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ABSTRACT

Forward-modeling observables from galaxy simulations enables direct comparisons between theory and observations. To generate
synthetic spectral energy distributions (SEDs) that include dust absorption, re-emission, and scattering, Monte Carlo radiative
transfer is often used in post-processing on a galaxy-by-galaxy basis. However, this is computationally expensive, especially if
one wants to make predictions for suites of many cosmological simulations. To alleviate this computational burden, we have
developed a radiative transfer emulator using an artificial neural network (ANN), ANNgelina, that can reliably predict SEDs
of simulated galaxies using a small number of integrated properties of the simulated galaxies: star formation rate, stellar and
dust masses, and mass-weighted metallicities of all star particles and of only star particles with age <10 Myr. Here, we present
the methodology and quantify the accuracy of the predictions. We train the ANN on SEDs computed for galaxies from the
HlustrisTNG project’s TNG50 cosmological magnetohydrodynamical simulation. ANNgelina is able to predict the SEDs of
TNG50 galaxies in the ultraviolet (UV) to millimetre regime with a typical median absolute error of ~7 per cent. The prediction
error is the greatest in the UV, possibly due to the viewing-angle dependence being greatest in this wavelength regime. Our
results demonstrate that our ANN-based emulator is a promising computationally inexpensive alternative for forward-modeling

galaxy SEDs from cosmological simulations.
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1 INTRODUCTION

Forward-modeling observables from galaxy formation simulations
provides a means to confront theoretical models with observations di-
rectly. This approach represents an alternative to the more-traditional
method of inferring physical properties such as stellar mass and star
formation rate (SFR) from observations and comparing those with
the corresponding quantities from simulations. One advantage of
forward-modeling observables from a simulation is the avoidance
of ‘throwing away’ information from the simulation; e.g. when pre-
dicting spectral energy distributions (SEDs), the full star formation
history of a simulated galaxy is used.

One particularly common forward-modeling technique in the
galaxy formation community is to predict ultraviolet-to-millimeter
(UV-to-mm) SEDs of simulated galaxies, including both integrated
SEDs and images in various observed bands (e.g. Jonsson 2006;
Jonsson, Groves & Cox 2010; Camps & Baes 2015; see Steinacker,
Baes & Gordon 2013 for a review). This calculation is normally
done by performing dust radiative transfer on simulated galaxies in
post-processing to compute how light from star particles propagates
through the simulated galaxy’s interstellar medium (ISM) and is
absorbed, scattered, and re-emitted by interstellar dust. This approach
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has been applied to compare model predictions with observations of
various classes of objects such as massive galaxies or active galactic
nuclei (e.g. Hayward et al. 2012; Lanz et al. 2014; Narayanan et al.
2015; Safarzadeh, Hayward & Ferguson 2017b; Cochrane etal. 2019,
2023a, b; Baes et al. 2020; Parsotan et al. 2021; Cochrane, Hayward
& Anglés-Alcazar 2022). Moreover, such synthetic observations
can be used to perform ground-truth experiments to test and refine
techniques for inferring physical quantities from observations (e.g.
Wayts et al. 2010; Michatowski et al. 2014; Hayward & Smith 2015;
Smith & Hayward 2018; McKinney et al. 2021; Cochrane et al. 2022).

Unfortunately, this forward-modeling step can incur significant
additional computational expense and requires detailed outputs from
simulations (the full 3D density distribution of stars and dust, for
example). This required detailed information is not always available,
in particular for coarse-resolution simulations. In such scenarios,
the Monte Carlo radiative transfer (MCRT) calculations must make
various assumptions (e.g. regarding sub-grid dust clumpiness) that
can affect the robustness of the predicted observables. It is thus
desirable to find a computationally inexpensive, robust method for
making such predictions from a limited amount of data, such as
integrated galaxy properties. Having a fast method available to
run radiative transfer with varying input parameters would allow
predictions to be made for different input parameters, which will
ultimately allow us to marginalize over the uncertainties associated
with these parameters.
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Figure 1. ANNgelina project workflow. In the traditional approach, compu-
tationally expensive MCRT calculations are needed to forward-model SEDs
and images from simulated galaxies. In this work, we demonstrate how an
artificial neural network can be used to predict SEDs of simulated galaxies,
accelerating this process by at least seven orders of magnitude.

Several previous works (Hayward et al. 2011; Safarzadeh et al.
2016; Lovell et al. 2021; Cochrane et al. 2023b) have demonstrated
that it is possible to predict observed-frame far-IR (FIR) fluxes of
simulated galaxies using only a small number of integrated properties
of the galaxies, such as SFR and dust mass. The success of these
approaches suggests that geometric variations amongst simulated
galaxies play a subdominant role in determining their FIR SEDs and
gives confidence that one can employ such simple approaches as an
alternative to full MCRT, as has been done in a handful of works
(e.g. Hayward et al. 2013, 2021; Miller et al. 2015; Safarzadeh, Lu
& Hayward 2017a; Popping et al. 2020; Cochrane et al. 2023b).
However, these works have focused on the thermal dust emission; it
is likely more difficult to predict full UV-mm SEDs because geometry
plays a greater role in the UV-optical due to the non-isotropic nature
of dust attenuation on galaxy scales. Nevertheless, in this work, we
aim to predict UV-mm SEDs using only a small number of integrated
properties of simulated galaxies, without specifying any information
about the galaxy geometry. The general workflow of the project is
shown in Fig. 1.

Using machine learning (ML) techniques to emulate computa-
tionally intensive calculations in simulations has shown substantial
promise in astrophysics (Buchner 2019; Kasim et al. 2021; Bird et al.
2022) as well as other computationally intensive STEM fields, e.g.
climate modeling (Weber et al. 2020). Motivated by such works and
the demonstrated possibility of predicting FIR SEDs from a small
number of galaxy properties, in this work, we develop an artificial
neural network (ANN) emulator for MCRT calculations on simulated
galaxies. Neural networks (NNs) are deep learning algorithms, a type
of ML that employs multiple layers of computation to learn trends
and correlations in data. NNs are robust at understanding complex
relationships between input and output data due to their iterative
calculations that optimize the data fit in pieces. ML algorithms take
into account not only the non-linear mapping of input to output data
but also the distribution of properties across the full training set
(Berner, Elbrichter & Grohs 2019).
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In this paper, we explore the possibility of an ANN reproducing
non-linear relationships between galaxy properties and galaxy SEDs.
Our work addresses the following question: ‘given a set of 3D MCRT
calculations with fixed assumptions (regarding e.g. the stellar initial
mass function, single-age stellar population SED templates, and dust
model) performed on galaxies selected from a single cosmological
simulation, how well can an ANN emulate the MCRT calculations
to predict integrated UV-mm SEDs of the simulated galaxies’?
The inverse workflow has been attempted, including using ML
to derive galaxy properties from a given SED (Gilda, Lower &
Narayanan 2021) and using ML to derive star formation histories for
galaxies in the /llustris and EAGLE simulations (Lovell et al. 2019),
but to the best of our knowledge, using an NN to predict galaxy
SEDs has not been previously attempted. We use SEDs from the
TNG50 cosmological magnetohydrodynamical simulation (Nelson
et al. 2019; Pillepich et al. 2019), which is the highest-resolution
simulation in the IllustrisTNG suite (TNG) (Nelson et al. 2019;
Pillepich et al. 2019), to train our ANN, ANNgelina.'

The structure of this paper is as follows. In Section 3, we discuss
the methods used to create ANNgelina and present an overview of
the TNGS50 data set used for training. In Section 4, we present our
preliminary results, touching on some of the interpretation that went
into analyzing ANNgelina’s performance. We discuss applications
and limitations of ANNgelina, as well as improvements to be made
in future work. We draw conclusions in Section 5.

2 DATA

The version of ANNgelina released with this paper (ANN-
GELINA_V1.0) was trained on synthetic SEDs obtained by running a
radiative transfer code on galaxies in the TNG50 (Nelson et al. 2019;
Pillepich et al. 2019) simulation. Here, we provide an overview of
the TNG simulations, the sample of galaxies selected from TNGS50,
and the methods used to model their SEDs.

2.1 IMustrisTNG simulations

The lllustrisTNG project” is a suite of large-volume cosmological
magnetohydrodynamical simulations that model the formation of
galaxies from early times to z = 0. The numerical methods and galaxy
formation model used for the simulations are described in detail in
Pillepich et al. (2017), Weinberger et al. (2018), and Pillepich et al.
(2018), so we will only briefly summarize them here.

The simulations were run with AREPO? (Springel 2010), an
unstructured moving-mesh hydrodynamics code. Star formation is
implemented by stochastically spawning stellar particles at a rate
set by a volume density-dependent Kennicutt—Schmidt law (Schmidt
1959; Kennicutt 1998); a density threshold of 0.13 cm™ is employed.
Stellar populations are evolved self-consistently, including chemical
enrichment and gas recycling, resulting in mass loss. An effective
equation of state is used to approximate how supernovae (SNe) heat
the ISM, and stellar feedback-driven winds are implemented by
stochastically isotropically kicking and temporarily hydrodynami-
cally decoupling gas cells (Springel & Hernquist 2003). Black hole
accretion is modelled as Eddington-limited modified Bondi-Hoyle
accretion. A two-mode active galactic nucleus (AGN) feedback
model is employed: a relatively efficient kinetic channel at low

Thttps://github.com/snigdaa/runANNgelina
Zhttps://www.tng-project.org
3https://gitlab.mpedf.mpg.de/vrs/arepo
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Figure 2. Correlations between various integrated properties and stellar mass for all galaxies from TNG50 with M, > 10° Mg, illustrating the region of
parameter space spanned by our simulated galaxy sample: SFR (left-most), dust mass (middle-left), and mass-weighted metallicities of all stars (middle-right)
and young (<10 Myr-old) stars (right-most). In each panel, the points are colour-coded by redshift. All properties have been calculated within twice the stellar
half-mass radius of each galaxy. As expected, all of the considered quantities correlate with total stellar mass. The normalization of the SFR-M, relation increases
with increasing redshift, whereas the Mg,s—M, correlation is independent of redshift for the range considered.

Eddington ratio (‘radio-mode’) and a less-efficient thermal channel
at high Eddington ratio (‘quasar mode’; see Weinberger et al. 2018
for details). The free parameters in the subgrid models employed
were tuned to match the galaxy stellar mass function and stellar
mass-to-halo mass relation at z ~ 0, in addition to the cosmic
SFR history at z < 10. The black hole mass—stellar mass relation,
halo gas fractions and stellar half-mass radii of galaxies were
also considered (see section 3.2 of Pillepich et al. 2017). The
TNG simulations adopt a cosmology consistent with the Planck
2015 results (Ade et al. 2016): 2, =0.31, Q4 =0.69, Q, =
0.0486, h =0.677, o3 = 0.8159, and ny = 0.97 (Nelson et al.
2019).

2.1.1 HlustrisTNG50 data set

‘We use the highest-resolution simulation from the //lustrisTNG suite,
TNGS50 (Nelson et al. 2019), which has a volume of (35 h~! Mpc)?.
The mass resolution is 8.5 x 10* M, for baryonic particles and 4.5 x
10° M, for dark matter particles. TNG50 employs a collisionless
softening length of 0.3 kpc at z = 0 and an adaptive gas softening
length with a minimum of 74 comoving pc.

We draw our sample of TNGS50 galaxies from Popping et al.
(2022), who modelled integrated SEDs for approximately 3800 star-
forming galaxies* on or above the star formation main sequence
with M, > 1087 M. Our sample is comprised of 1709 (central and
satellite) galaxies at z = 1, 1149 galaxies at z = 2, 620 galaxies at
z = 3, 184 galaxies at z = 4, and 76 galaxies at z = 5. There are
fewer SEDs available for the higher-redshift snapshots, since fewer
galaxies meet the redshift-independent stellar mass criterion. Fig. 2
shows the distribution of the parameter space covered by our TNG50
data set.

2.2 Generation of synthetic SEDs

Synthetic galaxy SEDs were generated by Popping et al. (2022) using
the SKIRT MCRT code (Camps & Baes 2015).% SKIRT takes the 3D
dust and stellar density distributions from a galaxy simulation and

“4Here, a single halo is considered a distinct galaxy in each of the snapshots.
Given the large redshift spacing between snapshots, this assumption is
reasonable.

Shttps://skirt.ugent.be/root/_home.html

MNRAS 526, 4520-4528 (2023)

propagates photon packets from radiation sources (i.e. star particles;
AGN emission was not modeled) through the simulated galaxies’
ISM using a Monte Carlo approach to model dust absorption,
scattering, and re-emission. Popping et al. (2022) followed the
methods described by Schulz et al. (2020) to calculate the SEDs
for TNGS50 galaxies. We briefly summarize their methods here.

Gas and stellar particles within 7.5-times the stellar half-mass
radius were extracted from subhalos. Star particles with ages greater
than 10 Myr were assigned model template SEDs based on their age
and metallicity, according to the Bruzual & Charlot (2003) single-
age stellar population model. Star particles with ages <10 Myr were
assigned SEDs from Groves et al. (2008), which include a sub-grid
model for H1I and photodissociation regions. Dust was modelled
using the gas-phase metal density distribution, with a constant dust-
to-metals mass ratio of 0.4 (e.g. Dwek 1998; James et al. 2002). Gas
cells with 7 > 7.5 x 10* K were assumed to contain no dust due
to dust destruction via sputtering. The Weingartner & Draine (2001)
Milky Way dust model was employed, with a mix of graphite, silicate,
and polycyclic aromatic hydrocarbon (PAH) grains. Self-absorption
of dust grains was not taken into account, but this is unlikely to be
significant for the bulk of the galaxy population considered here (e.g.
Hayward et al. 2011).

The modeled SEDs span rest-frame 0.1 — 1000 pm and are
sampled at 200 uniformly log-spaced wavelengths. The simulated
galaxies were ‘observed’ ‘face-on’ (i.e. the detector was placed such
that the line of sight was along the angular momentum vector of the
simulated galaxy, corresponding to face-on projections for simulated
disc galaxies).

2.2.1 Modeled SEDs for TNG50 galaxies

In Fig. 3, we show examples of modeled SEDs for TNGS50 galaxies in
several stellar mass bins. The upper panel shows SEDs colour-coded
by SFR. The lower panel shows SEDs colour-coded by redshift. We
use this visualization to understand trends in our data. As expected,
higher SFRs generally yield higher fluxes. There are interesting
trends at short wavelengths, though, with some high-SFR SEDs
displaying particularly low fluxes at A < 1 pm, owing to high levels
of dust attenuation. We also note that SFR correlates with the shape of
the FIR SED: the FIR SED peaks at shorter wavelengths for galaxies
with higher SFRs. For a given stellar mass bin, higher-redshift (i.e.
earlier-forming) galaxies are also brighter at all wavelengths (note
that these SEDs are generated in the rest frame). This likely reflects
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Figure 3. TNGS50 SEDs used to train our ANN. The top row shows the SEDs colour-coded by SFR, and the bottom row shows the SEDs colour-coded by
redshift; the columns show different stellar mass bins, as indicated at the tops of the figures. In a given mass bin, galaxies with higher SFRs tend to have higher
IR fluxes, and their FIR SEDs are hotter. In the two lower-mass bins, the UV-optical fluxes also increase with SFR. This is less evident in the highest-mass bin
due to increasing dust attenuation. In all mass bins, there is a subset of galaxies with high SFRs and heavily reddened UV-optical SEDs. Higher-redshift galaxies
tend to have larger fluxes due to the evolution of the star formation main sequence (at fixed mass, SFR increases with increasing redshift).

the evolution of the ‘main-sequence’: at a given stellar mass, higher-
redshift star-forming galaxies have higher SFRs and hence higher
intrinsic (pre-dust-attenuated) fluxes.

3 METHODS

We design an ANN, ANNgelina, to emulate SED generation of
TNGS50 galaxies and hence bypass the radiative transfer procedure
described in Section 2.2. An ANN architecture consists of an input
layer with several ‘features’; one or more hidden layers, in which
the features are manipulated; and an output layer, which contains the
desired outputs, or ‘labels’. The structure of ANNgelina is illustrated
in Fig. 4. We use a fully connected network, where each neuron talks
to all neurons in the previous and following layers. Each neurons in
the input layer corresponds to a galaxy property, such as stellar mass
or SFR, and each neuron in the output later corresponds to the flux
at one wavelength. ANNgelina is built with PyTorch (Paszke et al.
2019).° In the following sections, we describe the architecture and
parameter choices in more detail and outline the training procedure.

3.1 Data normalization and partition
Each input feature, X, is normalized as follows:

logyy X — p(log,, X)
o(log,y, X)

Xoorm = ( 1)
For any features that had zero values, we added a negligible nonzero
value to that feature before normalizing to avoid taking the logarithm
of zero. This normalization procedure accelerates the training of the
network.

Shttps://pytorch.org/

Backpropagation

—SFR
Loss
—stellar mass function:
MSE
Optimizer:
——dust mass. AdamwW
Activation
function:
—stellar Z LeakyReLu

stellar Z < 10Myr-

Input layer Hidden layer Output layer

Figure 4. The architecture of ANNgelina, with input features labeled X
— X5 (purple), neurons in the hidden layer labeled h; — h419 (orange), and
output neurons labeled E; — Epop (green). Not all neurons are shown. The
following galaxy properties are used as features: SFR, stellar mass, dust
mass, and stellar metallicities of both all and young (<10 Myr old) stars. The
output comprises rest-frame fluxes at 200 wavelengths, uniformly spaced in
log-space. We note the loss function, optimizer and activation functions used
in training.

The flux is input as the irradiance, E, defined as E = 1S, /(W m~2).
We use logoE as the labels in the network. Data are then randomized
and partitioned into training (70 per cent), validation (15 per cent),
and test (15 per cent) sets.

MNRAS 526, 4520-4528 (2023)
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3.2 Training the ANN

Here, we provide a broad overview of the training process and various
hyper-parameter and function choices. During a ‘forward pass’, the
ANN pushes the training data through the hidden layers by using the
current values of the weights for each feature. After each forward
pass, the model updates itself through a ‘backpropagation’ phase, in
which it determines a loss value (based on the difference between the
predicted and true outputs) and updates the weights according to an
optimization function, usually a type of gradient descent. The number
of times the forward pass and backpropagation cycle is executed
depends on the pre-defined batch size and number of epochs.

Several parameters define the workflow of the network. Hyper-
parameters such as the number of hidden layers and neurons in each
layer, dropout fraction, weight decay, and activation function are
related to the structure of the network. These hyper-parameters were
optimized as described in Section 3.3. The learning rate, number
of epochs, and batch size affect the training procedure; appropriate
choices ensure generalizability of the model and improved efficiency
while training. The batch size (128) and number of epochs (1500)
were tuned manually. The batch size refers to the number of samples
to be propagated through the network in one full pass. One epoch is
completed once all training samples have been propagated through
the network. The initial learning rate, dropout fraction, weight decay,
number of hidden layers, and number of neurons per hidden layer
were determined using Optuna (Akiba et al. 2019), as described in
Section 3.3.

We use ‘dropout’, a simple and efficient regularization technique
that consists of removing a random subset of weights at every training
epoch, thereby ensuring that the learned weights are more robust
and preventing over-fitting. The dropout fraction determines what
percentage of weights are removed. Weight decay works in tandem
with dropout and is another regularization technique applied to all
weights in a network. There is an extra term added to the loss function
to reduce the variance in the network weights.

We adopt the following optimizer, activation and loss functions:

Optimizer function: We chose the optimizer function AdamW,
which is a modified version of the Adam optimizer (Kingma & Ba
2014) in which the learning rate and the weight decay of the model
are optimized separately. It takes an initial learning rate and weight
decay value and updates them for each feature’s weight individually
while performing gradient descent. It performs well at handling non-
smooth data. The learning rate controls how much the model changes
in response to predicted error during each forward pass.

Activation function: We use the LeakyReLu (Leaky Rectified
Linear Unit) activation function (Maas et al. 2013), which is defined
as

(x =0,

X
r= {O.le (x <0). @

Loss function: NN losses in supervised learning models are de-
termined by quantifying the difference between the predicted and
true outputs using a loss function. We adopt the mean square
error (MSE) as our loss function. The MSE guarantees that the
prediction represents the posterior mean without assuming any shape
for the posterior distribution. During the training phase, the network

minimizes the MSE averaged over each batch. The MSE for a batch
of size b is given by

200 5
[loglo(E)u. i, pred/E)». i Lrue)] (3)

1
MSE = 200-bz

i=1 1=l
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Table 1. Correlation matrix for TNG50 galaxy properties.

Feature M qust M, Z, Z<10Myr SFR
Must 1.0 0.88 0.41 0.28 0.48
M, 0.88 1.0 0.44 0.29 0.48
Z, 0.41 0.44 1.0 0.9 0.37
Z,<10Myr 0.28 0.29 0.9 1.0 0.25
SFR 0.48 0.48 0.37 0.25 1.0

where A represents the wavelength index of the SED, given 200
wavelengths sampled between 0.1 and 1000 um, and E, ; is the
irradiance at a given wavelength, X, for a given galaxy in the batch.

3.3 Hyperparameter optimization

We use the Opruna hyperparameter tuning package (Akiba et al.
2019) to tune the follwing model parameters: learning rate, dropout
fraction, weight decay, number of hidden layers, and number of
neurons per hidden layer. After testing with up to 11 hidden layers,
each with up to 1000 neurons, optimal performance was achieved
with a shallow, one hidden layer architecture with 419 neurons, as
shown in Fig. 4. All hyperparameter values for our optimized model
can be found in the public repository listed in Section 2.

3.4 Galaxy feature selection tests

This version of ANNgelina uses just five galaxy properties (SFR,
My, M., Z,, and Z,_omyr) to predict SEDs. While designing
ANNgelina, we tested five additional galaxy properties: gas mass
(M,ys), redshift (z), half-SFR radius, half-stellar-mass radius, and
half-dust-mass radius.

We first tuned an ANN using all ten features (‘full”’ model). We then
trained ten further nine-feature ANNs, using the same architecture
but with a different feature removed. In all cases, all input features
were normalized, as described in equation (1). We compared the loss
values of each of the nine-feature ANN to that of the ‘full’ model. We
eliminated features that did not significantly impact the loss values
of the model. It is reassuring that the features that were determined
to significantly affect the model are all properties that should matter
according to physical intuition (e.g. SFR, dust mass). Redshift is not
important because we are predicting SEDs in the rest frame.

In Table 1, we show the correlation matrix of the galaxy properties
used in ANNgelina. Correlations are calculated as the covariance of
each variable pair divided by the product of their standard deviations.
A correlation with an absolute magnitude close to 1.0 indicates
very strong correlation, while an absolute magnitude closer to 0.0
indicates a weak correlation. While some properties are strongly
correlated (most notably stellar and dust masses), ANNgelina’s
performance is impacted negatively if any of the listed properties
are omitted from the input feature set, indicating that even strongly
correlated features contribute non-redundant information.

4 RESULTS AND DISCUSSION

4.1 Characterizing ANNgelina’s overall performance

We assess the performance of ANNgelina using a test set of TNG50
galaxies that were not included in the training set. Here, we define
the metrics used to characterize how well SEDs are predicted. We
define the offset of the predicted (log-space) SED from the target
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(a) Among the best predictions in the test set,
with an MSE corresponding to the 2" percentile
of the sample’s distribution.

(b) A typical example (50" percentile).

(c) One of the least successful predictions (98t
percentile).

Figure 5. Three example SEDs predicted using ANNgelina, with MSE increasing from left to right. In each column, the top panel shows the true SED computed
using SKIRT (cyan, dot—dashed) and that predicted using ANNgelina (black). The bottom panels show the logarithm of the absolute fractional difference (black
lines). The average value across all wavelengths is indicated via the horizontal short-dashed black lines; the green dashed horizontal lines indicate zero prediction
error. The labels at the top of each column indicate the MSE and MAE (i.e. median absolute fractional difference) values. The typical absolute fractional
difference between true and predicted SEDs is in the range from 0.03 to 0.07. The average fractional difference lines indicate that our model has low bias, even
for the worst example shown (right column). Note that the UV emission is more poorly predicted than any other part of the SED in all cases.

(SKIRT-predicted) SED at a given wavelength A as follows:
Offset, /dex = log,(Ex predicied /B, true)- “)

For each galaxy in the test set, we take the median absolute offset
value across all 200 wavelengths, and call this the MAE:

MAE/dex = median |Offset, /dex] . )

We use the MAE as a single value characterizing the SED prediction
for each galaxy. We note that, because of our definition, the MAE
is essentially equivalent to the Median Absolute Percentage Error in
the low-error regime.

In Fig. 5, we show several examples of target and predicted SEDs
for galaxies in our test set. From left to right, we show predicted
SEDs with MSEs at the &~ 2nd, 50th, and 98th percentiles of the
MSE distribution, where the 98th percentile refers to the worst of
the three predictions, or the highest MSE. The top panels show
the true SED calculated using SKIRT in cyan and that predicted by
ANNGgelina in black. The bottom panels show the logarithm of the
prediction error versus wavelength. The MSE and MAE are quoted
at the tops of the columns. For the second percentile example, the
true and predicted SEDs are essentially indistinguishable — the SED
is predicted to within ~ 0.05 dex (~ 12 per cent) across the full UV-
mm. The MAE is 0.0109 dex (2.5 per cent). For the 50th percentile
example, ANNgelina overpredicts the SED at both UV and FIR
wavelengths, but the error is at most ~ 0.15 dex (~ 41 percent).
The MAE is 0.0643 dex (16 percent). The 98th percentile exam-
ple displays a catastrophic failure. The UV luminosity density is
underpredicted by an order of magnitude. The MAE is 0.1638 dex
(46 per cent).

We compile MAE values for all test-set galaxies in Fig. 6.
ANNgelina performs well on the TNG50 data set we employ, with an

0.02 003 004 0.05 0.06 0.07 0.08 009 0.1
MAE [dex]

Figure 6. Distribution of the median absolute error, calculated for each
galaxy using equation (5). The top 2 per cent and bottom 2 per cent of values
are excluded for clarity. On average, ANNgelina predicts the irradiance to
within 0.06 dex, but there is a large spread from galaxy to galaxy.

average MAE of ~ 0.06 dex (15 per cent), with the worst predictions
having an MAE of ~ 0.2 dex (60 percent). In Fig. 7, we show 2D
projections of the input feature space coloured by MSE. If a particular
region of parameter space were problematic for ANNgelina, there
would be local maxima in the MSE distribution. We see no such
local maxima. This indicates that ANNgelina does not exhibit higher
MSE values in any one part of the parameter space; rather, it predicts
the SEDs uniformly well throughout the parameter space probed.
The scatter in the predictions may be due to additional variables not
included in the analysis.
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Figure 7. TNGS50 galaxies in the test set, colour-coded by MAE value. The uniformity of MSE values in all feature—feature planes indicates that ANNgelina

performs uniformly well across the parameter space probed.

4.2 ANNgelina’s performance in different wavelength regimes

As seen in Fig. 5, for a given SED, ANNgelina’s accuracy varies with
wavelength. In the examples shown, ANNgelina appears to struggle
to reproduce rest-frame UV emission more than other wavelengths.
In this section, we characterize distributions of MAE values within
individual wavelength ranges for the whole test sample.

We divide SEDs into the following wavelength ranges: 0.1 —
0.4 um (UV), 0.4 — 0.7 pm (optical), 0.7 — 3 pm (near-IR; NIR),
3 — 50 um (mid-IR; MIR), 50 — 207 um (FIR), and 207 — 1000 pm
(sub-mm). For each galaxy in the test set, we calculate the MAE
within each of these wavelength ranges, following equation (5).
In Fig. 8, we compile these values (note that the worst 4 per cent
of values have been omitted for clarity). Vertical lines indicate the
average MAE across test galaxies within each of these wavelength
bands. The UV stands out from the others, with a significantly higher
average MAE of 0.15 dex (41 per cent), while all other wavelength
bands hover around 0.06 dex (15 per cent). This is expected, as the
UV emission depends much more strongly on the geometry of the
observed simulated galaxy since the UV is highly attenuated by dust
grains, and the amount of attenuation can vary considerably with the
line of sight.

4.3 Limitations of our approach

There are a few considerations to highlight to potential users of
ANNgelina. First, all SEDs used to train ANNgelina are for ‘face-on’
projections of TNG50 galaxies (i.e. along the angular momentum
axis). Consequently, for galaxies with disc-like morphologies, our
data set is biased toward the least-obscured lines of sight, and
heavily obscured lines of sight (e.g. edge-on discs) are thus under-
represented. The SEDs of simulated galaxies with exactly the same
values for the input features can vary due to viewing-angle effects:
dust attenuation is non-isotropic, especially in the UV. For this reason,
if the ‘raw’ predictions from ANNgelina are used, the scatter in
the predicted SEDs will be unrealistically low. One cannot simply
perturb the predicted photometry by adding random noise to account
for this effect, as the prediction errors for flux values in different
bands should be correlated (e.g. for an edge-on galaxy, ANNgelina
is likely to systematically overpredict the UV-optical flux). In future
work, we will employ a larger training set with multiple lines of
sight and incorporate some geometric features to attempt to account
for viewing angle effects in the ANN’s predictions. Since there is
intrinsic scatter to be expected when predicting an SED given a set
of galaxy properties, we will also attempt to use normalizing flows to
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sample the distribution instead of providing the model a single value
as we have done here.

Secondly, ANNgelina was trained on TNG50 galaxies sampling
a restricted region of parameter space (simulated galaxies with
M, > 1037 M, on or above the main sequence), and it should only
be applied within this region. Applying ANNgelina to simulated
galaxies outside of this parameter space may result in high prediction
error, even when these galaxies are simulated with exactly the same
code (i.e. numerical method and sub-grid models) and resolution.
Moreover, only a single simulation — and thus single code and single
resolution — was used. It is possible that the prediction error would
be significantly greater if ANNgelina were applied to simulations
that employ the [llustrisTNG model but different resolution or/and
simulations that employ a different numerical method or/and sub-
grid models. In this proof-of-concept work, we have opted to employ
only a single simulation, but in future work, we will explore how
well we can cross-apply our emulator to other simulations.

Finally, we note that various assumptions are ‘baked in’ to the
MCRT calculations and thus ANNgelina. For example, it is necessary
to make assumptions about the stellar populations (stellar initial mass
function and single-age stellar population SED templates) and dust
(optical properties, dust-to-metal ratio, temperature above which dust
is destroyed, and sub-grid dust distribution). These assumptions can
affect the resulting SEDs, and depending on the science question of
interest, they may affect the quantitative or even qualitative results.
We have explored the sensitivity of our results to such assumptions in
various previous works (e.g. Hayward et al. 2011; Snyder et al. 2013;
Safarzadeh et al. 2017b). Exploring the impact of such assumptions is
beyond the scope of this proof-of-concept work. Instead, as noted in
the introduction, we have addressed the following question: ‘given a
set of 3D MCRT calculations with fixed assumptions (regarding e.g.
the stellar initial mass function, single-age stellar population SED
templates, and dust model) performed on galaxies selected from
a single cosmological simulation, how well can an ANN emulate
the MCRT calculations to predict integrated UV-mm SEDs of the
simulated galaxies’?

It is important that users understand that the results will in general
depend on the assumptions used in the MCRT calculations to generate
the training set. For this reason, the reported errors do not include
systematic errors associated with the MCRT assumptions and thus
underestimate the ‘true’ error. These errors only represent how
imperfectly the ANN can emulate MCRT calculations for this single
simulation and set of MCRT assumptions. If, for example, one desires
to predict SEDs assuming SMC-like dust, it is necessary to generate
a training set using SMC-like dust in the MCRT calculations and
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Figure 8. Distributions of the median absolute error between the true and predicted SED per wavelength band for each galaxy in the test set. The vertical
lines indicate the average MAE within each wavelength bin. The UV (grey dash—dot—dotted line) has a significantly higher average MAE than all the other
wavelength bands. This is due to the UV being most highly attenuated by dust, as dust attenuation is anisotropic. The other wavebands exhibit MAE values of
~0.05-0.07 dex. The solid black line indicates the average MAE across the full wavelength spectrum.

then train a new ANN rather than using the ANN that we have made
publicly available.

5 CONCLUSIONS

In this work, we have presented an ANN-based emulator to predict
UV-mm SEDs of simulated galaxies. We trained the ANN on a
sample of SEDs generated in previous work by performing dust
MCRT on galaxies from the TNG50 simulation. We find that the
ANN performs well at predicting the SEDs of simulated galaxies in
the test set — the average MAE is 0.06 dex. For the vast majority
of simulated galaxies in the test set, ANNgelina can predict the flux
across the full UV-mm wavelength range with a maximum relative
error of < 50 per cent. The UV dominates the prediction error, likely
because the viewing angle dependence is strongest in this wavelength
regime, and our input feature set includes no information about
viewing angle. Our results demonstrate that our ANN-based emulator
is a promising computationally inexpensive alternative to performing
MCRT in order to predict UV-mm SEDs of simulated galaxies.
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