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Heterogeneous catalysis underpins a wide variety of industrial processes
including energy conversion, chemical manufacturing and environmental

remediation. Significant advances in computational modelling towards
understanding the nature of active sites and elementary reaction steps have
occurred over the past few decades. The complexity gap between theory
and experiment, however, remains overwhelming largely due to the limiting
length and timescales of ab initio simulations, which severely impede the
discovery of high-performance catalytic materials. This Review summarizes
recent developments and applications of machine learning to narrow

and, optimistically, bridge the gap created by the dynamic, mechanistic

and chemostructural complexities inherent to the reactive interfaces of
practical relevance. We foresee the prospects and challenges of machine
learning for the automated design of sustainable catalytic technologies
within a data-centric ecosystem that coevolves with computational and

datasciences.

Catalysisis a highly complex, multiscale phenomenon of chemical and
energy transformations at active sites. Probing underpinning processes
toinfer designknowledge and strategies for high-performance catalytic
materials has been along-standing goal in catalysis, the realization
of which is essential for the transition of our society to a sustainable
future. Owingto the intricacies of phase boundaries between a bulk-like
substrate and the continuum environment, heterogeneous catalysis as
asubdiscipline, on a par with its homogeneous and enzymic counter-
parts, poses unique challenges, for example, site ambiguity and path-
way diversity'. With the advent of quantum chemistry and ever-growing
computing power, ab initio methods, for example, density functional
theory (DFT)?, have beenincreasingly used to model catalyticinterfaces
represented by dozens to hundreds of atoms with open or periodic
boundary conditions. The energetics of elementary reaction steps that
occur therein can be passed on to multiscale modelling techniques, for
example, microkinetics and molecular dynamics, to extend the length

and timescales of atomistic simulations towards practical relevance,
linking microscopic events to macroscopic observables**. Within this
computational framework, a tremendous number of fundamental
insightsinto how a catalyst possibly functions canbe obtained. Indeed,
many catalysts were theoretically predicted and further validated by
experiments, albeit for relatively simple systems®. Nevertheless, com-
putational modelling has arguably pushed the frontier of heterogene-
ous catalysis to the degree of sophistication today.

Despite advances in depicting active sites and their interactions
with environmental factors, there has always been an apparent gap®’
between the often idealized model systems amenable to computa-
tional modelling and the underlying complexities of operando experi-
ments, which renders the design of industrial catalysts still a largely
trial-and-error practice driven by chemical intuition. In retrospect,
it has been long recognized that active sites are dynamic on expo-
sure to reactive species, and evolve into site ensembles distinct from
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Fig.1|Bridging the theory-experiment gap in computational heterogeneous catalysis with machine learning. The dynamic, mechanistic and chemostructural
complexities of operando catalytic systems pose grand challenges in revealing the nature of active sites, unravelling reaction pathways and ultimately accelerating

catalyst discovery.

as-prepared samples®. The dynamic nature of catalysts was brought
to attention by Boudart’ in 1952, stating that “A consequence of the
dynamic picture of a catalytic surface presented here is the necessity
of devising methods for characterizing the surface during the global
catalyticreaction.” Thatis very much true for the need of computational
methods to capture the dynamic complexity of active sites under
experimentally relevant conditions. Moreover, catalytic reaction net-
works thatinvolve molecules ofimmediate interest typically consist of
several bond-breaking and formation steps that may be further exac-
erbated by site coordination. The mechanistic complexity becomes
intractable for reactions with chemical species of multiple atoms
that can form multidentate adsorption configurations at active sites.
Furthermore, the chemostructural complexity of practical catalysts
with various chemical and structural promoters embraces the oppor-
tunity to design site motifs with the desired properties; however, the
number of possible combinations in a hypothesized materials space
canbe prohibitively large even for high-throughput experimentation
and/or computation. Taken together, the referred complexity gap
between theory and experiment is too large to be bridged by compu-
tational techniques traditionally employed because of the limitations
of underlying the ab initio simulations in length and timescales. With
more accessible supercomputing and characterization facilities, we
are often overwhelmed by huge amounts of data that encode rich
information about catalysts and catalytic processes. Attributed to the
unique capability of recognizing hidden patterns or correlations in
high-dimensional data, artificial intelligence (Al) and machinelearning
offer exciting new directions and have demonstrated a great potential
towards bridging the theory-experiment gap in computational het-
erogeneous catalysis by learning from data'® ™.

In this Review, we discuss recent developments and applications
of machine learning to tackle the aforementioned complexities of
heterogeneous catalysis, specifically from the aspects of revealing the
nature of active sites, unravelling reaction pathways and ultimately
accelerating catalyst discovery (Fig. 1). Although highly promising to
bridge the theory-experiment gap in complexity with rapidly evolving
Altechnologies, the prospects and challenges of machine learning for
the automated design of sustainable catalytic technologies are intro-
duced. Implementing a data-centric ecosystem that coevolves with

computational and data sciences is essential, and needs cooperative
community efforts to build on best practices® and lay a solid founda-
tion for future growth.

Revealing the nature of active sites

Computational modelling of active sites at highly complex, hetero-
geneous catalytic interfaces is currently hindered by a few limiting
factors, which include the accuracy-efficiency trade-off in describ-
ing the exchange-correlation effects of many-electron systems, the
near energetic degeneracy of structurally distinct ensembles and the
accessible length and timescales of ab initio simulations. We discuss
machine learning algorithms in alleviating some of these issues to
capture the dynamic evolution of active sites under experimentally
relevant conditions.

Atomistic thermodynamics
An active site can span across a broad configurational and compo-
sitional space, which is fundamentally governed by experimental
conditions, such as temperature, pressure and adsorbate coverage
or collectively the chemical potential(s) of interacting species. Ab
initio atomistic thermodynamics is widely used to study the equilib-
riumbehaviour of materials, for example, solid surfaces, under certain
conditions with quantum chemistry and statistical mechanics™. Itis a
computationally expensive task to find energetically stable structures,
thatis, global and local minima of multidimensional potential energy
surfaces, given the near energetic degeneracy of structurally distinct
ensembles. To tackle theseissues, machinelearninginteratomic poten-
tials (MLIPs)"?were actively developed to predict energies (and forces)
from atomistic structures using highly non-linear regression algo-
rithms, for example, high-dimensional neural networks. Broadly cat-
egorized assupervised machine learning thatlearns atarget function
by training on data with ground truth labels, the mathematical mapping
allows for the generation of highly accurate and scalable energy land-
scapes that can be explored via enhanced sampling techniques*’, for
example, genetic algorithms, basin hopping and Monte Carlo (Fig. 2a).
Large-scale Monte Carlo simulations enabled by MLIPs showed
how the surface structure and composition of CuAu nanoparticles
change as a function of size?, and depict the complexity of active site
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Fig.2|Data-enhanced atomistic thermodynamics for exploring
configurational spaces. a, Workflow showing how MLIPs are iteratively trained
from DFT-calculated structures and utilized in advanced sampling of the
surrogate potential energy surface for stable structures. b, Optimized CuAu
nanoparticles of different sizes via MLIP-enabled Monte Carlo simulations.

¢, Global and local minima structures of Cu,, clusters on ZnO(1010) optimized
via genetic algorithms with machine-learning potentials. d, Experimental
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concentrations. Circle markers on the heat map indicate various combinations of
Re and Cs concentrations for which the global minima structure of Re and Cs on
Ag was optimized via simulated annealing with machine-learning potentials. The
corresponding global minima structure for each coloured marker is illustrated
on theright, where the coloured outline around the structure indicates the
corresponding marker on the heat map. Panels a and d, adapted with permission
from ref. >, American Chemical Society. Panels reproduced with permission
from:b, ref.?>, American Chemical Society; ¢, ref. >, AIP.

ensembles on nanoscale systems under aqueous solvation (Fig.2b). The
approach was also used for the CuPdAg system to generate segrega-
tion profiles and surface phase diagrams at elevated temperatures®.
Anotherimportant factoristhe presence of adsorbed speciesthat can
lead to adsorbate-induced surface segregation and reconstruction,
by compensating for unfavourable surface configurations via chem-
isorption. This was demonstrated using Monte Carlo simulations with
MLIPs for acrolein adsorption on AgPd alloys, inwhich acroleininduces
the formation of Pd dimers within a Ag host”. In the case of acetylene
semihydrogenation on PdAg, hydrogen segregates Pd atoms to the
surface to form various Pd ensembles, which include dimers, lines
and layers with unique reactivity properties®. Global optimization
with astochastic surface walking (SSW) algorithm and neural network
potentials was rigorously performed to construct a phase diagram of
Zn-Cr-0 systems, which revealed a stable composition island with
a four-coordinated planar Cr** cation site responsible for the activ-
ity and selectivity of syngas (CO/H,) conversion to give methanol”.
Reinforcement learning, as another category of machine learning in
which a computer agent learns to perform a task through rewarded
trial-and-error interactions with an environment, was used to probe
surface segregation and its kinetic pathways in NiPdAu alloys powered
by MLIPs trained with energetics from effective medium theory?.

In search of reactive site motifs of atomically dispersed metal
catalysts®, it becomes important to find metastable structures due
totheir near energetic degeneracy. For a freestanding Pt,; cluster, the
exploration of the surrogate potential energy surface represented by
MLIPs via genetic algorithms came across an ensemble of low-energy
metastable structures of hydrogen-covered clusters active for hydro-
gen evolutionand methane activation®’. The incorporation of supports
can be realized via expanding the training data for MLIPs, which thus
allows for the modelling of active sites at complex interfaces. Paleico
and Behler® studied 4-10 atom copper clusters on a ZnO support via
Cu-Zn-OMLIPs and geneticalgorithms. They were able to find global
and local minimastructures, with an example showninFig. 2c for Cu,,
clusters. Interestingly, adsorbates such as *CO and *C,H, (the asterisk
indicatesthe speciesisadsorbed onthe surface) candrastically change
thesurface structure of supported metal nanoclusters, flattening them
asshown for Pt;;on MgO (ref. **). Asimilar effect was observed for *CO
on CeO,-supported Pd, (n=1-55) (ref. **), in which Pd atoms prefer
flat structures for small clusters and layered pyramids for large ones.

Revealing adsorbate structures in response to adynamic change
of environmental conditions is computationally challenging due to
the large number of possible configurations, especially for molecu-
lar adsorbates that can take multidentate adsorption geometries.
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Similar tosupported nanoclusters, minute energy differences between
many adsorbate configurations require sampling of the local and global
minima. Basin-hopping Monte Carlo simulations driven by MLIPs
showed that at a reasonable coverage of *CO on Pt(553) there can be
many kinetically relevant *CO ensembles*. Additional complexities
arise when promoters and spectator species are considered in cata-
lyst formulations. For example, vinyl chloride and alkali promoters
(Cs and Re) are commonly used on Ag catalysts for ethylene epoxi-
dation. Global optimization with machine-learned potentials® of
0O-Cs-Re-Clsystems showed the likely active sites at different Re and
Cs concentrations (Fig. 2d), and highlighted the unique roles of both
promoters, particularly the formation of ReO, clusters, in modulat-
ing surface sites for an enhanced selectivity. Beyond transition metal
catalysis, machine-learned energetics of the structural configura-
tions of metal oxide surfaces are used for surface Pourbaix diagrams,
and provide insights into the nature of active sites towards oxygen
evolution®.

Molecular dynamics

The section above highlights the challenges in modelling active sites
under reaction conditions and approaches the problem by finding
thermodynamically stable structures. Another important aspect of
the dynamic complexity is the real-time evolution of active sites or site
ensembles. Abinitio molecular dynamics can be an enabling technique
for this purpose. However, it is constrained to pico- to nanosecond
timescales and small system sizes due to the formidable computational
cost. These restrictions make it difficult to observe surface evolution
processes that require long timescales, such as segregation, aggrega-
tion and dissolution. In addition, the limited system size prevents the
direct modelling ofimportant dynamic scenarios, such aslong-range
solvationinteractions, grainboundaries and complexinterfaces. By tra-
versing surrogate potential energy surfaces, extended time and length
scales of atomistic simulations can be reached within the framework
of machine learning molecular dynamics (MLMD) (Fig. 3a).

Surface structures under dynamic conditions can undergo recon-
struction through various elementary steps. This is illustrated in
Fig.3a-cforaPd monolayer on Ag(111) (ref.*). The observation of such
phenomenarequires high-fidelity atomistic simulations beyond nano-
seconds, which necessitates the use of machine-learning potentials.
Onannealinginavacuum, the Pd layer is encapsulated by Ag atoms to
formisolated Pd atoms. Trajectory analysis classifies several events of
dynamic evolution, for example, direct exchange, pop-out and hop-
ping ascent. A similar insitu restructuring was observed for Pd/Au(111)
(ref.*®), on which a subsequent exposure of 0.1 mbar CO enables the
Pd monomers to repopulate the surface up to 373 K. Of great interest
is the atomistic mechanisms of alloy formation and evolution under
dynamic conditions. For example, MLMD simulations of CuZn systems
showed that Zninitially alloys near step edges via vacancy generation
and directexchange, but it takes extended timescales (>6 ps) to propa-
gate to terrace regions”. Another study focused on the identification
of active sites of CuZn alloy nanoparticles for CO, electroreduction
with SSW powered by MLIPs. Both Cu-heavy CuZn sites and Zn-heavy
CuZn sites were found to be stable in dynamic simulations up to 1 ns
and could facilitate C-C coupling towards C,, products*. In the case of
oxide-derived Cu, MLMD simulations generate surface configurations
consistent with in situ X-ray absorption spectroscopy experiments
when the Cu,0 undergoes areduction process* to form the (100)-like
surfaces active towards C, product formation (Fig. 3d). Further analysis
showed that these sites can be classified into those that favour alcohol
(step squaresites (s-sq)) and ethylene (planar square (p-sq) and convex
square (c-sq)) sites, as depicted in Fig. 3e. Such insights are used to
tune the CO, electroreduction selectivity by designing specific site
motifs (Fig. 3f).

Beyond site structure and composition, another knob of tun-
ing surface reactivity is through the environment that surrounds an

active site. Specifically, in electrocatalytic and photoelectrocatalytic
applications, solvation can play an important role in dictating the
catalytic outcome of active sites. Using Ab initio molecular dynamic
simulations, it can be challenging to properly sample all the relevant
solvation configurations. Thus, the development of accurate MLIPs
was pursued as a way to properly study these complex interfaces**.
For example, the water structure over Pt(111) was interrogated with
MLMD simulations**, which showed a bilayer structure with strongly
boundwater molecules that form hydrogenbonds with alayer of weakly
bound water molecules. This is in contrast with the hexagonal ice
structure often used in DFT calculations. Such a disparate water sol-
vation environment can lead to different adsorption energies of key
adsorbates. OH adsorption becomes more exothermicinsuch awater
bilayer, especially at higher *OH coverages, as shown from the average
adsorption energy profiles®. As another example, MLMD simulations
of *H on Pt(111) at the aqueous interface showed the formation of
*Hand*H,0 patches, which resulted in different active sites of hydrogen
evolution at high and low *H coverage regions*.

Compared with abinitio methods, MLIP-powered sampling tech-
niques speed up the exploration of active sites by afew orders of magni-
tude, which enables theidentification of thermodynamically relevant
structures. Similarly, MLMD is poised to reveal the nature of active sites
under operating conditions by visualizing dynamic processes of site
evolutioninreal time. However, there are still challenges that need to
beresolved, whichinclude the number of elements that can be trained
at once, accessible timescales beyond microseconds and inaccurate
force predictions of out-of-sample configurations that cause unstable
dynamictrajectories. Accelerating atomistic simulations towards fur-
ther extended length and timescales without distorting the intrinsic
dynamics holds the key to unlockingits full potential in computational
heterogeneous catalysis.

Unravelling reaction pathways

Tounderstand the kinetics of heterogeneous catalytic reactions at given
active sites, it isimportant to unravel reaction pathways from which
the rate-limiting factors can be extracted to guide catalyst discovery.
Forsimple gas phasereactions, itis possible to write down elementary
steps and investigate their energetics from quantum mechanics. How-
ever, thisbecomesrather cumbersome for complex surface reactions,
particularly when the continuum environment (for example, solvation)
isincluded. In this section, we discuss data-enhanced computational
methods toautomatically generate reaction networks and narrow down
possible reaction pathways while we perform rigorous microkinetic
simulations®.

Graph theoretical enumeration

Thewidely used computational methodology in computational hetero-
geneous catalysisis to first study possible intermediates and elemen-
tary steps via DFT calculations, and then linear scaling relationships*®
can be employed to reduce the dimensions of reactivity descriptors
in the kinetics. As the molecules and surface sites involved become
more complex, the number of intermediates and elementary steps
increase drastically, which makes explicit DFT calculations of energetics
prohibitively expensive. To tackle this challenge, many methods were
developed to explore reaction pathways*~'. For example, an efficient
and flexible representation of chemical species is used in chemical
graphtheory (Fig.4a), which defines the atomsin the species as nodes
and chemical bonds as edges. Each adsorbate-site complex can be
largely described using an adjacency list. This representation keeps the
information about element symbol, unpaired electron, formal charge
andbond connectivity. With this scheme, Gao et al.”> developed a reac-
tion mechanism generator using a rate-based algorithm*. Goldsmith
and West extended this gas-phase reaction mechanism generator for
catalysis®*. The framework includes a database of thermodynamic
properties and rate coefficients for known species and reaction steps.
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It alsoincludestools to predict these microkinetic parameters if they
arenotavailable. Thus, itisequipped toiteratively generate new reac-
tion pathways and only keep the important ones.
Theapproachhasbeen used to determine the reaction pathways
for catalytic partial oxidation of methane and the concentration pro-
files of chemical species ina plug flow reactor*** (Fig. 4b). The process

fully explores the effects of reaction temperatures, pressures, CH,/CO,
ratios and catalysts on kinetic parameters, whichidentify the optimum
variables with the trade-off between H, yield and CO, reduction®®.
With the graph representation, the most likely reaction pathways for
syngas reactions on Rh(111) were theoretically explored by replacing
computation-demanding DFT for the reaction energies and barriers
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ateachiteration toimprove the performance. e, Animportant subset on Rh(111)
showing the scission of CHOH to CH and OH intermediates as the rate-limiting
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from: a, ref.>*, American Chemical Society; b, ref.**, American Chemical Society.
Panels c-freproduced with permission fromref. > under a Creative Commons
license CCBY 4.0.

with inexpensive machine learning and linear scaling relationships
(Fig.4c).Only after determining the mostimportant steps via classifica-
tion were self-consistent DFT calculations carried out for energetics,
which in turn refine the machine learning models. In this way, one
can iteratively reduce the uncertainty and increase the accuracy of
the reaction network towards convergence (Fig. 4d—f)¥. Margraf and
Reuter devised a hierarchy algorithm for all the elementary reactions
within a chemical subspace®. This graph-based method enumerated
all the possible reactions by considering bond-breaking reactions as
well as methyland hydroxyl group additions, amenable to constructing
reaction networks for agivenreaction system that contains C,Hand O
atoms with up to four non-hydrogen atoms. The abinitio data of such
systems should be valuable to train and validate machine learning
models of reactivity properties for complex adsorbates, a necessity
towards catalysis of high-value chemicals, which include sizeable
biomass derivatives.

Environment-aware microkinetics

Tounravel kinetically significant reaction pathways, reaction network
exploration can be integrated with environment-aware microkinet-
ics (Fig. 5a). In this aspect, microkinetic approaches, which include
mean-field microkinetic modelling and kinetic Monte Carlo (KMC)
simulations are commonly used. Generally, the active site in a micro-
kinetic model is assumed to be the ground-state structure. Machine
learning with compressed sensing algorithms allows for anincreased
complexity by considering all the high-symmetry sites of a stepped
metal surfacein CO methanation®®. Animportant aspect of microkinetic

modelling is the consideration of adsorbate-adsorbate interactions.
For mean-field microkinetic modelling, lateral interactions canbe con-
sidered by modifying the energetics of the intermediates and transition
states to be coverage dependent with simple linear relationships or
highly non-linear machine learning models®. Akinetics-guided path-
way search with machine learning was developed toresolve acomplex
reaction network while considering the coverage of surface intermedi-
ates®®. The key feature of the approachis the automatic identification of
kinetically favourable pathways via on-the-fly microkinetic modelling.
The reaction sampling is performed using a SSW algorithm enabled
by neural network potentials. Low-energy pathways of CO and CO,
hydrogenation on Cu(211) from SSW simulations were projected onto
the collective variables in reduced dimensions, and showed formate
and formyl pathways for *CO, and *CO hydrogenation, respectively
(Fig. 5b)°". Capturing bond breaking and/or making while considering
the environmental conditions, such as solvation, is challenging even
withadvanced molecular dynamics sampling techniques. Inthis aspect,
MLIPs were used to study surface reactions, such as CO, dissociation on
Pt(111) (ref. %), N, dissociation on Ru(0001) (ref. **) and water adsorption
and/or dissociation on Pt(110) (ref. ¢*). Particularly, Rice et al.** used
MLMD with enhanced sampling techniques to study the hydrogen
evolution reaction at the water-Pt(111) interface. Besides the surface
configurations of adsorbates that are part of the active site ensembles,
important mechanistic pathways can be unravelled. Specifically, at
high coverages of *H the Volmer-Tafel mechanism s favoured, whereas
the Volmer-Heyrovsky mechanismis dominant at lower *H coverages.
Calegari Andrade et al.** studied water dissociation on Ti0,(101) and
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calculated thekineticand thermodynamic parameters viaMLMD simu-
lations. Detailed trajectory analysis showed that the mechanism for
water dissociation proceeded through a Grotthuss-like mechanism.

KMC simulations would be ideal for capturing complex reaction
processes at dynamic surface sites while considering their local envi-
ronment. However, it is very expensive to enumerate the energetics of
all the elementary steps in real-time dynamics for complex systems.
Withartificial neural networks trained on barrier data, KMC simulations
were performed in modelling diffusion processes on the low-index
surfaces of copper, and predicted thermodynamically stable surfaces®.
Within this framework, environment-aware lateral interactions can
be integrated explicitly through cluster expansion Hamiltonians or
machine learning on a lattice model’**. For example, recent stud-
ies using graph neural networks®® showed that the complex adsorb-
ate-adsorbate interactions can be predicted with a high accuracy by
learning from ab initio data. The integration of deep neural networks
with KMC and stochastic sampling algorithms for the autonomous
exploration of elementary reaction steps is necessary to reveal the
full complexity of surface reactions with data-enhanced microkinetic
modelling.

Accelerating catalyst discovery

Historical attempts to design improved catalysts largely rely on the
Edisonian trial-and-error approach. This strategy might result in sub-
optimal findings for simple catalytic systems, but is inefficient when
searching for high-performance materials of multiple elements and
hierarchical structures. In the past few decades, catalyst design has
progressively advanced with computation, albeit eclipsed by the
chemostructural complexity of practical catalysts. We summarize
recent efforts in bridging this theory-experiment gap using machine
learning® by discussing emergent strategies that actively explore the
catalytic materials space with machine learning, formulate design
rules by learning from data and optimize catalyst selection within an
automated Bayesian framework.

Active machine learning
Although machine learning models efficiently predict catalytic proper-
ties once trained, the generation of valuable data for training hinders
the design process, largely due to the chemostructural complexity of
heterogeneous catalysts. So, itis common that there is limited train-
ing datafor machine learningalgorithmsto build on at the beginning.
Consequently, the initial model is inadequate to describe the entire
design space on an equal footing. In such instances, active learning is
useful to iteratively sample the design space, collect additional train-
ing data and refine model predictions. This active learning workflow
allows the algorithm to identify the most beneficial datato collect and
learnfrom, whichleads toareduced need for data to achieve the same
or evenimproved accuracy compared with that of passive learning.
Activelearning worksina closed loop (Fig. 6a), which canbe fully
automated. Data labelling is a precondition based on the underlying
domain problem that ranks candidates with metrics. The often-used
metrics of catalytic performance can be described by volcano plots,
which use low-dimension reactivity descriptors, for example, the
adsorption energies of the reaction intermediates’*”". High activ-
ity regions indicate the desired descriptor values of active sites. For
instance, CO, electroreduction to C, products (for example, ethyl-
ene) on metal alloys is predicted to have the highest activity when
CO adsorption is near —0.67 eV relative to its gas phase (exothermic
sign convention)”* (Fig. 6b). An automated machine learning pipeline
was used to predict CO adsorption properties on a diverse space of
intermetallics with a set of handcrafted physical features, for exam-
ple, site coordination (Fig. 6¢,d). Dimensionality reduction with a
t-SNE (t-distributed stochastic neighbour embedding) representation
demonstrates that CuAl site motifs stand out as promising candidates
(Fig. 6e)”. Electrochemical experiments verified the dealloyed nano-
porous CuAl catalysts with an enhanced activity towards CO, reduction
(Fig. 6f). Gaussian process regression””* is widely applied in active
learning because of its inherent uncertainty measures, and was used
to discover optimal IrO, polymorphs with fewer DFT calculations than

Nature Catalysis | Volume 6 | February 2023 | 122-136

128



Review Article

https://doi.org/10.1038/s41929-023-00911-w

a b >
3 Z X CN_AE
05 S 1Cu (29 1.9 1 -0.48)
2 Z -
P 1 =
E o o <] L1MCu (29 1.9 11 -0.48)
Candidate 3 A 8
sampling 5 o %
a ‘ S -05 y 5 & d
e s - AlCU(211 -
R R 5 ' | CuCe ,ALCUQ(#{; ) 4 8 Use model
! 5 (210) 6 catalysts
EE—T— 3 t 7 \
= Q
Model Data 8 -15 -8 'g 3 Create
development labelling o 9 structures
o -0 S automatically
<. T T T - .
-0.4 0 0.4 0.8 = adsorption
; motif and create
° Active () H adsorption energy (eV) ML model
learning
e -0.47 f
Dealloyed Cu-Al
. Nanoporous Cu
— o & -1,000 A c
P > 3 5 1 u
calculations i : o _ 4
acquisition 5 8 E‘ 800
A 7) =} 1
Hyp = Ep 5 5 oz %
E o067 g 2 ]
' hel o c  -400 -
» I S ]
m
2 kA g 2 200 A
3 3 077 © £ ]
=0. [¢] =
%. a’ = 8 °] T T T T 1
- . . . . .
CuAl R, -4 -3 -2 K] 0 1
"
-0.87 Applied potential Vg e (V)

Latent dimension 1

Fig. 6 | Active machine learning for accelerating catalytic materials
discovery. a, An active learning workflow, which is composed of candidate space,
datalabelling, candidate acquisition, ab initio calculations and features and
models. b, A two-dimensional activity volcano plot for CO, electroreduction’.
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randomselection”. A similar approach was applied to the screening of
other catalytic systems, which included complex metal oxides™”*, with
easily accessible features to reduce the computational demand’®”.
As data acquisition is an important part of active learning that makes
suggestions of next-round selections by balancing the exploitation and
exploration, uncertainty quantification of machine learning models
is crucial and remains a fundamental challenge. Recent benchmarks
and calibrations are important efforts along this direction to ensure
the meaningful convergence of active learning’®”.

Design rules from machine learning
Machine learning paves the way for the fast screening of high-
performance catalystsinalarge, hypothesized design space. However,
theblack-box nature of data-driven machine learning models, for exam-
ple, deep learning, provideslittle to noinsight. Interpretable machine
learning®~* offers a path towards opening these black boxes by formu-
lating design rules that circumvent the chemostructural complexity
and shed light on the direction of catalyst exploration.
Descriptor-based catalyst design provides physical insights, usu-
ally by finding important features. Feature engineering is a process
that selects and transforms the most relevant variables from the raw
datawiththe domain knowledge. Current workflows of catalyst design
take feature engineering as a tool for optimization and combine it
with experimentation for candidate validation®*®. For instance, the
area-specific resistance (ARS) of perovskite oxides as a reactivity
descriptor for oxygenreduction can be predicted by machine learning

models with nine readily accessible descriptors®. Post hoc analysis of
trained deep neural networks provides insights by ranking theimpor-
tance of each descriptor, which showed the polarization of ionic Lewis
acid strengths (ISAs) across metal cations as akey factor (Fig. 7a). This
machine-learned design rule sheds light on the fundamental O, activa-
tion mechanism on perovskites, and leads to an accelerated discovery
ofimproved electrocatalysts with decreased A-site and increased B-site
ISAs (Fig. 7b,c). Design rules for stable single atom catalysts on oxide
supports were also formulated by learning from data®*®, Meanwhile,
when there are an enormous number of features to choose from, the
compressed sensing method SISSO* (sure independence screening
and sparsifying operator) provides a suitable solution, which con-
structs composite descriptors by applying algebraic and/or functional
operators to primary features. New descriptors identified by SISSO
are more generalizable, and can be applicable to a huge number of
systems, whichinclude single atom catalysts’’, perovskite oxides and
halides”, and doped transition metal oxides’>”>. However, there are
drawbacks thatlimitits applications, whichinclude nearly degenerate
models, stability issues on data perturbations and obscure physical
interpretations.

In terms of formulating design rules, breaking the
adsorption-energy scaling relationships has been along-lasting effort
in catalysis®**, Tuning electronic and geometric descriptors was shown
tobe effectivein tailoring surface reactivity, but remainslimited due to
the ubiquitous energy-scaling relations*®. By employing interpretable
machine learning, non-scaling behaviour was realized on (100)-type
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face-centred cubic (fcc) crystal, the distance between *N in a fourfold hollow site
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under a Creative Commons License CC BY 4.0. Panel fadapted with permission
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sites of ordered B2 intermetallics, attributed to the phase-induced
reduction of surface layer separations that leads to astrong Paulirepul-
sion with the hollow site *N intermediate (Fig. 7d,e)*. The physical
insights, for example, that govern factors leading to beyond-scaling
relationships were provided by the Bayesian model of chemisorption
(BayesChem), whichwas built onthe d-band theory of chemisorption
and Bayesian optimization (BO) by learning fromthe adsorption prop-
erties of metal surfaces”. DFT calculations and the activity volcano
plot suggested that B2 CuPd nanocubes exhibit a higher activity than
Cufor nitrate reduction to ammonia (Fig. 7f), which was validated by
electrochemical measurements.

Unsupervised machine learning, a type of algorithm that learns
patterns from unlabelled data, can also address the question of what
constitutes an adequate explanation. Esterhuizen et al. utilized prin-
cipal component analysis to provide low-dimensional and interpret-
able electronic-structure descriptors of near-surface alloys and their
reactivity origin®. Subgroup discovery algorithms, which overcome
the limitations of globalmodels and canidentify subgroup correlations
based on local effects, were employed in heterogeneous catalysis for
the physical understanding of surface reactivity and adsorption-energy

scaling relations®®’. The approach demonstrated the breaking of
the usual scaling relationships between reaction intermediates for
nitrogen reduction onsingle-atom catalysts’’. Unsupervised machine
learning of the literature data was used for knowledge extraction and
to elucidate design rules'**'”, for example, in finding catalysts for the
oxidative coupling of methane'®and NO, reduction'®.

Pure data-driven models have strong predictive capacity but
come with theloss of physical intuition due to the black-box nature of
complicated formulations. Extracting meaningful knowledge from
black-box machine learning models has proved challenging, as the
internallogicis not designed for interpretability. The integration of the
predictive capacity of black-box models with the intrinsic explainability
of physical-based models in interpretable machine learning offers an
alternative to openthe black boxes and gain physical understanding®.

Bayesian optimization

Incatalysis, the highly complex relationships between material features
and catalytic outcomes often render optimization a major challenge.
BO plays an indispensable role when functions are obscure, and the
generation and evaluation of data are expensive. The approach starts
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withmachine learning surrogate models, for example, gaussian process
regression, from the available data, and makes predictions of new data
points that can be added into the training data to refine the models.
Although bearing similarity to active learning discussed above, the key
differenceis that the uncertainty captured by the probabilistic model
is used to generate an acquisition function, where the optimal point
of this function is the set of parameters most likely in increasing the
efficiency of optimization. Various acquisition functions are being used
to balance the exploitation and exploration of the parameter space,
resultinginaniterativeimprovement to the greatest extent. The Bayes-
ian approach is not focused on the optimization of machine learning
surrogate models asinactive learning, but on the ability to sample the
design space based on available data, aiming for the best achievable
rate of convergence in finding optimal solutions.

Nowadays, BO has been routinely used in materials design'®%,

It has enormous potential to accelerate the predictive discovery of
catalyst formulations'®*'°°, and offers the opportunity for making
predictions without the need of physical knowledge'®. Acquisition
functions play a decision-making role for next-round sampling. With
limited initial data, the workflow starts from the low-activity region,
and the first several iterations focus on exploration to search for
high-activity regions, whereas later the optimization shifts towards
exploitation to search near the optimal region, which enabled the
identification of (Co,Cu,M,_,_,);0, for direct decomposition of nitric
oxideinto nitrogen'® (Fig. 8a,b). For propane dehydrogenation to give
propylene, asimple acquisition function of decision making was used
to find NiMo as a more promising non-precious metal catalyst than
Pt, more efficiently than the traditional descriptor-based screening
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approach'”. BO was integrated into autonomous catalytic materi-
als discovery by Al chemists (Fig. 8c), who made predictions of the
most active electrocatalysts and photocatalysts for oxygen evolution
(Fig. 8d-f)'%, Those Al chemists were designed to read literature to
generate astatistical hypothesis and experimental plan, perform con-
tinuous experimentations and make selections and predictions with
little or no human intervention.

Prospects and challenges

Looking forward, data-enhanced multiscale modelling will be further
developed to be anintegral toolincomputational heterogeneous catal-
ysisto probe active site ensembles and elementary reaction processes
under the relevant conditions. Rigorously considering the dynamic
and mechanistic complexities in model systemsis challenging. Inboth
aspects, developing fast, accurate and self-improving machinelearning
potentials is the key to enabling high-fidelity atomistic simulations of
practical relevance and further deepening our fundamental under-
standing of heterogeneous catalytic systems. Algorithm advances in
terms of the feature representation of the atomic environment beyond
thelocality approximation'**""?, physics-inspired deep learning archi-
tectures®"" and advanced data-sampling strategies"” show promise
along this direction.

An improved ab initio description of catalytic processes that
explicitly includes solvation, impurities and external energy stimuli
atreactive interfacesis needed. Considerable attention to the solvation
dynamics at solid-liquid interfaces has been paid in recent years. For
example, it was shown that methanol as the solvent can form areac-
tive hydroxymethyl intermediate at Pd nanoparticles that mediates
the proton transfer in the thermocatalytic oxygen reduction towards
peroxide formation™. In electrocatalytic reactions, the connectivity
of hydrogen-bond networks in electric double layers was found to be
crucial to understand kinetic pH effectsin hydrogen electrocatalysis™.
As another example, adsorbed alkali metal cations with partial dehy-
dration promote CO, electroreduction at metal electrodes'. Besides
heterogeneous catalysis with thermal, photonic or electrical energy
as stimuli, other energy carriers also received intense attention, for
example, plasma, surface plasmon and microwave radiation. Recently,
itwas shown that deep learning with agraph neural network architec-
ture can efficiently predict the electric-field-dependent adsorption
energies of surface intermediates in catalyticammonia synthesis".

Asmachinelearningbecomesincreasingly usedin heterogeneous
catalytic materials discovery, the demand for interpretability isbeing
considered to ensure that optimal catalysts can be found for the right
reason®>®, Future applications of machine learning in catalysis have
tobeaware of the distinction between correlation and causation. Two
physical variables with a statistical correlation does not mean one
causes the other, and more causal models are needed to ensure the
gaining of meaningfulknowledge for catalyst design. Accurate machine
learning models with physics-informed feature representations or
machine-learned high-level features should be used whenever possible
toaccelerate the catalytic materials discovery,and at the same time to
enrichthetheory of heterogeneous catalysis by learning insights from
data®®*'”, One challenge in this endeavour is to incorporate physically
tuning parameters in well-established theories, for example, d-band
theory®”"®, as latent variables in deep learning architectures without
sacrificing the accuracy of the model predictions®.

This Review mainly focuses on bridging the complexity gap in
heterogeneous catalysis from a computational perspective. Equally
important is applying machine learning tools to enhance experi-
mental data analysis, which includes the microscopic, spectro-
scopic and kinetic data of catalysts. As demonstrated recently*7'?,
machine-learning-assisted X-ray absorption spectroscopy canbe used
to decipher the active site structures under operando conditions for
a broad range of catalytic systems, which include metals'® 121

, alloys™,
metal compounds'? and zeolites'”. With ever-growing kinetic datain

catalysis, there is an untapped potential to learn directly from those
data*', With enumerated elementary steps in microkinetic model-
ling, toinferkinetically relevant steps and energetics canbe challenging
due to data scarcity, and thus requires a probabilistic approach, for
example, Bayesian inference. This approach was employed to iden-
tify active sites and discern reaction mechanisms'*'?, Owing to the
complexinterplay of kinetics at operating conditions, the coverage of
intermediates can vary drastically, and thus requires online learningin
the iterative Bayesian inference of model parameters.

Thefield of computational heterogeneous catalysis with machine
learning is still inits infancy. There are numerous opportunities to
leverage ever-evolving computational and data sciences to advance
catalytic materials discovery. An Al and machine learning framework
that streamlines data collection with the natural language process-
ing”%"! of enormous amounts of literature data is highly promising,
given the emergent abilities of large language models™. Compared
with relatively abundant computational data®*™'*, the availability
of high-quality experimental data in a learnable format is still lim-
ited. Recent efforts on rigour and reproducibility in heterogeneous
catalysis"® aim to centralize knowledge and standardized protocols for
catalyst synthesis, testing and characterization. Initiatives of this kind
might provide a path forward to archive benchmarked, reproducible
and abundant experimental datafor machinelearning. Close collabora-
tions of experimentalists, computational chemists and datascientists
hold the key to the sustainable development of a data-centric ecosys-
tem for materials and knowledge discovery in heterogeneous catalysis.
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