example, under the DeepDINA model, θ(1)

denotes the collection of s(1) and g(1). Note that (S.4) gives a restricted latent class model

(equivalently, a CDM) for R with 2K1 latent classes, subject to the constraints induced by

the J ×K1 Q-matrix Q(1). Similarly, according to the general marginal distribution of A(d)
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in (S.1), we also have

P(A(d) | A(d+1)) =
∑

α
(d+1)∈{0,1}Kd+1

P(A(d) | A(d+1) = α(d+1),Q(d+1),θ(d+1)) · P(A(d+1) = α(d+1)),

which is another cognitive diagnostic model for the “response vector” being A(d) and the

“latent attribute vector” being A(d+1) under the Q-matrix Q(d+1), where d = 2, . . . , D.

Now consider the DeepDINA model setting in Theorem 1. When R | A(1) follows the

DINA model, then as long as Q(1) satisfies the C-R-D conditions in Gu and Xu (2021),

then Q(1) itself and the continuous parameters θ(1) and π(1) are identifiable. Note that the

statement that π(1) is identifiable means the marginal distribution of A(1) is identifiable,

which implies A(1) can be treated as if it is observed when studying the identifiability of

Q(2), θ(2), and the marginal distribution of A(2). Therefore, if Q(2) also satisfies the C-R-D

conditions, then Q(2), θ(2), and the marginal distribution of A(2) are identifiable. Now it

is easy to see that we can proceed in a layerwise manner from bottom up, and examining

whether Q(1), Q(2), . . ., Q(D) satisfy the identifiability conditions successively. Specifically,

under a DeepDINA model, as long as all the Q(d) satisfy the C-R-D conditions, then all the

Q-matrices and all the continuous parameters (s(d), g(d)), d = 1, . . . , D and πdeep are strictly

identifiable. This proves the sufficiency part in Theorem 1.

To show the necessity part in Theorem 1, we only need to note that if Q(d) fails to

satisfy the C-R-D conditions, then certain parameters in π(d) and θ(d) will not identifiable,

indicating the non-identifiability of the DeepDINA model. This proves the necessity of the

proposed identifiability conditions and completes the proof of Theorem 1.

Proof of Theorem 2 and Proposition 1. We use the same insight elaborated in the proof of

Theorem 1: the layerwise proof argument of identifiability. Specifically, the marginal distri-

bution of R in (S.2), the marginal distribution of A(1) in (S.3), and the conditional distri-

bution of R given A(1) in (S.4) all hold generally for an arbitrary DeepCDM and a Hybrid

DeepCDM. Therefore, we still start with the bottom two layers and examine whether Q(1)

satisfies the identifiability conditions for a general CDM; if so, we then examine Q(2), so on

and so forth. First, we consider the case that condition (S) holds; that is, each Q(d) can be
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written as Q(d) = [IKd
, IKd

, IKd
, (Q(d)∗)>]> after some column/row permutation. In this

case, following a similar argument as the proof of Theorem 4 in ? but constraining to con-

sidering binary responses, we obtain the strict identifiability of (θ(d),Q(d)) for d = 1, . . . , D

and that of πdeep. Second, we consider the case that condition (S∗) holds, then following

a similar argument as the proof of Theorem 1 in Culpepper (2019b) but constraining to

considering binary responses, we also obtain the strict identifiability of all the parameters

and Q-matrices in a general DeepCDM. This proves Theorem 2.

Further note that the above layerwise proof strategy does not require each layer in a

DeepCDM to conform to the same diagnostic model. This means in a Hybrid CDM where

some layers follow the DINA (or DINO) model and some layers follow the main-effect or all-

effect diagnostic models, we can examine their correspondingQ-matrices using the respective

identifiability conditions in Theorems 1 or 2 to assess identifiability. For example, if the

marginal distribution of A(d) is already identified, then A(d) | A(d+1) follows the DINA

model, then Q(d+1) only needs to satisfy the weaker C-R-D conditions to proceed to the

deeper layer. This proves Proposition 1.

Proof of Theorem 3. Similarly as the proofs of strict identifiability results, we still use the

layerwise identifiability argument. In the literature, Theorem 4 in Gu and Xu (2021) es-

tablished generic identifiability for single-latent-layer main-effect/all-effect CDMs (also see

Gu and Xu (2020) and Chen et al. (2020)) under the considered conditions (G1) and (G2)

in its single-layer form (D = 1); in that theorem, the Lebesgue measure-zero subset of the

parameter space where identifiability may break down only concerns the item parameters.

That means, in the context of a DeepCDM consisting of main-effect or all-effect layers, as

long as the item parameters θ(1) ∈ Ωmain(β
(1); Q(1)) do not fall within the layer-specific

unidentifiable subset N (1) which has measure zero in Ωmain(β
(1); Q(1)), then θ(1), π(1), and

Q(1) are identifiable. This implies that as long as the between-layer continuous parameters

θ(1), . . ., θ(D) do not fall within the finite union of the measure-zero subsets of the parameter

space ∪D
d=1Ωmain(β

(d); Q(d)), then the entire main-effect or all-effect DeepCDM is identifiable.

This proves the generic identifiability conclusion in Theorem 3 under conditions (G1) and

(G2).
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S.2 Details for the Gibbs Sampling Algorithms

S.2.1 Gibbs Sampler for Two-latent-layer DeepDINA

For i ∈ [N ], j ∈ [J ], and k ∈ [K1], introduce binary ideal response indicators ξ1,ij and ξ2,ik:

ξ1,ij =

K1∏

k=1

(
a
(1)
i,k

)q(1)
j,k

, ξ2,ik =

K2∏

m=1

(
a
(2)
i,m

)q(2)
k,m

. (S.5)

Denote s
(1)
j , g

(1)
j , s

(2)
k , and g

(2)
k by s1,j, g1,j, s2,k, and g2,k, respectively. Under the priors

specified in the main text, the posterior distribution in the two-latent-layer DeepDINA can

be written as

p(θ
(1)
DINA,θ

(2)
DINA,π

deep,A(1),A(2) | R,Q(1),Q(2))

∝
N∏

i=1

J∏

j=1

[
(1− s1,j)

ξ1,ijg
1−ξ1,ij
1,j

]ri,j [
s
ξ1,ij
1,j (1− g1,j)

1−ξ1,ij

]1−ri,j

×
N∏

i=1

2K2∏

`=1

{
π`

K1∏

k=1

[
(1− s2,k)

ξ2,ikg
1−ξ2,ik
2,k

]a(1)
i,k
[
s
ξ2,ik
2,k (1− g2,k)

1−ξ2,ik

]1−a
(1)
i,k

}1(a
(2)
i =α`)

×
J∏

j=1

[sas−1
1,j (1− s1,j)

bs−1g
ag−1
1,j (1− g1,j)

bg−1
1(g1,j < 1− s1,j)]

×
K1∏

k=1

[sas−1
2,k (1− s2,k)

bs−1g
ag−1
2,k (1− g2,k)

bg−1
1(g2,k < 1− s2,k)]×

2K2∏

`=1

πδ−1
`

Based on the above posterior, the full conditional distributions of the quantities θ(1), θ(2),

πdeep, A(1), A(2) are as follows.

(1) Sample s
(1)
1,j and g

(1)
1,j from truncated Beta distributions:

s
(1)
j ∼ Beta

(
1 +

∑N

i=1
(1− rij)ξ1,ij, 1 +

∑N

i=1
rijξ1,ij

)
· 1(s(1)j < 1− g

(1)
j );

g
(1)
j ∼ Beta

(
1 +

∑N

i=1
rij(1− ξ1,ij), 1 +

∑N

i=1
(1− rij)(1− ξ1,ij)

)
· 1(g(1)j < 1− s

(1)
j ).
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(2) Sample s
(2)
2,k and g

(2)
2,k from truncated Beta distributions:

s
(2)
k ∼ Beta

(
1 +

∑N

i=1
(1− a

(1)
ik )ξ2,ik, 1 +

∑N

i=1
a
(1)
ik ξ2,ik

)
· 1(s(2)k < 1− g

(2)
k );

g
(2)
k ∼ Beta

(
1 +

∑N

i=1
a
(1)
ik (1− ξ2,ik), 1 +

∑N

i=1
(1− a

(1)
ik )(1− ξ2,ik)

)
· 1(g(2)k < 1− s

(2)
k ).

(3) Sample πdeep from the Dirichlet distribution:

πdeep ∼ Dirichlet
(
δ1 +

∑N

i=1
1(a

(2)
i = α1), . . . , δ2K2 +

∑N

i=1
1(a

(2)
i = α2K2 )

)
.

(4) Sample each entry a
(1)
i,k from the Bernoulli distribution with the following probability:

P(a(1)i,k = 1 | −) = P(a(1)i,k = 1 | ri,a
(2)
i ,θ(1),θ(2))

=
P(a(1)i,k = 1 | a(2)

i ,θ(2))P(ri | a
(1)
i,k = 1,a

(1)
i,−k,θ

(1))
∑

x=0,1 P(a
(1)
i,k = x | a(2)

i ,θ(2))P(ri | a
(1)
i,k = x,a

(1)
i,−k,θ

(1))
,

where the conditional distributions P(a(1)i,k = x | a(2)
i ,θ(2)) and P(ri | a

(1)
i,k = x,a

(1)
i,−k,θ

(1))

just directly follow the likelihood defined under the DeepDINA model in Section 4.1

of the main text, and they are both DINA.

(5) Sample each pattern a
(2)
i from the categorical distribution with |{0, 1}K2 | = 2K2 com-

ponents with the following probabilities:

P(a(2)
i = α` | −) = P(a(2)

i = α` | a
(1)
i ,θ(2),πdeep);

=
P(a(2)

i = α` | π
deep)P(a(1)

i | a(2)
i = α`,θ

(2))
∑2K2

`′=1 P(a
(2)
i = α`′ | πdeep)P(a(1)

i | a(2)
i = α`′ ,θ

(2))
,

where the P(a(2)
i = α`′ | π

deep) and P(a(1)
i | a(2)

i = α`′ ,θ
(2)) also directly follow the

definition of DeepDINA, with the former being a Dirichlet distribution and the latter

following a DINA model conditional distribution.

Overall, our Gibbs sampler cycles through the above five steps iteratively to approximate

the posterior distributions of all the quantities.
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S.2.2 Gibbs Sampler for Hybrid GDINA-DINA

Recall that we will focus on those θ
(1)
j,S parameters for the shallower GDINA layer during the

Gibbs sampling, which denote conditional positive response probabilities:

θ
(1)
j,S =

∑

S′⊆S

β
(1)
j,S′ = P(ri,j = 1 | a(1)>

i q
(1)
j,S = q

(1)>
j,S q

(1)
j,S).

Introduce binary indicators for the GDINA layer as

ξ1,ij,S = 1

(
a
(1)>
i q

(1)
j,S = q

(1)>
j,S q

(1)
j,S

)
, i ∈ [N ], j ∈ [J ], S ⊆ Kj,

where the notation Kj = {k ∈ [K1] : q
(1)
j,k = 1} was defined in the main text. For the deeper

DINA layer, we still introduce binary ideal response indicators ξ2,ik for k ∈ [K1] similarly as

the previous (S.5). Under the priors specified in the main text, the posterior distribution in

the Hybrid GDINA-DINA can be written as

p(θ
(1)
GDINA,θ

(2)
DINA,π

deep,A(1),A(2) | R,Q(1),Q(2))

∝
N∏

i=1

J∏

j=1

∏

S⊆Kj

[(
θ
(1)
j,S

)ri,jξ1,ij,S(
1− θ

(1)
j,S

)(1−ri,j)ξ1,ij,S
]

×
N∏

i=1

2K2∏

`=1

{
π`

K1∏

k=1

[
(1− s2,k)

ξ2,ikg
1−ξ2,ik
2,k

]a(1)
i,k
[
s
ξ2,ik
2,k (1− g2,k)

1−ξ2,ik

]1−a
(1)
i,k

}1(a
(2)
i =α`)

×
J∏

j=1

∏

S⊆Kj

[
(θ

(1)
j,S)

aθ−1(1− θ
(1)
j,S)

aθ−1
1(θ

(1)
j,S > θ

(1)
j,∅ if S is a singleton set)

]

×
K1∏

k=1

[sas−1
2,k (1− s2,k)

bs−1g
ag−1
2,k (1− g2,k)

bg−1
1(g2,k < 1− s2,k)]×

2K2∏

`=1

πδ−1
` .

Our Gibbs sampler will cycle through the following steps iteratively.

(1) Sample each θ
(1)
j,S from the (truncated) Beta distribution:

θ
(1)
j,S ∼ Beta

(
aθ +

N∑

i=1

ri,jξ1,ij,S, bθ +
N∑

i=1

(1− ri,j)ξ1,ij,S

)
1(θ

(1)
j,S > θ

(1)
j,∅ if S is a singleton set).
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(2) Sample s
(2)
2,k and g

(2)
2,k from truncated Beta distributions:

s
(2)
k ∼ Beta

(
1 +

∑N

i=1
(1− a

(1)
ik )ξ2,ik, 1 +

∑N

i=1
a
(1)
ik ξ2,ik

)
· 1(s(2)k < 1− g

(2)
k );

g
(2)
k ∼ Beta

(
1 +

∑N

i=1
a
(1)
ik (1− ξ2,ik), 1 +

∑N

i=1
(1− a

(1)
ik )(1− ξ2,ik)

)
· 1(g(2)k < 1− s

(2)
k ).

(3) Sample πdeep from the Dirichlet distribution:

πdeep ∼ Dirichlet
(
δ1 +

∑N

i=1
1(a

(2)
i = α1), . . . , δ2K2 +

∑N

i=1
1(a

(2)
i = α2K2 )

)
.

(4) Sample each entry a
(1)
i,k from the Bernoulli distribution with the following probability:

P(a(1)i,k = 1 | −) =
P(a(1)i,k = 1 | a(2)

i ,θ(2))P(ri | a
(1)
i,k = 1,a

(1)
i,−k,θ

(1))
∑

x=0,1 P(a
(1)
i,k = x | a(2)

i ,θ(2))P(ri | a
(1)
i,k = x,a

(1)
i,−k,θ

(1))
,

where the conditional distributions P(a(1)i,k = x | a(2)
i ,θ(2)) and P(ri | a

(1)
i,k = x,a

(1)
i,−k,θ

(1))

follow the likelihood under the DINA and GDINA, respectively.

(5) Sample each pattern a
(2)
i from the categorical distribution with |{0, 1}K2 | = 2K2 com-

ponents with the following probabilities:

P(a(2)
i = α` | −) = P(a(2)

i = α` | a
(1)
i ,θ(2),πdeep);

=
P(a(2)

i = α` | π
deep)P(a(1)

i | a(2)
i = α`,θ

(2))
∑2K2

`′=1 P(a
(2)
i = α`′ | πdeep)P(a(1)

i | a(2)
i = α`′ ,θ

(2))
,

where the P(a(2)
i = α`′ | π

deep) and P(a(1)
i | a(2)

i = α`′ ,θ
(2)) also directly follow the

definition of DeepDINA, with the former being a Dirichlet distribution and the latter

following a DINA model conditional distribution.

S.2.3 Gibbs Sampler for Two-latent-layer DeepLLM

The posterior distribution of the two-latent-layer DeepLLM can be written as

p(β
(1)
LLM,β

(2)
LLM,π

deep,A(1),A(2) | R,Q(1),Q(2))
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∝
N∏

i=1





J∏

j=1

exp
(
ri,j

(
β
(1)
j,0 +

∑K1

k=1 q
(1)
j,kβ

(1)
j,ka

(1)
i,k

))

1 + exp
(
β
(1)
j,0 +

∑K1

k=1 q
(1)
j,kβ

(1)
j,ka

(1)
i,k

) ×
K1∏

k=1

exp
(
a
(1)
i,k

(
β
(2)
k,0 +

∑K2

m=1 q
(2)
k,mβ

(2)
k,ma

(2)
i,m

))

1 + exp
(
β
(2)
k,0 +

∑K2

m=1 q
(2)
k,mβ

(2)
k,ma

(2)
i,m

)





×
N∏

i=1

2K2∏

`=1

π
1(a

(2)
i =α`)

` ×
2K2∏

`=1

πδ−1
` ×

J∏

j=1

{
N(β

(1)
j,0 | 0, σ2

β)

K1∏

k=0

N(β
(1)
j,k | 0, σ2

β)1(β
(1)
j,k > 0 if q

(1)
j,k = 1)

}

×
K1∏

k=1

{
N(β

(2)
k,0 | 0, σ

2
β)

K2∏

m=0

N(β
(2)
k,m | 0, σ2

β)1(β
(2)
k,m > 0 if q

(2)
k,m = 1)

}

×
N∏

i=1

J∏

j=1

PG(w
(1)
i,j | 1, 0) ·

N∏

i=1

K1∏

k=1

PG(w
(2)
i,k | 1, 0).

Our Gibbs sampler iteratively cycles through the following steps.

(1) Recall the notation Kj = {k ∈ [K1] : q
(1)
j,k = 1}. Define

β
(1)
j,Kj

= (β
(1)
j,0 , β

(1)
j,k ; k ∈ Kj),

which is a vector of length |Kj|+1. We introduce a notation X
(1)
j , which is a N × |Kj|

matrix; the entries in this matrix are indexed by a
(1)
i,k q

(1)
j,k where i ∈ [N ] and k ∈ {0}∪Kj.

Sample β
(1)
j,Kj

from the (truncated) Multivariate Normal (MVN) distribution:

β
(1)
j,Kj

∼ MVN(µ1j,Σ1j), where

Σ1j =
(
X

(1)>
j diag

(
W

(1)
:,j

)
X

(1)
j

)−1

, µ1j = Σ1jX
(1)>
j (R:,j − 1/2) .

(2) Define a new notation

K2,k = {m ∈ [K2] : q
(2)
k,m = 1}.

Define

β
(2)
k,K2,k

= (β
(2)
k,0, β

(2)
k,m; m ∈ K2,k),

which is a vector of length |K2,k| + 1. We introduce a notation X
(2)
k , which is a N ×

|K2,k| matrix; the entries in this matrix are indexed by a
(2)
i,mq

(2)
k,m where i ∈ [N ] and

m ∈ {0} ∪ K2,k. Sample β
(2)
k,K2,k

from the (truncated) Multivariate Normal (MVN)
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distribution:

β
(2)
k,K2,k

∼ MVN(µ2k,Σ2k), where

Σ2k =
(
X

(2)>
k diag

(
W

(2)
:,k

)
X

(2)
k

)−1

, µ2k = Σ2kX
(2)>
k

(
A

(1)
:,k − 1/2

)
.

(3) Sample each w
(1)
i,j , j ∈ [J ] from the Polya-Gamma distribution:

w
(1)
i,j ∼ PG

(
1, β

(1)
j,0 +

∑

k∈Kj

β
(1)
j,ka

(1)
i,k

)
.

(4) Sample each w
(2)
i,k , k ∈ [K1] from the Polya-Gamma distribution:

w
(2)
i,k ∼ PG

(
1, β

(2)
k,0 +

∑

m∈K2,k

β
(2)
k,ma

(2)
i,m

)
.

(5) Sample πdeep from the Dirichlet distribution:

πdeep ∼ Dirichlet
(
δ1 +

∑N

i=1
1(a

(2)
i = α1), . . . , δ2K2 +

∑N

i=1
1(a

(2)
i = α2K2 )

)
.

(6) Sample each entry a
(1)
i,k from the Bernoulli distribution with the following probability:

P(a(1)i,k = 1 | −) =
P(a(1)i,k = 1 | a(2)

i ,θ(2))P(ri | a
(1)
i,k = 1,a

(1)
i,−k,θ

(1))
∑

x=0,1 P(a
(1)
i,k = x | a(2)

i ,θ(2))P(ri | a
(1)
i,k = x,a

(1)
i,−k,θ

(1))
,

where the conditional distributions P(a(1)i,k = x | a(2)
i ,θ(2)) and P(ri | a

(1)
i,k = x,a

(1)
i,−k,θ

(1))

both follow the likelihood under the LLM.

(7) Sample each pattern a
(2)
i from the categorical distribution with |{0, 1}K2 | = 2K2 com-

ponents with the following probabilities:

P(a(2)
i = α` | −) = P(a(2)

i = α` | a
(1)
i ,θ(2),πdeep);

=
P(a(2)

i = α` | π
deep)P(a(1)

i | a(2)
i = α`,θ

(2))
∑2K2

`′=1 P(a
(2)
i = α`′ | πdeep)P(a(1)

i | a(2)
i = α`′ ,θ

(2))
,
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where the P(a(2)
i = α`′ | πdeep) and P(a(1)

i | a
(2)
i = α`′ ,θ

(2)) also directly follow

the definition of LLM, with the former being a Dirichlet distribution and the latter

following a LLM model conditional distribution.
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