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A B S T R A C T 

Forward-modeling observables from galaxy simulations enables direct comparisons between theory and observations. To generate 
synthetic spectral energy distributions (SEDs) that include dust absorption, re-emission, and scattering, Monte Carlo radiative 
transfer is often used in post-processing on a g alaxy-by-g alaxy basis. Ho we v er, this is computationally e xpensiv e, especially if 
one wants to make predictions for suites of many cosmological simulations. To alleviate this computational burden, we have 
developed a radiative transfer emulator using an artificial neural network (ANN), ANNgelina , that can reliably predict SEDs 
of simulated galaxies using a small number of integrated properties of the simulated galaxies: star formation rate, stellar and 

dust masses, and mass-weighted metallicities of all star particles and of only star particles with age < 10 Myr. Here, we present 
the methodology and quantify the accuracy of the predictions. We train the ANN on SEDs computed for galaxies from the 
IllustrisTNG project’s TNG50 cosmological magnetohydrodynamical simulation. ANNgelina is able to predict the SEDs of 
TNG50 galaxies in the ultraviolet (UV) to millimetre regime with a typical median absolute error of ∼7 per cent. The prediction 

error is the greatest in the UV, possibly due to the viewing-angle dependence being greatest in this wavelength regime. Our 
results demonstrate that our ANN-based emulator is a promising computationally ine xpensiv e alternativ e for forward-modeling 

galaxy SEDs from cosmological simulations. 

K ey words: radiati ve transfer – methods: statistical – galaxies: evolution. 
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 INTRODUCTION  

orward-modeling observables from galaxy formation simulations
rovides a means to confront theoretical models with observations di-
ectly. This approach represents an alternative to the more-traditional
ethod of inferring physical properties such as stellar mass and star

ormation rate (SFR) from observations and comparing those with
he corresponding quantities from simulations. One advantage of
orward-modeling observables from a simulation is the a v oidance
f ‘throwing away’ information from the simulation; e.g. when pre-
icting spectral energy distributions (SEDs), the full star formation
istory of a simulated galaxy is used. 
One particularly common forward-modeling technique in the

alaxy formation community is to predict ultraviolet-to-millimeter
UV-to-mm) SEDs of simulated galaxies, including both integrated
EDs and images in various observed bands (e.g. Jonsson 2006 ;
onsson, Gro v es & Cox 2010 ; Camps & Baes 2015 ; see Steinacker,
aes & Gordon 2013 for a re vie w). This calculation is normally
one by performing dust radiative transfer on simulated galaxies in
ost-processing to compute how light from star particles propagates
hrough the simulated galaxy’s interstellar medium (ISM) and is
bsorbed, scattered, and re-emitted by interstellar dust. This approach
 E-mail: snigdaa.ram@gatech.edu 
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as been applied to compare model predictions with observations of
arious classes of objects such as massive galaxies or active galactic
uclei (e.g. Hayward et al. 2012 ; Lanz et al. 2014 ; Narayanan et al.
015 ; Saf arzadeh, Hayw ard & Ferguson 2017b ; Cochrane et al. 2019 ,
023a , b ; Baes et al. 2020 ; Parsotan et al. 2021 ; Cochrane, Hayward
 Angl ́es-Alc ́azar 2022 ). Moreo v er, such synthetic observations

an be used to perform ground-truth experiments to test and refine
echniques for inferring physical quantities from observations (e.g.

uyts et al. 2010 ; Michałowski et al. 2014 ; Hayward & Smith 2015 ;
mith & Hayward 2018 ; McKinney et al. 2021 ; Cochrane et al. 2022 ).
Unfortunately, this forward-modeling step can incur significant

dditional computational expense and requires detailed outputs from
imulations (the full 3D density distribution of stars and dust, for
xample). This required detailed information is not al w ays available,
n particular for coarse-resolution simulations. In such scenarios,
he Monte Carlo radiative transfer (MCRT) calculations must make
arious assumptions (e.g. regarding sub-grid dust clumpiness) that
an affect the robustness of the predicted observables. It is thus
esirable to find a computationally ine xpensiv e, robust method for
aking such predictions from a limited amount of data, such as

ntegrated galaxy properties. Having a fast method available to
un radiative transfer with varying input parameters would allow
redictions to be made for different input parameters, which will
ltimately allow us to marginalize o v er the uncertainties associated
ith these parameters. 
© 2023 The Author(s) 
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Figure 1. ANNgelina project workflow. In the traditional approach, compu- 
tationally e xpensiv e MCRT calculations are needed to forward-model SEDs 
and images from simulated galaxies. In this work, we demonstrate how an 
artificial neural network can be used to predict SEDs of simulated galaxies, 
accelerating this process by at least seven orders of magnitude. 
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Se veral pre vious w orks (Hayw ard et al. 2011 ; Saf arzadeh et al.
016 ; Lo v ell et al. 2021 ; Cochrane et al. 2023b ) have demonstrated
hat it is possible to predict observed-frame far-IR (FIR) fluxes of
imulated galaxies using only a small number of integrated properties 
f the galaxies, such as SFR and dust mass. The success of these
pproaches suggests that geometric variations amongst simulated 
alaxies play a subdominant role in determining their FIR SEDs and 
ives confidence that one can employ such simple approaches as an 
lternative to full MCRT, as has been done in a handful of works
e.g. Hayward et al. 2013 , 2021 ; Miller et al. 2015 ; Safarzadeh, Lu
 Hayward 2017a ; Popping et al. 2020 ; Cochrane et al. 2023b ).
o we v er, these works hav e focused on the thermal dust emission; it

s likely more difficult to predict full UV-mm SEDs because geometry
lays a greater role in the UV-optical due to the non-isotropic nature
f dust attenuation on galaxy scales. Nevertheless, in this work, we 
im to predict UV-mm SEDs using only a small number of integrated
roperties of simulated galaxies, without specifying any information 
bout the galaxy geometry. The general workflow of the project is
hown in Fig. 1 . 

Using machine learning (ML) techniques to emulate computa- 
ionally intensive calculations in simulations has shown substantial 
romise in astrophysics (Buchner 2019 ; Kasim et al. 2021 ; Bird et al.
022 ) as well as other computationally intensive STEM fields, e.g. 
limate modeling (Weber et al. 2020 ). Moti v ated by such works and
he demonstrated possibility of predicting FIR SEDs from a small 
umber of galaxy properties, in this work, we develop an artificial 
eural network (ANN) emulator for MCRT calculations on simulated 
alaxies. Neural networks (NNs) are deep learning algorithms, a type 
f ML that employs multiple layers of computation to learn trends
nd correlations in data. NNs are robust at understanding complex 
elationships between input and output data due to their iterative 
alculations that optimize the data fit in pieces. ML algorithms take 
nto account not only the non-linear mapping of input to output data
ut also the distribution of properties across the full training set
Berner, Elbr ̈achter & Grohs 2019 ). 
In this paper, we explore the possibility of an ANN reproducing
on-linear relationships between galaxy properties and galaxy SEDs. 
ur work addresses the following question: ‘given a set of 3D MCRT

alculations with fixed assumptions (regarding e.g. the stellar initial 
ass function, single-age stellar population SED templates, and dust 
odel) performed on galaxies selected from a single cosmological 

imulation, how well can an ANN emulate the MCRT calculations 
o predict integrated UV-mm SEDs of the simulated galaxies’? 
he inverse workflow has been attempted, including using ML 

o derive galaxy properties from a gi ven SED (Gilda, Lo wer &
arayanan 2021 ) and using ML to derive star formation histories for
alaxies in the Illustris and EAGLE simulations (Lo v ell et al. 2019 ),
ut to the best of our knowledge, using an NN to predict galaxy
EDs has not been previously attempted. We use SEDs from the
NG50 cosmological magnetohydrodynamical simulation (Nelson 
t al. 2019 ; Pillepich et al. 2019 ), which is the highest-resolution
imulation in the IllustrisTNG suite (TNG) (Nelson et al. 2019 ;
illepich et al. 2019 ), to train our ANN, ANNgelina . 1 

The structure of this paper is as follows. In Section 3 , we discuss
he methods used to create ANNgelina and present an o v erview of
he TNG50 data set used for training. In Section 4 , we present our
reliminary results, touching on some of the interpretation that went 
nto analyzing ANNgelina ’s performance. We discuss applications 
nd limitations of ANNgelina , as well as impro v ements to be made
n future work. We draw conclusions in Section 5 . 

 DATA  

he version of ANNgelina released with this paper ( ANN- 
ELINA V1.0 ) was trained on synthetic SEDs obtained by running a
adiative transfer code on galaxies in the TNG50 (Nelson et al. 2019 ;
illepich et al. 2019 ) simulation. Here, we provide an overview of

he TNG simulations, the sample of galaxies selected from TNG50, 
nd the methods used to model their SEDs. 

.1 IllustrisTNG simulations 

he IllustrisTNG project 2 is a suite of large-volume cosmological 
agnetohydrodynamical simulations that model the formation of 

alaxies from early times to z = 0. The numerical methods and galaxy
ormation model used for the simulations are described in detail in
illepich et al. ( 2017 ), Weinberger et al. ( 2018 ), and Pillepich et al.
 2018 ), so we will only briefly summarize them here. 

The simulations were run with AREPO 
3 (Springel 2010 ), an 

nstructured moving-mesh hydrodynamics code. Star formation is 
mplemented by stochastically spawning stellar particles at a rate 
et by a volume density-dependent Kennicutt–Schmidt law (Schmidt 
959 ; Kennicutt 1998 ); a density threshold of 0.13 cm 

−3 is employed.
tellar populations are evolved self-consistently, including chemical 
nrichment and gas recycling, resulting in mass loss. An ef fecti ve
quation of state is used to approximate how supernovae (SNe) heat
he ISM, and stellar feedback-driven winds are implemented by 
tochastically isotropically kicking and temporarily hydrodynami- 
ally decoupling gas cells (Springel & Hernquist 2003 ). Black hole
ccretion is modelled as Eddington-limited modified Bondi–Hoyle 
ccretion. A two-mode active galactic nucleus (AGN) feedback 
odel is employed: a relati vely ef ficient kinetic channel at low
MNRAS 526, 4520–4528 (2023) 
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M

Figure 2. Correlations between various integrated properties and stellar mass for all galaxies from TNG50 with M � > 10 9 M �, illustrating the region of 
parameter space spanned by our simulated galaxy sample: SFR ( left-most ), dust mass ( middle-left ), and mass-weighted metallicities of all stars ( middle-right ) 
and young ( < 10 Myr-old) stars ( right-most ). In each panel, the points are colour-coded by redshift. All properties have been calculated within twice the stellar 
half-mass radius of each galaxy. As expected, all of the considered quantities correlate with total stellar mass. The normalization of the SFR- M � relation increases 
with increasing redshift, whereas the M dust –M � correlation is independent of redshift for the range considered. 
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ddington ratio (‘radio-mode’) and a less-efficient thermal channel
t high Eddington ratio (‘quasar mode’; see Weinberger et al. 2018
or details). The free parameters in the subgrid models employed
ere tuned to match the galaxy stellar mass function and stellar
ass-to-halo mass relation at z ∼ 0, in addition to the cosmic
FR history at z � 10. The black hole mass–stellar mass relation,
alo gas fractions and stellar half-mass radii of galaxies were
lso considered (see section 3.2 of Pillepich et al. 2017 ). The
NG simulations adopt a cosmology consistent with the Planck
015 results (Ade et al. 2016 ): �m = 0 . 31 , �� = 0 . 69 , �b =
 . 0486 , h = 0 . 677 , σ8 = 0 . 8159, and n s = 0.97 (Nelson et al.
019 ). 

.1.1 IllustrisTNG50 data set 

e use the highest-resolution simulation from the IllustrisTNG suite,
NG50 (Nelson et al. 2019 ), which has a volume of (35 h −1 Mpc) 3 .
he mass resolution is 8 . 5 × 10 4 M � for baryonic particles and 4 . 5 ×
0 5 M � for dark matter particles. TNG50 employs a collisionless
oftening length of 0 . 3 kpc at z = 0 and an adaptive gas softening
ength with a minimum of 74 comoving pc. 

We draw our sample of TNG50 galaxies from Popping et al.
 2022 ), who modelled integrated SEDs for approximately 3800 star-
orming galaxies 4 on or abo v e the star formation main sequence
ith M � > 10 8 . 7 M �. Our sample is comprised of 1709 (central and

atellite) galaxies at z = 1, 1149 galaxies at z = 2, 620 galaxies at
 = 3, 184 galaxies at z = 4, and 76 galaxies at z = 5. There are
ewer SEDs available for the higher-redshift snapshots, since fewer
alaxies meet the redshift-independent stellar mass criterion. Fig. 2
hows the distribution of the parameter space co v ered by our TNG50
ata set. 

.2 Generation of synthetic SEDs 

ynthetic galaxy SEDs were generated by Popping et al. ( 2022 ) using
he SKIRT MCRT code (Camps & Baes 2015 ). 5 SKIRT takes the 3D
ust and stellar density distributions from a galaxy simulation and
NRAS 526, 4520–4528 (2023) 

 Here, a single halo is considered a distinct galaxy in each of the snapshots. 
iven the large redshift spacing between snapshots, this assumption is 

easonable. 
 https:// skirt.ugent.be/ root/ home.html 
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ropagates photon packets from radiation sources (i.e. star particles;
GN emission was not modeled) through the simulated galaxies’

SM using a Monte Carlo approach to model dust absorption,
cattering, and re-emission. Popping et al. ( 2022 ) followed the
ethods described by Schulz et al. ( 2020 ) to calculate the SEDs

or TNG50 galaxies. We briefly summarize their methods here. 
Gas and stellar particles within 7.5-times the stellar half-mass

adius were extracted from subhalos. Star particles with ages greater
han 10 Myr were assigned model template SEDs based on their age
nd metallicity, according to the Bruzual & Charlot ( 2003 ) single-
ge stellar population model. Star particles with ages ≤10 Myr were
ssigned SEDs from Gro v es et al. ( 2008 ), which include a sub-grid
odel for H II and photodissociation regions. Dust was modelled

sing the gas-phase metal density distribution, with a constant dust-
o-metals mass ratio of 0.4 (e.g. Dwek 1998 ; James et al. 2002 ). Gas
ells with T > 7 . 5 × 10 4 K were assumed to contain no dust due
o dust destruction via sputtering. The Weingartner & Draine ( 2001 )

ilky Way dust model was employed, with a mix of graphite, silicate,
nd polycyclic aromatic hydrocarbon (PAH) grains. Self-absorption
f dust grains was not taken into account, but this is unlikely to be
ignificant for the bulk of the galaxy population considered here (e.g.
ayward et al. 2011 ). 
The modeled SEDs span rest-frame 0 . 1 − 1000 μm and are

ampled at 200 uniformly log-spaced wavelengths. The simulated
alaxies were ‘observed’ ‘face-on’ (i.e. the detector was placed such
hat the line of sight was along the angular momentum vector of the
imulated galaxy, corresponding to face-on projections for simulated
isc galaxies). 

.2.1 Modeled SEDs for TNG50 galaxies 

n Fig. 3 , we show examples of modeled SEDs for TNG50 galaxies in
everal stellar mass bins. The upper panel shows SEDs colour-coded
y SFR. The lower panel shows SEDs colour-coded by redshift. We
se this visualization to understand trends in our data. As expected,
igher SFRs generally yield higher fluxes. There are interesting
rends at short wavelengths, though, with some high-SFR SEDs
isplaying particularly low fluxes at λ � 1 μm , owing to high levels
f dust attenuation. We also note that SFR correlates with the shape of
he FIR SED: the FIR SED peaks at shorter wavelengths for galaxies
ith higher SFRs. For a given stellar mass bin, higher-redshift (i.e.

arlier-forming) galaxies are also brighter at all wavelengths (note
hat these SEDs are generated in the rest frame). This likely reflects

https://skirt.ugent.be/root/_home.html


Emulating MCRT with an ANN 4523 

Figure 3. TNG50 SEDs used to train our ANN. The top row shows the SEDs colour-coded by SFR, and the bottom row shows the SEDs colour-coded by 
redshift; the columns show different stellar mass bins, as indicated at the tops of the figures. In a given mass bin, galaxies with higher SFRs tend to have higher 
IR fluxes, and their FIR SEDs are hotter. In the two lower-mass bins, the UV-optical fluxes also increase with SFR. This is less evident in the highest-mass bin 
due to increasing dust attenuation. In all mass bins, there is a subset of galaxies with high SFRs and heavily reddened UV-optical SEDs. Higher-redshift galaxies 
tend to have larger fluxes due to the evolution of the star formation main sequence (at fixed mass, SFR increases with increasing redshift). 
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Figure 4. The architecture of ANNgelina , with input features labeled X 1 
− X 5 (purple), neurons in the hidden layer labeled h 1 − h 419 (orange), and 
output neurons labeled E 1 − E 200 (green). Not all neurons are shown. The 
following galaxy properties are used as features: SFR, stellar mass, dust 
mass, and stellar metallicities of both all and young ( < 10 Myr old) stars. The 
output comprises rest-frame fluxes at 200 wavelengths, uniformly spaced in 
log-space. We note the loss function, optimizer and acti v ation functions used 
in training. 
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he evolution of the ‘main-sequence’: at a given stellar mass, higher- 
edshift star-forming galaxies have higher SFRs and hence higher 
ntrinsic (pre-dust-attenuated) fluxes. 

 METHODS  

e design an ANN, ANNgelina , to emulate SED generation of
NG50 galaxies and hence bypass the radiative transfer procedure 
escribed in Section 2.2 . An ANN architecture consists of an input
ayer with several ‘features’; one or more hidden layers, in which 
he features are manipulated; and an output layer, which contains the 
esired outputs, or ‘labels’. The structure of ANNgelina is illustrated 
n Fig. 4 . We use a fully connected network, where each neuron talks
o all neurons in the previous and following layers. Each neurons in
he input layer corresponds to a galaxy property, such as stellar mass
r SFR, and each neuron in the output later corresponds to the flux
t one w avelength. ANNg elina is built with PyTorch (Paszke et al.
019 ). 6 In the following sections, we describe the architecture and 
arameter choices in more detail and outline the training procedure. 

.1 Data normalization and partition 

ach input feature, X , is normalized as follows: 

 norm = 

log 10 X − μ( log 10 X) 

σ ( log 10 X) 
. (1) 

 or an y features that had zero values, we added a negligible nonzero
alue to that feature before normalizing to a v oid taking the logarithm
f zero. This normalization procedure accelerates the training of the 
etwork. 
 https:// pytorch.org/ 

W  

a  

a

The flux is input as the irradiance, E , defined as E = λS λ/ ( W m 
−2 ).

e use log 10 E as the labels in the network. Data are then randomized
nd partitioned into training (70 per cent), validation (15 per cent),
nd test (15 per cent) sets. 
MNRAS 526, 4520–4528 (2023) 
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Table 1. Correlation matrix for TNG50 galaxy properties. 

Feature M dust M � Z � Z �< 10 Myr SFR 

M dust 1.0 0.88 0.41 0.28 0.48 
M � 0.88 1.0 0.44 0.29 0.48 
Z � 0.41 0.44 1.0 0.9 0.37 
Z �< 10 Myr 0.28 0.29 0.9 1.0 0.25 
SFR 0.48 0.48 0.37 0.25 1.0 
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.2 Training the ANN 

ere, we provide a broad o v erview of the training process and various
yper-parameter and function choices. During a ‘forward pass’, the
NN pushes the training data through the hidden layers by using the

urrent values of the weights for each feature. After each forward
ass, the model updates itself through a ‘backpropagation’ phase, in
hich it determines a loss value (based on the difference between the
redicted and true outputs) and updates the weights according to an
ptimization function, usually a type of gradient descent. The number
f times the forward pass and backpropagation cycle is e x ecuted
epends on the pre-defined batch size and number of epochs. 
Several parameters define the workflow of the network. Hyper-

arameters such as the number of hidden layers and neurons in each
ayer, dropout fraction, weight decay, and acti v ation function are
elated to the structure of the network. These hyper-parameters were
ptimized as described in Section 3.3 . The learning rate, number
f epochs, and batch size affect the training procedure; appropriate
hoices ensure generalizability of the model and impro v ed efficienc y
hile training. The batch size (128) and number of epochs (1500)
ere tuned manually. The batch size refers to the number of samples

o be propagated through the network in one full pass. One epoch is
ompleted once all training samples have been propagated through
he network. The initial learning rate, dropout fraction, weight decay,
umber of hidden layers, and number of neurons per hidden layer
ere determined using Optuna (Akiba et al. 2019 ), as described in
ection 3.3 . 
We use ‘dropout’, a simple and efficient regularization technique

hat consists of removing a random subset of weights at every training
poch, thereby ensuring that the learned weights are more robust
nd prev enting o v er-fitting. The dropout fraction determines what
ercentage of weights are remo v ed. Weight decay works in tandem
ith dropout and is another regularization technique applied to all
eights in a network. There is an extra term added to the loss function

o reduce the variance in the network weights. 
We adopt the following optimizer, activation and loss functions: 
Optimizer function: We chose the optimizer function AdamW,

hich is a modified version of the Adam optimizer (Kingma & Ba
014 ) in which the learning rate and the weight decay of the model
re optimized separately. It takes an initial learning rate and weight
ecay value and updates them for each feature’s weight individually
hile performing gradient descent. It performs well at handling non-

mooth data. The learning rate controls how much the model changes
n response to predicted error during each forward pass. 
Acti v ation function: We use the Leak yReLu (Leak y Rectified

inear Unit) acti v ation function (Maas et al. 2013 ), which is defined
s 

 = 

{
x ( x ≥ 0) , 
0 . 01 x ( x < 0) . 

(2) 

oss function: NN losses in supervised learning models are de-
ermined by quantifying the difference between the predicted and
rue outputs using a loss function. We adopt the mean square
rror (MSE) as our loss function. The MSE guarantees that the
rediction represents the posterior mean without assuming any shape
or the posterior distribution. During the training phase, the network
inimizes the MSE averaged over each batch. The MSE for a batch

f size b is given by 

SE = 

1 

200 · b 

b ∑ 

i= 1 

200 ∑ 

λ= 1 

[
log 10 ( E λ, i, pred /E λ, i, true ) 

]2 
(3) 
NRAS 526, 4520–4528 (2023) 
here λ represents the wav elength inde x of the SED, given 200
avelengths sampled between 0.1 and 1000 μm, and E λ, i is the

rradiance at a given wavelength, λ, for a given galaxy in the batch. 

.3 Hyperparameter optimization 

e use the Optuna hyperparameter tuning package (Akiba et al.
019 ) to tune the follwing model parameters: learning rate, dropout
raction, weight decay, number of hidden layers, and number of
eurons per hidden layer. After testing with up to 11 hidden layers,
ach with up to 1000 neurons, optimal performance was achieved
ith a shallow, one hidden layer architecture with 419 neurons, as

hown in Fig. 4 . All hyperparameter values for our optimized model
an be found in the public repository listed in Section 2 . 

.4 Galaxy feature selection tests 

his version of ANNgelina uses just five galaxy properties (SFR,
 dust , M � , Z � , and Z �< 10 Myr ) to predict SEDs. While designing
NNgelina , we tested five additional g alaxy properties: g as mass
 M gas ), redshift ( z), half-SFR radius, half-stellar-mass radius, and
alf-dust-mass radius. 
We first tuned an ANN using all ten features (‘full’ model). We then

rained ten further nine-feature ANNs, using the same architecture
ut with a different feature remo v ed. In all cases, all input features
ere normalized, as described in equation ( 1 ). We compared the loss
alues of each of the nine-feature ANN to that of the ‘full’ model. We
liminated features that did not significantly impact the loss values
f the model. It is reassuring that the features that were determined
o significantly affect the model are all properties that should matter
ccording to physical intuition (e.g. SFR, dust mass). Redshift is not
mportant because we are predicting SEDs in the rest frame. 

In Table 1 , we show the correlation matrix of the galaxy properties
sed in ANNgelina . Correlations are calculated as the covariance of
ach variable pair divided by the product of their standard deviations.
 correlation with an absolute magnitude close to 1.0 indicates
ery strong correlation, while an absolute magnitude closer to 0.0
ndicates a weak correlation. While some properties are strongly
orrelated (most notably stellar and dust masses), ANNgelina ’s
erformance is impacted ne gativ ely if an y of the listed properties
re omitted from the input feature set, indicating that even strongly
orrelated features contribute non-redundant information. 

 RESULTS  AND  DISCUSSION  

.1 Characterizing ANNgelina ’s o v erall performance 

e assess the performance of ANNgelina using a test set of TNG50
alaxies that were not included in the training set. Here, we define
he metrics used to characterize how well SEDs are predicted. We
efine the offset of the predicted (log-space) SED from the target
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Figure 5. Three example SEDs predicted using ANNgelina , with MSE increasing from left to right. In each column, the top panel shows the true SED computed 
using SKIRT (cyan, dot–dashed) and that predicted using ANNgelina (black). The bottom panels show the logarithm of the absolute fractional difference (black 
lines). The average value across all wavelengths is indicated via the horizontal short-dashed black lines; the green dashed horizontal lines indicate zero prediction 
error. The labels at the top of each column indicate the MSE and MAE (i.e. median absolute fractional difference) values. The typical absolute fractional 
difference between true and predicted SEDs is in the range from 0.03 to 0.07. The average fractional difference lines indicate that our model has low bias, even 
for the worst example shown (right column). Note that the UV emission is more poorly predicted than any other part of the SED in all cases. 
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 SKIRT -predicted) SED at a given wavelength λ as follows: 

ffset λ/ dex = log 10 (E λ, predicted / E λ, true ) . (4) 

or each galaxy in the test set, we take the median absolute offset
alue across all 200 wavelengths, and call this the MAE: 

AE / dex = median | Offset λ/ dex | . (5) 

e use the MAE as a single value characterizing the SED prediction
or each galaxy. We note that, because of our definition, the MAE
s essentially equi v alent to the Median Absolute Percentage Error in
he low-error regime. 

In Fig. 5 , we show sev eral e xamples of target and predicted SEDs
or galaxies in our test set. From left to right, we show predicted
EDs with MSEs at the ≈ 2nd, 50th, and 98th percentiles of the
SE distribution, where the 98th percentile refers to the worst of

he three predictions, or the highest MSE. The top panels show 

he true SED calculated using SKIRT in cyan and that predicted by
NNgelina in black. The bottom panels show the logarithm of the 
rediction error versus wavelength. The MSE and MAE are quoted 
t the tops of the columns. For the second percentile example, the
rue and predicted SEDs are essentially indistinguishable – the SED 

s predicted to within ∼ 0 . 05 dex ( ∼ 12 per cent ) across the full UV-
m. The MAE is 0 . 0109 dex (2.5 per cent). For the 50th percentile
 xample, ANNgelina o v erpredicts the SED at both UV and FIR
a velengths, b ut the error is at most ∼ 0 . 15 dex ( ∼ 41 per cent ).
he MAE is 0 . 0643 dex (16 per cent). The 98th percentile exam-
le displays a catastrophic failure. The UV luminosity density is 
nderpredicted by an order of magnitude. The MAE is 0 . 1638 dex
46 per cent). 

We compile MAE values for all test-set galaxies in Fig. 6 .
NNgelina performs well on the TNG50 data set we employ, with an
verage MAE of ∼ 0 . 06 dex (15 per cent ), with the worst predictions
aving an MAE of ∼ 0 . 2 dex (60 per cent ). In Fig. 7 , we show 2D
rojections of the input feature space coloured by MSE. If a particular
egion of parameter space were problematic for ANNgelina , there 
ould be local maxima in the MSE distribution. We see no such

ocal maxima. This indicates that ANNgelina does not exhibit higher 
SE values in any one part of the parameter space; rather, it predicts

he SEDs uniformly well throughout the parameter space probed. 
he scatter in the predictions may be due to additional variables not

ncluded in the analysis. 
MNRAS 526, 4520–4528 (2023) 
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M

Figure 7. TNG50 galaxies in the test set, colour-coded by MAE value. The uniformity of MSE values in all feature–feature planes indicates that ANNgelina 
performs uniformly well across the parameter space probed. 
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.2 ANNgelina ’s performance in different wavelength regimes 

s seen in Fig. 5 , for a given SED, ANNgelina ’s accuracy varies with
av elength. In the e xamples shown, ANNgelina appears to struggle

o reproduce rest-frame UV emission more than other wavelengths.
n this section, we characterize distributions of MAE values within
ndividual wavelength ranges for the whole test sample. 

We divide SEDs into the following wavelength ranges: 0 . 1 −
 . 4 μm (UV), 0 . 4 − 0 . 7 μm (optical), 0 . 7 − 3 μm (near-IR; NIR),
 − 50 μm (mid-IR; MIR), 50 − 207 μm (FIR), and 207 − 1000 μm
sub-mm). For each galaxy in the test set, we calculate the MAE
ithin each of these wavelength ranges, following equation ( 5 ).

n Fig. 8 , we compile these values (note that the worst 4 per cent
f values have been omitted for clarity). Vertical lines indicate the
verage MAE across test galaxies within each of these wavelength
ands. The UV stands out from the others, with a significantly higher
verage MAE of 0 . 15 dex (41 per cent), while all other wavelength
ands ho v er around 0 . 06 de x (15 per cent). This is e xpected, as the
V emission depends much more strongly on the geometry of the
bserved simulated galaxy since the UV is highly attenuated by dust
rains, and the amount of attenuation can vary considerably with the
ine of sight. 

.3 Limitations of our approach 

here are a few considerations to highlight to potential users of
NNgelina . First, all SEDs used to train ANNgelina are for ‘face-on’
rojections of TNG50 galaxies (i.e. along the angular momentum
xis). Consequently, for galaxies with disc-like morphologies, our
ata set is biased toward the least-obscured lines of sight, and
eavily obscured lines of sight (e.g. edge-on discs) are thus under-
epresented. The SEDs of simulated galaxies with exactly the same
alues for the input features can vary due to viewing-angle effects:
ust attenuation is non-isotropic, especially in the UV. For this reason,
f the ‘raw’ predictions from ANNgelina are used, the scatter in
he predicted SEDs will be unrealistically low. One cannot simply
erturb the predicted photometry by adding random noise to account
or this effect, as the prediction errors for flux values in different
ands should be correlated (e.g. for an edge-on galaxy, ANNgelina
s likely to systematically o v erpredict the UV-optical flux). In future
 ork, we will emplo y a larger training set with multiple lines of

ight and incorporate some geometric features to attempt to account
or viewing angle effects in the ANN’s predictions. Since there is
ntrinsic scatter to be expected when predicting an SED given a set
f galaxy properties, we will also attempt to use normalizing flows to
NRAS 526, 4520–4528 (2023) 
ample the distribution instead of providing the model a single value
s we have done here. 

Secondly, ANNg elina w as trained on TNG50 galaxies sampling
 restricted region of parameter space (simulated galaxies with
 � > 10 8 . 7 M � on or abo v e the main sequence), and it should only

e applied within this region. Applying ANNgelina to simulated
alaxies outside of this parameter space may result in high prediction
rror, even when these galaxies are simulated with exactly the same
ode (i.e. numerical method and sub-grid models) and resolution.
oreo v er, only a single simulation – and thus single code and single

esolution – was used. It is possible that the prediction error would
e significantly greater if ANNgelina were applied to simulations
hat employ the IllustrisTNG model but different resolution or/and
imulations that employ a different numerical method or/and sub-
rid models. In this proof-of-concept work, we have opted to employ
nly a single simulation, but in future work, we will explore how
ell we can cross-apply our emulator to other simulations. 
Finally, we note that various assumptions are ‘baked in’ to the
CRT calculations and thus ANNgelina . For example, it is necessary

o make assumptions about the stellar populations (stellar initial mass
unction and single-age stellar population SED templates) and dust
optical properties, dust-to-metal ratio, temperature abo v e which dust
s destroyed, and sub-grid dust distribution). These assumptions can
ffect the resulting SEDs, and depending on the science question of
nterest, they may affect the quantitative or even qualitative results.

e have explored the sensitivity of our results to such assumptions in
 arious pre vious w orks (e.g. Hayw ard et al. 2011 ; Snyder et al. 2013 ;
afarzadeh et al. 2017b ). Exploring the impact of such assumptions is
eyond the scope of this proof-of-concept work. Instead, as noted in
he introduction, we have addressed the follo wing question: ‘gi ven a
et of 3D MCRT calculations with fixed assumptions (regarding e.g.
he stellar initial mass function, single-age stellar population SED
emplates, and dust model) performed on galaxies selected from
 single cosmological simulation, how well can an ANN emulate
he MCRT calculations to predict integrated UV-mm SEDs of the
imulated galaxies’? 

It is important that users understand that the results will in general
epend on the assumptions used in the MCRT calculations to generate
he training set. For this reason, the reported errors do not include
ystematic errors associated with the MCRT assumptions and thus
nderestimate the ‘true’ error. These errors only represent how
mperfectly the ANN can emulate MCRT calculations for this single
imulation and set of MCRT assumptions. If, for example, one desires
o predict SEDs assuming SMC-like dust, it is necessary to generate
 training set using SMC-like dust in the MCRT calculations and
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Figure 8. Distributions of the median absolute error between the true and predicted SED per wavelength band for each galaxy in the test set. The vertical 
lines indicate the average MAE within each wavelength bin. The UV ( grey dash–dot–dotted line ) has a significantly higher average MAE than all the other 
wavelength bands. This is due to the UV being most highly attenuated by dust, as dust attenuation is anisotropic. The other wavebands exhibit MAE values of 
∼0.05–0.07 dex. The solid black line indicates the average MAE across the full wavelength spectrum. 
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hen train a new ANN rather than using the ANN that we have made
ublicly available. 

 CONCLUSIONS  

n this work, we have presented an ANN-based emulator to predict 
V-mm SEDs of simulated galaxies. We trained the ANN on a 

ample of SEDs generated in previous work by performing dust 
CRT on galaxies from the TNG50 simulation. We find that the 
NN performs well at predicting the SEDs of simulated galaxies in 

he test set – the average MAE is 0.06 de x. F or the vast majority
f simulated galaxies in the test set, ANNgelina can predict the flux
cross the full UV-mm wavelength range with a maximum relative 
rror of � 50 per cent. The UV dominates the prediction error, likely
ecause the viewing angle dependence is strongest in this wavelength 
egime, and our input feature set includes no information about 
iewing angle. Our results demonstrate that our ANN-based emulator 
s a promising computationally ine xpensiv e alternativ e to performing 

CRT in order to predict UV-mm SEDs of simulated galaxies. 
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