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Bridging the complexity gap in 
computational heterogeneous catalysis  
with machine learning

Tianyou Mou1,4, Hemanth Somarajan Pillai1,4, Siwen Wang1,4, Mingyu Wan2, 
Xue Han1, Neil M. Schweitzer3, Fanglin Che    2 & Hongliang Xin    1 

Heterogeneous catalysis underpins a wide variety of industrial processes 
including energy conversion, chemical manufacturing and environmental 
remediation. Significant advances in computational modelling towards 
understanding the nature of active sites and elementary reaction steps have 
occurred over the past few decades. The complexity gap between theory 
and experiment, however, remains overwhelming largely due to the limiting 
length and timescales of ab initio simulations, which severely impede the 
discovery of high-performance catalytic materials. This Review summarizes 
recent developments and applications of machine learning to narrow 
and, optimistically, bridge the gap created by the dynamic, mechanistic 
and chemostructural complexities inherent to the reactive interfaces of 
practical relevance. We foresee the prospects and challenges of machine 
learning for the automated design of sustainable catalytic technologies 
within a data-centric ecosystem that coevolves with computational and  
data sciences.

Catalysis is a highly complex, multiscale phenomenon of chemical and 
energy transformations at active sites. Probing underpinning processes 
to infer design knowledge and strategies for high-performance catalytic 
materials has been a long-standing goal in catalysis, the realization 
of which is essential for the transition of our society to a sustainable 
future. Owing to the intricacies of phase boundaries between a bulk-like 
substrate and the continuum environment, heterogeneous catalysis as 
a subdiscipline, on a par with its homogeneous and enzymic counter-
parts, poses unique challenges, for example, site ambiguity and path-
way diversity1. With the advent of quantum chemistry and ever-growing 
computing power, ab initio methods, for example, density functional 
theory (DFT)2, have been increasingly used to model catalytic interfaces 
represented by dozens to hundreds of atoms with open or periodic 
boundary conditions. The energetics of elementary reaction steps that 
occur therein can be passed on to multiscale modelling techniques, for 
example, microkinetics and molecular dynamics, to extend the length 

and timescales of atomistic simulations towards practical relevance, 
linking microscopic events to macroscopic observables3,4. Within this 
computational framework, a tremendous number of fundamental 
insights into how a catalyst possibly functions can be obtained. Indeed, 
many catalysts were theoretically predicted and further validated by 
experiments, albeit for relatively simple systems5. Nevertheless, com-
putational modelling has arguably pushed the frontier of heterogene-
ous catalysis to the degree of sophistication today.

Despite advances in depicting active sites and their interactions 
with environmental factors, there has always been an apparent gap6,7 
between the often idealized model systems amenable to computa-
tional modelling and the underlying complexities of operando experi-
ments, which renders the design of industrial catalysts still a largely 
trial-and-error practice driven by chemical intuition. In retrospect, 
it has been long recognized that active sites are dynamic on expo-
sure to reactive species, and evolve into site ensembles distinct from 
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computational and data sciences is essential, and needs cooperative 
community efforts to build on best practices15 and lay a solid founda-
tion for future growth.

Revealing the nature of active sites
Computational modelling of active sites at highly complex, hetero-
geneous catalytic interfaces is currently hindered by a few limiting 
factors, which include the accuracy–efficiency trade-off in describ-
ing the exchange–correlation effects of many-electron systems, the 
near energetic degeneracy of structurally distinct ensembles and the 
accessible length and timescales of ab initio simulations. We discuss 
machine learning algorithms in alleviating some of these issues to 
capture the dynamic evolution of active sites under experimentally 
relevant conditions.

Atomistic thermodynamics
An active site can span across a broad configurational and compo-
sitional space, which is fundamentally governed by experimental 
conditions, such as temperature, pressure and adsorbate coverage 
or collectively the chemical potential(s) of interacting species. Ab 
initio atomistic thermodynamics is widely used to study the equilib-
rium behaviour of materials, for example, solid surfaces, under certain 
conditions with quantum chemistry and statistical mechanics16. It is a 
computationally expensive task to find energetically stable structures, 
that is, global and local minima of multidimensional potential energy 
surfaces, given the near energetic degeneracy of structurally distinct 
ensembles. To tackle these issues, machine learning interatomic poten-
tials (MLIPs)17–22 were actively developed to predict energies (and forces) 
from atomistic structures using highly non-linear regression algo-
rithms, for example, high-dimensional neural networks. Broadly cat-
egorized as supervised machine learning that learns a target function 
by training on data with ground truth labels, the mathematical mapping 
allows for the generation of highly accurate and scalable energy land-
scapes that can be explored via enhanced sampling techniques4,7, for 
example, genetic algorithms, basin hopping and Monte Carlo (Fig. 2a).

Large-scale Monte Carlo simulations enabled by MLIPs showed 
how the surface structure and composition of CuAu nanoparticles 
change as a function of size23, and depict the complexity of active site 

as-prepared samples8. The dynamic nature of catalysts was brought 
to attention by Boudart9 in 1952, stating that “A consequence of the 
dynamic picture of a catalytic surface presented here is the necessity 
of devising methods for characterizing the surface during the global 
catalytic reaction.” That is very much true for the need of computational 
methods to capture the dynamic complexity of active sites under 
experimentally relevant conditions. Moreover, catalytic reaction net-
works that involve molecules of immediate interest typically consist of 
several bond-breaking and formation steps that may be further exac-
erbated by site coordination. The mechanistic complexity becomes 
intractable for reactions with chemical species of multiple atoms 
that can form multidentate adsorption configurations at active sites. 
Furthermore, the chemostructural complexity of practical catalysts 
with various chemical and structural promoters embraces the oppor-
tunity to design site motifs with the desired properties; however, the 
number of possible combinations in a hypothesized materials space 
can be prohibitively large even for high-throughput experimentation 
and/or computation. Taken together, the referred complexity gap 
between theory and experiment is too large to be bridged by compu-
tational techniques traditionally employed because of the limitations 
of underlying the ab initio simulations in length and timescales. With 
more accessible supercomputing and characterization facilities, we 
are often overwhelmed by huge amounts of data that encode rich 
information about catalysts and catalytic processes. Attributed to the 
unique capability of recognizing hidden patterns or correlations in 
high-dimensional data, artificial intelligence (AI) and machine learning 
offer exciting new directions and have demonstrated a great potential 
towards bridging the theory–experiment gap in computational het-
erogeneous catalysis by learning from data10–14.

In this Review, we discuss recent developments and applications 
of machine learning to tackle the aforementioned complexities of 
heterogeneous catalysis, specifically from the aspects of revealing the 
nature of active sites, unravelling reaction pathways and ultimately 
accelerating catalyst discovery (Fig. 1). Although highly promising to 
bridge the theory–experiment gap in complexity with rapidly evolving 
AI technologies, the prospects and challenges of machine learning for 
the automated design of sustainable catalytic technologies are intro-
duced. Implementing a data-centric ecosystem that coevolves with 
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Fig. 1 | Bridging the theory–experiment gap in computational heterogeneous catalysis with machine learning. The dynamic, mechanistic and chemostructural 
complexities of operando catalytic systems pose grand challenges in revealing the nature of active sites, unravelling reaction pathways and ultimately accelerating 
catalyst discovery.



Nature Catalysis | Volume 6 | February 2023 | 122–136 124

Review Article https://doi.org/10.1038/s41929-023-00911-w

ensembles on nanoscale systems under aqueous solvation (Fig. 2b). The 
approach was also used for the CuPdAg system to generate segrega-
tion profiles and surface phase diagrams at elevated temperatures24. 
Another important factor is the presence of adsorbed species that can 
lead to adsorbate-induced surface segregation and reconstruction, 
by compensating for unfavourable surface configurations via chem-
isorption. This was demonstrated using Monte Carlo simulations with 
MLIPs for acrolein adsorption on AgPd alloys, in which acrolein induces 
the formation of Pd dimers within a Ag host25. In the case of acetylene 
semihydrogenation on PdAg, hydrogen segregates Pd atoms to the 
surface to form various Pd ensembles, which include dimers, lines 
and layers with unique reactivity properties26. Global optimization 
with a stochastic surface walking (SSW) algorithm and neural network 
potentials was rigorously performed to construct a phase diagram of 
Zn–Cr–O systems, which revealed a stable composition island with 
a four-coordinated planar Cr2+ cation site responsible for the activ-
ity and selectivity of syngas (CO/H2) conversion to give methanol27. 
Reinforcement learning, as another category of machine learning in 
which a computer agent learns to perform a task through rewarded 
trial-and-error interactions with an environment, was used to probe 
surface segregation and its kinetic pathways in NiPdAu alloys powered 
by MLIPs trained with energetics from effective medium theory28.

In search of reactive site motifs of atomically dispersed metal 
catalysts29, it becomes important to find metastable structures due 
to their near energetic degeneracy. For a freestanding Pt13 cluster, the 
exploration of the surrogate potential energy surface represented by 
MLIPs via genetic algorithms came across an ensemble of low-energy 
metastable structures of hydrogen-covered clusters active for hydro-
gen evolution and methane activation30. The incorporation of supports 
can be realized via expanding the training data for MLIPs, which thus 
allows for the modelling of active sites at complex interfaces. Paleico 
and Behler31 studied 4–10 atom copper clusters on a ZnO support via 
Cu–Zn–O MLIPs and genetic algorithms. They were able to find global 
and local minima structures, with an example shown in Fig. 2c for Cu10 
clusters. Interestingly, adsorbates such as *CO and *C2H4 (the asterisk 
indicates the species is adsorbed on the surface) can drastically change 
the surface structure of supported metal nanoclusters, flattening them 
as shown for Pt13 on MgO (ref. 32). A similar effect was observed for *CO 
on CeO2-supported Pdn (n = 1–55) (ref. 33), in which Pd atoms prefer 
flat structures for small clusters and layered pyramids for large ones.

Revealing adsorbate structures in response to a dynamic change 
of environmental conditions is computationally challenging due to 
the large number of possible configurations, especially for molecu-
lar adsorbates that can take multidentate adsorption geometries.  
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Fig. 2 | Data-enhanced atomistic thermodynamics for exploring 
configurational spaces. a, Workflow showing how MLIPs are iteratively trained 
from DFT-calculated structures and utilized in advanced sampling of the 
surrogate potential energy surface for stable structures. b, Optimized CuAu 
nanoparticles of different sizes via MLIP-enabled Monte Carlo simulations.  
c, Global and local minima structures of Cu10 clusters on ZnO(101 0) optimized 
via genetic algorithms with machine-learning potentials. d, Experimental 
heat map showing the ethylene epoxide selectivity as a function of Re and Cs 

concentrations. Circle markers on the heat map indicate various combinations of 
Re and Cs concentrations for which the global minima structure of Re and Cs on 
Ag was optimized via simulated annealing with machine-learning potentials. The 
corresponding global minima structure for each coloured marker is illustrated 
on the right, where the coloured outline around the structure indicates the 
corresponding marker on the heat map. Panels a and d, adapted with permission 
from ref. 35, American Chemical Society. Panels reproduced with permission 
from: b, ref. 23, American Chemical Society; c, ref. 31, AIP.
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Similar to supported nanoclusters, minute energy differences between 
many adsorbate configurations require sampling of the local and global 
minima. Basin-hopping Monte Carlo simulations driven by MLIPs 
showed that at a reasonable coverage of *CO on Pt(553) there can be 
many kinetically relevant *CO ensembles34. Additional complexities 
arise when promoters and spectator species are considered in cata-
lyst formulations. For example, vinyl chloride and alkali promoters  
(Cs and Re) are commonly used on Ag catalysts for ethylene epoxi-
dation. Global optimization with machine-learned potentials35 of  
O–Cs–Re–Cl systems showed the likely active sites at different Re and 
Cs concentrations (Fig. 2d), and highlighted the unique roles of both 
promoters, particularly the formation of ReO4 clusters, in modulat-
ing surface sites for an enhanced selectivity. Beyond transition metal 
catalysis, machine-learned energetics of the structural configura-
tions of metal oxide surfaces are used for surface Pourbaix diagrams, 
and provide insights into the nature of active sites towards oxygen 
evolution36.

Molecular dynamics
The section above highlights the challenges in modelling active sites 
under reaction conditions and approaches the problem by finding 
thermodynamically stable structures. Another important aspect of 
the dynamic complexity is the real-time evolution of active sites or site 
ensembles. Ab initio molecular dynamics can be an enabling technique 
for this purpose. However, it is constrained to pico- to nanosecond 
timescales and small system sizes due to the formidable computational 
cost. These restrictions make it difficult to observe surface evolution 
processes that require long timescales, such as segregation, aggrega-
tion and dissolution. In addition, the limited system size prevents the 
direct modelling of important dynamic scenarios, such as long-range 
solvation interactions, grain boundaries and complex interfaces. By tra-
versing surrogate potential energy surfaces, extended time and length 
scales of atomistic simulations can be reached within the framework 
of machine learning molecular dynamics (MLMD) (Fig. 3a).

Surface structures under dynamic conditions can undergo recon-
struction through various elementary steps. This is illustrated in  
Fig. 3a–c for a Pd monolayer on Ag(111) (ref. 37). The observation of such 
phenomena requires high-fidelity atomistic simulations beyond nano-
seconds, which necessitates the use of machine-learning potentials. 
On annealing in a vacuum, the Pd layer is encapsulated by Ag atoms to 
form isolated Pd atoms. Trajectory analysis classifies several events of 
dynamic evolution, for example, direct exchange, pop-out and hop-
ping ascent. A similar in situ restructuring was observed for Pd/Au(111) 
(ref. 38), on which a subsequent exposure of 0.1 mbar CO enables the 
Pd monomers to repopulate the surface up to 373 K. Of great interest 
is the atomistic mechanisms of alloy formation and evolution under 
dynamic conditions. For example, MLMD simulations of CuZn systems 
showed that Zn initially alloys near step edges via vacancy generation 
and direct exchange, but it takes extended timescales (>6 μs) to propa-
gate to terrace regions39. Another study focused on the identification 
of active sites of CuZn alloy nanoparticles for CO2 electroreduction 
with SSW powered by MLIPs. Both Cu-heavy CuZn sites and Zn-heavy 
CuZn sites were found to be stable in dynamic simulations up to 1 ns 
and could facilitate C–C coupling towards C2+ products40. In the case of 
oxide-derived Cu, MLMD simulations generate surface configurations 
consistent with in situ X-ray absorption spectroscopy experiments 
when the Cu2O undergoes a reduction process41 to form the (100)-like 
surfaces active towards C2 product formation (Fig. 3d). Further analysis 
showed that these sites can be classified into those that favour alcohol 
(step square sites (s-sq)) and ethylene (planar square (p-sq) and convex 
square (c-sq)) sites, as depicted in Fig. 3e. Such insights are used to 
tune the CO2 electroreduction selectivity by designing specific site 
motifs (Fig. 3f).

Beyond site structure and composition, another knob of tun-
ing surface reactivity is through the environment that surrounds an 

active site. Specifically, in electrocatalytic and photoelectrocatalytic 
applications, solvation can play an important role in dictating the 
catalytic outcome of active sites. Using Ab initio molecular dynamic 
simulations, it can be challenging to properly sample all the relevant 
solvation configurations. Thus, the development of accurate MLIPs 
was pursued as a way to properly study these complex interfaces42,43. 
For example, the water structure over Pt(111) was interrogated with 
MLMD simulations44, which showed a bilayer structure with strongly 
bound water molecules that form hydrogen bonds with a layer of weakly 
bound water molecules. This is in contrast with the hexagonal ice 
structure often used in DFT calculations. Such a disparate water sol-
vation environment can lead to different adsorption energies of key 
adsorbates. OH adsorption becomes more exothermic in such a water 
bilayer, especially at higher *OH coverages, as shown from the average 
adsorption energy profiles45. As another example, MLMD simulations 
of *H on Pt(111) at the aqueous interface showed the formation of  
*H and *H2O patches, which resulted in different active sites of hydrogen 
evolution at high and low *H coverage regions46.

Compared with ab initio methods, MLIP-powered sampling tech-
niques speed up the exploration of active sites by a few orders of magni-
tude, which enables the identification of thermodynamically relevant 
structures. Similarly, MLMD is poised to reveal the nature of active sites 
under operating conditions by visualizing dynamic processes of site 
evolution in real time. However, there are still challenges that need to 
be resolved, which include the number of elements that can be trained 
at once, accessible timescales beyond microseconds and inaccurate 
force predictions of out-of-sample configurations that cause unstable 
dynamic trajectories. Accelerating atomistic simulations towards fur-
ther extended length and timescales without distorting the intrinsic 
dynamics holds the key to unlocking its full potential in computational 
heterogeneous catalysis.

Unravelling reaction pathways
To understand the kinetics of heterogeneous catalytic reactions at given 
active sites, it is important to unravel reaction pathways from which 
the rate-limiting factors can be extracted to guide catalyst discovery. 
For simple gas phase reactions, it is possible to write down elementary 
steps and investigate their energetics from quantum mechanics. How-
ever, this becomes rather cumbersome for complex surface reactions, 
particularly when the continuum environment (for example, solvation) 
is included. In this section, we discuss data-enhanced computational 
methods to automatically generate reaction networks and narrow down 
possible reaction pathways while we perform rigorous microkinetic 
simulations47.

Graph theoretical enumeration
The widely used computational methodology in computational hetero-
geneous catalysis is to first study possible intermediates and elemen-
tary steps via DFT calculations, and then linear scaling relationships48 
can be employed to reduce the dimensions of reactivity descriptors 
in the kinetics. As the molecules and surface sites involved become 
more complex, the number of intermediates and elementary steps 
increase drastically, which makes explicit DFT calculations of energetics 
prohibitively expensive. To tackle this challenge, many methods were 
developed to explore reaction pathways49–51. For example, an efficient 
and flexible representation of chemical species is used in chemical 
graph theory (Fig. 4a), which defines the atoms in the species as nodes 
and chemical bonds as edges. Each adsorbate–site complex can be 
largely described using an adjacency list. This representation keeps the 
information about element symbol, unpaired electron, formal charge 
and bond connectivity. With this scheme, Gao et al.52 developed a reac-
tion mechanism generator using a rate-based algorithm53. Goldsmith 
and West extended this gas-phase reaction mechanism generator for 
catalysis54. The framework includes a database of thermodynamic 
properties and rate coefficients for known species and reaction steps. 
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It also includes tools to predict these microkinetic parameters if they 
are not available. Thus, it is equipped to iteratively generate new reac-
tion pathways and only keep the important ones.

The approach has been used to determine the reaction pathways 
for catalytic partial oxidation of methane and the concentration pro-
files of chemical species in a plug flow reactor54,55 (Fig. 4b). The process 

fully explores the effects of reaction temperatures, pressures, CH4/CO2 
ratios and catalysts on kinetic parameters, which identify the optimum 
variables with the trade-off between H2 yield and CO2 reduction56. 
With the graph representation, the most likely reaction pathways for 
syngas reactions on Rh(111) were theoretically explored by replacing 
computation-demanding DFT for the reaction energies and barriers 
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with inexpensive machine learning and linear scaling relationships  
(Fig. 4c). Only after determining the most important steps via classifica-
tion were self-consistent DFT calculations carried out for energetics, 
which in turn refine the machine learning models. In this way, one 
can iteratively reduce the uncertainty and increase the accuracy of 
the reaction network towards convergence (Fig. 4d–f)57. Margraf and 
Reuter devised a hierarchy algorithm for all the elementary reactions 
within a chemical subspace51. This graph-based method enumerated 
all the possible reactions by considering bond-breaking reactions as 
well as methyl and hydroxyl group additions, amenable to constructing 
reaction networks for a given reaction system that contains C, H and O 
atoms with up to four non-hydrogen atoms. The ab initio data of such 
systems should be valuable to train and validate machine learning 
models of reactivity properties for complex adsorbates, a necessity 
towards catalysis of high-value chemicals, which include sizeable 
biomass derivatives.

Environment-aware microkinetics
To unravel kinetically significant reaction pathways, reaction network 
exploration can be integrated with environment-aware microkinet-
ics (Fig. 5a). In this aspect, microkinetic approaches, which include 
mean-field microkinetic modelling and kinetic Monte Carlo (KMC) 
simulations are commonly used. Generally, the active site in a micro-
kinetic model is assumed to be the ground-state structure. Machine 
learning with compressed sensing algorithms allows for an increased 
complexity by considering all the high-symmetry sites of a stepped 
metal surface in CO methanation58. An important aspect of microkinetic 

modelling is the consideration of adsorbate–adsorbate interactions. 
For mean-field microkinetic modelling, lateral interactions can be con-
sidered by modifying the energetics of the intermediates and transition 
states to be coverage dependent with simple linear relationships or 
highly non-linear machine learning models59. A kinetics-guided path-
way search with machine learning was developed to resolve a complex 
reaction network while considering the coverage of surface intermedi-
ates60. The key feature of the approach is the automatic identification of 
kinetically favourable pathways via on-the-fly microkinetic modelling. 
The reaction sampling is performed using a SSW algorithm enabled 
by neural network potentials. Low-energy pathways of CO and CO2 
hydrogenation on Cu(211) from SSW simulations were projected onto 
the collective variables in reduced dimensions, and showed formate 
and formyl pathways for *CO2 and *CO hydrogenation, respectively 
(Fig. 5b)61. Capturing bond breaking and/or making while considering 
the environmental conditions, such as solvation, is challenging even 
with advanced molecular dynamics sampling techniques. In this aspect, 
MLIPs were used to study surface reactions, such as CO2 dissociation on 
Pt(111) (ref. 62), N2 dissociation on Ru(0001) (ref. 63) and water adsorption 
and/or dissociation on Pt(110) (ref. 64). Particularly, Rice et al.46 used 
MLMD with enhanced sampling techniques to study the hydrogen 
evolution reaction at the water–Pt(111) interface. Besides the surface 
configurations of adsorbates that are part of the active site ensembles, 
important mechanistic pathways can be unravelled. Specifically, at 
high coverages of *H the Volmer–Tafel mechanism is favoured, whereas 
the Volmer–Heyrovsky mechanism is dominant at lower *H coverages. 
Calegari Andrade et al.65 studied water dissociation on TiO2(101) and 
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nodes are elementary steps from one intermediate to another. d, Convergence 
of the reaction network at each iteration of the process shown in c57. DFT 
calculations are performed for important intermediates and transition states 
at each iteration to improve the performance. e, An important subset on Rh(111) 
showing the scission of CHOH to CH and OH intermediates as the rate-limiting 
step of ethanol production57. f, Methanol is still a final product at 90% confidence 
level given the DFT-level uncertainty57. Nodes and lines are working in the same 
way as those in c, but with different adsorbates. Panels adapted with permission 
from: a, ref. 54, American Chemical Society; b, ref. 55, American Chemical Society. 
Panels c–f reproduced with permission from ref. 57 under a Creative Commons 
license CC BY 4.0.
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calculated the kinetic and thermodynamic parameters via MLMD simu-
lations. Detailed trajectory analysis showed that the mechanism for 
water dissociation proceeded through a Grotthuss-like mechanism.

KMC simulations would be ideal for capturing complex reaction 
processes at dynamic surface sites while considering their local envi-
ronment. However, it is very expensive to enumerate the energetics of 
all the elementary steps in real-time dynamics for complex systems. 
With artificial neural networks trained on barrier data, KMC simulations 
were performed in modelling diffusion processes on the low-index 
surfaces of copper, and predicted thermodynamically stable surfaces66. 
Within this framework, environment-aware lateral interactions can 
be integrated explicitly through cluster expansion Hamiltonians or 
machine learning on a lattice model59,67. For example, recent stud-
ies using graph neural networks68 showed that the complex adsorb-
ate–adsorbate interactions can be predicted with a high accuracy by 
learning from ab initio data. The integration of deep neural networks 
with KMC and stochastic sampling algorithms for the autonomous 
exploration of elementary reaction steps is necessary to reveal the 
full complexity of surface reactions with data-enhanced microkinetic 
modelling.

Accelerating catalyst discovery
Historical attempts to design improved catalysts largely rely on the 
Edisonian trial-and-error approach. This strategy might result in sub-
optimal findings for simple catalytic systems, but is inefficient when 
searching for high-performance materials of multiple elements and 
hierarchical structures. In the past few decades, catalyst design has 
progressively advanced with computation, albeit eclipsed by the 
chemostructural complexity of practical catalysts. We summarize 
recent efforts in bridging this theory–experiment gap using machine 
learning69 by discussing emergent strategies that actively explore the 
catalytic materials space with machine learning, formulate design 
rules by learning from data and optimize catalyst selection within an 
automated Bayesian framework.

Active machine learning
Although machine learning models efficiently predict catalytic proper-
ties once trained, the generation of valuable data for training hinders 
the design process, largely due to the chemostructural complexity of 
heterogeneous catalysts. So, it is common that there is limited train-
ing data for machine learning algorithms to build on at the beginning. 
Consequently, the initial model is inadequate to describe the entire 
design space on an equal footing. In such instances, active learning is 
useful to iteratively sample the design space, collect additional train-
ing data and refine model predictions. This active learning workflow 
allows the algorithm to identify the most beneficial data to collect and 
learn from, which leads to a reduced need for data to achieve the same 
or even improved accuracy compared with that of passive learning.

Active learning works in a closed loop (Fig. 6a), which can be fully 
automated. Data labelling is a precondition based on the underlying 
domain problem that ranks candidates with metrics. The often-used 
metrics of catalytic performance can be described by volcano plots, 
which use low-dimension reactivity descriptors, for example, the 
adsorption energies of the reaction intermediates70,71. High activ-
ity regions indicate the desired descriptor values of active sites. For 
instance, CO2 electroreduction to C2 products (for example, ethyl-
ene) on metal alloys is predicted to have the highest activity when 
CO adsorption is near −0.67 eV relative to its gas phase (exothermic 
sign convention)72 (Fig. 6b). An automated machine learning pipeline 
was used to predict CO adsorption properties on a diverse space of 
intermetallics with a set of handcrafted physical features, for exam-
ple, site coordination (Fig. 6c,d). Dimensionality reduction with a 
t-SNE (t-distributed stochastic neighbour embedding) representation 
demonstrates that CuAl site motifs stand out as promising candidates  
(Fig. 6e)73. Electrochemical experiments verified the dealloyed nano-
porous CuAl catalysts with an enhanced activity towards CO2 reduction 
(Fig. 6f). Gaussian process regression71,74 is widely applied in active 
learning because of its inherent uncertainty measures, and was used 
to discover optimal IrO3 polymorphs with fewer DFT calculations than 
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random selection75. A similar approach was applied to the screening of 
other catalytic systems, which included complex metal oxides71,74, with 
easily accessible features to reduce the computational demand76,77. 
As data acquisition is an important part of active learning that makes 
suggestions of next-round selections by balancing the exploitation and 
exploration, uncertainty quantification of machine learning models 
is crucial and remains a fundamental challenge. Recent benchmarks 
and calibrations are important efforts along this direction to ensure 
the meaningful convergence of active learning78,79.

Design rules from machine learning
Machine learning paves the way for the fast screening of high- 
performance catalysts in a large, hypothesized design space. However, 
the black-box nature of data-driven machine learning models, for exam-
ple, deep learning, provides little to no insight. Interpretable machine 
learning80–83 offers a path towards opening these black boxes by formu-
lating design rules that circumvent the chemostructural complexity 
and shed light on the direction of catalyst exploration.

Descriptor-based catalyst design provides physical insights, usu-
ally by finding important features. Feature engineering is a process 
that selects and transforms the most relevant variables from the raw 
data with the domain knowledge. Current workflows of catalyst design 
take feature engineering as a tool for optimization and combine it 
with experimentation for candidate validation84,85. For instance, the 
area-specific resistance (ARS) of perovskite oxides as a reactivity 
descriptor for oxygen reduction can be predicted by machine learning 

models with nine readily accessible descriptors86. Post hoc analysis of 
trained deep neural networks provides insights by ranking the impor-
tance of each descriptor, which showed the polarization of ionic Lewis 
acid strengths (ISAs) across metal cations as a key factor (Fig. 7a). This 
machine-learned design rule sheds light on the fundamental O2 activa-
tion mechanism on perovskites, and leads to an accelerated discovery 
of improved electrocatalysts with decreased A-site and increased B-site 
ISAs (Fig. 7b,c). Design rules for stable single atom catalysts on oxide 
supports were also formulated by learning from data87,88. Meanwhile, 
when there are an enormous number of features to choose from, the 
compressed sensing method SISSO89 (sure independence screening 
and sparsifying operator) provides a suitable solution, which con-
structs composite descriptors by applying algebraic and/or functional 
operators to primary features. New descriptors identified by SISSO 
are more generalizable, and can be applicable to a huge number of 
systems, which include single atom catalysts90, perovskite oxides and 
halides91, and doped transition metal oxides92,93. However, there are 
drawbacks that limit its applications, which include nearly degenerate 
models, stability issues on data perturbations and obscure physical 
interpretations.

In terms of formulating design rules, breaking the 
adsorption-energy scaling relationships has been a long-lasting effort 
in catalysis94,95. Tuning electronic and geometric descriptors was shown 
to be effective in tailoring surface reactivity, but remains limited due to 
the ubiquitous energy-scaling relations48. By employing interpretable 
machine learning, non-scaling behaviour was realized on (100)-type 
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sites of ordered B2 intermetallics, attributed to the phase-induced 
reduction of surface layer separations that leads to a strong Pauli repul-
sion with the hollow site *N intermediate (Fig. 7d,e)96. The physical 
insights, for example, that govern factors leading to beyond-scaling 
relationships were provided by the Bayesian model of chemisorption 
(BayesChem), which was built on the d-band theory of chemisorption 
and Bayesian optimization (BO) by learning from the adsorption prop-
erties of metal surfaces97. DFT calculations and the activity volcano 
plot suggested that B2 CuPd nanocubes exhibit a higher activity than 
Cu for nitrate reduction to ammonia (Fig. 7f), which was validated by 
electrochemical measurements.

Unsupervised machine learning, a type of algorithm that learns 
patterns from unlabelled data, can also address the question of what 
constitutes an adequate explanation. Esterhuizen et al. utilized prin-
cipal component analysis to provide low-dimensional and interpret-
able electronic-structure descriptors of near-surface alloys and their 
reactivity origin98. Subgroup discovery algorithms, which overcome 
the limitations of global models and can identify subgroup correlations 
based on local effects, were employed in heterogeneous catalysis for 
the physical understanding of surface reactivity and adsorption-energy 

scaling relations88,99. The approach demonstrated the breaking of 
the usual scaling relationships between reaction intermediates for 
nitrogen reduction on single-atom catalysts99. Unsupervised machine 
learning of the literature data was used for knowledge extraction and 
to elucidate design rules100,101, for example, in finding catalysts for the 
oxidative coupling of methane102 and NOx reduction101.

Pure data-driven models have strong predictive capacity but 
come with the loss of physical intuition due to the black-box nature of 
complicated formulations. Extracting meaningful knowledge from 
black-box machine learning models has proved challenging, as the 
internal logic is not designed for interpretability. The integration of the 
predictive capacity of black-box models with the intrinsic explainability 
of physical-based models in interpretable machine learning offers an 
alternative to open the black boxes and gain physical understanding69.

Bayesian optimization
In catalysis, the highly complex relationships between material features 
and catalytic outcomes often render optimization a major challenge. 
BO plays an indispensable role when functions are obscure, and the 
generation and evaluation of data are expensive. The approach starts 
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with machine learning surrogate models, for example, gaussian process 
regression, from the available data, and makes predictions of new data 
points that can be added into the training data to refine the models. 
Although bearing similarity to active learning discussed above, the key 
difference is that the uncertainty captured by the probabilistic model 
is used to generate an acquisition function, where the optimal point 
of this function is the set of parameters most likely in increasing the 
efficiency of optimization. Various acquisition functions are being used 
to balance the exploitation and exploration of the parameter space, 
resulting in an iterative improvement to the greatest extent. The Bayes-
ian approach is not focused on the optimization of machine learning 
surrogate models as in active learning, but on the ability to sample the 
design space based on available data, aiming for the best achievable 
rate of convergence in finding optimal solutions.

Nowadays, BO has been routinely used in materials design103–105. 
It has enormous potential to accelerate the predictive discovery of 
catalyst formulations104,106, and offers the opportunity for making 
predictions without the need of physical knowledge103. Acquisition 
functions play a decision-making role for next-round sampling. With 
limited initial data, the workflow starts from the low-activity region, 
and the first several iterations focus on exploration to search for 
high-activity regions, whereas later the optimization shifts towards 
exploitation to search near the optimal region, which enabled the 
identification of (CoxCuyM1–x–y)3O4 for direct decomposition of nitric 
oxide into nitrogen103 (Fig. 8a,b). For propane dehydrogenation to give 
propylene, a simple acquisition function of decision making was used 
to find NiMo as a more promising non-precious metal catalyst than 
Pt, more efficiently than the traditional descriptor-based screening 
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approach107. BO was integrated into autonomous catalytic materi-
als discovery by AI chemists (Fig. 8c), who made predictions of the 
most active electrocatalysts and photocatalysts for oxygen evolution  
(Fig. 8d–f)108. Those AI chemists were designed to read literature to 
generate a statistical hypothesis and experimental plan, perform con-
tinuous experimentations and make selections and predictions with 
little or no human intervention.

Prospects and challenges
Looking forward, data-enhanced multiscale modelling will be further 
developed to be an integral tool in computational heterogeneous catal-
ysis to probe active site ensembles and elementary reaction processes 
under the relevant conditions. Rigorously considering the dynamic 
and mechanistic complexities in model systems is challenging. In both 
aspects, developing fast, accurate and self-improving machine learning 
potentials is the key to enabling high-fidelity atomistic simulations of 
practical relevance and further deepening our fundamental under-
standing of heterogeneous catalytic systems. Algorithm advances in 
terms of the feature representation of the atomic environment beyond 
the locality approximation109,110, physics-inspired deep learning archi-
tectures82,111 and advanced data-sampling strategies112 show promise 
along this direction.

An improved ab initio description of catalytic processes that 
explicitly includes solvation, impurities and external energy stimuli 
at reactive interfaces is needed. Considerable attention to the solvation 
dynamics at solid–liquid interfaces has been paid in recent years. For 
example, it was shown that methanol as the solvent can form a reac-
tive hydroxymethyl intermediate at Pd nanoparticles that mediates 
the proton transfer in the thermocatalytic oxygen reduction towards 
peroxide formation113. In electrocatalytic reactions, the connectivity 
of hydrogen-bond networks in electric double layers was found to be 
crucial to understand kinetic pH effects in hydrogen electrocatalysis114. 
As another example, adsorbed alkali metal cations with partial dehy-
dration promote CO2 electroreduction at metal electrodes115. Besides 
heterogeneous catalysis with thermal, photonic or electrical energy 
as stimuli, other energy carriers also received intense attention, for 
example, plasma, surface plasmon and microwave radiation. Recently, 
it was shown that deep learning with a graph neural network architec-
ture can efficiently predict the electric-field-dependent adsorption 
energies of surface intermediates in catalytic ammonia synthesis116.

As machine learning becomes increasingly used in heterogeneous 
catalytic materials discovery, the demand for interpretability is being 
considered to ensure that optimal catalysts can be found for the right 
reason80,81. Future applications of machine learning in catalysis have 
to be aware of the distinction between correlation and causation. Two 
physical variables with a statistical correlation does not mean one 
causes the other, and more causal models are needed to ensure the 
gaining of meaningful knowledge for catalyst design. Accurate machine 
learning models with physics-informed feature representations or 
machine-learned high-level features should be used whenever possible 
to accelerate the catalytic materials discovery, and at the same time to 
enrich the theory of heterogeneous catalysis by learning insights from 
data82–84,117. One challenge in this endeavour is to incorporate physically 
tuning parameters in well-established theories, for example, d-band 
theory97,118, as latent variables in deep learning architectures without 
sacrificing the accuracy of the model predictions82.

This Review mainly focuses on bridging the complexity gap in 
heterogeneous catalysis from a computational perspective. Equally 
important is applying machine learning tools to enhance experi-
mental data analysis, which includes the microscopic, spectro-
scopic and kinetic data of catalysts. As demonstrated recently119–122, 
machine-learning-assisted X-ray absorption spectroscopy can be used 
to decipher the active site structures under operando conditions for 
a broad range of catalytic systems, which include metals120, alloys121, 
metal compounds122 and zeolites123. With ever-growing kinetic data in 

catalysis, there is an untapped potential to learn directly from those 
data124,125. With enumerated elementary steps in microkinetic model-
ling, to infer kinetically relevant steps and energetics can be challenging 
due to data scarcity, and thus requires a probabilistic approach, for 
example, Bayesian inference. This approach was employed to iden-
tify active sites and discern reaction mechanisms126–129. Owing to the 
complex interplay of kinetics at operating conditions, the coverage of 
intermediates can vary drastically, and thus requires online learning in 
the iterative Bayesian inference of model parameters.

The field of computational heterogeneous catalysis with machine 
learning is still in its infancy. There are numerous opportunities to 
leverage ever-evolving computational and data sciences to advance 
catalytic materials discovery. An AI and machine learning framework 
that streamlines data collection with the natural language process-
ing130,131 of enormous amounts of literature data is highly promising, 
given the emergent abilities of large language models132. Compared 
with relatively abundant computational data133–135, the availability 
of high-quality experimental data in a learnable format is still lim-
ited. Recent efforts on rigour and reproducibility in heterogeneous 
catalysis136 aim to centralize knowledge and standardized protocols for 
catalyst synthesis, testing and characterization. Initiatives of this kind 
might provide a path forward to archive benchmarked, reproducible 
and abundant experimental data for machine learning. Close collabora-
tions of experimentalists, computational chemists and data scientists 
hold the key to the sustainable development of a data-centric ecosys-
tem for materials and knowledge discovery in heterogeneous catalysis.
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