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Abstract

Cognitive Diagnostic Models (CDMs) are discrete latent variable models popular
in educational and psychological measurement. In this work, motivated by the advan-
tages of deep generative modeling and by identifiability considerations, we propose a
new family of DeepCDMs, to hunt for deep discrete diagnostic information. The new
class of models enjoys nice properties of identifiability, parsimony, and interpretability.
Mathematically, DeepCDMs are entirely identifiable, including even fully exploratory
settings and allowing to uniquely identify the parameters and discrete loading struc-
tures (the “Q-matrics”) at all different depths in the generative model. Statistically,
DeepCDMs are parsimonious, because they can use a relatively small number of pa-
rameters to expressively model data thanks to the depth. Practically, DeepCDMs are
interpretable, because the shrinking-ladder-shaped deep architecture can capture cogni-
tive concepts and provide multi-granularity skill diagnoses from coarse- to fine-grained
and from high-level to detailed. For identifiability, we establish transparent identifia-
bility conditions for various DeepCDMs. Our conditions impose intuitive constraints
on the structures of the multiple Q-matrices, and inspire a generative graph with in-
creasingly smaller latent layers when going deeper. For estimation and computation,
we focus on the confirmatory setting with known Q-matrices and develop Bayesian
formulations and efficient Gibbs sampling algorithms. Simulation studies and an ap-
plication to the TIMSS 2019 math assessment data demonstrate the usefulness of the
proposed methodology.

Keywords: Bayesian inference; Bayesian network; Cognitive Diagnostic Model; DeepCDM;
Deep generative model; Deep learning; Directed graphical model; Identifiability; Q-matrix.

1 Introduction

Cognitive Diagnostic Models (CDMs), or Diagnostic Classification Models (Rupp et al., 2010;

von Davier and Lee, 2019), are powerful and popular discrete latent variable models in edu-
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cational and psychological measurement. Based on subjects’ item responses, a CDM enables
fine-grained diagnostic inference on multiple discrete latent attributes. Usually, each at-
tribute is assumed to be binary and carries a specific meaning such as the mastery /deficiency
of a skill, or the presence/absence of a mental disorder. In educational settings, the diagnos-
tic feedback on the skill attributes provides details about students’ weaknesses and strengths,
and can facilitate targeted instructions. In the past two decades, CDMs have attracted in-
creasing research attention (e.g. Junker and Sijtsma, 2001; von Davier, 2008; Henson et al.,
2009; Rupp et al., 2010; de la Torre, 2011; Chen et al., 2015; von Davier and Lee, 2019).

In the early years after the inception of CDMs, they were mostly applied to settings
specifically designed for a diagnostic purpose, such as the celebrated fraction-subtraction
data first collected and analyzed by Tatsuoka (Tatsuoka, 1983). Recently, it is increasingly
attractive to gear the diagnostic modeling methodology to large-scale modern educational
assessments, such as the Trends in Mathematics and Science Study (TIMSS) or Programme
for International Student Assessment (PISA) (e.g., see von Davier, 2008; Chen and de la
Torre, 2014; George and Robitzsch, 2015; Gu and Xu, 2023). These applications create
new opportunities and also bring about new challenges. For example, in the TIMSS 2019
eighth-grade math assessment, each item measures multiple granularities of skills: Content /
Cognitive as the general ability domains, Number / Algebra /| Geometry |/ Data and Proba-
bility as more specific skills under the Content domain, Knowing / Applying / Reasoning as
more specific skills under the Cognitive domain, etc. These large-scale complex assessments
call for new statistical and computational methods.

Reflecting on the current CDM (i.e., diagnostic modeling) literature, many studies adopt
the saturated model for the latent attributes, in which every configuration of the attributes
has a separate proportion parameter (e.g., Chen et al., 2015; Xu and Zhang, 2016; Chen et al.,
2018; Xu and Shang, 2018; Fang et al., 2019; Gu and Xu, 2019; Chen et al., 2020; Balamuta
and Culpepper, 2022). Though being fully flexible, the saturated attribute model is not
parsimonious, because it requires exponentially many parameters to describe the attribute
distribution (2% — 1 ones for K binary attributes). This lack of parsimony makes applying
CDMs to modern high-dimensional-attribute settings very challenging, both statistically and

computationally. There exist a few important exceptions to the saturated modeling practice,



including the log-linear attribute model in Xu and von Davier (2008), the higher-order IRT-
based model in de la Torre and Douglas (2004), and the multivariate probit model with one
continuous factor in Templin et al. (2008). These models either include parameters that
are not straightforward to interpret (log-linear parameters in Xu and von Davier, 2008), or
employ only a small number of continuous latent variables to model the attributes (de la
Torre and Douglas, 2004; Templin et al., 2008).

The questions motivating this work are: Is there an even more flexible, yet still parsimo-
nious and interpretable way, to model the high-dimensional latent attributes? Is it possible
to fully retain the power and goal of diagnostic modeling, and provide discrete diagnoses
in multiple latent granularities (as desired in the aforementioned TIMSS application)? Is
it possible to establish identifiability guarantees for such models with complex latent struc-
tures? To address these questions, we propose a deep generative modeling framework for
cognitive diagnosis, which features multiple, potentially deep, entirely discrete latent lay-
ers. We name the new family of models Deep Cognitive Diagnostic Models (DeepCDMs),
to reflect that they can serve as tools to hunt for deep diagnostic information. DeepCDMs
enjoy several desirable properties simultaneously: parsimony and richness, interpretability,
and identifiability. We elaborate on these advantages in the following.

First, DeepCDMs are statistically parsimonious yet have rich representational power. On
the one hand, the parsimony comes from that a DeepCDM avoid the exponential complexity
of parameters in the saturated attribute model. In fact, a DeepCDM requires only a quadratic
or even linear number of parameters with respect to the number of latent variables. Such a
reduction of parameter complexity does not come at the cost of a less suitable model. On
the contrary, our model is well-motivated by the fact that the fine-grained latent attributes
often have structured dependence on each other due to some hidden mechanisms, for which
the deep architecture is well-suited to model. Indeed, the TIMSS assessment in which each
item targets multiple skill granularities provides practical evidence for this argument. On
the other hand, introducing multiple, potentially deep, latent layers can greatly enhance the
expressive and representational power of a model, as widely recognized in the deep learning
community (Bengio et al., 2013; Goodfellow et al., 2016; Ranganath et al., 2015).

Second, DeepCDMs are mathematically identifiable under intuitive conditions on the



deep generative structure. Identifiability means that the parameters can be uniquely deter-
mined from the observed distribution. It is a highly desirable property and a prerequisite
for valid statistical estimation. Recently, there have been an emerging literature addressing
the identifiability issues of CDMs (Xu and Zhang, 2016; Xu, 2017; Culpepper, 2019b; Fang
et al., 2019; Chen et al., 2020; Gu and Xu, 2019, 2020). However, all of these works focus
on the saturated attribute model. It is unknown what conditions can ensure identifiability
when higher order latent structures are present in a CDM. We establish identifiability for
various DeepCDMs with an arbitrary number of latent layers. Our identifiability conditions
impose intuitive constraints on the between-layer graph structures captured by multiple “Q-
matrices”. These conditions directly inform how to design a DeepCDM — a ladder/pyramid
shaped sparse graphical model, with the observed item responses occupying the bottom
layer, and increasingly smaller sizes of latent layers when going deeper (see Figure 1).

Third, DeepCDMs are practically interpretable. The shrinking-ladder-shaped probabilis-
tic graphical model can capture cognitive concepts and provide diagnostics from coarse- to
fine-grained, and from high-level to detailed. In a DeepCDM, when climbing up the ladder
and going deeper, concepts become increasingly abstract and general, capturing the big pic-
ture of knowledge; when stepping down the ladder and going shallower, concepts become
increasingly concrete and specific, capturing the fine-grained details of knowledge. Therefore,
the proposed DeepCDM framework can characterize a complete picture of one’s knowledge
structure and provide diagnostic feedback in multiple different resolutions, with each layer
offering one particular resolution. Such diagnostic information can facilitate more effective
multi-resolution interventions than traditional CDMs with a saturated attribute model.

In summary, this paper makes the following contributions in theory, methodology, and
computation. First, we introduce a deep generative modeling framework for cognitive di-
agnosis for the first time, and propose a general class of interpretable and parsimonious
DeepCDMs. Second, we develop identifiability theory for various DeepCDMs, applicable
to both confirmatory and fully exploratory settings. Our identifiability conditions provide
insights into what deep generative graph one can fundamentally uncover in a DeepCDM: a
shrinking latent ladder when going deeper. Third, we propose Bayesian formulations and

Gibbs sampling algorithms for various DeepCDMs. In this initial paper, our Bayesian infer-



ence methods are developed for the confirmatory setting with known and fixed Q-matrices.
Our algorithms enforce certain monotonicity constraints on parameters and produce inter-
pretable estimation results.

The rest of this paper is organized as follows. Section 2 reviews existing modeling ap-
proaches, proposes the general DeepCDM framework, and gives various specific examples.
Section 3 proposes transparent identifiability conditions for various DeepCDMs and discusses
their practical implications. Section 4 develops the Bayesian formulations of various Deep-
CDMs and their corresponding Gibbs sampling algorithms. Section 5 conducts simulations
studies that corroborate the identifiability theory and demonstrate the performance of the
proposed algorithms. Section 6 applies the DeepCDM methodology to data extracted from
the TIMSS 2019 math assessment. Finally, Section 7 provides concluding remarks. The

proofs of theorems and Gibbs sampling details are included in the Supplementary Material.

2 Deep Discrete Latent Variable Modeling for Diag-

nostic Purposes

2.1 Existing Approaches to Latent Attribute Modeling

A traditional CDM consists of two parts in the model: the measurement part and the la-
tent part. The measurement part describes how the observed responses measure the latent
attributes, and is closely related to the concept of the Q-matrix (Tatsuoka, 1983). Various di-
agnostic goals have led to different specific measurement models, including the Deterministic
Input Noisy output “And” gate model (DINA; Junker and Sijtsma, 2001), the Deterministic
Input Noisy output “Or” gate model (DINO; Templin and Henson, 2006), the main-effect
diagnostic models (DiBello et al., 1995; Maris, 1999; de la Torre, 2011), and the all-effect
general diagnostic models (von Davier, 2008; Henson et al., 2009; de la Torre, 2011). We
defer introducing the details of these measurement models to Section 2.3. Next, we briefly
review existing models for the latent part in a CDM; that is, models for the latent attributes.

We focus on the the commonly considered case of binary attributes. Denote the ith

subject’s latent attribute profile by A; = (A;1,..., A k), then each A; takes one of the



{0, 1}%] = 2K possible configurations. In the current literature of CDMs, the most widely
used model for the latent attributes is the saturated model (Chen et al., 2015; Xu and
Zhang, 2016; Chen et al., 2018; Fang et al., 2019; Gu and Xu, 2019; Chen et al., 2020), which
assumes that each binary pattern o € {0, 1} has its separate proportion parameter p, with
P(A; = &) = pn. These proportion parameters satisfy that p, > 0 and Zae{O,l}K Pa = 1.
Though being fully flexible and general, the saturated attribute model is not parsimonious,
because it requires 2% proportion parameters in 7r, an exponential parameter complexity.
There exist two important approaches for modeling the binary attributes through a
higher-order model. One approach is the higher-order latent trait model (HO-CDM) pro-
posed by de la Torre and Douglas (2004), which uses one or more continuous latent variables
to explain the binary attributes through an IRT-type model. In the unidimensional case,
each student is assumed to have a higher-order continuous ability 6;, conditioned on which
the attributes A;1, ..., A;x are independently generated through a Rasch, 1PL, or 2PL model
(also see the GDINA R package and Ma and de la Torre, 2020). See more discussions on the
connections and differences between the HO-CDM and DeepCDMs in Section 5. Another
approach proposed by Templin et al. (2008) employs the multivariate probit model with a
one-dimensional continuous factor. This approach assumes that each binary attribute A, ;
is obtained via dichotomizing a Normal random variable 7, ; by a cut-off point, and the K
Normal variables (7; 1, ...,m; k) are generated via a factor analysis model. Both of these two
approaches use a small number of continuous latent variables to model the binary attributes.
Other than the higher-order latent variable models, the independence model and the
log-linear model have also been considered for modeling the attributes (Maris, 1999; Xu and
von Davier, 2008). The independence attribute model is often overly simplistic in practice.
The log-linear model in Xu and von Davier (2008) is flexible, but employs parameters that
are not straightforward to interpret. Another different model for the latent attributes is
the attribute hierarchy method (AHM; Gierl et al., 2007; Templin and Bradshaw, 2014).
The AHM assumes that the mastery of certain skill attributes is a prerequisite for that of
others. As pointed out by Rupp et al. (2010), the existing AHMs are pattern classification

approaches rather than probabilistic measurement models.



2.2 The New DeepCDM Framework

Motivated by the appeal to perform diagnostic modeling at multiple granularities, we propose
the deep cognitive diagnostic modeling framework. We adopt the probabilistic graphical
model (Wainwright et al., 2008; Koller and Friedman, 2009) terminology, specifically, a
directed graphical model, to rigorously define a DeepCDM. Graphical models use a graph as
the basis for compactly encoding a complex joint distribution of high-dimensional random
variables. In the graphical representation, the nodes correspond to the random variables,
and the edges correspond to direct probabilistic interactions between them.

A general Directed Acyclic Graph (DAG; also called a Bayesian network as in Pearl
(1988)), is defined as follows. In a DAG, every edge has a direction, and there are no
directed cycles. DAGs are well-suited to model the generative mechanism and causal relations
involving latent variables; see the book Almond et al. (2015) for using Bayesian networks in
educational assessment. Consider M random variables Xy, ..., X, as M nodes in a DAG. If
there is a directed edge from X, to X,,,, then X, is said to be a parent of X,, and X,,, a child
of Xy. Let pa(m) C {1,..., M} be the set of indices of all parents of X,,. Then according

to the general definition of a DAG, the joint distribution of the X3, ..., X, factorizes as:
M
P(X1,..., Xu) = [ P(Xom | Xpagm)): (1)

where P(X,, | Xpa(m)) is the conditional distribution of X,, given its parent variables X ().
The graph structure of a DAG encodes rich conditional dependence and independence rela-
tions among the node variables, as can be checked by examining (1). If a DAG consists of
latent variables, then these latent variables need to be marginalized out in the joint distri-
bution (1) in order to obtain the marginal distribution of the observed variables.

We next introduce the formulation and notation of a general DeepCDM. At the bottom
layer of a DeepCDM are the observed response variables to the J items, R = (Ry,..., Ry).
The first (i.e., shallowest) latent layer adjacent to the bottom layer collects the most fine-
grained latent attributes, A® = (A, . ,Agz). Note that a CDM with a saturated at-

tribute model stops here and assumes the K attributes can be arbitrarily dependent on each



other. In contrast, we model the generating mechanism of the attributes through deeper la-
tent layers. In a D-latent-layer DeepCDM, denote the dth latent layer (counting from the
bottom) by A@ = (Agd), . ,A%) for each d = 1,2,...,D. All edges in a DeepCDM are
pointing in the top-down direction, only potentially between two adjacent layers. See Figure
1 for an example of a DeepCDM with D = 3. The definition in (1) also implies that all the
variables in any specific layer of a DeepCDM are conditionally independent given the vari-
ables in the above layer. Such a graphical model intuitively describes how the more specific
latent skills are successively generated by the more general higher-level latent “meta-skills”.
To fully realize the diagnostic goal, a DeepCDM assumes all latent variables to be discrete.
Later, our identifiability theory will reveal that there should be smaller and smaller latent

layers when going deeper; that is, Ky > Ky > --- > Kp, another intuitive constraint.

QB K, x Ky

Q(Z) : K1 X K2

QY J x K,

TE00000000D®

Figure 1: A ladder-shaped three-latent-layer DeepCDM. Gray nodes are observed variables,
and white nodes are latent ones. Multiple layers of binary latent variables AM, A®) and
A®) successively generate the observed binary responses R. Binary matrices QV, Q@ and
Q® encode the sparse connection patterns between adjacent layers in the graph.

A key feature of a DeepCDM is the multiple “Q-matrices” at different depths of the
graphical model, as in Figure 1. In traditional cognitive diagnosis, the Q-matrix (Tatsuoka,
1983) is an important object that describes how the items measure the latent attributes.
For example, if J items are designed to measure K latent attributes, then the Q-matrix
Q = (gjx) has size J x K, in which ¢;; = 1 or 0 indicates whether or not the jth item
measures (i.e., directly depends on) the kth latent attribute. Recall that the edges in a

graphical model exactly captures the direct dependence between variables, so ¢;r = 1 or
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0 also reflects whether or not the kth latent node is a parent of the jth observed node in
the graph. In other words, the traditional Q-matrix summarize the sparse bipartite graph
pattern between the latent attribute layer and the observed layer. This graphical perspective
implies that a DeepCDM with D latent layers should require D matrices, Q, Q®), ...,
Q) to summarize the graph structure. In particular, QM) = ( ](1]3) has size J x K; and
resembles the traditional Q-matrix; whereas for each d = 2,..., D, the K; 1 x K; matrix
QY = ( ](Cdg) is similar in spirit to Q), but describes how the variables in the (d — 1)th
latent layer depend on those in the layer above, the dth latent layer. Graphically, the entry
q,iflz = 1 or 0 indicates whether or not latent variable Agd) is a parent of latent variable
A,(Cd_l). In this work, we will focus on developing estimation methods for the confirmatory
DeepCDMs, where the Q-matrices are assumed to be fixed and known.

According to the general definition of DAGs in (1) and the DeepCDM setting specified

in the last paragraph, the joint distribution of all the variables, including the latent ones, is

D
PR, A, .. AP) =PR|AD, QW) [[PA“ Y| AY, QW) -P(AP); (2)
d=2
J
where P(R=r|A®M QW) =][PPY(R;=r;] AY, QW), and (3)
j=1
Kq 1
P(AC = ™V | AL, QW) = T BMAY = o™ | A®, Q1), (4)
k=1

where we make explicit how the different Q-matrices appear in different factors in the joint
distribution. The generic superscript “CDM” in the conditional distributions in (3) and (4)
means that the conditional distribution conforms to a Cognitive Diagnostic Model, in each

layer of the potentially deep generative process. Marginalizing out all the latent variables

AW AP in (2) gives the marginal distribution of the observed response vector R:
HR=r)= 5 SR AT a0 AP,
ad oD

where 7 is an observed response pattern, and a(? is a latent pattern for the dth latent

layer. This work focuses on binary observed and latent variables with » € {0,1}’ and



a'® € {0,1}%4, where each observed variable denotes the correct/wrong response and each
latent variable denotes the presence/absence of a skill or a meta-skill.

We model the latent variables A(”) in the deepest latent layer of a DeepCDM using a
categorical distribution, similar to traditional CDMs. Specifically, we allow for two possible
generating mechanisms for A(”) and AP~V | A(P): the pyramid mechanism and the ladder
mechanism. In the pyramid case, AP~ follows a latent class model (Goodman, 1974) with
A serving as the latent class variable; in this case Kp = 1 and A”) ranges in {1,..., B}
for some integer B. In the ladder case, AP~ follows yet another CDM with A(P) serving as
the highest order latent traits; in this case Kp > 1 and A”) € {0, 1}¥P. Both mechanisms
still use fully discrete latent variables and their corresponding distributions are:

pladder oy € {0, 1}50, in a ladder-shaped DeepCDM;

(o7

PA®) = o) = ©)
ghyramid ey € {1,..., B}, in a pyramid-shaped DeepCDM.

. . B id
The proportion parameters satisty 3 1150 mladder — 1 op S ¥ = 1. Now we have

completed specifying a general DeepCDM.

It is worth noting that in the literature of factor analysis of continuous data, hierarchical
factor models (Schmid and Leiman, 1957) or higher-order factor models (Yung et al., 1999)
are important and popular models that also contain multiple layers of factors. These models
belong to the family of using continuous linear latent factors to model continuous responses,
in which the statistical dependence among variables can be just summarized as covariance
or correlation matrices. By contrast, the proposed DeepCDMs are a family of higher-order
discrete latent variable models for discrete data. DeepCDMs can model various nonlinear
and non-additive relationships among variables, e.g., DeepDINA with the interaction term
of higher-order attributes and DeepLLM with the logistic link. These complex dependen-
cies cannot be simply summarized by covariance or correlation matrices as in hierarchical

continuous linear factor models in Schmid and Leiman (1957) and Yung et al. (1999).
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2.3 Specific Examples of DeepCDMs

This subsection provides various specific examples of DeepCDMs under the general frame-
work put forth in Section 2.2. Recall Equation (2) states that the joint distribution of
all variables factorizes into the product of layerwise conditional distributions. As the su-
perscript “CDM” in the conditional distributions in (3)—(4) implies, each conditional dis-
tribution conforms to a CDM. With a slight abuse of notation, we next also write the
observed layer R as A so that all of the layerwise conditionals can be written uniformly
as P(AW=D | A Q@) for d = 1,...,D. In the following, we define specific DeepCDMs

based on which diagnostic model the layerwise conditionals follow.

Example 1 (DeepDINA). The DINA model proposed by Junker and Sijtsma (2001) is a
popular and fundamental model that adopts the conjunctive assumption. DINA assumes
that students are expected to answer an item correctly only when they possess all required
attributes of the item (i.e., the item’s parent attributes in the graphical model). Our Deep-
DINA model adopts the conjunctive assumption for each layer’s conditional distribution. In

1)

particular, the conditional distribution of Ag-d_ given its parent variables is

@ g@)

» 9

(
— (1-s9)1 (a - q§d)) +g¥-1 (a a q§~d)) (7)

where the notation “>” means “elementwisely greater than or equal to”, and “#” means oth-

erwise. The 1(-) denotes a binary indicator function. The parameters s(9) = (sgd), ce 5%71)
and g\@ = (ggd), e »9%2,1) can be thought of as “quasi” slipping and guessing parameters,

respectively. The interpretation of DeepDINA in an educational context is that, students
are expected to master a skill (or a meta-skill) only when they possess all its higher-order
parent skills in the probabilistic graphical model. Similar to Junker and Sijtsma (2001), we

assume g](-d) <1- sgd) for each 7 and d. This constraint can be interpreted as: comparing

d—1)

the subjects who master all the parent skills of an attribute A§- and the subjects who do

not, the former ones have higher probability of mastering this skill A§d_1) itself.
The interpretation of DeepDINA in Example 1 that students are expected to master a

11



skill when possessing all its higher-order parent skills may appear similar to the attribute
hierarchy method (AHM; Gierl et al., 2007; Templin and Bradshaw, 2014). However, we
point out that the AHM and DeepCDMs are not directly comparable, because the former
assumes that the attributes can be directly connected to items whereas the latter assume
high-order latent structures organized in multiple layers. Another modeling difference is that
DeepDINA does not impose hard constraints on which attribute patterns are permissible as
in AHMs. The quasi-guessing parameters g(¥ in DeepDINA the probabilities that a student

masters lower-level skills even when lacking their parent meta-skills.

Example 2 (DeepDINO). The DINO model proposed by Templin and Henson (2006) adopts
a disjunctive assumption and assumes that subjects are expected to provide a positive re-
sponse to an item as long as they possess at least one parent attribute. The DeepDINO

model adopts the layerwise disjunctive assumption and has the following conditional:

d-1) _ 1]A(d—a Q(d ,g()) (8)
= (1- sgd)) 1 (Oék = 1 for some k for which q](fg = 1)

+ g(d) 1 <O¢k = 0 for all £ for which q(k) - 1)

As DINO is often applied to psychiatric diagnosis, the new DeepDINO can also be interpreted
in this context as follows: patients are expected to exhibit a symptom (or meta-symptom)

as long as they possess one of its higher-level “parent” symptoms or mental disorders.

Example 3 (Main-effect DeepCDMs). We use “Main-effect DeepCDMs” to generically re-
fer to DeepCDMs in which the layerwise conditionals follow a main-effect diagnostic model.
Specifically, a main-effect diagnostic model assumes that the probability of Ag-d*l) = 1 de-

pends on the main effects of those parent attributes through a link function f(-):

P = 1A = o, Q, 89) = £(35+ 30 59 {dlfen} ). ©

Note that not all the ﬁ](.f,? in the above equation are needed in the model specification. Only
if qj(.i) = 1 will the corresponding BJ(CQ be incorporated in the model. When the link function
f is the identity, (9) gives the Additive Cognitive Diagnosis Model (ACDM; de la Torre,

12



2011); when f is the inverse logit function, (9) gives the Logistic Linear Model (LLM; Maris,
1999); yet another parametrization of (9) gives rise to the Reduced Reparameterized Unified
Model (R-RUM; DiBello et al., 1995).

Example 4 (All-effect DeepCDMs). We use “All-effect DeepCDMs” to refer to DeepCDMs
in which the layerwise conditionals follow an all-effect diagnostic model. An all-effect diag-

(d-1)

nostic model assumes that the probability of A; = 1 depends on all of the possible main

effects and interaction effects of the parent attributes:

P(Agd D_q | A@ =, Q(d ﬂ(d ( (d)—I—Zk . {q](dk)a } (10)
©) () () d) Ka [ (a)
T Zl§k1<k2§Kdﬁj’k1k2 {qj klakl} {qj””a@} Tt ﬁj’m'“Kde=1 {qj”“ak} )

Similar to Example (3), not all the S-coefficients in the above equation are needed to specify
the model. In particular, if qu) contains K ones, then 2% parameters are needed in (10).
When the link function f is the identity, (9) gives the Generalized DINA model (GDINA; de
la Torre, 2011); when f is the inverse logit, (9) gives the Log-linear CDM (LCDM; Henson
et al., 2009); see the General Diagnostic Model (GDM) framework in von Davier (2008).

The parameters ¢@ and g, d = 1,...,D in Examples 1-2 and 89, d =1,....,D in
Examples 3-4 are continuous parameters that help specify the conditional distribution of
the binary variables in a DeepCDM. When d = 1, these parameters just resemble the item
parameters in a traditional CDM. In a DeepDINA or DeepDINO, the number of continuous
parameters required to model the latent attributes is 2 ZdD;ll K4+ 2%p — 1, while in a main-
effect DeepCDM, this number is at most 25;11 Ky(Kgy1 + 1) + 250 — 1. We will discuss
more about the remarkable reduction of parameter complexity in a DeepCDM in the end of
Section 3, after our identifiability conditions imply upper bounds for Ky, ..., Kp.

We emphasize that the most flexible feature of the DeepCDM framework is that, differ-
ent diagnostic models (including DINA, DINO, main-effect, and all-effect) can be flexibly
combined in different layers of a DeepCDM. For example, in some practical applications, it
may be desirable to adopt the most general all-effect diagnostic model for the bottom data

layer for its flexibility in modeling the effects of the fine-grained attributes, whereas adopt
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the simpler main-effect or DINA model in the deeper latent layers for their parsimony and
interpretability. We call such DeepCDMs the Hybrid DeepCDMs. Hybrid DeepCDMs allow
to balance the expressivity and parsimony of a model, and offer a wide range of possibilities
to construct a specific diagnostic model based on substantive considerations.

The proposed DeepCDMs cover the latent tree models (Mourad et al., 2013) as a special
case. In a latent tree model, each variable has at most one parent in a tree graph; whereas a
DeepCDM allows for a general DAG, in which each variable can have multiple parents (e.g.,
variable Agl) in Figure 1). In terms of the generative model, a pyramid-shaped DeepCDM
is closely related to the Bayesian Pyramid proposed in Gu and Dunson (2023) and can be
viewed as the latter adapted for diagnostic modeling goals. While the Bayesian Pyramid was
implemented under the main-effect model and applied to extract genetic latent traits from
DNA nucleotide sequences (Gu and Dunson, 2023), the DeepCDM framework is motivated
by the need to hunt for deep diagnostic information and provides useful psychometric tools to
this end. To better serve this goal, we develop a suite of methods and algorithms applicable

to various layerwise diagnostic modeling assumptions; see Section 4 for details.

3 Identifiability Theory of DeepCDMs

Recently, there has been an emerging literature addressing the identifiability issues of CDMs
(Xu and Zhang, 2016; Xu, 2017; Culpepper, 2019b; Fang et al., 2019; Chen et al., 2020;
Gu and Xu, 2019, 2020, 2021). However, all of the above works focus on the saturated
attribute model. The only exception in the CDM literature is Gu and Xu (2022), which
establishes identifiability of hierarchical CDMs under attribute hierarchies; but as aforemen-
tioned, a CDM with an attribute hierarchy is a not a fully probabilistic measurement model,
so their corresponding identifiability conditions do not apply to DeepCDMs. In this section,
we propose transparent identifiability conditions for various DeepCDMs. In the most gen-
eral exploratory model settings, our theory guarantees the identifiability of all Q-matrices
QW, ..., Q™) and all continuous parameters in the model. When the Q-matrices are known

as in the confirmatory settings, all of our identifiability conclusions still directly apply.
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3.1 Sharp Strict Identifiability Result for DeepDINA

DINA is one of the most basic and popular models in cognitive diagnosis. We establish
sharp necessary and sufficient conditions for identifying the exploratory DeepDINA. Here
“exploratory” means that the Q-matrices Q. ..., Q™) are not assumed to be known and
fixed. Such an identifiability notion will be the most flexible and useful one in practice;
see identifiability results for exploratory diagnostic models with a saturated attribute model
in Chen et al. (2015), Xu and Shang (2018), Culpepper (2019b), Chen et al. (2020), and
Gu and Xu (2021). Denote the parameter space for the deep proportion parameters rdcep
by AZP-L = {rdeer ?:ffl TaP = 1,w3e? > 0}; throughout this work, we assume

ngfp > 0 holds for every deep latent pattern o € {0,1}%7. This is a common assumption

also adopted for single-latent-layer CDMs. We next define the strict identifiability.

Definition 1 (Strict Identifiability). An exploratory DeepCDM model is said to be strictly
identifiable, if the distribution of the observed vector R in (5) uniquely determines all of the
following: all continuous parameters in the layerwise conditional distributions, the deepest
proportion parameters w P and all Q-matrices at different depths QMW ... Q) up to

some column/row permutation.

The identifiability notion in Definition 1 that each Q-matrix is identifiable up to some
column /row permutation is a trivial and inevitable phenomenon when there exist multiple
latent variables; see Chen et al. (2015) and Xu and Shang (2018).

Next, we summarize the existing necessary and sufficient identifiability conditions for the
traditional DINA model with a saturated attribute model. These conditions will also play
important roles in the identifiability of DeepDINA. Specifically, the following conditions (C),
(R), and (D) are known to be necessary and sufficient for strict identifiability of DINA, both
in the confirmatory case with a known Q-matrix (Gu and Xu, 2019) and in the exploratory

case with an unknown Q-matrix (Gu and Xu, 2021):

(C) Completeness. A Q-matrix with K columns contains an identity submatrix I after

some row permutation. That is, the Q can be row-permuted to be Q = [I, (Q*)"]T.

(R) Repeated-Measurement. Each of the K attributes is measured by at least three items.
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(D) Distinctness. Assuming Condition (C) holds, after removing the identity submatrix

I from Q, the remaining submatrix Q* contains K distinct column vectors.

We will call the above three conditions the C-R-D conditions for short. Our next theorem
establishes sharp identifiability result for the exploratory DeepDINA with an arbitrary depth

D, by providing the necessary and sufficient conditions on the multiple Q-matrices.

Theorem 1 (DeepDINA). Consider a ladder-shaped exploratory DeepDINA model with D
latent layers and D between-layer Q-matrices QW, ... . QP). The model is strictly identifi-
able if and only if each Q¥ , d =1,...,D, satisfies the C-R-D conditions.

The conditions in Theorem 1 are also necessary and sufficient for identifying the Deep-
DINO model introduced in Example 2, because of the duality between DINA and DINO
(Chen et al., 2015). The sharp identifiability conditions in Theorem 1 put transparent con-
straints on the Q-matrices, and equivalently, transparent constraints on the between-layer
graphical structures. In a graphical model, define X,, to be an exclusive child of X, if the
former has the latter has its only parent. The deep C-R-D conditions in Theorem 1 can
be translated into graphical language as follows: each latent variable in the deep graphical
model should have at least one exclusive child (Condition (C)) and at least three children
in total (not necessarily all exclusive; Condition (R)) in the layer below; and after removing
one exclusive child for each latent variable, the remaining sets of children of the K latent
variables in the dth latent layer should be mutually distinct (Condition (D)) ford =1,..., D.

The following Example 5 illustrates the theoretical result in Theorem 1.

Example 5. Consider a DeepDINA model with D = 2, and two Q-matrices QM, Q®:

[T\ 10
00 0 01 0 1
QW=|[110 10 ., Q¥ =110
10110 0 1
01111}, 11,

It is easy to verify that both QM) and Q® satisfy the C-R-D conditions. Therefore, a ladder-
shaped DeepDINA model with J = 9 observed response variables, K1 =5 finest-grained latent
attributes, and Ky = 2 meta latent attributes in the deepest layer, is strictly identifiable. The
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identifiable quantities include Q-matrices QW), Q®), deepest proportion parameters wiielp,

(quasi-)slipping and guessing parameters at both layers (sélx)l, gélx)l) and (séQX)l, géi)l).

As can be seen from the toy example in Example 5, we have J > K; > K5 under the
identifiable DeepDINA there. In general, if a Q-matrix of size J x K satisfies the C-R-
D conditions, then there is a natural constraint on how large K can be with respect to
J: J > K + [logy(K)] (Gu and Xu, 2021). This means in an identifiable DeepDINA,
the sizes of the layers in the graphical model should satisfy J > Kj + [log,(K;)], and
Ky 1 > Kg+ [logy(Ky)| for d = 2,...,D. This suggests an increasingly shrinking ladder

architecture of the latent layers when going deeper.

3.2 Strict Identifiability Result for General DeepCDMs

This subsection provides fully general strict identifiability conditions for a arbitrary Deep-
CDM. These conditions are also applicable to Hybrid DeepCDMs introduced in Section 2.3.
From the identifiability result for DeepDINA in Theorem 1, one can see that it is those
between-layer Q-matrices that drive and deliver identifiability. In fact, this is correct intu-
ition that applies much more broadly. Next, we formalize this intuition by establishing a

general identifiability result for an arbitrary DeepCDM.

Theorem 2 (General DeepCDM). Consider an exploratory general DeepCDM with D latent
layers and D between-layer Q-matrices QW ..., QP). Either Condition (S) or Condition
(S*) below suffices for strict identifiability of the model.

(S) Each Q9 can be written as QY = [I,, Ix,, Ix,, (QD)T]T after some column/row

permutation, where QD* is an arbitrary (Kq_, —3Ky) x Kq matriz (potentially empty).

(S*) This condition is the combination of both (S1*) and (S2*) below.

(51*) Each Q9 can be written as QY = [I,, Ix,, (QD*)T]T after some column/row

permutation, where Q9* is an arbitrary matriz (potentially empty).

(S2*) For any two different Kg-dimensional latent patterns ., oy € {0,1}5¢  there
exists some j > 2Ky such that P(Agd_l) =1|A@D =, QD g9) £ P(A;d_l) =
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1| AD = ap, QW O(d)), where 09 generically denotes continuous parameters

required to fully specify the conditional distribution.

Remark 1. Condition (S) in Theorem 2 is similar to the conditions in Theorem 4 in Gu
and Dunson (2023) for identifying the Bayesian Pyramid model there. Condition (S*) in
Theorem 2 relaxes the requirement on Q-matrices compared to Condition (S), and impose
an additional requirement on the conditional probabilities to establish identifiability. Con-
dition (S*) is similar to conditions (C1) and (C2) in Culpepper (2019b) imposed on the
traditional Q-matrix, which were proposed to identify an exploratory diagnostic model for

ordinal responses with a one-latent-layer saturated attribute model.

Theorem 2 is fully general, and is applicable regardless of which specific diagnostic model
each layer in a DeepCDM follows. According to the conditions in Theorem 2, the sizes of
the layers in the graphical model should satisfy J > 2K, and K41 > 2K, ford=2,...,D,
which also suggests an increasingly shrinking sparse latent ladder when going deeper.

Comparing the conditions in Theorems 1 and 2, one can see that the general sufficient
conditions for an arbitrary DeepCDM are stronger than those needed for identifying the
DeepDINA. The next proposition further guarantees that if a DeepCDM consists of a mix
of DINA-layers and main-effect/all-effect layers, then those Q-matrices corresponding to
the DINA-layers only need to satisfy the weaker C-R-D conditions, instead of the stronger
Conditions (S) or (S*) in Theorem 2.

Proposition 1 (Hybrid DeepCDM). Consider a Hybrid DeepCDM with D latent layers and
D between-layer Q-matrices QW ..., QP) . If each Q'Y satisfies the identifiability conditions
for the specific diagnostic model that A=Y | A follows (i.e., C-R-D for DINA, (S) or
(S*) for main-effect or all-effect model), then the entire DeepCDM is strictly identifiable.

Proposition 1 reveals a key technical insight that our identifiability proofs leverage. That
is, identifiability of DeepCDMs can be examined and established in a layer-by-layer manner,
from the bottom up. This seemingly intuitive argument is rigorously true thanks to the
probabilistic formulation of the directed graphical model and the discreteness nature of all

the latent variables. See the proof of Theorem 1 in the Supplementary Material for details.
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3.3 Generic Identifiability of Main-effect and All-effect DeepCDMs

Strict identifiability is the strongest possible identifiability notion, requiring parameters to
be everywhere identifiable in their parameter space 7. A slightly weaker notion called
generic identifiability (Allman et al., 2009), instead requires parameters to be identifiable
almost everywhere in T, allowing identifiability to fail on a measure-zero subset N of 7. As
pointed out by Allman et al. (2009), generic identifiability often suffices for real data analyses
purposes and is a very useful identifiability notion in practice. In the CDM literature, Gu and
Xu (2020) and Chen et al. (2020) proposed generic identifiability conditions for variants of
CDMs with a saturated attribute model. Next, we build on the existing generic identifiability
conditions to establish generic identifiability of main-effect and all-effect DeepCDMs. We
define the main-effect-based DeepCDMs as follows.

Definition 2 (Main-effect-based DeepCDMs). A DeepCDM is said to be “main-effect-

based”, if the layerwise conditional distribution can be written as:

P(AYY =1 AD = a, Q, ﬁ(‘”>:f(Z B {q]kak}Jr >

14 ”

where f(-) is a link function, and the refers to potentially more terms such as the

interaction-effects of the ay.’s and the intercept.

Note that DeepDINA and DeepDINO are not main-effect-based DeepCDMs, because they
do not contain the main-effect coefficients such as those B](.fik) in Definition 2. These main-
effect coefficients are essential to generic identifiability and allow for relaxing the condition
that each Q@ should contain a submatrix Ik, (Gu and Xu, 2020; Chen et al., 2020). We

next formally define and establish generic identifiability of main-effect-based DeepCDMs.

Definition 3. Define the allowable constrained parameter space for B in Definition 2

under the binary matriz Q@ as

Qunain (B3 QD) = {BY) £ 0 if ¢\ =1; and B =0 if ¢\) = 0}. (11)

The continuous parameters and the Q-matrices are said to be generically identifiable iof the
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set of unidentifiable continuous parameters has measure zero with respect to the Lebesque

measure on their parameter space UdDlemain(ﬂ(d); QYU A2P-1,

Theorem 3. Consider a main-effect-based DeepCDM. Suppose each QD can be written as
QW = [( §d))T,( gd))T, (QDYTT after some column/row permutation and satisfies the

following conditions. Then the main-effect-based DeepCDM 1is generically identifiable.

(G1) Each QY (m =1,2) has size Kg X Ky and takes the following form:

1 % *
* 1 *

QV=1|. . . |, m=12 d=1,....D
* %k 1

That s, di) and Qéd) each has all the diagonal entries equal to one, whereas any

off-diagonal entry is free to be either one or zero.

(G2) The (K41 — 2K,) x Ky submatriz QD* in Q¥, d = 1,...,D, satisfies that each

column contains at least one entry of “17.

Theorem 3 significantly relaxes the strict identifiability conditions in Theorem 2, by not
requiring any Q@ to contain an identity submatrix I ,- Note that these generic identifiabil-
ity conditions in Theorem 3 also imply a shrinking latent ladder when going deeper, because
(G1) and (G2) implicitly requires J > 2K and Ky > 2K, ford=1,...,D — 1.

The natural upper bounds on the values of Ky, K, ... given by all of our identifiability
conditions further confirms the statistical parsimony of DeepCDMs. For example, in a two-
latent-layer DeepCDM with K7 = 7 latent variables in the shallower latent layer and Ky = 2
ones in the deeper layer (which is the scenario in the real data analysis in Section 6), the
number of parameters required by DeepLLM is Zf:ll(z:fjl q,gzg + 1) + 2K2 — 1, which is
at most 24, and that required by DeepDINA is 2K, + 252 — 1 = 17; whereas the number
of parameters required in a saturated attribute model would be 251 — 1 = 127. Such a
remarkable reduction of parameter complexity facilitates applying DeepCDMs when there is

a large number of fine-grained latent attributes but a relatively small sample size.
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The easily understandable and intuitively interpretable identifiability conditions pre-
sented in this section are an appealing property of DeepCDMs. We next provide some
insights into our proof strategy. The reason why we can establish identifiability in a layer-
by-layer manner is two-fold. First, in a mutilayer directed graphical model, when arrows
are all top-down and only occur between adjacent layers, marginalizing out all the latent
variables deeper than the shallowest layer result in a marginal restricted latent class model
(RLCM; Xu, 2017; Gu and Xu, 2020). Once the proportion parameters for this RLCM are
identifiable, this shallowest latent layer’s distribution is uniquely identified and can be theo-
retically treated as if observed when investigating identifiability of deeper layers. Second, we
exploit one key property of existing identifiability theory of RLCMs — identifiability holds
under conditions on the Q-matrix for arbitrary marginal distributions of the latent attributes.
This property allows us to extend the identifiability conclusion to very flexible deep mod-
els since deeper layers could induce quite complex marginal dependencies among the latent
attributes. Although proving identifiability is not technically very challenging upon realiz-
ing the above two key facts, we believe that uncovering these two facts to rigorously show
identifiability still contributes to our understanding about CDMs and their potential.

On a related note, the HO-CDM proposed by de la Torre and Douglas (2004) is a very
popular and widely used high-order CDM. However, whether and when parameters in a
general HO-CDM with multiple higher-order continuous latent traits are fully identifiable is
still unknown. So there currently lacks a rigorous statistical justification for valid parameter
estimation in that model. To our best knowledge, DeepCDMs are the first higher-order
CDMs that are shown to be fully identifiable.

4 Bayesian Inference for DeepCDMs

Recently, Bayesian formulation and estimation of CDMs have gained increasing interest; see
Culpepper (2015), Chen et al. (2018), Fang et al. (2019), Chen et al. (2020), and Liu et al.
(2020), among others. Bayesian approaches can incorporate prior beliefs into the model
formulation, and quantify the statistical uncertainty through the posterior distributions.

Moreover, in the CDM context, Bayesian estimation algorithms can conveniently incorpo-
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rate meaningful constraints into the posterior sampling process, including the monotonicity
constraints on the model parameters (Culpepper, 2015) and the identifiability constraints
on the Q-matrix (Chen et al., 2018).

In this section, we propose Bayesian formulations for several DeepCDMs and develop their
corresponding efficient Gibbs sampling algorithms. As mentioned earlier, in this work we
focus on developing Bayesian inference methods for the confirmatory setting with fixed and
known Q-matrices. For simplicity of presentation but without loss of generality, this section
focuses on two-latent-layer DeepCDMs. We point out that all of our Bayesian inference
procedures can be extended to a DeepCDM with more latent layers; this is the case thanks to
both the conditional independence of non-adjacent layers in a DeepCDM and our layerwise
Gibbs sampling steps. Now consider a two-latent-layer DeepCDM with K; fine-grained
attributes and K5 deeper meta attributes. With a sample of size N, denote the N x K first-
layer latent attribute matrix by (ag)), and denote the N x K, second-layer latent variable
(2)) (1) )

matrix by (aij . Denote the ith row of these two matrices by a,”’ and a,z(2 , respectively.
Let 6 generically denote the continuous parameters needed to specify the conditional

distribution A=Y | A,

4.1 Bayesian Inference for DeepDINA

For any positive integer M, we denote [M] = {1,..., M }. The following continuous parame-

ters are needed to specify a two-latent-layer DeepDINA: item parameters 0 = ( Slil, gf,lll),

(2) (2)

quasi-item parameters 8% = (8K, x1» 9k,x1), and deep proportion parameters grdeep —

(71, ..., mx,). Consider a sample of size N and denote the observed N x J data matrix by
R = (r;;). Define a Ky-dimensional vector v(?) = (25271 2K2=2 " 90T ‘then v(? induces a
bijection between the binary patterns and integers (Culpepper, 2019a), and we define binary
patterns a, . .., ayr, € {0,112 such that aj v = ¢ — 1, for £ =1,..., 2Kz,

When QM and Q@ are fixed, DeepDINA has the following model formulation,

&1,ij 1-&1,45
ri | a;”. ¢}, 6 ~ Bernoull (<1 - SED) h (gﬂ('l)> 1 J) & =1al = ) (12)

22



&2,i 1-&24
o 12,0~ st (1) (5)") = 160 2 4 19

plsy” 0;) o (55)" (1= S g )T (1 g (g 55 < 1),

€ [J] for d=1, and j € [Ky] for d = 2; (14)
2K2 2K2
( (2) ] grdeer) o Hﬂ'@ ar’'=ew) , 0< <1, Zm =1; p(mdr) = ngﬁl. (15)
=1 =1
The prior for w4 = (7,...,myx,) in (15) is the Dirichlet distribution with parameters

6 = (01,...,dr). The prior for sgd), ;d) in (14) is a product of two truncated Beta densities

with hyperparameters (as, bs) and (a4, by), respectively, similar to that in Culpepper (2015).

(d) (d)

The monotonicity constraint g;” < 1 — s;” in (14) ensures each item or attribute provides

information to differentiate the capable and incapable subjects (Junker and Sijtsma, 2001).

The above Bayesian formulation of DeepDINA facilitates convenient posterior inference

via a Gibbs sampler. Specifically, we sample each entry ag}k) individually to better leverage

the multilayer generative process and to boost computational efficiency; this is different from

0

sampling the entire latent vector a;’ as in many previous Bayesian estimation approaches

for CDMs. Define a( ) . to be the (K; — 1)-dimensional subvector of a 1) containing entries

(1)

other than Qg The full conditional distribution of aijk is:

k=1,... K : Pa)=1-)=P@)=1]r,a>, 0", 0%

Pl =1]a®,6D)P(r; | ol =1,a",,0W)
o Bl =2 [0l 0@)P(r, | o) = 2,0, 6W)

)

I

in the conditioning set for aglk) generically summarizes all of

“_»

In the above display, the
the other quantities in the posterior, and the first equality is derived from the conditional

(2) , we sample

independence properties of the graphical model. As for the second latent layer a;
it from the categorical posterior with 252 components. The full conditional distribution of
each element in sV, gV, s and g is a truncated Beta, and that of 7w is a Dirichlet; we

provide the detailed forms of these conditional distributions in the Supplementary Material.
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4.2 Bayesian Inference for Hybrid GDINA-DINA

A two-latent-layer Hybrid GDINA-DINA model features a GDINA layer for modeling R |
A® and a DINA layer for modeling A® | A® . Such a model may be useful in practical
scenarios when it is desirable to adopt the general diagnostic model in the bottom layer for
its flexibility and adopt a simpler DINA model in the deeper layer for its parsimony. The
Hybrid GDINA-DINA model has the following generative process,

Tij | CLZ 7(15 ),9 ~ Bernoulh( 0 —1—2 {qj(k)az(lk)} (16)

Ky
(1) ¢ ) (1 1 1) (1) .
+ Z Bjklkz {q] k)l l(kl} {qjk)Q Ek)l} + '”+5J(}1)2'“KdH{qJ(':k)aLk})’

1§k1<k52§Kd k=1
oV | o q®, 6®) : @)\ ik ([ @)\ ik @ (2
| a;”,q,”,0" ~ Bernoulli (1 — S ) (gk ) , S =1 (ai > qy > . (17)

Since AM | A® follows the DINA model, we adopt the same truncated Beta priors as that in
(14) for the quasi-item parameters and enforce g( J<1- s,(f). As for the model for R | AW
we adopt the GDINA formulation proposed by de la Torre (2011) in (16) by using the identity
link function f(-) in the all-effect general diagnostic model. A general diagnostic model with
an identity link facilitates Gibbs sampling steps without data augmentation. Note that in
order to perform Gibbs sampling directly, it is not convenient to directly work with the
p-coefficients in (16) and sample from their posteriors. Instead, similar to the existing
GDINA EM algorithm in the literature, we adopt an invertible reparameterization of the
B-coefficients and define a set of §-coefficients that directly correspond to conditional correct
response probabilities and are easy to sample from. Define K; = {k € [K] : qj(lk) = 1},
which is the set of indices of the latent attributes that item j measures. Then each (-
coefficient in the GDINA layer in (16) can be equivalently written as B]sz, where S is a
subset of K;; for example, ﬁ = ﬁj(}()) , BJ (k= 5] L, and B s corresponds to the parameter

for highest order interaction effect of the required attributes. For any subset S C K;, denote

by qglé = (qj(lk) ; k € S) the subvector of q;. We now define the f-parameters as follows,

1 1 nT 1 nT 1
0% =5 % P, =11 a"Tql = ¢ q'Y), (18)
S'CS
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VS CK;={kelk]: ¢} =1},

where the equality indexed by “(x)” can be verified by simply following the definition of

the S-parameters. For example, Qﬁl{)k} e

j}@) + 65‘,1{)19} represents the probability of providing

positive response to item j given that the subject only masters the kth latent attribute A,(Cl).
With the above reparametrization and equality “(x)”, the -parameters directly represent
positive response probabilities of certain clearly defined latent classes in the population. This
structure implies that we can endow 6; ¢ with a Beta prior and then have a Beta posterior.

In particular, let the prior for 9]‘2 be Beta(ag, bg), then its posterior distribution is

N N

Beta (ae #3rt (@ al% = a3 aly) b+ 3o (ol gl = QE?%TQE,I%)) >
i=1 =1

where S ranges in all the possible subsets of K;. This completes the description on how to

sample the continuous parameters for the GDINA layer.

Interpretable monotonicity constraints can also be incorporated into the posterior sam-
pling of the Qj(lg parameters. For example, it may be reasonable to impose the constraint
that the main-effect parameters of the attributes, i.e, ﬁ](lk) in (9), are positive (Culpepper,
2019b). In our parametrization of 93('27 this constraint is equivalent to requiring 6](.’1{),6} > (9](»2
for each k = 1,..., K;. Such a constraint can be easily enforced by sampling 93(',1{)1@} from a

truncated Beta posterior as follows:

=1 i=1

N N
Beta ( b3 it (el = o) o+ 30— g1 (el = q;},g)> 16, > o).

we provide the details of the Gibbs sampler for the Hybrid GDINA-DINA in the Supple-

mentary Material.

4.3 Bayesian Inference for DeepLLM

In this subsection, we consider the two-latent-layer Deep Logistic Linear Model (DeepLLM).

Let o(z) = 1/(1+e~*) denote the inverse logit function (i.e., sigmoid function). For al’ and
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wdeP we adopt the same formulation and prior as (15). As for the additional parameters in

a DeepLLM, we adopt the following formulation,

rij | aZ ,q] ,0(1) ~ Bernoulli (0 ( + Zk lﬁjk Jk zk)) (19)

+Z Bl m>) (20)

¢} =1~ N(0,02)-1(8) > 0), B ¢, =1~ N(0,02) - 1(BF), > 0). (21)

ay | af

), q,(f), 0® ~ Bernoulli (0’

ik |

The natural constraints imposed by the Q-matrices (! h Y )| qj k =0) =0 and (ﬁkm | q 22n =
0) = 0 can be readily enforced throughout the sampling process. In order to facilitate efficient
Gibbs sampling steps based on full conditional distributions of all the parameters, we propose
to use the Polya-Gamma data augmentation in Polson et al. (2013). This data augmentation
strategy was also recently adopted for Bayesian Pyramids for multivariate categorical data
in Gu and Dunson (2023) and for saturated CDMs in Balamuta and Culpepper (2022).
Different from these existing works, we apply Polya-Gamma augmentation not only for
observed data layer R, but also for the latent layer A® | due to our multilayer logistic linear

model assumption. Specifically, we introduce auxiliary variables w ) for j e lJ], wfzk) for

k € [K;] that follow the Polya-Gamma prior PG (1,0). Introduce the following notation:

,] - ]0 § :k 1 ]k ]k zk’ zlc_ E : 5km km zm

Denote the probability density function of PG(1,0) by p®(w | 1,0). By the property of the

Polya-Gamma variables in Polson et al. (2013), we have the following identity for (bl(-}j)'

(1)
exp(¢; ; Ti;) >
— (])> = Zexp{(m -1/2)¢ (1)}/ exp{—wz(vlj)(gzﬁsj)f/Z}pP (w! | 1,0)d Z(J),
0

1+ exp(gbi}j

and there is a similar identity for ‘251(213‘ A nice consequence of the above equality is that
the conditional posterior distributions for all the 6;)10) and 5](1;3 are still Gaussian, and the

(1)

conditional posterior distribution of each w;; is still Polya-Gamma, with (wz(lj) | =) ~

G(1, ¢§1}) Similar posterior forms can be derived for 51223@ and wfk), which are also Gaussian
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and Poyla-Gamma, respectively. Such posterior distributions are easy to sample from and
are the building blocks of our efficient Gibbs sampler for a DeepLLM. We provide the details
of this Gibbs sampler for DeepLLM in the Supplementary Material.

We point out that our Gibbs samplers described in Sections 4.1-4.3 can be readily ex-
tended to deeper models containing more than two latent layers. To see this, note that
DeepCDMs have a nice property implied by the graphical model: given any layer A the
layer above it A(@+1Y) and the layer below it A@~1) are conditionally independent. This means
in a DeepCDM with an arbitrary number of layers, when sampling parameters and latent
structures for any specific layer, we only need to consider its two adjacent layers and derive
the full conditional distributions based on these local model information. This fact allows

straightforward extensions of our Gibbs sampling procedures to general hybrid DeepCDMs.

5 Simulation Studies

We conduct simulation studies for the three two-latent-layer DeepCDMs considered in Sec-
tion 4: DeepDINA in Section 4.1, Hybrid GDINA-DINA in Section 4.2, and DeepLLM in
Section 4.3. We also conduct two additional simulation studies, one comparing a DeepCDM
to a traditional CDM with a saturated attribute model, and one evaluating a DeepCDM’s
robustness to deeper layer model misspecification. The following three different generative

graphical structures (equivalently, forms of Qf,li K, and Q%X x,) are considered:

I
I
I
I
) 110000 @) I
structure (a): Qsoxg = 001100l oo =12 ]; (22)
000011 =
1 01 000
01 01 00
001 010
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-
3

I;
I;
1100000 ;
0011000 1130
structure (b): Q%)ﬂ: ?8(1)8(1)(1)87 Q%)s: L0 1f; (23)
01 1
0101000 L1 1
0010100
0001010
0000101
0000011
Iy
Is
Ig |
11000000 13
structure () Qiflg=[0 0 1 1 000 0f,  Ql=|, 7 (24)
00001100 Lo 1
0000O0O0T11
10100000
01010000

Denote the above three pairs of Q-matrices by {QS), QELQ)}, {Q,(Jl), Q,(f)}, and {le), Qg)},
respectively. In all the simulation experiments, the Gibbs sampling algorithm is run for
15,000 iterations, with the first 10,000 iterations discarded as burn-in. Based on the last
5000 posterior samples, we calculate the posterior means of the continuous parameters as
their point estimators. We observed sufficiently good convergence and mixing behaviors of

all the Gibbs samplers through preliminary simulations.

Simulation Study I: Two-latent-layer DeepDINA. Under each of the three pairs
m _

J =

g](.l) = 0.1 for all j € [J], and s,?) = g,(f) = 0.25 for all k € [K;]. We specify the true

of Q-matrices in (22)—(24), we specify the true item/quasi-item parameters to be s

deep proportion parameters to be wdeP = (1/252 . 1/252) that is, uniform over the 2K2
deep latent patterns. We consider three sample sizes N = 500, 1000, 2000, and carry out
100 independent simulation replicates in each of the nine resulting simulation settings. The

Q-matrices QM and Q® are fixed to the ground truths during estimation. We consider the
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posterior means of the model parameters as their point estimators, and calculate the mean
Root Mean Squared Errors (RMSE) and mean absolute biases (aBias), each averaged across
the 100 simulation replicates. Here the mean absolute bias is a valid measure of the bias
performance of an estimator, which is both broadly used in statistics (Morris et al., 2019)
and also in previous studies about CDMs (Xu and Shang, 2018; Chen et al., 2020). Note
that directly averaging the bias itself (instead of the absolute bias that we consider) across
simulation replicates may give a misleading result, because positive and negative biases can
cancel out each other. Table 1 presents the simulation results of the average RMSE and
average aBias for the slipping and guessing parameters 0](311)N A, for the quasi-slipping and

quasi-guessing parameters OSI)N A, and the deep proportion parameters P,

Structure  (J, Ki, K3) N RMSE aBias

7.l_deep 7.‘_deep

1 2 1 2

Obina  Obina Obina  Obina

500 0.021 0.060 0.063 0.017 0.050 0.050

(a)in (22) (30, 6, 2) 1000 0.015 0.046 0.049 0.012 0.038  0.040

2000 0.011  0.038 0.040 0.009 0.031 0.032

500 0.039 0.072 0.042 0.033 0.062 0.033
(b)in (23) (30, 7, 3) 1000 0.033 0.070 0.047 0.029 0.061 0.038
2000 0.029 0.066 0.044 0.026 0.058 0.036

500  0.031 0.064 0.038 0.026 0.054 0.030
(c) in (24) (30, 8, 3) 1000  0.026  0.060 0.037 0.022 0.051  0.029
2000 0.021  0.054 0.032 0.019 0.047 0.026

Table 1: Two-latent-layer DeepDINA simulation results.

Note that the three generative graph structures in (22)—(24) all satisfy the strict identi-
fiability conditions for the DeepDINA model. Specifically, all the Q") and Q® satisfy the
C-R-D conditions, therefore Theorem 1 guarantees the strict identifiability of the param-

(1)

(2) deep
eters Op/na, Opina, and TP,

This identifiability conclusion is empirically confirmed by
the simulation results in Table 1, where the estimation errors of these identifiable quantities

measured through RMSE and aBias are all reasonably small.

Simulation Study II: Two-latent-layer Hybrid GDINA-DINA. Under the two-
latent-layer Hybrid GDINA-DINA model, we specify the deeper DINA-layer’s true parame-
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ters to be the same as that in the DeepDINA case with s,(f) = g,(f) = 0.25 for all k € [K}],
and also specify the deep proportion parameters as wdeP = (1/252 .. 1/252) As for the
GDINA-layer’s parameters, we specify them in the same way as the simulations in Xu and
Shang (2018) and Chen et al. (2020); that is, for each item j € [J], set the lowest correct
response probability to 0.2 for all-zero attribute profiles, set the highest correct response prob-
ability to 0.8 for all-one attribute profiles, and set all the main-effect and interaction-effect
parameters under the GDINA model to be equal. The above true parameter specification

can be equivalently written in the following mathematical form,

POPNAR; =1 | AW =, B1) =01 = 37 B, where K; = {k € [K]: ¢} =1};
SCK;

8Y) =02, B =(08-02)/25 -1) for SCK;.S+#®.

]76

During the Bayesian posterior sampling process, we enforce the monotonicity constraint
described in Section 4.2 by sampling the transformed parameters 0; 1, = ﬁj 5+ B( ) from
the truncated Beta posteriors; this ensures the main-effect parameters B( {ry O be positive.

Table 2 presents the simulation results under the Hybrid GDINA-DINA model.

Structure  (J, K1, K») N RMSE aBias
1) 9(2) deep B 0(2) deep
GDINA DINA T CGDINA DINA T

500 0.046  0.064 0.059  0.037 0.052 0.047
(a)in (22) (30, 6,2) 1000  0.035 0.056 0.056  0.028  0.045 0.046
2000  0.025  0.042 0.044 0020 0.033 0.036

500  0.056  0.073 0.045  0.045  0.058 0.036
(b)in (23) (30, 7, 3) 1000  0.041  0.063 0.044 0033 0.051 0.035
2000  0.030 0.052 0.039 0024 0042 0.031

500 0.052  0.069 0.043  0.042 0.056 0.034
(c)in (24) (30, 8,3) 1000  0.030 0.062 0039 0032 0050 0.031
2000 0.028  0.050 0.033  0.023 0.040 0.027

Table 2: Two-latent-layer Hybrid GDINA-DINA simulation results.

Table 2 shows that our method can accurately estimate all the parameters under the

Hybrid GDINA-DINA model and the estimation accuracy improves as sample size grows.
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Indeed, all the Qa , and QC satisfy the identifiability conditions for general diagnostic
models (condition S in Theorem 2), and all the Q((f), Q,(f), and QEQ) satisfy the C-R-D
conditions for identifying the DINA model. Therefore, Proposition 1 guarantees that all
the parameters BGDIN A 91(311)1\1 », and 7w in this Hybrid DeepCDM are fully identifiable, as

supported by the numerical evidence in Table 2

Simulation Study III: Two-latent-layer DeepLLM. We conduct simulations for the
DeepLLM, using the Gibbs sampler with the multilayer Polya-Gamma data augmentation
strategy developed in Section 4.3. The true parameters in the two-latent-layer DeepLLM
are specified as follows. Inside the inverse logit function, the intercept parameters for the
two layers are set to /Bj(o) = —3forall jel[J ] J] and 5k0 —2 for all k € [K,]; the shallower
layer’s main-effect parameters are set to (3 k = 6/ <Zk, 1 45, k,) for which qjk = 1, and
the deeper layer’s main-effect parameters are set to Bk’m =4/ (Zm,:1 qhm,) for which

=1

Qo = Note that these [-parameters in a DeepLLM are all inside the inverse logit

function f(x) = e”/(1 + €”) to generate the correct response probability, so they are on a
different scale than those probability parameters under the DINA or GDINA model. Table

3 presents the estimation accuracy results for the two-latent-layer DeepLLM model.

Structure  (J, K, Kb) N RMSE aBias
2 ee 1 ee
Brim érzM e (LL)M Biinm P

500 0.360  0.339  0.026 0284 0262 0.021
(a)in (22) (30, 6, 2) 1000 0.247 0215 0.016 0.196 0.171  0.013
2000 0.175 0.161 0.011 0.139 0.129  0.009

500 0.362 0514 0031 0284 0402 0.025
(b)in (24) (30, 7, 3) 1000 0.254 0407 0.024 0.199 0315 0.019
2000 0.181 0303 0018 0.144 0228 0.015

500 0.376 0491  0.023 0294 0379 0.018
(c)in (24) (30, 8,3) 1000 0264 0.352 0.017 0.208 0.272 0.014
2000 0.187 0212 0012 0.149 0.166 0.010

Table 3: Two-latent-layer DeepLLM simulation results.

The simulation results in Table 2 also show decreasing estimation errors with growing

sample sizes. We point out that the “RMSE” and “aBias” values in different tables are
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not directly comparable, because the logistic-scale parameters ,BSEM and ﬂfﬁM in Table 3
have larger magnitudes than DINA/GDINA parameters in the previous Tables 1-2. The
three first-layer Q-matrix Q,(ll), Ql(,l), and le) all satisfy the identifiability conditions under
general diagnostic models which cover the LLM as a special case, so the 61(}131\/1 are always
identifiable across structures (a), (b), and (c) (see the layerwise identifiability argument in
Proposition 1). As for the second-layer Q-matrix in the three settings, Q((f) and Q((f) satisfy
the strict identifiability conditions for LLM while Qf) satisfies the generic identifiability
conditions for LLM. For quantities ,B(LQL)M and 9P associated with Q®), Table 3 shows that
their estimation errors in the generic identifiability case (b) are still reasonably small, though
slightly worse than those in the strictly identifiable cases (a) and (c). Overall, all the above
simulation results corroborate the identifiability conclusions about DeepCDMs, and also
provide evidence that our Bayesian estimation algorithms have good empirical performance.

In addition to the estimation performance of the population parameters, we also present
the attribute classification accuracy for different layers of attributes in Table 4. The numbers
in this table are calculated as follows: in each simulation replicate, we obtain the posterior
modes of each subject’s each attribute entry in the shallower-layer A (similarly for the
deeper-layer A®)), and then average them across the 100 simulation replicates to get the
attribute classification accuracy. For all three DeepCDMs and all three Q-matrices struc-
tures (a), (b), and (c), the attribute classification accuracy numbers remain reasonably high,
basically exceeding 90% for the shallower A and exceeding 70% for the deeper A®). The
classification accuracy for deeper attributes is lower than that for shallower ones, which is
an inevitable characteristic shared by all higher-order latent variable models widely used in
statistics. Despite this, the fact that the deeper attributes still have classification accuracies
beyond 70%, and even beyond 90% for DeepLLM, demonstrates that the estimation quality
of deeper attributes in our model does not degrade too much and is still acceptable. Fur-
thermore, Table 4 indicates that the DeepLLM has the best performance in classifying the
deeper A® and the smallest gap between the classification accuracies of A and A®). This
observation suggests that in the considered settings, DeepLLM may be a more preferrable

model among the DeepCDM family in terms of estimating the deeper latent attributes.
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DeepDINA Hybrid G-D DeepLLM
A A A A®) A A2

500 0.985 0.805 0.926 0.783  0.998 0.956
(a)in (22) (30, 6, 2) 1000 0.984 0.822 00928 0.786 0.998 0.960
2000 0984 0.833 0929 0.795 0.998 0.959

500 0.969 0.738 0.903 0.706 0.994 0.873
(b)in (22) (30, 7, 3) 1000 0.969 0.737 0.905 0.705 0.994 0.878
2000 0.969 0.737 0906 0.712 0.995 0.881

500  0.970 0.774 0.896 0.739  0.994  0.909
(c)in (22) (30, 8,3) 1000 0.971 0.774 0.898 0.740 0.994 0.913
2000 0971 0.779 0899 0.743  0.994 0.917

Structure  (J, K, K;) N

Table 4: Attribute classification accuracy across all of the simulation settings.

Structure  (J, Ky, K) N RMSE of 7r(!) Computation time (min)

Deep  Saturated  Ratio  Deep Saturated  Ratio

500 0.004 0012  346% 1.3 5.5 24.1%
(a)in (22) (30, 6, 2) 1000 0.004  0.012  29.2% 2.5 105  24.2%
2000 0.003  0.012  220% 5.3 214 24.6%
500 0.003  0.005  49.7% 1.7 103 16.5%
(b)in (23) (30, 7, 3) 1000 0.003  0.005  54.6% 34 194 174%
2000 0.003  0.005  59.4% 6.6 374 17.6%
500 0.001  0.004  262% 2.0 200  10.0%
(c)in (24) (30, 8,3) 1000 0.001  0.004  24.6% 4.6 485 9.5%
2000 0.001  0.004  215% 85 760  11.2%

Table 5: Comparisons between the two-latent-layer DeepDINA and the saturated DINA
model in terms of the RMSE of the proportions (" of the fine-grained latent attributes
AWM and the computation time.

Simulation Study I'V: Comparison to the saturated attribute model. In this simu-
lation study, we generate data using a DeepCDM (DeepDINA here) but estimate parameters
using both the DeepCDM and the traditional one-layer CDM (DINA here) with a saturated
attribute model. We compare (a) the computation time of the two models, and also (b) their
accuracy in recovering the proportions (") of the latent attributes A®. The distribution of
A® can be parameterized by w1 = (wﬁj); a € {0,1}%1) where 7 = P(AM = «). Under
DINA with a traditional saturated attribute model, 7 are directly treated as parame-

ters and estimated, while in the DeepDINA model, (") follows another higher-order DINA
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model and can be calculated after estimating these higher-order parameters. Here we focus
on comparing the accuracy of recovering the distribution of A® via 7™ because this is the
key difference between the two models. Table 5 displays the average RMSEs of (! and the
average computation time under the two models. In particular, the 6th column “Ratio” in
Table 5 displays the ratios of RMSEs under the deep and the saturated model (i.e., ratios
of numbers in the 4th and 5th columns in the table), and the 9th column “Ratio” displays
the ratio of computation time under the two models (i.e., ratios of numbers in the 7th and
8th columns in the table). Compared to the traditional estimation method for the one-layer
DINA model, our DeepDINA method yields 20%-60% of the RMSE in estimating 7#(") and
takes 9%-25% of the computation time. These comparisons imply that appropriately tak-
ing into account higher-order discrete structures will lead to both more accurate estimation
and more efficient computation. Here, more accurate estimation is thanks to the suitable
modeling of the latent attribute dependence, and more efficient computation is thanks to the

statistical parsimony and our efficient Gibbs sampling steps of a fewer number of parameters.

Simulation Study V: Robustness of DeepCDM to deep layer misspecification.
We perform a simulation study to evaluate our method’s performance under a misspecified
higher-order model. Here we generate data from the HO-CDM in de la Torre and Douglas
(2004) that have higher-order continuous latent traits behind the binary latent attributes.
Consider structure (c) in (24) with J = 30 items, K; = 8 attributes, and Ky = 3 higher-
order continuous latent traits (652),652),6:(32)) = 0%, Let 6&2),652),9:(32) follow independent
standard normal distributions. Given 8, the first-layer CDM parameters are set to be
the same in the previous DeepLLM simulation setting. Then we fit the data using our
Gibbs sampler developed for DeepLLM, and then examine the estimated shallower-layer
item parameters 3% under this misspecified model. For better visualization, for a randomly
generated dataset, in Figure 2 we plot the heatmap of the estimated 8% in the form of
J x K| matrix whose sparsity pattern is given by the Q-matrix Q") € {0, 1}7*%1, We can
see that the estimated coefficients B(l) under a misspecified higher-order model is still close

to the ground truth, even for a relatively small sample size N = 500. For a larger sample

~(1
size N = 2000, the estimated ,B( : matrix becomes closer to the truth.
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Furthermore, we also look beyond a single simulation trial and carry out 100 independent
simulation replicates to assess our method’s average performance under model misspecifica-
tion. Figure 3 presents the boxplots of root mean squared errors (RMSEs) of the estimated
shallower-layer BY parameters based on the 100 replicates. This figure clearly shows a
decreasing trend of estimation errors of 6(1) as sample size increases. Together with the
previous Figure 2, we have empirically demonstrated that our DeepCDM methodology has

some robustness to model misspecification of the deeper-layers.

OCO~NOUTAWN =

OCONOUTAWN =
OCONOUTAWN =

30 items
30 items
30 items

J
J
J

0 0
123 4567 8 123 4567 8 123 4567 8
K1=8 attributes K1=8 attributes K1=8 attributes

Figure 2: Estimated first-layer parameters 5(1) under a misspecified latent attribute model.
The data are generated from a continuous higher-order latent trait model but estimated
using our DeepLLM method.

We next offer more discussions between the connections and differences between the very
popular HO-CDM and the proposed DeepCDMs. As described in de la Torre and Douglas
(2004), the motivation for proposing the HO-CDM includes parsimony and interpretabil-
ity. For the HO-CDM, the parsimony comes from using an IRT model with continuous
latent traits to model the binary attributes, and the interpretability comes from defining a
plausible model for the relationship between general ability and specific knowledge. On one

hand, as mentioned in Section 1, DeepCDMs also similarly have the advantages of parsimony
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RMSE boxplots for the misspecified model
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Figure 3: RMSE boxplots for the estimated first-layer parameters B under a misspecified
latent attribute model. Results are based on 100 independent simulation replications for
each sample size.

and interpretability. On the other hand, there are also several key differences between the
HO-CDM and DeepCDMs. First, DeepCDMs use fully discrete latent layers, which offer
a different interpretation of multi-granularity skill diagnosis. Second, the above simulation
study implies that a special member in the DeepCDM family — DeepLLM — can serve as an
approximation to HO-CDM; our DeepLLM method can robustly estimate the item parame-
ters for data generated from HO-CDM. It is then worth emphasizing that DeepLLM is just a
special member of the DeepCDM family, and that other members in this family can flexibly
model structures well beyond the logistic linear form used in DeepLLM and HO-CDM. For
example, DeepDINA or Hybrid GDINA-DINA can model the nonlinear conjunctive relation-
ship or interaction effects of higher-order discrete attributes, and they are still identifiable
and easy to estimate via Gibbs sampling (see Section 4). However, there currently do not

exist extensions of HO-CDM to nonlinear higher-order latent variable settings.

6 Application to the TIMSS Assessment Data

We demonstrate the DeepCDM methodology by applying it to data extracted from the
TIMSS 2019 math assessment mentioned in Section 1; the data are accessed from the TIMSS
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2019 International Database (Fishbein et al., 2021). We use two-latent-layer DeepCDMs
to analyze the US student response data to item block No.2 in the eighth grade math
assessment. Prior to our analysis, the original student response data are converted into
binary correct/wrong responses as follows, based on the TIMSS 2019 Item Information
available in the online database (Fishbein et al., 2021). For multiple-choice items, a student
response is coded as one if the response matches the correct answer key, and coded as zero
otherwise; for constructed response items, a student response is coded as one if the number
of scores received is equal to the maximal score of the item, and coded as zero otherwise.
Among the US eighth grade participants, we consider students that took the math item
block No.2 and give responses to all the J = 28 items in this block. This results in a binary
observed data matrix containing responses from N = 972 students. The online TIMSS
2019 Item Information - Grade 8 provides details about which specific skills each test item
is measuring, and we use these information to construct the Q-matrices. There are four

content skills: agl): Number; agl): Algebra; 045(31): Geometry; and afll): Data and Probability;

and three cognitive skills: aél): Knowing; aél): Applying; and 049): Reasoning. These content
and cognitive skills can be viewed as subcompetences for which it is desirable to provide fine-
grained diagnoses. Therefore, we model these seven skills as K7 = 7 fine-grained attributes
in the shallower latent layer in a DeepCDM. In fact, each test item is listed as measuring
one content skill and one cognitive skill; for example, the first item in block No.2 measures

ozgl): Number, and ozél):

Knowing. We use such available item information to obtain the
first-layer J x K; Q-matrix Q%)ﬂ in Table 6. Further, as already implied by the above skill
descriptions, the seven specific skills naturally belong to two general domains: the content
domain and the cognitive domain. Here, the wordings of naming “content” and “cognitive”
as two “domains” are official terms defined by and provided in the online TIMSS 2019
Assessment Frameworks. Diagnosing a student’s states on these latent domains can reflect
their general strengths/weaknesses on these two broad aspects. So the deeper latent layer in
our DeepCDM has two domain attributes: agz): Content and ozgz): Cognitive. According to
the equivalence between the direct dependencies among variables and the Q-matrix entries,
2

we can use the above attribute information to construct a K; x Ky matrix Q%)2 = (g,

shown in Table 7.
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Table 6: First-layer Q-matrix Q%)ﬂ for item block No.2 in TIMSS 2019 eighth grade math
assessment.

oD o
1 2

Content Domain Cognitive Domain
a?) Number 1 0
aéQ) Algebra 1 0
a§2) Geometry 1 0
af) Data and Probability 1 0
a?) Knowing 0 1
ag) Applying 0 1
a(72) Reasoning 0 1

Table 7: Second-layer Q-matrix Q%)Q for TIMSS 2019 eighth grade math assessment.
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We then apply our Bayesian estimation method to the TIMSS data. DeepDINA is not
used here because QY does not satisfy the C-R-D conditions (i.e., does not contain an
identity submatrix I, ), and hence does not give an identifiable DeepDINA model. As
for DeepLLM and Hybrid GDINA-DINA (abbreviated as Hybrid G-D hereafter), it is not
difficult to verify that Q%)ﬂ in Table 6 satisfies the generic identifiability conditions (G1)
and (G2) in Theorem 3 for main-effect-based models, and that Q% in Table 7 satisfies the
strict identifiability condition (S) in Theorem 2 for general diagnostic models. This means
all the parameters in DeepLLLM and Hybrid G-D are all strictly or generically identifiable.
Note that Q® has all the rows each being either (1,0) or (0,1), in which case the Hybrid
G-D model in fact covers both DeepDINA and DeepLLM as special cases and offers a more
general alternative. Therefore we focus on the more general Hybrid G-D model next.

We run the Gibbs sampler for Hybrid G-D for 15,000 iterations and retain the last 5000
as our posterior samples, the same as in the simulation studies. Based on these samples,
the posterior means are calculated for all the continuous parameters in the model. The deep
proportion parameters’ posterior means are 7w = (0.477, 0.033, 0.059, 0.430), which
correspond to deep latent patterns A = (0,0), (0,1), (1,0), (1,1), respectively. This esti-
mated 7P implies that the two domain attributes exhibit a relatively high correlation. As
for the quasi-item parameters characterizing IP(AS) | A® Q®) and item parameters char-
acterizing P(R;l) | AW QW), we plot their posterior means in Figure 4. Specifically, Figure

4(a) shows the conditional attribute mastery probabilities given the domain attributes, with

its left column showing the quasi-guessing parameters g(® = (gf), e g§2))T, and right col-
umn showing one minus the quasi-slipping parameters 17,; — s = (1 — 5%2), AU 5(72))T.

Figure 4(b) shows the conditional correct response probabilities given the fine-grained at-

tributes, that is, the f-parameters in (18). For each item j, the column 6, refers to 9;}%;
column 6}, refers to Hj(.l{)k} for Kk =1,...,7; column 65 refers to the HJ(.l{)l 53> ete. For a item

je€{1,...,28}, only those “effective” f-parameters are ploted in Figure 4. For example, the

first item requires the first and the fifth attributes (i.e., Number and Knowing), so only four

O-parameters are “effective” and shown in the first line in Figure 4(b): 6y, 6, 05, and 0;5.
To further inspect the latent attributes’ mutual dependence, we calculate the element-

wise posterior modes of the discrete latent profiles and obtain the N x Kj binary matrix
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Figure 4: TIMSS 2019 eighth-grade math assessment US data, item block No.2, estimated
parameters from the Hybrid-GDINA-DINA model. Plot (a): deeper DINA-layer parameters,
with the left column being g® and the right column being 17, — s®); plot (b): conditional
correct response probabilities under GDINA.

A = (&flk)) and the N x K, binary matrix A® = (aﬁlﬂ)l) Specifically, each binary entry c’sz)
~(2)

is the posterior mode of ag}lg based on the retained posterior samples, and a;,, is similarly
obtained. Based on the K7 = 7 columns of A and K5 = 2 columns of A®) | we generate the
scatterplot matrices in Figure 5. In this figure, the two plots on the left show the correlation
between the second-layer domain attributes (Figure 5(a)) and those between pairs of the
first-layer fine-grained attributes (Figure 5(c)). The two plots on the right panel of Figure
5 show the jittered versions of the scatterplot matrices, which more explicitly visualize the
pairwise joint distributions of latent variables. As expected, the seven fine-grained latent
skills show relatively high positive dependencies on each other, which supports using the
DeepCDM modeling framework. Moreover, the estimated posterior mode matrices A® and
A® provide multi-granularity diagnoses of students’ strengths/weaknesses on both the two

broader domain attributes and the seven more fine-grained attributes.

Next, we also perform a comparative analysis of a TIMSS 2019 fourth-grade math assess-
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Figure 5: TIMSS 2019 eighth-grade math assessment US data, item block No.2, estimated
latent profiles. In plots (b) and (d), the sample data points are jittered from zero/one.

ment dataset (item block No. 7) using both a DeepCDM and a traditional CDM to see their
difference. Specifically, we consider both the Hybrid G-D model (which is GDINA with a
higher-order DINA layer), and GDINA with a saturated latent attribute model. In terms of
statistical parsimony, our Hybrid G-D requires much fewer parameters than GDINA with a
saturated latent layer. In particular, to model K| = 6 fine-grained latent attributes, the Hy-
brid G-D model uses only 3+6 x 2 = 15 parameters while the traditional saturated attribute
model uses a large number of 2 — 1 = 63 parameters. Such statistical parsimony implies
that our DeepCDM would require a smaller sample size to reach the same level of parameter
estimation precision. In terms of substantive interpretations, the correlation plots in Figure

6 show that the Hybrid G-D model gives a much more interpretable correlation structure
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among the fine-grained latent attributes (in the left panel) than GDINA with a saturated at-
tribute model (in the right panel). Specifically, recall that the first three attributes fall in the
“Content” domain and the last three attributes fall in the “Cognitive” domain. The nearly
block diagonal heatmap in Figure 6(a) shows that our DeepCDM induces much higher cor-
relations among attributes within a same domain than those across two different domains.
On the other hand, for the GDINA model with a saturated attribute model, Figure 6(b)
shows a somewhat counter-intuitive pattern: “Data” has a relatively small correlation with
all other attributes and there are no clear separation between the content-related attributes

and the cognitive-related ones.
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(a) Hybrid GDINA-DINA model. (b) GDINA with a saturated attribute model.

Figure 6: Estimated attribute correlation plots given by the proposed Hybrid GDINA-DINA
model (i.e., GDINA model with a higher-order DINA layer) in (a) and GDINA with a
saturated attribute model in (b) for the TIMSS 2019 4th grade math booklet 7 dataset.

7 Discussion

In this work, we have proposed a new family of interpretable diagnostic models called Deep-
CDMs, established transparent identifiability conditions and general identifiability theory,
and developed Bayesian estimation methods for them. On one hand, DeepCDMs are well

motivated by the applied goal of uncovering rich and structured diagnostic information from
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educational and behavioral data. Through the estimated multilayer latent profiles, Deep-
CDMs enable multi-granularity diagnoses of latent attributes from coarse to fine-grained
and from high-level to detailed. On the other hand, in terms of discrete latent structures,
DeepCDMs share similarities with powerful deep learning models such as deep belief net-
works (Hinton et al., 2006) and deep Boltzmann machines (Salakhutdinov and Larochelle,
2010), and are expressive modeling tools. Distinctively, DeepCDMs are fully identifiable
under our conditions, which is a desirable property lacked by most deep learning models. In
a nutshell, our identifiability conditions can be summarized as: as long as each Q@ satisfies
the identifiability condition under the CDM to which the shallower layer A=Y (or R if
d = 1) conforms, then the entire DeepCDM is identifiable. Our identifiability guarantees
form the very foundation for deriving interpretable and reliable insights in practical applica-
tions, and offer the very guidelines on adopting a shrinking-ladder-shaped generative graph
structure. Simulation results empirically corroborate the identifiability conclusions, and also
demonstrate the good practical performance of our Bayesian estimation algorithms.

In our real data example in Section 6 and other potential future applications, the deeper-
layer binary variables are not used in order to capture the person’s continuous variability
in the coarse-grained higher-order skills as in the HO-CDM in de la Torre and Douglas
(2004). Instead, the higher-order meta attributes provide an additional layer of discrete
diagnoses of the persons’ higher-order skills. Such a diagnostic modeling goal shares a
similar motivation with originally using CDMs as an alternative modeling tool to the classical
(multidimensional) IRT models with continuous latent traits. Historically, IRT has been the
dominating modeling methodology in educational and psychological measurement, thanks
to their excellent ability of capturing subjects’ latent variability. Nonetheless, in the recent
two decades, CDMs have also emerged as powerful alternative tools that provide fine-grained
discrete diagnoses of skills, instead of capturing the continuous variability. In this sense, we
view the proposed DeepCDMs as going further down the road of diagnostic classification,
by providing skill diagnoses with multiple layers of granularity. To fully realize the applied
potential of the proposed new framework, our far-reaching goal is for practitioners to design
new cognitive diagnostic assessments directly inspired by the DeepCDM identifiability theory.

DeepCDMs suppose that the latent variables follow a multilayer generative structure.
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In practice, admittedly, it may not always be the case that attributes follow multiple neat
layers as in a DeepCDM. On the other hand, however, we believe that in a number of CDM
modeling and application scenarios, the advantages of DeepCDMs in terms of statistical
parsimony, practical interpretability, and identifiability outweigh the induced limitation.
Our motivation for proposing DeepCDMs is not to replace, but to complement, other latent
structural models (including attribute hierarchy methods, higher-order continuous latent
trait models) in the CDM literature as an alternative family of interpretable and identifiable
models. Specifically, we expect DeepCDMs will be suitable for those applications where
multi-resolution discrete diagnoses of latent attributes are of interest. We hope this work
contributes a useful first step towards a versatile toolbox of providing statistically justified
multi-granularity diagnostic classification.

The proposed DeepCDM framework unlocks many interesting future research possibili-
ties. First, this paper has focused on binary responses and binary latent variables in all the
layers, but the DeepCDM framework can be readily extended to polytomous responses and
polytomous attributes (Chen and de la Torre, 2013; Gao et al., 2021). Similar identifiability
conditions on the between-layer Q-matrices may be obtained, and corresponding Bayesian
estimation methods can also be developed. To this end, the Bayesian Pyramid model and
its corresponding Bayesian estimation method in Gu and Dunson (2023) is an example,
which deals with multivariate unordered categorical data with binary latent layers. Second,
this paper develops Markov Chain Monte Carlo algorithms for estimation. In the future, it
would also be useful to develop more scalable variational Bayesian inference algorithms or
EM algorithms for DeepCDMs to enhance computational efficiency.

Another interesting future direction is to perform ezploratory DeepCDM analysis and
estimate the Q-matrices from data. This initial work has focused on confirmatory scenarios
in which multi-granularity design information are available and can be directly translated
into the Q-matrices. Nevertheless, all of our identifiability results are fully general and
applicable to the exploratory settings with unknown Q-matrices. This means we have also
obtained identifiability guarantees for directly estimating all the Q-matrices in a DeepCDM.
In recent years, there has been an increasing interest in exploratory estimation of CDMs,

including those using Bayesian approaches (Culpepper, 2019b; Chen et al., 2020; Balamuta
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and Culpepper, 2022) and those using frequentist ones (Chen et al., 2015; Xu and Shang,
2018; Gu and Xu, 2023). Developing efficient methods to estimate the multiple Q-matrices
in a DeepCDM is important future work. Furthermore, in an even more exploratory setting,
it would also be interesting to study how to select the number of latent variables K, Ko,
etc. in each layer in a DeepCDM. Nonparametric Bayesian approaches can be useful tools
toward this end (e.g., Fang et al., 2019; Chen et al., 2021; Gu and Dunson, 2023).

On the application front, for modern large-scale educational assessments such as TIMSS
and PISA, we believe there is a promising future potential of using the DeepCDM method-
ology to model and analyze high-dimensional response data, to generate new insights into
student achievement, and to enhance multi-granularity instruction and intervention. Indeed,
the TIMSS 2019 eighth grade math assessment offers more levels of item information than
are used in our current data analysis. For example, under the “Number” skill, there are
still four different topic areas: Integers / Fractions and decimals | Ratio, proportion, and
percent, which are candidates for more fine-grained attributes. In the future, advancing and
refining the computational techniques for DeepCDMs with more layers can help extract even
more nuanced diagnoses about student subcompetences from large-scale assessment data.

On a final note, we would like to give a broader discussion on DeepCDMs’ implications.
In applied cognitive psychology, the concept of “higher order thinking skills” was put for-
ward (Brookhart, 2010; Schraw and Robinson, 2011) which includes problem solving, critical
thinking, creativity, and so on; in linguistics, the “ladder of abstraction” idea was proposed
(Hayakawa, 1947; Munson et al., 2011) to describe the way humans think and communicate
in varying degrees of abstraction through languages; and in deep learning, an influential
review article Bengio et al. (2013) pointed out that using deep architectures can poten-
tially lead to progressively more abstract features at higher layers of representations. Our
shrinking-ladder-shaped DeepCDMs attempt to offer principled and identifiable statistical
models to back up such substantive theory and deep learning heuristics. We hope the Deep-
CDM framework will be useful for practitioners, illuminating for theoreticians, and triggering
fruitful future research on using rigorous statistical methods to cross-fertilize the fields of

(deep) machine learning and psychometrics.

45



Supplementary Material. The Supplementary Material contains the proofs of the identifi-

ability theorems and the details of the Gibbs sampling algorithms for posterior computation.
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Supplement to “Diving Deep in Diagnostic Modeling:
DeepCDMs”

In this Supplementary Material, Section S.1 presents the proofs of the identifiability
results of DeepCDMs, and Section S.2 provides the posterior computation details of the
Gibbs sampling algorithms for DeepCDMs.

S.1 Proofs of the Identifiability Results

All of our identifiability proofs leverage a key technical insight about DeepCDMs — that is,
identifiability can be examined and established in a layer-by-layer manner, from the bottom
up, thanks to the probabilistic formulation of the directed graphical model. This insight
was initially used in 7 to establish identifiability of the deep Bayesian Pyramid model for

multivariate categorical data.

Proof of Theorem 1. Recall the joint distribution of all the random variables in a DeepCDM
(including a DeepDINA model and a Hybrid DeepCDM) is
D
PR, AV, AP) =P[R |AD)- T[PA | AD). PAP),
d=2
The marginal distribution of the observed vector R is obtained by marginalizing out all the
latent variables A®M ... A(P) in the above joint distribution. According to the definition of

a general directed acyclic graph (DAG), the marginal distribution of each latent vector A (%)

for layer d =1,..., D — 1 can be written as
P(AW = @) (S.1)
D
- Z Z H P(A™D = oD | A = o(™) . PAD) = D)),

ot e{0,1} Ka+1 aP)e{0,1}5p m=d+1
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Now we specifically marginalize out all latent variables except the shallowest layer A® in

the joint distribution,

aMe{o0,1}¥1 a®@¢e{0,1}%p

= > PR=r|AY=a")x

aMe{o0,1}%1

D
Z Z H]}D(A(dfl) = al™ D | AD = a@). PADP) = /7))

a¢e{0,1} %2 a®e{0,1}5p d=2

J/

P(AD) =)

= > PR=r|AD=0aD).PAD =aD), (S.2)

alefo,1} %1

We introduce a notation w1 = (7‘('((11); a € {0, 1}K1> to collect the proportion parameters

of the categorical distribution that A" follows in (S.2):
P(AY = a) =71, Va e {0,1}5. (S.3)

Then 7 lives in the (2% — 1)-dimensional probability simplex. Then based solely on
aM) € {0,1}51, the probability mass function of the random vector R can be written as

follows for each r € {0,1}”7,

J
PR=7 |z, 00, Q") = 3 i) [[PR; =r;| AV =al, 0, QY), (S4)
j=1

a®ef{0,1}51

where the notation 8 collects all the continuous parameters needed to specify the condi-
tional distribution of R | A® under Q). For example, under the DeepDINA model, 8%
denotes the collection of s} and giV). Note that (S.4) gives a restricted latent class model
(equivalently, a CDM) for R with 251 latent classes, subject to the constraints induced by
the J x K; Q-matrix Q). Similarly, according to the general marginal distribution of A(%
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in (S.1), we also have

P(A@ | AlH)) = Z P(A@ | AU+ = (@) QU+ gu+D)) . p(Ad+D) — gd+D)),

o+ ef0,1}Kd+1

which is another cognitive diagnostic model for the “response vector” being A® and the
“latent attribute vector” being A4+ under the Q-matrix QY. where d =2,..., D.

Now consider the DeepDINA model setting in Theorem 1. When R | AM follows the
DINA model, then as long as Q) satisfies the C-R-D conditions in Gu and Xu (2021),
then QM itself and the continuous parameters 8 and w1 are identifiable. Note that the
statement that (1) is identifiable means the marginal distribution of A® is identifiable,
which implies A®) can be treated as if it is observed when studying the identifiability of
Q®@, % and the marginal distribution of A®. Therefore, if Q® also satisfies the C-R-D
conditions, then Q®, 8, and the marginal distribution of A® are identifiable. Now it
is easy to see that we can proceed in a layerwise manner from bottom up, and examining
whether Q, Q@ ..., Q) satisfy the identifiability conditions successively. Specifically,
under a DeepDINA model, as long as all the Q@ satisfy the C-R-D conditions, then all the
Q-matrices and all the continuous parameters (s(¥,g@) d =1,..., D and 7w are strictly
identifiable. This proves the sufficiency part in Theorem 1.

To show the necessity part in Theorem 1, we only need to note that if Q@ fails to
satisfy the C-R-D conditions, then certain parameters in (@ and 8@ will not identifiable,
indicating the non-identifiability of the DeepDINA model. This proves the necessity of the
proposed identifiability conditions and completes the proof of Theorem 1. n

Proof of Theorem 2 and Proposition 1. We use the same insight elaborated in the proof of
Theorem 1: the layerwise proof argument of identifiability. Specifically, the marginal distri-
bution of R in (S.2), the marginal distribution of A in (S.3), and the conditional distri-
bution of R given A in (S.4) all hold generally for an arbitrary DeepCDM and a Hybrid
DeepCDM. Therefore, we still start with the bottom two layers and examine whether Q)
satisfies the identifiability conditions for a general CDM: if so, we then examine Q®, so on

and so forth. First, we consider the case that condition (S) holds; that is, each Q@ can be
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written as Q¥ = [Ix,, Ix,, Ix,, (Q@D*)T]T after some column/row permutation. In this
case, following a similar argument as the proof of Theorem 4 in ? but constraining to con-
sidering binary responses, we obtain the strict identifiability of (9(‘1), Q) ford=1,...,D
and that of wd*P. Second, we consider the case that condition (S*) holds, then following
a similar argument as the proof of Theorem 1 in Culpepper (2019b) but constraining to
considering binary responses, we also obtain the strict identifiability of all the parameters
and Q-matrices in a general DeepCDM. This proves Theorem 2.

Further note that the above layerwise proof strategy does not require each layer in a
DeepCDM to conform to the same diagnostic model. This means in a Hybrid CDM where
some layers follow the DINA (or DINO) model and some layers follow the main-effect or all-
effect diagnostic models, we can examine their corresponding Q-matrices using the respective
identifiability conditions in Theorems 1 or 2 to assess identifiability. For example, if the
marginal distribution of A@ is already identified, then A@ | A+ follows the DINA
model, then QY only needs to satisfy the weaker C-R-D conditions to proceed to the
deeper layer. This proves Proposition 1. O

Proof of Theorem 3. Similarly as the proofs of strict identifiability results, we still use the
layerwise identifiability argument. In the literature, Theorem 4 in Gu and Xu (2021) es-
tablished generic identifiability for single-latent-layer main-effect/all-effect CDMs (also see
Gu and Xu (2020) and Chen et al. (2020)) under the considered conditions (G1) and (G2)
in its single-layer form (D = 1); in that theorem, the Lebesgue measure-zero subset of the
parameter space where identifiability may break down only concerns the item parameters.
That means, in the context of a DeepCDM consisting of main-effect or all-effect layers, as
long as the item parameters 0 e Qmain(ﬂ(l); Q™) do not fall within the layer-specific
unidentifiable subset N which has measure zero in Quam(8%; QMW), then 8V, 7™M and
QW are identifiable. This implies that as long as the between-layer continuous parameters
0w, ..., 0" do not fall within the finite union of the measure-zero subsets of the parameter
space Uleﬁmain(ﬁ(d); Q@) then the entire main-effect or all-effect DeepCDM is identifiable.
This proves the generic identifiability conclusion in Theorem 3 under conditions (G1) and

(G2). O
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S.2 Details for the Gibbs Sampling Algorithms

S.2.1 Gibbs Sampler for Two-latent-layer DeepDINA

For i € [N], j € [J], and k € [K;], introduce binary ideal response indicators & ;; and &

Ky

1) D T @)\
145 = H < ,7k> NSNS H (@i,m) : (5.5)
k=1 m=1

Denote sgl), g](-l), s,(f), and gk

by 514, 91,5, S2.k, and ga, respectively. Under the priors

specified in the main text, the posterior distribution in the two-latent-layer DeepDINA can
be written as

p(el(le)Nm OI(DQI)NN Trdeepv A(1)7 A(z) | Rv Q(l)a Q(Q))

N J
_ - i B 1—7’1‘,'
I [0 = saoas™ ™ [ - gy o]
i=1 j=1
N 2K2 (1) - a<1) ]1(0.52)—044)
i,k i _ X i,k
% HH {ﬂ-eH |: 1 _ 52k §2 7.kg 52*} [S§Qkk(1 _ 92,k)1 52,7,ki| }
=1 4=1
as— ag—1 _
X H HL = 1) gy (1= g1y)" g1y < 1= s1)]
2K2
X H soie (1= s20)"” 1g;gk (1= gop)

L(gox < 1—s94)] X Hﬂ'g_l

Based on the above posterior, the full conditional distributions of the quantities 8%, 6
deep AW A®) are as follows.

(1) Sample 31 ; ) and g( ) from truncated Beta distributions:

N N
S§1) ~ Beta <1 + Zi:l(l — Tij 51 g 1+ Z rijgl ij) . 1(851) <1 (1)

1
—9;);
1 N 1 1
¢V ~ Beta (1 + ZiZITi] — &), 1+ Z (1 —rgy)(1— 51,2‘3-)) - ]l(gj(» )< 1- gg. N.
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(2) Sample 352,1 and gf,z from truncated Beta distributions:

NBeta<1+Zl_ 1—a §2zk,1+z Zk)fmk)‘ ((2)<1 g;(f)),
<)NBeta<1+Zzlzk 1— Eoin), 1+Z (1-a 1—5m)> 1(gy” < 1—s).

(3) Sample 4¢P from the Dirichlet distribution:
N
3P ~ Dirichlet (51 + Zi:11( (2) ., 0oy + ZZ ) = a2K2)> .
(4) Sample each entry ag}lc) from the Bernoulli distribution with the following probability:

Plaj = 1] =) = Pla}) = 1| ;,a{”, 0, 09)
P(a\) =1|a®, 0?)B(r; | af}) = 1,a",.0V)
Soi Plal) =z | 0l 0@)P(r; | o)) = 2,0, 0W)

Y

where the conditional distributions P(ag}k) =z a?), 6?) and P(r; | aE},ﬁ =z, ag_)k, )
just directly follow the likelihood defined under the DeepDINA model in Section 4.1
of the main text, and they are both DINA.

(5) Sample each pattern al@) from the categorical distribution with [{0, 1}%2| = 2K2 com-

ponents with the following probabilities:

IP)(Q,EQ) =y | —) = P(G(Q) = ay | agl)’ 0(2)7Trdeep);
: ) = oy | ﬂ.deep)P(aEl) | aZ(Z) — oy, 9(2))

2% P(al? = ap | wlee)P(al) | 0 = ap, 0P)

IE”(a(2

Y

where the P(a?) = ap | w4°°P) and P(agl) | al(-Q) = oy, 0%) also directly follow the
definition of DeepDINA, with the former being a Dirichlet distribution and the latter

following a DINA model conditional distribution.

Overall, our Gibbs sampler cycles through the above five steps iteratively to approximate

the posterior distributions of all the quantities.
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S.2.2 Gibbs Sampler for Hybrid GDINA-DINA

Recall that we will focus on those 9](1; parameters for the shallower GDINA layer during the

Gibbs sampling, which denote conditional positive response probabilities:

(1) )T (1 (1 )
0% =" Bl =Py =1]a" g\ = ¢} q\).

S'Cs

Introduce binary indicators for the GDINA layer as
51,@‘,5:1( E) qﬁé—qﬁé q§§) i€[N], je[J], SCK,

where the notation IC; = {k € [K}] : qj(lk? = 1} was defined in the main text. For the deeper
DINA layer, we still introduce binary ideal response indicators &; . for k € [K] similarly as

the previous (S.5). Under the priors specified in the main text, the posterior distribution in

the Hybrid GDINA-DINA can be written as

p(e(GI]))INAv gl(DZI)NAv Wdeep? A(l)v A(z) ‘ R7 Q(1)7 Q(Q))

N (1) 74,5€1,i5,5 (1) (1=rij)81,i5,5
«JIITIT (o) (1-03) )
i=1 j=1 SCK;
N 21 K1 e 1—a'!) 1(a;”=ar)
X 1— i i,k i _ . i,k
X H H {W H [(1 - 52,k)£2’1kg2,152’ k} [Sggkk(l — g2.)" 62’“] }
i=1 ¢=1 k=1
J
X H H [(95.};)“9_1(1 - «9;2)‘1" 1IL(H PSS 8(1) if S is a singleton set)]
j=1 SCK;
Kq 2K2
x H[ngk_l(l - Sz,k)bs_lgg,gk_l(l — g2.)" " L(gak < 1 — s2)] X HWEH
k=1 =

Our Gibbs sampler will cycle through the following steps iteratively.

(1) Sample each «9](13) from the (truncated) Beta distribution:

99 ~ Beta (CL@ + Zr”& ij.s, bo + Z — 1)1, S> ]1(9515) > (9](»2 if S is a singleton set).
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(2) Sample 352,1 and gf,z from truncated Beta distributions:

NBeta<1+Zl_ 1—a §2zk,1+z Zk)fmk)‘ ((2)<1 g;(f)),
<)NBeta<1+Zzlzk 1— Eoin), 1+Z (1-a 1—5m)> 1(gy” < 1—s).

(3) Sample 4¢P from the Dirichlet distribution:

N
4¢P  Dirichlet (51 + 22:111( (2) . OgKy + Zl ) = aQKQ)) .

(4) Sample each entry ag}k) from the Bernoulli distribution with the following probability:

1 2 1 1
Pt = 1| )= _ Pl =11a 6B |afj = 1ail, 60)
) | af) =0, 00)

where the conditional distributions P(ag}k) =z a§2), 6?) and P(r; | a 1,3 x, agl_)k, )

follow the likelihood under the DINA and GDINA, respectively.

(5) Sample each pattern a.” from the categorical distribution with |{0,1}%2| = 252 com-

ponents with the following probabilities:

Pa? = o | =) = P(a;” = ay | @, 0%, meP);
Y = ap | mr)P(a)” | @ =, 8%)
2K2

v P(al? = ap | wier)P(al | af?) = o, 0%)

P(a!

7

Y

where the P(a!” = ap | #%?) and P(a\" | a!” = ay,0?) also directly follow the

(2

definition of DeepDINA, with the former being a Dirichlet distribution and the latter

following a DINA model conditional distribution.

S.2.3 Gibbs Sampler for Two-latent-layer DeepLLM

The posterior distribution of the two-latent-layer DeepLLM can be written as

p(lgﬁllgM? IBSIZM? ﬂ-deepv A(l)a A(Z) | Ra Q(l)a Q(2))
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[ o (5 S I) g o (i 4+ 2, L)
Sigdil |

X
2 2
g 1+eXP< o+ e g jlka5k)> k=1 1+8XP< D D s m)nagn)l)

N 2K2 2K J K3
]la()—a _ .
X HHW (@7=a0 ng '] {N(ﬂ% 10,03 [T VB 10.62)1(8)) > 0if ¢} = 1)}
=1 (=1 /=1 J=1 k=0
K3
xH{ (”ro,ﬁﬂNﬂkmlo, 5><<)>Oifqé?L=1>}
N K;
xHHPG w 11,00 - [T TIPG | 1.0).
=1 j=1 =1 k=1

Our Gibbs sampler iteratively cycles through the following steps.

(1) Recall the notation IC; = {k € [K;] : qj(lk) = 1}. Define
Bk, = (810, Byl k € Ky),

which is a vector of length |KC;| +1. We introduce a notation X§1), which is a N x ||
matrix; the entries in this matrix are indexed by a; k)q]( Y where i € [N] and k € {0}UK;.
Sample ij,cj from the (truncated) Multivariate Normal (MVN) distribution:

BY% ~MVN(u,;,31;),  where

—1
2 = <X§1)Tdiag (W(” XO)) oy =X (R - 1)2).

J

(2) Define a new notation

Ko = {m € 1]+ a7, =1}

Define

2 2 2
B](CJ)CQ,]C = ( li,(% li,r)n; m € lCZ,k)a

which is a vector of length |KCqx| + 1. We introduce a notation ng), which is a NV x

|ICa | matrix; the entries in this matrix are indexed by aEQ%q,g)n where i € [N] and

m € {0} UKy, Sample 6,(627,)C” from the (truncated) Multivariate Normal (MVN)
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distribution:

BI(VQJ)CQ,k ~ MVN(I“’2I§7 EQk‘)a Where

-1
£, = (X ding (W) X2) e = SuXPT (A0 - 172).

(3) Sample each ng), j € [J] from the Polya-Gamma distribution:

PG<1 s+ Y B](kazk>

kek;

(4) Sample each wl(2k) , k € [K4] from the Polya-Gamma distribution:

o2 ~PG(LEE T Y ).

mEICzyk

(5) Sample 4¢P from the Dirichlet distribution:
N
3P ~ Dirichlet (51 + Zizlll( @ .y Ogry + ZZ ) = a2K2)> .

(6) Sample each entry ag}lz from the Bernoulli distribution with the following probability:

P =1]a?,62)P(r, | o) = 1,a",,0)
> oa Plal) = v | @, 0°)P(r; | o!) = z,al”,,01)

where the conditional distributions P(a (,3 =z a 0(2)) and P(r; | az(’lk) =z, ag}_)k, )

both follow the likelihood under the LLM.

(7) Sample each pattern a\” from the categorical distribution with |{0,1}%2| = 252 com-

ponents with the following probabilities:

P(az(2) = oy | —) = P(a(2) = oy | agl), 0(2)7ﬂ_deep);
IP’(aZ@) = ay| ﬂ.deep)]P)(aZ(l) | aZ@) ~ 9(2))

2* p(al? = ap | wer)P(al") | a® = ap,0?)

Y
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where the P(al@) = ap | w¥P) and IP’(az(-l) | az@) = ap,0?) also directly follow

the definition of LLM, with the former being a Dirichlet distribution and the latter

following a LLLM model conditional distribution.
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