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CONSPECTUS: Finding catalytic materials with optimal properties for sustainable
chemical and energy transformations is one of the pressing challenges facing our society
today. Traditionally, the discovery of catalysts or the philosopher’s stone of alchemists
relies on a trial-and-error approach with physicochemical intuition. Decades-long advances
in science and engineering, particularly in quantum chemistry and computing
infrastructures, popularize a paradigm of computational science for materials discovery.
However, the brute-force search through a vast chemical space is hampered by its
formidable cost. In recent years, machine learning (ML) has emerged as a promising
approach to streamline the design of active sites by learning from data. As ML is
increasingly employed to make predictions in practical settings, the demand for domain &
interpretability is surging. Therefore, it is of great importance to provide an in-depth N oxygen
review of our efforts in tackling this challenging issue in computational heterogeneous "N
catalysis. \
In this Account, we present an interpretable ML framework for accelerating catalytic

materials design, particularly in driving sustainable carbon, nitrogen, and oxygen cycles. By leveraging the linear adsorption-energy
scaling and Brensted—Evans—Polanyi (BEP) relationships, catalytic outcomes (i.e., activity, selectivity, and stability) of a multistep
reaction can often be mapped onto one or two kinetics-informed descriptors. One type of descriptor of great importance is the
adsorption energies of representative species at active site motifs that can be computed from quantum-chemical simulations. To
complement such a descriptor-based design strategy, we delineate our endeavors in incorporating domain knowledge into a data-
driven ML workflow. We demonstrate that the major drawbacks of black-box ML algorithms, e.g., poor explainability, can be largely
circumvented by employing (1) physics-inspired feature engineering, (2) Bayesian statistical learning, and (3) theory-infused deep
neural networks. The framework drastically facilitates the design of heterogeneous metal-based catalysts, some of which have been
experimentally verified for an array of sustainable chemistries. We offer some remarks on the existing challenges, opportunities, and
future directions of interpretable ML in predicting catalytic materials and, more importantly, on advancing catalysis theory beyond
conventional wisdom. We envision that this Account will attract more researchers’ attention to develop highly accurate, easily
explainable, and trustworthy materials design strategies, facilitating the transition to the data science paradigm for sustainability
through catalysis.
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1. INTRODUCTION

Catalysis, being fundamental in enabling chemical and energy

technologies for energy storage and utilization. For example,
finding efficient electrocatalysts for the oxygen reduction

transformations, holds an indispensable role in our modern
society that is predominantly sustained by limited fossil
reserves. Historically, human exploration of catalytic materials
was purely experimental and sometimes mythical, for example,
in search of the philosopher’s stone by alchemists (Figure 1).
The approach sometimes leads to commercially viable catalytic
processes, albeit with a significant environmental footprint. To
transition toward a sustainable, circular economy, a paradigm
shift is needed in finding highly efficient catalytic materials
preferably made of earth-abundant elements. By tapping
renewable feedstocks for fuels and value-added chemicals, we
can reduce our dependence on diminishing fossil resources and
mitigate the impact of climate change. The design of high-
performance catalysts is also integral to developing disrupting
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reaction (ORR)" and the oxygen evolution reaction (OER)* is
critical for large-scale commercialization of fuel cells, metal-air
batteries, and water electrolyzers. One of the key challenges is
to identify the optimal composition and structure of catalytic
materials that are highly active and selective toward the desired
products while being long-lasting under reaction conditions.
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Figure 1. Evolution of scientific paradigms toward the goal of catalytic
materials by design.

Over the past few decades, computational methods® including
density functional theory (DFT), molecular dynamics, micro-
kinetics, and continuum modeling have become powerful tools
for understanding and predicting catalytic behaviors of
materials, significantly accelerating the discovery of new
catalysts to this day.

Exploring the vast chemical space of catalytic materials is a
challenging task. The properties of a catalyst depend on
intrinsic factors such as its composition and structure, which
can be further complicated by defects, impurities, static and
dynamic operating conditions, and external stimuli, e.g,
electrochemical potentials, photons, and magnetic fields.
Moreover, the tremendous cost and time-consuming nature
of experimental synthesis and characterization of catalytic
materials make it impossible to directly probe the entire
chemical space. Within the current mainstream paradigm
(Figure 1), computational science has been widely used to
predict the properties of catalytic materials and screen for
potential candidates.* However, atomistic simulations with the
generalized gradient approximation (GGA) of the exchange-
correlation effects of many-body systems, being reasonably
accurate for describing catalytic processes on transition and
noble metals, are too costly in exploring a huge design space.”
Another challenge in this design paradigm is the need for a
comprehensive understanding of reaction mechanisms as a
priori, including the nature of active sites and occurring
reaction pathways therein, which requires an integration of
theoretical approaches and in situ/operando spectroscopic
techniques.

In recent years, machine learning (ML) has risen to
prominence in scientific discovery by harnessing the power
of data,’”® signifying a paradigm shift toward a data science
approach in catalytic materials design (Figure 1). One
overarching theme of data-driven catalysis is to first leverage
the linear adsorption-energy scaling and Brensted—Evans—
Polanyi (BEP) relationships in reaction kinetics, \under-
standing general activity trends of the known materials across
the descriptor space spanned by adsorption energies of one or
two representative species at active sites.” Then, ML can be
employed to rapidly predict new materials with optimal

descriptor values on performance maps. To enable this design
workflow, we have developed an interpretable ML framework
to predict reactivity properties of atomically tailored active
sites.'” We will discuss three aspects in this endeavor including
physics-inspired feature engineering, Bayesian statistical
learning, and theory-infused deep neural networks, which
ultimately allow for interpretable catalytic materials design by
harnessing the power of data. The ML models were trained
using ab initio adsorption properties of solid surfaces, and can
predict site reactivity at a diverse range of materials with
physicochemical features of different fidelity levels ranging
from easily accessible properties to high-level representations
generated from domain engineering or extracted by learning
algorithms.'' ™"

2. INTEGRATING DOMAIN KNOWLEDGE INTO
MACHINE LEARNING

In heterogeneous catalysis, the development of ML models for
a broad range of materials design tasks has become increasingly
popular. These models are typically trained on data sets of
easily accessible features of surface sites and the properties of
interest, e.g., binding energies of simple adsorbates at active
sites."* The idea is to use these pretrained models to predict
reactivity descriptors of new sites and guide the design of more
efficient catalysts prior to highly accurate albeit expensive
quantum-chemical simulations and/or experiments. One
important step in developing these ML models is the selection
of features to numerically represent the materials or active
sites. These features should include the relevant physical
properties that govern the catalytic outcomes of the solid
surfaces. Traditionally, data-driven supervised ML algorithms
heavily rely on data to learn the underlying patterns and
correlations between input features and output targets.
However, those models might not be able to capture the
underlying working mechanisms of the system being studied,
i.e, casual relationships could be missing. This can lead to
inaccurate predictions and biased models for truly out-of-
sample systems. Incorporating scientific knowledge into ML
algorithms is crucial for developing predictive models that are
generalizable toward complex systems.'> By infusing scientific
principles from the domain discipline into ML algorithms, the
models can be designed to unravel the underlying feature
interactions that govern the system behavior. Moreover,
feature selection can help to reduce the dimensionality of the
problem and improve the model efficiency. Arguably, there is a
trade-off between the accuracy and explainability of modern
ML models.'® By inheriting the merits of both worlds, it
becomes possible to construct ML models that have data-
driven precision while being scientifically informed and
physically interpretable. Below we discuss our efforts along
this direction by integrating domain explainability into ML
algorithms.

2.1. Physics-Inspired Feature Engineering

Feature engineering is a crucial step in developing ML models
for predicting the material properties. In the context of
heterogeneous catalysis, the local environment of an
adsorption site plays a significant role in determining its
chemical reactivity. Therefore, it is essential to employ
physically transparent features that can capture the reactivity
properties of surface sites (Figure 2). Several types of features
have been proposed, largely inspired by the theory of
chemisorption, e.g, the d-band theory for d-metal catalysis.17
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Figure 2. Physics-inspired feature engineering for predicting the
catalytic properties of solid surfaces. Reproduced with permission
from ref 13. Copyright 2017 Elsevier.

In the early days of developing ML models for the design of
heterogeneous catalytic materials, one feature set that was
employed is the d-band moments of transition and noble metal
sites.'” These moments represent statistical parameters
characterizing the filling, center, width, and shape of the d-
states distribution, and have been shown to be important
factors for understanding reactivity trends of d-metal surfaces
upon perturbation, such as by alloying, applying lattice strains,
or adding promoters or poisons. Additionally, one important
knowledge in chemisorption at metal surfaces is that the
adsorbate—substrate bond length is largely governed by the
delocalized, sp-electron density of local metal sites.”” To
quantify the driving force of charge transfer, if any in metal

alloys, the local electronegativity of an adsorption site has been
proposed as an essential feature."” For adsorbates with almost
tully filled valence states, their binding on d-metals with fewer
d-holes is not solely governed by the site d-states
distribution.”® In such instances, the Pauli repulsion energy
contribution, which characterizes the energy penalty incurred
to orthogonalize the interacting orbitals, can become
dominant. The interatomic coupling matrix element squared,
modulated by the sp-electron density, emerges as a key factor
to capture these interactions. The coordination number of an
adsorption site and its variants have been proposed as another
type of easily accessible features. It is in essence a bond
counting scheme with a varying degree of complexities for
understanding reactivity trends of metal sites,”' > such as
regular CN, generalized CN, and orbitalwise CN®. The regular
CN refers to the count of first nearest neighboring atoms
directly coordinated with the atoms of interest at a site. Widely
utilized in the bond-order conservation principle in surface
chemistry, this concept was later used to correlate with the
surface reactivity of different metal facets.”’ The generalized
CN was conceived to capture subtle variations in local
environments, acknowledging that not all first nearest
neighbors contribute equally to coordination.”” To transcend
the simplicity of this bond-counting scheme, the concept of
orbitalwise CN” was introduced that considers the interatomic
interactions within a cutoff radius and can be naturally applied
to alloy systems.”> Contrasted with regular and generalized
counterparts, orbitalwise CN” was found to be crucial in
defining the strength of the metal—adsorbate bond. Beyond
primary electronic and geometric features, secondary features
such as ionization energy, electron affinity, work function,
atomic radius, electronegativity, and d-orbital radius of
constituent metal atoms are also extensively employed to
describe the reactivity properties of solid surfaces. These
features represent the inherent properties of the metal atoms at
an adsorption site or site motifs. The selection of physical
features to depict the electronic and geometric representations
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Figure 3. (a) Bayesian parametrization of *O adsorption on M(111) with posterior distributions. The inset shows the Markov chain Monte Carlo
(MCMC) algorithm in parameter optimization.”* (b) DFT-calculated *O adsorption energies (atomic O as the reference) at transition and noble
metal surfaces vs model prediction using the posterior distribution of model parameters. Error bars represent the standard deviation of model
predictions with 1000 random draws from converged trajectories. (c) Energy decomposition of *O adsorption on d-metal surfaces including
hybridization and repulsion contributions. Reproduced with permission from ref 11, licensed under a Creative Commons License CC BY 4.0.
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of surface sites is pivotal in the development of ML models and
should be undertaken with due diligence.

2.2. Bayesian Statistical Learning

Bayeschem represents an interpretable ML approach, primarily
developed to unravel the reactivity origin of active metal sites
and to facilitate the design of catalytic materials guided by
physical insights.'' Built upon the principles of Bayesian
inference, it utilizes physical models parametrized by learning
from small data sets, thereby allowing for the integration of
prior knowledge into the process through Bayes’ rule. As a
global optimization algorithm, Bayesian statistical learning
explores relationships between variables (such as material
composition, structure, and their high-level derivatives like d-
band electronic factors) and target properties in a mathemati-
cally explicit manner. The Bayeschem model is conceived with
our pre-existing understanding of these relationships as it
pertains to surface reactivity knowledge from the domain. The
Markov chain Monte Carlo (MCMC) sampling with the
Metropolis—Hastings algorithm was used to approximate the
posterior distribution of parameters by exploring the parameter
space in a way that only requires the knowledge about their
relative posterior densities. It avoids direct computation of
complex normalizing constants by defining transition proba-
bilities based on the likelihood functions. After sufficient
samplings, the initial set of results is discarded and the
remaining samples are thinned to extract converged values
from the posterior distributions. Once optimized with a given
data set, the Bayesian models can predict reactivity properties
of unseen materials by leveraging their known attributes and
estimating the probability distribution of the output target. It
should be noted that this distribution represents the prediction
uncertainty rather than the stochastic nature of the physical
quantities and can be utilized to guide the sampling of the
design space. A key advantage of the Bayesian approach lies in
its capability to incorporate prior knowledge from diverse
sources, such as experimental data, theoretical calculations, and
expert knowledge, into the learning process. This enables
Bayeschem to make more interpretable and comparably
accurate predictions with fewer data points than conventional
regression ML approaches. For instance, as depicted in Figure
3a, the posterior parameter distribution of *O chemisorption
within the d-band theoretical framework can be learned from a
set of ab initio data, accurately capturing the adsorption
energies across transition and noble metal surfaces as shown in
Figure 3b and insightful revelations about underlying
contributions to their adsorption energies. As illustrated in
Figure 3c, the hybridization energy contribution is linearly
correlated with interatomic coupling matrix elements for late
transition metals, while Pauli repulsion is of importance for
noble metals with filled d-states (near zero hybridization
energy). These capabilities make Bayeschem a potent tool for
accelerating the discovery of novel materials with machine-
learned insights for a range of catalytic applications.

2.3. Theory-Infused Deep Neural Networks

The rapid discovery of structural motifs with kinetically
favorable descriptor values is undoubtedly desirable, yet it
remains a challenging undertaking due to the computational
demands for solving the many-electron Schrédinger equation
accurately. Machine learning (ML) presents an alternative
route to predicting chemical reactivity by learning the
correlated interactions of atoms, ions, or molecules with a
substrate, given a sufficient amount of ab initio data. However,

black-box ML algorithms often fall short in terms of
generalizing well outside the labeled data despite promising
performance on both training and test samples. In response to
this limitation, the theory-infused neural network (TinNet)"*
has been designed to predict the adsorption energies of simple
molecules or their fragments at solid surfaces. TinNet is a
novel ML approach that seamlessly blends domain theory into
deep neural networks,”*° as demonstrated in Figure 4a, for
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Figure 4. (a) A theory-infused neural network (TinNet) architecture
in predicting surface reactivity at d-metal sites. (b) TinNet models of
*QOH adsorption on {111}-terminated metal and alloy surfaces with
error bars from 10-fold cross-validation. (c) Orbital hybridization and
Pauli repulsion contributions from the metal d-states to *OH
adsorption energies on all 10-fold test sets deconvoluted by the post
hoc attribution analysis of TinNet models. Reproduced with
permission from ref 12, licensed under a Creative Commons License
CC BY 4.0.

predicting physical properties of interest, such as surface
reactivity. While built upon deep learning algorithms,
specifically graph neural networks, TinNet respects physical
principles from the domain in its architecture desi%n, e.g., the
well-established d-band theory of chemisorption'’ for reac-
tivity prediction. This approach enables TinNet models to
encode physical aspects of electronic interactions with a graph
representation, successfully marrying the strengths of both
theoretical and data-driven realms. By incorporating scientific
knowledge into data-driven ML methods, TinNet achieves
prediction performance on par with purely regression-based
ML methods (as shown in Figure 4b for *OH adsorption on
metal surfaces), especially for out-of-sample systems with
unseen structural and electronic features. Importantly, TinNet
overcomes the explainability limitations of black-box data-
driven models and offers physical interpretations of the nature
of chemical bonding, enabling the translation of machine-
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learned insights into design strategies. As exemplified in Figure
4c, TinNet reveals that d-band hybridization governs the
adsorption strength of *OH at early transition metal sites,
whereas Pauli repulsion becomes more pronounced for late
and noble metal surfaces. By integrating scientific knowledge
into learning from data, TinNet enhances our fundamental
understanding of the nature of chemical bonding and propels
forward the field of data-driven catalytic materials design.

3. ACCELERATING CATALYTIC MATERIALS DESIGN

In the realm of catalysis, the linear adsorption-energy scaling
and Bronsted—Evans—Polanyi (BEP) relationships have been
widely utilized to estimate energetics of elementary reaction
steps,””** reducing high-dimensional activity/selectivity maps
to only one or two catalytic descriptors, such as adsorption
energies of key species at site motifs. These linear correlations
emerge from the fundamental interactions of active sites with
adsorbed species, including reaction intermediates and
transition states. The descriptor-based design approach has
become a common practice in heterogeneous catalysis
pertinent to sustainable carbon, nitrogen, and oxygen cycles.
In the following discussion, we will explore how interpretable
ML expedites this design workflow and ushered in a data
science paradigm of catalytic materials design.

3.1. Carbon Cycle

3.1.1. Carbon Dioxide Reduction. The electrochemical
reduction of carbon dioxide (CO,) on metal electrodes using
renewable electricity has emerged as a viable approach to
mitizg‘)ate greenhouse emissions and propel a circular econo-
my.” Notably, copper (Cu) demonstrates high activity and
selectivity for converting CO, into hydrocarbons and oxygen-
ates, a characteristic attributed to its near optimal surface
reactivity in accordance with the Sabatier principle.’’
Theoretical studies'®*' focusing on Cu(100)-mediated CO,
electroreduction have suggested the governing role of *CO
dimerization in defining onset potentials in C, pathways, while
a concerted proton—electron transfer to *CO being critical in
C, pathways (Figure Sa). Inspired by these mechanistic

insights, we deliberately selected the *CO adsorption energy as
a reactivity descriptor capable of characterizing alloy electro-
catalysts for the selective conversion of CO, to C, species, e.g.,
ethylene (C,H,). To this end, quantum-chemical DFT
calculations have been used to study free energy landscapes
of relevant steps in C; and C, pathways on metal (100)
surfaces under realistic electrochemical CO, reduction
conditions, which typically exhibit a high coverage of *CO."*
Given the computational limitations of exploring a wide
chemical space for alloy catalyst design using DFT, a
chemisorption model augmented by a shallow artificial neural
network (ANN) consisting of only two hidden layers has been
established. The approach leverages a small data set of ab initio
adsorption energies (~250) and electronic fingerprints of
idealized bimetallic surfaces to swiftly and accurately predict
the surface reactivity of metal sites in an alloying environment.
The ML model has demonstrated superior capability in
predicting *CO adsorption energies on multimetallic surfaces
compared with traditional two-level interaction models (Figure
Sb and c), and facilitates high-throughput catalyst screen-
ing.">"® For a specific type of alloy nanostructure (Cu;B-A@
Cuyy), the model highlighted several {100}-terminated
multimetallic alloys that showed promise for efficient and
selective CO, electrochemical reduction to C, species (Figure
5d). With sensitivity analysis methods, we revealed important
roles of local electronegativity and higher-order moments in
CO chemisorption, particularly on coinage metals (Figure Se).

3.1.2. Methanol Oxidation. The electrochemical oxida-
tion of methanol is an integral process in direct methanol fuel
cells, a sustainable alternative to traditional energy conversion
devices such as batteries and H, fuel cells. Commercialization
of such fuel cells is hampered by the high overpotential of
methanol oxidation at the anode, despite using state-of-the-art
catalysts. Two reaction pathways,” the direct mechanism
where methanol is oxidized entirely to carbon dioxide without
involving the *CO intermediate, and the indirect mechanism
proceeding through the *CO intermediate, were identified in
determining the activity trends of metal surfaces. The direct
mechanism experiences low activity due to *CO poisoning,
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Figure 6. (a) Theoretical limiting potential (V vs RHE) of methanol electrooxidation as a function of *CO and *OH free formation energies
relative to Pt(111). DFT-calculated (b) *CO and (c) *OH adsorption energies on a set of idealized bimetallic surfaces vs prediction from ML
models. Insets show probability density of prediction errors for the training and test of the neural network models. (d) Model-predicted theoretical
limiting potentials of near-surface alloy nanostructures toward methanol electrooxidation based on ML-predicted *CO and *OH free formation
energies. The geometric structure of a subset of bimetallic catalysts is shown on the top with varying ratios of A and B on the top layer. (e) Feature
importance scores for *CO and *OH models based on the sensitivity analysis of neural network models. The inset shows the clustering and linear
dependence of input features and target properties. Reproduced with permission from ref 33. Copyright 2017 Royal Society of Chemistry.

particularly on platinum (Pt) catalysts, limiting the number of
active sites available for catalytic turnovers. Conversely, the
indirect mechanism embraces improved activity on metal
surfaces if *CO removal is not a limiting factor. By leveraging
linear scaling relations of *CO and *OH adsorption energies
with relevant C- and O-bonded intermediates, a theoretical
limiting potential map was developed (Figure 6a) with the top
region of the activity volcano mostly occupied by precious
metals, e.g.,, Ru, Rh, and Ir. To find electrocatalysts with earth-
abundant metals, ML techniques have been adopted for high-
throughput screening33 (Figure 6b,c). ML models based on
artificial neural networks, trained on a relatively small data set
of ab initio adsorption energies on metal alloy surfaces (~1000
site samples), accurately predict *CO and *OH adsorption
energies on novel bimetallic alloy nanostructures (Figure 6d),
allowing rapid screening of a broad chemical space and
suggesting catalysts with reduced overpotentials, such as Ru@
Ru;Pt and Ru@Ru,Pt, surface alloys. These precious metal
alloys exhibit enhanced methanol electrooxidation activity with
relatively small theoretical limiting potentials, supporting
experimental evidence that Pt/Ru alloys boost the electro-
catalytic activity of methanol oxidation by aiding in water
dissociation and facilitating the oxidation of *CO species.’*

Moreover, earth-abundant metal alloys with Fe, Co, and Ni 3d
metals were shown to be promising from the activity map.
Hence, the incorporation of ML algorithms into the descriptor-
based design approach potentially fast-tracks the discovery of
efficient methanol oxidation catalysts by capturing complex,
nonlinear adsorbate—substrate interactions. Sensitivity analysis
(Figure 6e) further demonstrated that *CO and *OH
adsorption energies are governed by distinct sets of features
(center/width for *CO, local electronegativity for *OH),
suggesting different bonding mechanisms of the two species on
metal surfaces.

3.2. Nitrogen Cycle

3.2.1. Nitrate Reduction. Electrochemical nitrate (NO;")
reduction, a vital process in mitigating nitrate pollution and
restoring the global nitrogen cycle, has recently received lots of
interest, particularly on the development of efficient electro-
catalysts toward ammonia (NH;) production.”>™** Although
copper (Cu) shows promise as a catalyst for NO;~ reduction
in alkaline media, it requires high overpotentials for si§niﬁcant
current densities. Metal alloy catalysts, e.g, CuNi, 7 often
exhibit a performance trade-off, arguably due to the linear
energy-scaling relations. Ordered intermetallics possess well-
defined structures and compositions, offering excellent electro-
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catalytic stability and promising activity. Grand-canonical DFT
calculations (GC-DFT) were employed to gain mechanistic
insights into NO;™ reduction on metal surfaces in alkaline
media using *N and *NO; adsorption energies as two
reactivity descriptors (Figure 7a). This analysis, coupled with
the Bayesian models of chemisorption (Bayeschem'') opti-
mized with adsorption properties of *N and *NO; on a
handful of pristine metal surfaces (Figure 7b), identified a
mechanism to break the linear adsorption-energy scaling by
leveraging site-specific Pauli repulsion interactions. The
findings highlight the unique properties of {100}-oriented
surface sites in ordered intermetallic B2 structures, where
subsurface metal d-orbitals overlap significantly with the
hollow *N p-orbitals, while bridge-bidentate *NO; remains
largely unaffected (Figure 7c). This mechanism was confirmed
by DFT calculations showing that a range of B2 intermetallics
with {100}-termination deviate from linear energy scaling
relations (Figure 7d). This prompted a successful synthesis of
B2 intermetallic CuPd nanocubes, which exhibit improved
catalytic performance for NO,~ reduction to NH;.*> This
study offers valuable mechanistic insights into NO;™ reduction
to NH; on ordered intermetallic catalysts for overcoming
adsorption-energy scaling limitations. It underscores how
combining quantum chemistry and ML approaches can
provide a theory-guided, data-driven catalytic materials design
strategy toward sustainability.

3.2.2. Ammonia Oxidation. Electrochemical ammonia
oxidation is a crucial reaction in the field of electrocatalysis, as
it plays a significant role in the development of sustainable
energy tc=.chrxologies.40’41 The conversion of ammonia (NH;)
to dinitrogen (N,) through electrochemical oxidation offers a
promising pathway for energy generation and storage,
particularly with the booming clean hydrogen economy.
However, the high overpotentials and the use of expensive
catalysts, such as platinum (Pt) and its bimetallics with iridium
(Ir), have hindered the widespread implementation of this
technology. In recent years, extensive research has been
conducted to understand the reaction pathways involved in
NH, oxidation®* and to design efficient catalysts that can
overcome the limitations of Pt—Ir systems.*"* Quantum-
chemical calculations and experimental studies on Pt single-
crystal electrodes have revealed that the reaction is structure-
sensitive, with specific site motifs such as {100}-type sites
being predominantly active.** The reaction likely proceeds
through a mechanism™”*” involving the dehydrogenation of
NH; to *NH, (x = 1 or 2), followed by their dimerization to
*N,H, and further dehydrogenation to N,. Complete
dehydrogenation of NH; to *N can possibly lead to surface
deactivation. However, the nature of poisoning species is under
debate. A traditional view is that the *N species binds too
strongly to the hollow sites. However, it is also likely due to the
strongly bonded *NO formed by *N with surface *OH at high
operating potentials, as evidenced by in situ IR spectroscopy.’
We employed GC-DFT calculations to obtain scaling relations
for reaction energetics that were then used in a microkinetic
model while considering the surface coverage effects of the key
*NH, species. The approach was demonstrated using two
reactivity descriptors, *N at the bridge site and *N at the
hollow site of {100}-terminated alloy surfaces (Figure 8a). To
go beyond the Pt—Ir catalysts, we explored the design space of
ternary Pt alloy nanostructures using a series of ML
techniques. TinNet has been applied to predict the reactivity
descriptor values of metal sites in ternary alloys for NH;

electrooxidation.”” The TinNet models of *N adsorption
energies were iteratively developed using an initial data set of
~800 {100}-terminated bimetallic alloy surfaces and ~200
{100}-terminated Pt-based ternary alloy surfaces in an active
learning scheme. The 10-fold cross-validated mean absolute
errors (MAEs) for *N adsorption energies are within 0.1 eV.
The inclusion of adsorbate—adsorbate interactions, e.g.,, *OH,
in developing ML models was showcased in this data set.
Ideally, the adsorbate—adsorbate interactions can be taken into
account in a more generic fashion by developing training data
with lateral interactions beyond *OH, for example, by using
the formation energy of a given adsorbate configuration as the
target property.”’ Figure 8b shows an ML workflow by
predicting not only the surface reactivity but also the stability
and synthesizability metrics in the screening of desired alloy
compositions. Several systems of Pt;Ru with 3d metals (e.g,,
Fe, Co, and Ni) partially substituting Ru show promising
activity, while being Ir-free (Figure 8c). Our experiments have
validated the predicted materials with improved activity
compared to pure Pt, Pt;Ru, and Pt;Ir. The TinNet
implementation allocates hidden neurons for the first and
second moments of the d-states distribution of site atoms for
an n-atom site ensemble. The d-states distribution of the
adsorption site is then represented by a superposition of
individual d-dos constructs, such as semielliptic functions.
Other neurons representing interaction parameters of the
adsorbate frontier orbitals with the metal sp- and d-states have
the same dimensions and physical meanings for adsorption
sites of different atom ensembles. The domain knowledge that
can be gained from data comes naturally with the TinNet
algorithm, suggesting an important role of adsorbate resonance
energies that are influenced by metal sp-states upon site
perturbation (Figure 8d). This insight cannot be achieved with
purely data-driven ML methods. The study highlights the
importance of the frontier molecular orbital theory, electronic
structure methods, and deep learning algorithms in developing
interpretable ML models of chemical bonding. Infusing theory
into ML fueled by ab initio adsorption properties will
eventually lead us to better understand the fundamentals of
linear energy relationships and devise strategies to overcome
such constraints in catalysis.

3.3. Oxygen Cycle

3.3.1. Oxygen Reduction. The oxygen reduction reaction
(ORR) is a crucial process in fuel cell technologies, in which
O, is reduced to water at the cathode. However, the sluggish
kinetics of ORR on traditional catalysts, such as platinum (Pt)
nanoparticles, limits the efficiency and economic viability of
fuel cells. This has led to extensive research efforts to develop
alternative catalysts with enhanced ORR activity and reduced
cost. Quantum chemistry has played a significant role in
understanding the reaction mechanisms of ORR, particularly
on transition and noble metals.' One commonly observed
mechanism of O, reduction is through the associative pathway,
where the formation of *OOH from O, activation and the
removal of *OH to release active sites are potentially rate-
limiting steps. Understanding these mechanisms is crucial for
designing catalysts with improved ORR activity. Pt monolayer
alloy catalysts have emerged as promising alternatives to pure
Pt. By combining Pt with other transition metals in a Pty
nanostructure, Pt surface sites can exhibit enhanced catalytic
activity and stability. The use of predictive models or ML
algorithms has significantly accelerated the exploration of this
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immense design space for new catalyst compositions. One
important concept in the design of metal-based nanocatalysts is
the coordination number (CN) of surface sites.”' > The
regular CN and its generalized variant™ represent a physically
intuitive descriptor that quantifies the number of neighboring
atoms around a specific site. The orbitalwise CN” has shown
improved linear correlations with surface *OH and *OOH
binding energies on Pt nanoparticles and alloy surfaces (Figure
9a). By using the s-orbital based CN°, an activity volcano of
ORR on metal-based catalysts was developed (Figure 9b),
capturing activity trends of known materials, e.g., Pt;Ni@Pt.”!
By considering the heterogeneity of surface sites, the
orbitalwise CN° descriptor captured experimentally observed
size effects of the ORR activity of Pt nanoparticles,
outperforming the traditional single-crystal model (Figure
9¢c). The CN° model has been used to rapidly screen through
the A;B@Ptyy alloy nanoparticles of a broad range of A and B
elements, and identifies improved catalysts with reduced cost
(Figure 9d). These basic understanding of structure—reactivity
relationships can be further integrated with deep learning
algorithms™ to significantly accelerate the development of
more efficient, highly complex, and cost-effective fuel cell
electrocatalysts.

3.3.2. Water Oxidation. Water oxidation is a bottleneck
reaction in various energy conversion processes, such as water
splitting for hydrogen production in electrolyzers and H,O,
production in electrochemical devices.”*™>° The high over-
potential and sluggish kinetics of water oxidation have
hindered the development of those technologies. To address
this challenge, researchers have extensively studied the activity
trends of metal oxide catalysts toward water oxidation.”” The
theoretical limiting potential has emerged as a powerful metric
to understand the activity trends of catalysts. The volcano plot
maps the limiting potential of water oxidation onto reactivity
descriptors, such as the free formation energy of oxygen
intermediates, i.e., *O, *OH, or their combinations (Figure
10a). It has been observed that the top region of the active
volcano is occupied by scarce and expensive noble metal
catalysts, such as RuO, and IrO,, consistent with experimental
observations. Perovskites with an ABO;-type structural
configuration have received great attention attributed to their
superior catalytic properties, with a few La-based perovskites
showing promising activity from both theory and experiment
(Figure 10a). To design perovskite catalysts with improved
performance, ML models using Gaussian Processes (GP) have
been employed (Figure 10b) for materials screening. These
models utilize a set of B-terminated ABO; surfaces to unravel
underlying structure—reactivity relationships and predict the
adsorption energies of oxygen intermediates on diverse
surfaces. We developed the electronic descriptors based on
the metal d-states distribution, e.g, band moments of the
electronic density of states. By training the GP model with a
small data set of ~350 samples in an adaptive learning fashion,
it becomes possible to rapidly screen and identify surfaces that
can synergistically activate water oxidation without being
poisoned by surface intermediates. By combining the insights
from mechanistic studies with the predictive power of ML
models, we can efficiently explore the materials subspace
(ACoO; with mixed A metals) and identify promising
perovskites for water oxidation (Figure 10c). With Kull-
back—Leibler divergence originated from the context of
information theory, important physical insights have been
drawn showing the critical role of the e, d-orbitals (occupancy

ratio) of the B-site metal,>® in governing the interaction of
surface intermediates with perovskite surfaces (Figure 10d).

4. CONCLUSIONS AND PERSPECTIVE

The framework in this Account represents one of the collective
efforts within the scientific community in harnessing the power
of data and domain knowledge for materials discovery.
Equipping the descriptor-based design strategy with interpret-
able ML algorithms has dramatically accelerated the screening
of heterogeneous catalysts across an immense chemical space.
By engineering the numerical representation of active sites
using physically transparent features such as the distribution
statistics of valence electronic states, coordination numbers,
intrinsic properties of constituent elements, and high-level
feature representations extracted by convolution operations
from chemical graphs of atoms and bonds, ML models trained
with ab initio adsorption data can capture complex, nonlinear
adsorbate—substrate interactions with high accuracy, while
being interpretable for physicochemical insights. This approach
has shown great promise in materials design for catalyzing
sustainable carbon, nitrogen, and oxygen cycles with renewable
electricity as the energy input. By virtue of the interpretability
of the above-mentioned ML models irrespective of their
underlying complexities, post hoc attribution analysis drastically
advances our fundamental knowledge of chemical bonding at
solid surfaces beyond the conventional wisdom.

Interpretable ML has emerged as a promising approach to
address the lack of transparency and the explainability of deep
learning algorithms. However, there are several challenges that
need to be tackled to realize its full potential in catalytic
materials design. One of the main challenges is the develop-
ment of new strategies to effectively incorporate scientific
knowledge and domain expertise into the learning process,
thus breaking the accuracy-interpretability trade-off.'® The
theory-infused neural network (TinNet) exhibits emergent
behaviors in interpretability, whereas it is fundamentally
limited in generalizability of the underlying neural network
architectures, especially with out-of-distribution samples.
Imposing constraints or scientific rules through other means,
e.g., physics-inspired graph kernels,"> symbolic regression with
logical reasoning,” might provide improved accuracy while
attaining interpretability.

Another challenge is on the theory side. While metals and
their alloys can be well described in DFT with GGA-type
functionals and their surface properties are relatively well
understood, metal compounds such as metal oxides are not
described at a similar level of maturity partly because of
strongly correlated electrons and their complex electronic
structure. It requires a better understanding of the underlying
physical interactions that govern the behavior of complex
material systems. The emergence of comprehensive databases,
e.g, 0C22,%° holds significant promise for tackling this
challenge. Given vast amounts of data, we can pretrain ML
models, which essentially means we can have a foundational
understanding of the system. This foundational knowledge can
be incredibly broad and generic, capturing the basic trends and
relationships in the data. Then, transfer learning, a technique
where a pretrained model is further trained on a new data set,
can be utilized. The beauty of this approach is that it leverages
the vast amount of data available in databases to capture broad
trends and then uses a limited number of new calculations to
fine-tune the model for specific scenarios. In this regard, it is
crucial to develop an accurate set of data beyond GGA-levels
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that can be used for benchmarking the ML framework and,
more importantly, advancing our theoretical knowledge of
molecule—substrate interactions at highly complex solid
materials.

Finally, it is of importance to further develop eflicient and
reliable interpretation methods. Many currently employed
interpretation techniques assume feature independence, which
is not necessarily valid for physical systems. Attribution
analysis of specific features might create hypothetical systems
that are not accessible in real-world scenarios. Undeniably, the
future of interpretable ML is shining bright, and it has the
potential, if continually progressed, to revolutionize scientific
materials research toward sustainability in the years to come.

B AUTHOR INFORMATION
Corresponding Author

Hongliang Xin — Department of Chemical Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061, United States; © orcid.org/
0000-0001-9344-1697; Email: hxin@vt.edu

Authors

Tianyou Mou — Department of Chemical Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061, United States; © orcid.org/
0000-0002-7389-6712

Hemanth Somarajan Pillai — Department of Chemical
Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia 24061, United States;

orcid.org/0000-0003-3131-7396

Shih-Han Wang — Department of Chemical Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061, United States; © orcid.org/
0000-0003-4418-2080

Yang Huang — Department of Chemical Engineering, Virginia
Polytechnic Institute and State University, Blacksburg,
Virginia 24061, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/accountsmr.3c00131

Notes

The authors declare no competing financial interest.
Biographies

Hongliang Xin received his B.S. degree from Tianjin University in
2002, M.S. degree from Tsinghua University in 2005, and Ph.D.
degree from the University of Michigan in 2011, all in Chemical
Engineering. After completing postdoctoral research at Michigan and
Stanford/SLAC, he joined the Department of Chemical Engineering
at Virginia Tech in 2014 and was promoted to Associate Professor in
2020. His research group focuses on the development of an
interpretable machine learning framework for advancing theory of
heterogeneous catalysis and catalytic materials discovery.

Tianyou Mou received his B.S. degree from Beijing University of
Chemical Technology and Rutgers University in 2018, and Ph.D.
degree from Virginia Tech in 2023, both in Chemical Engineering. He
is currently a postdoc at the Brookhaven National Laboratory. His
research interest is to understand interfacial kinetics of heterogeneous
catalytic reactions using multiscale simulations and accelerate catalytic
materials discovery with machine learning.

Hemanth Somarajan Pillai received his B.S. degree from Syracuse
university in 2017 and PhD from Virginia Tech in 2022, both in
Chemical Engineering. He is currently a postdoc at the Fritz Haber
Institute working on coupling kinetics and mass transfer models to
provide insights into the relationship between the morphology of an
electrocatalyst and its catalytic performance.

Shih-Han Wang received his B.S. degree from National Taiwan
University of Science and Technology in 2013, M.S. degree from
National Taiwan University in 2015, and has been pursuing his Ph.D.
degree at Virginia Tech since 2017, all in Chemical Engineering. His
research focus is to develop theory-infused neural networks for
predicting chemical reactivity and electronic properties of heteroge-
neous catalysts.

Yang Huang received his B.E. degree in Materials Physics from
University of Science and Technology Beijing in 2015, M.S. degree in
Materials Science and Engineering from University of California San
Diego in 2017, and is currently pursuing his Ph.D. degree in Chemical
Engineering at Virginia Tech. His research focus is understanding
mechanisms of catalytic processes with quantum chemistry and
integrating fundamental principles into deep learning for advancing
catalysis theory and catalytic materials design.

B ACKNOWLEDGMENTS

HX, S-HW, and H.S.P. acknowledge funding support from
the NSF CAREER program (CBET-1845531). HX. and T.M.
acknowledge funding support from the NSF Chemical
Catalysis program (CHE-2102363). HX. and Y.H. acknowl-
edge the partial support from the NSF CBET Catalysis
program (CBET-2245402) and the US Department of Energy,
Office of Basic Energy Sciences under contract no. DE-
S$C0023323. T.M. and S.-H.W. thank the NSF Non-Academic
Research Internships for Graduate Students (INTERN)
program for supporting their internships in the Brookhaven
National Lab (2022) and the National Institute of Standards
and Technology (2023), respectively.

B REFERENCES

(1) Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J. K.
Understanding Catalytic Activity Trends in the Oxygen Reduction
Reaction. Chem. Rev. 2018, 118 (S), 2302—2312.

(2) Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips,
M,; da Silva, A. H. M,; Vos, R. E; Ojha, K; Park, S.; van der Heijden,
O.; Marcandalli, G.; Goyal, A,; Villalba, M.; Chen, X.; Gunasooriya,
G. T. K. K;; McCrum, L; Mom, R.; Lépez, N.; Koper, M. T. M. Water
Electrolysis. Nature Reviews Methods Primers 2022, 2 (1), 1-19.

(3) Chen, B. W. J.; Xu, L.; Mavrikakis, M. Computational Methods
in Heterogeneous Catalysis. Chem. Rev. 2021, 121 (2), 1007—1048.

(4) Nerskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density
Functional Theory in Surface Chemistry and Catalysis. Proc. Natl.
Acad. Sci. U. S. A. 2011, 108 (3), 937—943.

(5) Wellendorff, J.; Lundgaard, K. T.; Mogelhej, A,; Petzold, V.;
Landis, D. D.; Nerskov, J. K; Bligaard, T.; Jacobsen, K. W. Density
Functionals for Surface Science: Exchange-Correlation Model
Development with Bayesian Error Estimation. Phys. Rev. B Condens.
Matter 2012, 85 (23), 235149.

(6) Mou, T.; Pillai, H. S.; Wang, S.; Wan, M.; Han, X.; Schweitzer,
N. M,; Che, F; Xin, H. Bridging the Complexity Gap in
Computational Heterogeneous Catalysis with Machine Learning.
Nature Catalysis 2023, 6 (2), 122—136.

(7) Kitchin, J. R. Machine Learning in Catalysis. Nature Catalysis
2018, 1 (4), 230—-232.

(8) Esterhuizen, J. A; Goldsmith, B. R.; Linic, S. Interpretable
Machine Learning for Knowledge Generation in Heterogeneous
Catalysis. Nature Catalysis 2022, S (3), 175—184.

https://doi.org/10.1021/accountsmr.3c00131
Acc. Mater. Res. XXXX, XXX, XXX—XXX



Accounts of Materials Research

pubs.acs.org/amrcda

(9) Nerskov, J. K; Bligaard, T.; Rossmeisl, J.; Christensen, C. H.
Towards the Computational Design of Solid Catalysts. Nat. Chem.
2009, 1 (1), 37—46.

(10) Omidvar, N.; Pillai, H. S.; Wang, S.-H.; Mou, T.; Wang, S.;
Athawale, A.; Achenie, L. E. K; Xin, H. Interpretable Machine
Learning of Chemical Bonding at Solid Surfaces. J. Phys. Chem. Lett.
2021, 12 (46), 11476—11487.

(11) Wang, S; Pillai, H. S.; Xin, H. Bayesian Learning of
Chemisorption for Bridging the Complexity of Electronic Descriptors.
Nat. Commun. 2020, 11 (1), 6132.

(12) Wang, S.-H,; Pillai, H. S.; Wang, S.; Achenie, L. E. K; Xin, H.
Infusing Theory into Deep Learning for Interpretable Reactivity
Prediction. Nat. Commun. 2021, 12 (1), 5288.

(13) Li, Z; Ma, X; Xin, H. Feature Engineering of Machine-
Learning Chemisorption Models for Catalyst Design. Catal. Today
2017, 280, 232—-238.

(14) Andersen, M.; Reuter, K. Adsorption Enthalpies for Catalysis
Modeling through Machine-Learned Descriptors. Acc. Chem. Res.
2021, 54, 2741.

(15) Xu, W.; Reuter, K; Andersen, M. Predicting Binding Motifs of
Complex Adsorbates Using Machine Learning with a Physics-Inspired
Graph Representation. Nature Computational Science 2022, 2 (7),
443—450.

(16) Omidvar, N.; Xin, H. Algorithm-Derived Feature Representa-
tions for Explainable Al in Catalysis. Trends in Chemistry 2021, 3, 990.

(17) Hammer, B.; Norskov, J. K. Electronic Factors Determining the
Reactivity of Metal Surfaces. Surf. Sci. 1995, 343 (3), 211—220.

(18) Ma, X; Li, Z; Achenie, L. E. K; Xin, H. Machine-Learning-
Augmented Chemisorption Model for CO2 Electroreduction Catalyst
Screening. J. Phys. Chem. Lett. 20185, 6 (18), 3528—3533.

(19) Xin, H.; Holewinski, A.; Linic, S. Predictive Structure-Reactivity
Models for Rapid Screening of Pt-Based Multimetallic Electrocatalysts
for the Oxygen Reduction Reaction. ACS Catal. 2012, 2 (1), 12—16.

(20) Xin, H.; Linic, S. Communications: Exceptions to the d-Band
Model of Chemisorption on Metal Surfaces: The Dominant Role of
Repulsion between Adsorbate States and Metal D-States. J. Chem.
Phys. 2010, 132 (22), 221101.

(21) Lopez, N.; Janssens, T. V. W,; Clausen, B. S; Xu, Y,;
Mavrikakis, M.; Bligaard, T.; Nerskov, J. K. On the Origin of the
Catalytic Activity of Gold Nanoparticles for Low-Temperature CO
Oxidation. J. Catal. 2004, 223 (1), 232—235.

(22) Calle-Vallejo, F.; Martinez, J. L; Garcia-Lastra, J. M.; Sautet, P.;
Loffreda, D. Fast Prediction of Adsorption Properties for Platinum
Nanocatalysts with Generalized Coordination Numbers. Angew.
Chem., Int. Ed. 2014, 53 (32), 8316—8319.

(23) Ma, X; Xin, H. Orbitalwise Coordination Number for
Predicting Adsorption Properties of Metal Nanocatalysts. Phys. Rev.
Lett. 2017, 118 (3), 036101.

(24) Gamerman, D.; Lopes, H. F. Markov Chain Monte Carlo:
Stochastic Simulation for Bayesian Inference, 2nd ed..; Chapman and
Hall/CRC, 2006.

(25) Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural
Networks for an Accurate and Interpretable Prediction of Material
Properties. Phys. Rev. Lett. 2018, 120 (14), 145301.

(26) Back, S.; Yoon, J.; Tian, N.; Zhong, W.; Tran, K.; Ulissi, Z. W.
Convolutional Neural Network of Atomic Surface Structures To
Predict Binding Energies for High-Throughput Screening of Catalysts.
J. Phys. Chem. Lett. 2019, 10 (15), 4401—4408.

(27) Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter,
T. R; Moses, P. G.; Skalason, E.; Bligaard, T.; Nerskov, J. K. Scaling
Properties of Adsorption Energies for Hydrogen-Containing Mole-
cules on Transition-Metal Surfaces. Phys. Rev. Lett. 2007, 99 (1),
01610S.

(28) Bligaard, T.; Nerskov, ]J. K; Dahl, S.; Matthiesen, J;
Christensen, C. H.; Sehested, J. The Bronsted-Evans-Polanyi Relation
and the Volcano Curve in Heterogeneous Catalysis. J. Catal. 2004,
224 (1), 206—217.

(29) Stephens, I. E. L,; Chan, K; Bagger, A; Boettcher, S. W,;
Bonin, J.; Boutin, E.; Buckley, A.; Buonsanti, R,; Cave, E.; Chang, X,;

Chee, S. W.; da Silva, A. H. M,; De Luna, P.; Einsle, O.; Endrodi, B,;
Escribano, M. E.; de Araujo, J. V. F.; Figueiredo, M. C.; Hahn, C,;
Hansen, K. U,; Haussener, S.; Hunegnaw, S.; Huo, Z.; Hwang, Y. J.;
Jandky, C.; Jayathilake, B. S.; Jiao, F.; Jovanov, Z. P.; Karimi, P,;
Koper, M. T. M,; Kuhl, K,; Lee, W. H.; Liang, Z.; Liu, X.; Ma, S.; Ma,
M,; Oh, H.-S.; Robert, M.; Cuenya, B. R; Rossmeisl, J.; Roy, C,;
Ryan, M. P.; Sargent, E. H.; Sebastian-Pascual, P.; Seger, B.; Steier, L.;
Strasser, P.; Varela, A. S.; Vos, R. E.; Wang, X.; Xu, B.; Yadegari, H.;
Zhou, Y. 2022 Roadmap on Low Temperature Electrochemical CO2
Reduction. J. Phys. Energy 2022, 4, 042003.

(30) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.;
Norskov, J. K. How Copper Catalyzes the Electroreduction of Carbon
Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3 (9),
1311-1315.

(31) Calle-Vallejo, F.; Koper, M. T. M. Theoretical Considerations
on the Electroreduction of CO to C 2 Species on Cu(100) Electrodes.
Angew. Chem., Int. Ed. 2013, 52 (28), 7282—7285.

(32) Ferrin, P.; Nilekar, A. U; Greeley, J; Mavrikakis, M,;
Rossmeisl, J. Reactivity Descriptors for Direct Methanol Fuel Cell
Anode Catalysts. Surf. Sci. 2008, 602 (21), 3424—3431.

(33) Li, Z.; Wang, S.; Chin, W. S.; Achenie, L. E.; Xin, H. High-
Throughput Screening of Bimetallic Catalysts Enabled by Machine
Learning. J. Mater. Chem. A Mater. Energy Sustain. 2017, S (46),
24131-24138.

(34) Dinh, H. N.; Ren, X;; Garzon, F. H.; Piotr Zelenay; Gottesfeld,
S. Electrocatalysis in Direct Methanol Fuel Cells: In-Situ Probing of
PtRu Anode Catalyst Surfaces. J. Electroanal. Chem. 2000, 491 (1),
222-233.

(35) Gao, Q; Pillai, H. S.; Huang, Y.; Liu, S.; Mu, Q.; Han, X; Yan,
Z.; Zhou, H.; He, Q; Xin, H.; Zhu, H. Breaking Adsorption-Energy
Scaling Limitations of Electrocatalytic Nitrate Reduction on
Intermetallic CuPd Nanocubes by Machine-Learned Insights. Nat.
Commun. 2022, 13 (1), 2338.

(36) Liu, J.-X; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and
Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition
Metals. ACS Catal. 2019, 9 (8), 7052—7064.

(37) Gao, Q.; Yao, B,; Pillai, H. S.; Zang, W.; Han, X; Liu, Y,; Yu, S.-
W.; Yan, Z,; Min, B,; Zhang, S.; Zhou, H.; Ma, L.; Xin, H,; He, Q;
Zhu, H. Synthesis of Core/shell Nanocrystals with Ordered
Intermetallic Single-Atom Alloy Layers for Nitrate Electroreduction
to Ammonia. Nature Synthesis 2023, 2, 458.

(38) Han, S; Li, H; Li, T.; Chen, F; Yang, R;; Yu, Y.; Zhang, B.
Ultralow Overpotential Nitrate Reduction to Ammonia via a Three-
Step Relay Mechanism. Nature Catalysis 2023, 6, 402.

(39) Wang, Y.; Xu, A;; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.;
Luo, M.; Nam, D.-H.; Tan, C.-S; Ding, Y.; Wu, J.; Lum, Y.; Dinh, C.-
T,; Sinton, D.; Zheng, G.; Sargent, E. H. Enhanced Nitrate-to-
Ammonia Activity on Copper-Nickel Alloys via Tuning of
Intermediate Adsorption. J. Am. Chem. Soc. 2020, 142 (12), 5702—
5708.

(40) Lyu, Z-H; Fu, J; Tang, T.; Zhang, J.; Hu, J.-S. Design of
Ammonia Oxidation Electrocatalysts for Efficient Direct Ammonia
Fuel Cells. EnergyChem. 2023, S (3), 100093.

(41) Tian, Y.; Mao, Z; Wang, L,; Liang, J. Green Chemistry:
Advanced Electrocatalysts and System Design for Ammonia
Oxidation. Small Struct. 2023, 4, 2200266.

(42) Yang, K; Liu, J; Yang, B. Electrocatalytic Oxidation of
Ammonia on Pt: Mechanistic Insights into the Formation of N2 in
Alkaline Media. J. Catal. 2022, 405, 626—633.

(43) Pillai, H. S; Xin, H. New Insights into Electrochemical
Ammonia Oxidation on Pt(100) from First Principles. Ind. Eng. Chem.
Res. 2019, 58 (25), 10819—10828.

(44) Li, Y; Li, X; Pillai, H. S.; Lattimer, J.; Mohd Adli, N,
Karakalos, S.; Chen, M.; Guo, L,; Xu, H; Yang, J.; Su, D.; Xin, H,;
Wu, G. Ternary PtIrNi Catalysts for Efficient Electrochemical
Ammonia Oxidation. ACS Catal. 2020, 10 (7), 3945—3957.

(45) Li, Y.; Pillai, H. S; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z;
My, Q; Karakalos, S.; Chen, M.; Yang, J.; Su, D.; Xin, H;; Yan, Y,;
Wu, G. High-Performance Ammonia Oxidation Catalysts for Anion-

https://doi.org/10.1021/accountsmr.3c00131
Acc. Mater. Res. XXXX, XXX, XXX—XXX



Accounts of Materials Research

pubs.acs.org/amrcda

Exchange Membrane Direct Ammonia Fuel Cells. Energy Environ. Sci.
2021, 14 (3), 1449—1460.

(46) Koper, M. T. M. Structure Sensitivity and Nanoscale Effects in
Electrocatalysis. Nanoscale 2011, 3 (5), 2054—2073.

(47) Katsounaros, L; Figueiredo, M. C.; Calle-Vallejo, F.; Li, H;
Gewirth, A. A.; Markovic, N. M.; Koper, M. T. M. On the Mechanism
of the Electrochemical Conversion of Ammonia to Dinitrogen on
Pt(1 0 0) in Alkaline Environment. J. Catal. 2018, 359, 82—91.

(48) Matsui, T.; Suzuki, S.; Katayama, Y.; Yamauchi, K.; Okanishi,
T.; Muroyama, H.; Eguchi, K. In Situ Attenuated Total Reflection
Infrared Spectroscopy on Electrochemical Ammonia Oxidation over
Pt Electrode in Alkaline Aqueous Solutions. Langmuir 2015, 31 (42),
11717—-11723.

(49) Pillai, H. S.; Li, Y.; Wang, S.-H.; Omidvar, N.; Mu, Q.; Achenie,
L. E. K; Abild-Pedersen, F.,; Yang, J.; Wu, G.; Xin, H. Interpretable
Design of Ir-Free Trimetallic Electrocatalysts for Ammonia Oxidation
with Graph Neural Networks. Nat. Commun. 2023, 14 (1), 792.

(50) Mou, T.; Han, X;; Zhu, H,; Xin, H. Machine Learning of
Lateral Adsorbate Interactions in Surface Reaction Kinetics. Curr.
Opin. Chem. Eng. 2022, 36, 100825.

(51) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P.
N,; Lucas, C. A; Markovic, N. M. Improved Oxygen Reduction
Activity on Pt3Ni(111) via Increased Surface Site Availability. Science
2007, 315 (5811), 493—497.

(52) Zhang, X.; Wang, Z.; Lawan, A. M; Wang, J.; Hsieh, C.-Y,;
Duan, C; Pang, C. H,; Chu, P. K; Yu, X.-F,; Zhao, H. Data-driven
Structural Descriptor for Predicting Platinum-based Alloys as Oxygen
Reduction Electrocatalysts. InfoMat 2023, DOI: 10.1002/inf2.12406.

(53) Wang, S.; Omidvar, N.; Marx, E.; Xin, H. Overcoming Site
Heterogeneity In Search of Metal Nanocatalysts. ACS Comb. Sci.
2018, 20 (10), 567—572.

(54) Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L; Risch, M.;
Hong, W. T.; Zhou, J.; Shao-Horn, Y. Double Perovskites as a Family
of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution.
Nat. Commun. 2013, 4, 2439.

(55) Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.;
Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution
Catalysis from Molecular Orbital Principles. Science 2011, 334 (6061),
1383—138S.

(56) Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.;
Doyle, A,; Kirk, C,; Vojvodic, A;; Hwang, H. Y,; Norskov, J. K;
Jaramillo, T. F. A Highly Active and Stable IrOx/SrIrO3 Catalyst for
the Oxygen Evolution Reaction. Science 2016, 353 (6303), 1011—
1014.

(57) Man, I. C; Su, H.-Y,; Calle-Vallejo, F.; Hansen, H. A;
Martinez, J. L; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nerskov, J.
K.; Rossmeis], J. Universality in Oxygen Evolution Electrocatalysis on
Oxide Surfaces. ChemCatChem. 2011, 3 (7), 1159—1165.

(58) Li, Z; Achenie, L. E. K; Xin, H. An Adaptive Machine
Learning Strategy for Accelerating Discovery of Perovskite Electro-
catalysts. ACS Catal. 2020, 10 (7), 4377—4384.

(59) Cornelio, C.; Dash, S.; Austel, V.; Josephson, T. R.; Goncalves,
J.; Clarkson, K. L.; Megiddo, N.; El Khadir, B.; Horesh, L. Combining
Data and Theory for Derivable Scientific Discovery with Al-Descartes.
Nat. Commun. 2023, 14 (1), 1777.

(60) Tran, R; Lan, J.; Shuaibi, M.; Wood, B. M.; Goyal, S.; Das, A.;
Heras-Domingo, J; Kolluru, A.; Rizvi, A.; Shoghi, N.; Sriram, A,;
Therrien, F.; Abed, J.; Voznyy, O.; Sargent, E. H.; Ulissi, Z.; Zitnick,
C. L. The Open Catalyst 2022 (OC22) Dataset and Challenges for
Oxide Electrocatalysts. ACS Catal. 2023, 13 (S), 3066—3084.

https://doi.org/10.1021/accountsmr.3c00131
Acc. Mater. Res. XXXX, XXX, XXX—XXX



