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Abstract

We propose a general framework for solving inverse self-assembly problems, i.e. designing
interactions between elementary units such that they assemble spontaneously into a
predetermined structure. Our approach uses patchy particles as building blocks, where the
different units bind at specific interaction sites (the patches), and we exploit the possibility of
having mixtures with several components. The interaction rules between the patches is
determined by transforming the combinatorial problem into a Boolean satisfiability problem
(SAT) which searches for solutions where all bonds are formed in the target structure.
Additional conditions, such as the non-satisfiability of competing structures (e.g. metastable
states) can be imposed, allowing to effectively design the assembly path in order to avoid
kinetic traps. We demonstrate this approach by designing and numerically simulating a cubic
diamond structure from four particle species that assembles without competition from other
polymorphs, including the hexagonal structure.
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1. Introduction

Self-assembly defines all the processes by which elementary
components organise themselves into ordered structures [1].
It occurs ubiquitously in the biological world where proteins,
nucleic acids and lipids aggregatewith atomistic precision into
specific structures that are able to performa spectacular variety
of functions.Nanotechnologyhas long looked at self-assembly

∗ Authors to whom any correspondence should be addressed.

as the most promising avenue for the bottom-up realization of
target structures ranging from the nanometer to themicrometer
scale as an alternative to top–bottom approaches like micro-
patterning and nanolithography.

The goal of the so-called ‘inverse self-assembly’ problem
is to design building blocks (or units) that self-assemble, with-
out structural errors, into a desired target structure [2]. In this
process, the interaction between the different units is designed
to favour the spontaneous formation of a stable ‘target’
structure. The search for the general principles behind self-
assembly has attracted several theoretical investigations [3, 4].
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So far, two promising approaches have emerged: optimiza-
tion and geometrical approaches. In optimization algorithms
the pair potential is tuned to select a specific target structure.
The tuning can be achieved with different strategies such as
minimizing the deviation from the target [5–8], statistical fluc-
tuations [9, 10], and more recently via learning algorithms
[11, 12]. Geometrical approaches, on the other hand, use geo-
metric features of the target structure to constrain the symme-
try of the building blocks [13–23]. While being more read-
ily realizable in experiment, designing the interactions often
requires a high degree of geometrical intuition.

Recently, efforts aimed at merging optimization and geo-
metric strategies are beginning to be explored [8, 24–28].
In this manuscript we present one such strategy, called
SAT-assembly, where the units are built to match the
geometry of the target structure, and whose interactions are
optimized by solving a set of Boolean satisfiability (SAT)
equations [29].

Our building blocks are adopted from the family of patchy
particle (PP) models, where the assembling units are described
by an isotropic repulsion and attractive spots localized on
the surface. PP models are used as coarse-grained represen-
tations of systems with directional interactions, such as next-
generation colloidal particles [30–32], proteins [33], viral
capsids [22, 34], hard-faceted bodies [35–37], DNA nanos-
tars [38, 39], double-stranded DNA assemblies, etc [40–44].
Patches represent short-range interacting sites, which can
be physically realized with a variety of bonding interac-
tions such as lock-and-key interactions, DNA base pairing,
hydrophobic, or dipolar interactions [41]. As we show in this
work, the assembly of PP models is easily translated into
SAT problems: the patch type and patch-patch interaction
matrix in the PP model are encoded in a Boolean interaction
table which is used by SAT to search for solutions over the
chosen structure. The advantages of choosing PP models to
study self-assembly are numerous: (i) the parameters of the
model potential (such as the patchwidth and interaction range)
have simple physical interpretations; (ii) the thermodynamic
behaviour of these models is very well understood [42, 45];
(iii) numerous computational techniques have been developed
that can considerably accelerate the simulation time required
to observe self-assembly phenomena [46].

In our approach, the different units bind at specific inter-
action sites (the patches) that are arranged to match the local
environment of the target structure. For example, to self-
assemble the cubic diamond structure we consider units whose
patches are arranged in a tetrahedral geometry. While in prin-
ciple one particle with four patches arranged in a tetrahedral
geometry would suffice to build up a cubic diamond struc-
ture, in reality such a simple choice does not work due to
the competition of several polymorphs with comparable free
energies [21, 47, 48]. Our approach is designed to solve this
problem.

Inspired by biological self-assembly, the patches are
designed such that they bind only to specifically selected part-
ner patches (complementary sites). This transforms the inverse
self-assembly problem into a ‘coloring’ problem, where each
patch has a color assigned to it, and the interaction table

Figure 1. Schematic representation of PP designs. (a) (One species,
two patch types) Design allows the formation of six-membered rings
but forbids five-membered rings. (b) (Five species, ten patch types)
Design allows the formation of five-membered rings but forbids
six-membered rings. Each patch type interacts with a
complementary patch type (as encoded in the interaction matrix),
and in the figure each pair is represented with the same color.

between different colors is determined such that all bonds are
formed in the target structure. In figure 1 we illustrate the col-
oring problem for a simple example: the assembly of hexago-
nal and pentagonal rings. The main difficulty stems from the
desire to avoid competing structures that are compatible (either
fully or partially) with the interaction table and can appear
as kinetic traps during the assembly process as well as com-
peting ordered structures. The study of protocols that help
avoiding kinetic traps is an active area of research [49–51].
In our approach, the avoidance of kinetic traps is embedded
directly in the interactions. Choosing a small number of colors
makes the design easier but usually generates solutions that are
compatible with multiple competing structures. On the con-
trary, specifying a large number of colors makes the search of
coloring solutions exponentially harder.

Instead of relying on geometrical intuition to design units
that would assemble into a limited set of selected structures
[48, 52], our framework solves the coloring problem for any
desired structure in a fully automated way. The central idea is
to convert the problem of ‘inverse self-assembly design’ into
a Boolean satisfiability problem (SAT) for the patch colors
and the interaction table. All the information on the build-
ing blocks is encoded in binary variables and all the rules
that specify the bonding geometry are translated into a set of
logical clauses. A SAT solver is then used to find solutions
to the design problem. The SAT problem is an NP-complete
problem, and no polynomial-time solution algorithm is known
to exist, but recent advances in the development of SAT solvers
have made it possible to solve problems comparable to ours
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(involving tens of thousands of variables and hundreds of
thousand clauses) with relative ease.

In this manuscript, we first briefly introduce SAT, and then
describe how to formulate any self-assembly design problem
into a SAT problem. We then provide an example application
that extends the results we previously obtained in reference
[29] and use our framework to find a new, previously unre-
ported, PP system that homogeneously nucleates a cubic dia-
mond crystal and consists only of four distinct PP species that
are mixed in stoichiometric ratio.

2. Boolean satisfiability problem

Boolean satisfiability problems (SAT) are a well-studied topic
of interest to computer science and the theory of computa-
tional complexity. The general formulation of SAT is to find
if there exists a solution in terms of K binary variables {xi},
where each xi is either 0 (false) or 1 (true), such that a set
of clauses C j are all true at the same time. Each respective
clause C j consists of a subset of variables xi (or their negations
¬xi) connected by anOR operation (∨ symbol), and all clauses
are connected by an AND operation (∧ symbol). For example,
consider the following SAT problem: find assignment to three
binary variables x1, x2, x3 such that all following clauses are
satisfied:

C1 = x1 ∨ ¬x2 (1)

C2 = ¬x1 ∨ ¬x3 ∨ x2 (2)

C3 = ¬x1 ∨ x3 (3)

C4 = ¬x2 ∨ ¬x3. (4)

The problem is to find xi such that

C1 ∧ C2 ∧ C3 ∧ C4 (5)

is true. One can check that the solution with x1 = x2 = x3 = 0
(i.e. all variables set to false) satisfies the constraints, and the
problem is hence satisfiable. Obviously, it is also possible to
have a task where no solution exists, such as in the following
trivial example:

C1 = x1 (6)

C2 = ¬x1 (7)

where it is impossible to satisfy condition x1 ∧ ¬x1. However,
for complex tasks with tens of thousands to millions of vari-
ables and clauses, it is obviously much more challenging to
decide if the problem is satisfiable, and it quickly becomes
impossible to combinatorially check all possible values of the
variables, as for K variables there are 2K possible states in the
solutions space.

SAT problems belongs to the NP-complete complexity
class, which includes other famous tasks such as the graph col-
oring problem or the traveling salesman problem [53]. Due to
the their importance for the theory of computational complex-
ity as well as for practical discrete optimization tasks, signifi-
cant effort has been dedicated to the development of efficient

SAT solvers. The annual SAT solver competition evaluates the
state-of-the-art SAT solving algorithms at a series of tasks.
While SAT problems are NP-complete, there are still many
instances of SAT problems where solutions can be found very
quickly, and modern algorithms have been shown to be able
to solve SAT tasks consisting of up to millions of clauses and
variables. For the assembly problems presented here, we use
MiniSAT [54], one of the most popular and effective tools for
SAT. In our prior work [29], we have also used the Walk-
SAT and MapleSAT solvers [55–57]. We found that for dif-
ferent target structure design and distinct set of constraints,
they sometimes performed differently, with one being able to
find a solution (or prove unsatisfiability) within few minutes,
while other needing tens of minutes to hours. As opposed to
MiniSAT and MapleSAT, WalkSAT cannot be used to prove
that a problem is not satisfiable, as it randomly searches the
solution space, but we have found that for certain satisfiable
problems it performs the fastest. As the choice of optimal
solver is problem-dependent, we will be using MiniSAT for
the example considered in this work. Overall, for the design
problems considered in reference [29], we found MapleSAT
(which was the top-scoring solver in the SAT 2018 compe-
tition [58]) performed the best, but there were still instances
where MiniSAT was faster.

There exists a strong track record of statistical mechanics
researchers using the theory of spin glasses to gain insight
into the nature of SAT-problems [59–62] and identifying
regimes in terms of numbers of clauses and variables where
SAT problems are ‘difficult’ or ‘easy’ to solve. However, the
power of SAT solving software has been so far overlooked
in the context of self-assembly problems. As we discuss in
this paper, it offers a very powerful framework that can com-
plement molecular simulations and effectively find solutions
to discrete optimization problems of assigning interactions
between particles to achieve self-assembly into desired struc-
tures. It is the excellent performance of the available SAT
solvers that is the main motivation of our effort to formulate
an inverse design problem for self-assembly as a SAT problem.
As we show below, it is the ability to quickly find solutions and
check them against competing structures with the SAT solvers
that enables us to design PPs that assemble into a desired
structure.

3. Mapping of the inverse design task to a Boolean
satisfiability problem

In the following we will discuss how to formulate a design
problem for PPs as a SAT task. We focus on designing PP sys-
tems which can consist of multiple N p distinct PP types with
fixed geometry of patches that is given by the local contact
environment in the desired target structure. In the case of the
cubic diamond lattice used in our examples below, we hence
consider a tetrahedral arrangement of the patches. The design
of the building blocks is thus fixed by the choice of the tar-
get structure. Each patch of each PP is assigned a color, and
the interactions between PPs are determined by specifying a
color interaction matrix, which determines which patches can
bind to each other (figure 2). The free parameters of the model
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Figure 2. (a) A topology representing the unit cell (with eight positions) of the cubic diamond lattice, showing each lattice position
connected to four other positions (interacting slot numbers on each respective positions are shown as link labels). (b) A schematic 3D
representation of the unit cell the of cubic diamond lattice consisting of eight positions (gray spheres), each bound to its neighbors (using
periodic boundary conditions) via numbered ‘slots’, shown in black. Each position is assigned a number from 1 to 8, and position number 2
is highlighted as an example. (c) Position number 2 with its fours slots, numbered from (i) to (iv). The design problem seeks to find PP
species with colored slots that are inserted into the positions of the lattice so that their patches (numbered from 1 to 4) overlap with the slots.
There are 12 different orientations that a PP with tetrahedral geometry can be put into a position so that its patches overlap with respective
slots. The twelve possible arrangements are listed in table 1. (d) When PPs are inserted into the positions, the interacting patches have to be
colored with compatible colors. In this schematic example, there are two species, red and green, inserted into two different positions. The
task of the design algorithm is to find particle species with specified patch coloring, color interaction matrix, and PP placements into the
respective lattice positions so that all patches are bound to a patch with a compatible color and hence all the bonds in the lattice are satisfied.

are thus: the number of patches and their geometry, the total
number of particle species N p, and the number of colors Nc.
Keeping N p and Nc flexible allows to tune these parameters to
optimize the assembly, and adapt it to experimental conditions.
We do not impose any torsional restrictions on the patch-patch
interaction, but the model can also be extended to account for
such restrictions. In our models, complementary interactions
have the same strength and we do not allow any misbinding.
As the model system for the description provided below, we
use a eight-particle unit cell (figures 2(a) and (b)) of a cubic
diamond lattice, consisting of tetravalent PPs with tetrahe-
dral patch geometry. The presented approach can however be
adapted to any other lattice or even finite-size assemblies.

3.1. Variable definition

The first step of mapping a PP design into a Boolean satis-
fiability problem is to define a set of binary variables xi that
represent the system and can take either 1 (true) or 0 (false)
values.

We first specify the desired lattice topology (figure 2(a)),
given by the L positions that the particles occupy. For a lattice
with an eight-particle unit cell we have L = 8. Each position
in the lattice is assigned V slots, each representative of a bond
to a neighboring position in the lattice. For the cubic diamond
unit cell in figure 2(b), each position in the lattice has four
neighbors, so V = 4. Each of the positions in the lattice has
hence four ‘slots’ (we use roman numbers to number slots
in figure 2(c)), which are connected to the slots of its neigh-
bors. The lattice topology is encoded by the set of connections
between the slots. The goal of the design problem is to find a
set of PP and patch colorings so they can be arranged into the
target lattice in such away that the neighboringpatches that are
in contact in the lattice have complementary colors (i.e., nega-
tive potential energy). Note that each PP has the same number
of patches as there are number of slots in the unit cell. Sat-
isfying the unit cell with a given available set of PPs means
that we can populate the target unit cell with PPs by placing

Table 1. List of orientations o for a PP with a tetrahedral symmetry
of patch positions.

Orientation o Mapping φo

1 (1, 2, 3, 4)
2 (1, 4, 2, 3)
3 (1, 3, 4, 2)
4 (2, 4, 3, 1)
5 (2, 1, 4, 3)
6 (2, 3, 1, 4)
7 (4, 1, 3, 2)
8 (4, 2, 1, 3)
9 (4, 3, 2, 1)
10 (3, 1, 2, 4)
11 (3, 4, 1, 2)
12 (3, 2, 4, 1)

each PP into its specific position in the lattice (figures 2(c)
and (d)). For a PP with tetrahedral symmetry, there are
No = 12 different ways it can be arranged into a specific lat-
tice position so that its patches overlap with the slots of the
site, as shown in figure 2(c). We call each possible placement
into a specific position an ‘orientation o’, where o ∈ [1,No].
The orientation is given by a list of patch numbers that overlap
with the slot numbers for a particular orientation. For instance,
φ2 corresponds to a mapping from the patches (1, 2, 3, 4) to
the slots ((i), (ii), (iii), (iv)), which means that e.g. φ2(1) = (i)
and therefore patch number 1 will overlap with slot (i),
φ2(2) = (iv) and hence patch 2 will overlap with slot (iv), and
so on. All orientations for the tetrahedral system are listed in
table 1. Note that in figures 2(a), 3 and table 1, 2, 3 and S1, S2,
we use arabic numerals for slots for easier visualization.

As mentioned earlier, we also fix the total number of parti-
cle species N p and number of colors Nc as parameters of our
algorithm.We next define the binary variables that describe the
entire state space of the design problem:

(a) Color interaction variables: binary variables xCci ,c j are
defined for all combinations of ci � c j ∈ [1,Nc], i.e. for
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all possible pairs of colors, numbered from 1 to Nc. If the
variable is true (1) it means that the colors can interact, if
it is false then a given pair cannot interact. Please note that
our definition allows for self-interaction (if xCci,ci = 1 for
some color ci). In the case of DNA nanotechnology,such a
self-interacting binding is realized e.g. with a palindromic
single-strandedDNAoverhang.There are (Nc)(Nc + 1)/2
of xC variables.

(b) Patch coloring variables: we define variables xpcolp,s,c for
all particle types p ∈ [1,Np], patch number s ∈ [1,V]
and color c ∈ [1,Nc]. If it is true, it means that particle
of type p has its sth patch colored in color c. If it is
false, then it does not have color c. There are N pVNc such
variables.

(c) Unit cell placement variables: we define variable xLl,p,o,
which is true if position l ∈ [1, L] in the target unit cell
is occupied by a particle type p ∈ [1,Np], which is posi-
tioned into the lattice using orientation o ∈ [1,No]. There
are N pLNo of such variables.

(d) Auxiliary variables: we further introduce auxiliary vari-
ables that will be later used to help formulate clauses that
describe the design problem.We define xAl,s,c which is true
if the particle which is positioned in position l ∈ [1, L] in
the lattice is oriented in such a way that the slot s ∈ [1,V]
in the position l is occupied by a patch of color c ∈ [1,Nc].
There are VLNc of these variables.

The variables above define the state space of the design
problem. To translate the design problem into SAT, we next
need to define binary clauses that specify the required relations
that these variables need to satisfy.

3.2. Clause definition

The variables xCci,c j are defined for each color combination.
However, we need to impose that each color can only be com-
plementary to one other color. If the solution is for example
that color 1 interacts with color 2, it means that for all c �= 1
or 2 all variables xC1,c and xC2,c need to be 0. To formulate
the requirement that in the solution to our design problem
each color ci can only interact with exactly one other color
(including possible self-complementarity), we define clauses
∀ ci, c j, ck ∈ [1,Nc], ci � c j < ck:

Cint
ci ,c j,ck

= ¬xCci,c j ∨ ¬xCci ,ck . (8)

One can check that if we impose now that color 1 and 2
interact, that is xC1,2 = 1, the above clauses will now include
0 ∨ ¬xC1,c that have to be satisfied for all c �= 2 and clauses
0 ∨ ¬xC2,c that have to be true for all c �= 1, thus forcing all
variables xC1,c and x

C
2,c other than x

C
1,2 to be 0.

The set of clauses introduced in equation (8) are called
exactly one clause types and they ensure that from a certain
subset of variable class, only one can be true at a time. We will
reuse them for other variable sets. Analogously to equation (8),
we therefore define clauses ∀ s ∈ [1,V], p ∈ [1,Np], cl, ck ∈
[1,Nc], cl �= ck : Cpcol

p,s,cl ,ck
that ensure that patch no. s of PP type

pwill be assigned exactly one color only

Table 2. Cubic diamond eight-unit cell topology (also shown in
figure 2(a)): list of lattice positions li and l j that are neighbors in
the unit cell of cubic diamond lattice and their respective slot
numbers si, s j through which they are bound. The topology is also
shown in figure 2(a).

Position li Slot si Position l j Slot s j

1 1 5 1
1 2 6 1
1 3 7 1
1 4 8 1
2 1 5 2
2 2 6 2
2 3 7 2
2 4 8 2
3 1 5 4
3 2 6 4
3 3 7 4
3 4 8 4
4 1 5 3
4 2 6 3
4 3 7 3
4 4 8 3

Cpcol
p,s,ck ,cl

= ¬xpcolp,s,ck
∨ ¬xpcolp,s,cl

. (9)

To ensure that each lattice position l is occupied by exactly
one particle type with one orientation assigned to it, we intro-
duce ∀ l ∈ [1, L], pi < pj ∈ [1,Np], oi < o j ∈ [1,No]:

CL
l,pi ,oi ,p j,o j

= ¬xLl,pi ,oi ∨ ¬xLl,p j,o j. (10)

Next, we introduce sets of clauses that impose the topology
of the unit cell. We define clauses that enforce for all neighbor-
ing positions li and l j in the lattice that are connected by slots
si and s j (shown e.g. in table 2 and supplementary table S1
(https://stacks.iop.org/JPCM/34/354002/mmedia) for cubic
diamond lattice with 8 and 16 unit cell respectively) to have
slots with colors ci, c j that can bind to each other: ∀ ci � c j ∈
[1,Nc]:

Clint
li,si ,l j,s j,ci ,c j

= ¬xAli,si ,ci ∨ ¬xAl j,s j,c j ∨ xCci ,c j . (11)

One can easily verify that the above formulation of such a
condition is equivalent to

(xAli,si ,ci ∧ xAl j,s j,c j) ⇒ xCci,c j ,

which is more intuitively understandable. However, the for-
mulation in equation (11) complies with the requirement
of SAT, where each individual clause has to be a set of
OR statements connecting a set of binary variables or their
negation.

Finally, we need to specify that if a lattice position l is
occupied by a particle type p with assigned orientation o

(in which case xLl,p,o = 1), the slots s of position l are set to
have the color of the patch occupying them: ∀ l ∈ [1, L], p ∈
[1,Np], o ∈ [1,No], s ∈ [1,V], c ∈ [1,Nc]:

5
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xLl,p,o ⇒
(

xAl,s,c ⇔ x
pcol
p,φo(s),c

)

,

which can be equivalently rewritten as

CLS
l,p,o,c,s =

(

¬xLl,p,o ∨ ¬xAl,s,c ∨ x
pcol
p,φo(s),c

)

∧
(

¬xLl,p,o ∨ xAl,s,c ∨ ¬xpcolp,φ(s,o),c

)

, (12)

so that the problem is formulated in terms of logic OR oper-
ations on variable subset, joined by AND clauses, as required
by SAT. Note that the above clause definition uses the mapping
function φo assigned to orientation o as defined in table 1.

We further define the following additional clauses to ensure
that the solution will require that all N p particle types are
present in the desired target lattice, and also that each color
is used at least once for coloring patches:

∀ p ∈ [1,Np] : C
allp.
p =

∨

∀ l∈[1,L], o∈[1,No]

xLl,p,o (13)

and analogously we also require all colors to be used:

∀ c ∈ [1,Nc] : C
allc.
c =

∨

∀ p∈[1,Np], s∈[1,V]

xSp,s,c. (14)

For example, the clause in equation (13) for p= 1 requires that
there is at least one position lwith some orientation o such that
xLl,1,o is true, i.e., PP of type 1 is present in the unit lattice cell
in the solution.

Our choice of Boolean variables and conditions has been
optimized to allow solvability of typical self-assembly struc-
tures in a reasonable computing time.

3.3. Solving design problem and eliminating competing

structures

The final SAT formulation is then just a conjunction of all
clauses C defined above in equations (8)–(14). If a solution is
found in terms of the variables xi, it can be straightforwardly
converted into human-readable form by just listing the vari-
ables xpcolp,s,c and x

C
ci,c j that are 1, as their subscripts will spec-

ify the patch coloring for each PP type and color interaction
matrix.

Note that the SAT solver guarantees that these particles
can be arranged into the target lattice, but it is of course
still possible that the found solution can also satisfy some
other competing lattice. If competing polymorphs are known
beforehand, one can use the SAT formulation to discard solu-
tion that can assemble into them. For example, in the case of
the cubic diamond lattice, it is already known that hexagonal
diamond lattice is an often-encountered competing state, so
we harness the SAT formulation to quickly check against
this competing lattice. We formulate a new SAT problem,
where we now use a new lattice (specified by the topol-
ogy of the hexagonal diamond lattice, shown in table 3). We
use all clauses from equations (8)–(12) [where clauses in
equation (11) use slots si, s j and lattice positions li, l j as given
by the topology of hexagonal unit cell (given in table 3 for
eight-unit cell and supplementary table S2 for 32-unit cell)].

Table 3. Hexagonal eight-unit cell topology: list of lattice
positions li and l j that are neighbors in the unit cell of
hexagonal diamond lattice and their respective slot numbers si
and s j through which they are bound. The corresponding
graphical representation is shown in figure 3.

Position li Slot si Position l j Slot s j

1 1 3 1
1 2 4 1
1 3 4 2
1 4 7 1
2 1 3 2
2 2 3 4
2 3 4 4
2 4 8 1
3 3 5 1
4 3 6 1
5 2 7 2
5 3 8 2
5 4 8 4
6 2 7 4
6 3 7 3
6 4 8 3

Figure 3. A topology representing the eight particle unit cell of
hexagonal diamond lattice. Lattice positions are connected by two
edges correspond to interaction through periodic boundary
condition.

We additionally add new clauses that constrain the variables
xpcolp,s,c and xCci ,c j to be true, where the indices p, s, and c are
determined by the set of PP types with their assigned coloring
that we want to test (i.e., the solution that came out from the
SAT problem applied to cubic diamond lattice). The indices in
xCci,c j that are set to 1 encode the given interaction matrix that
we are testing. Note that we did not include clause sets from
equation (13), as we also want to include the possibility that a
subset of PP types can assemble into the competing structure.
We further do not include clauses from equation (14), which is
redundant in this case because it is already satisfied by the fact
that we set variables xpcolp,s,c to true for a combination of patch
colorings that already satisfies the condition that each color is
used for coloring at least one patch.

If indeed the competing structure can be formed, the SAT
solver will find a solution in terms of variables xLl,p,o. The
indices l, p and o of the variables provide the particle type

6
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Table 4. Designed PPs for self-assembly into a cubic diamond crystal lattice. It consists of four
PP types and 12 colors. The patch coloring is in format (patch number, patch color), where
patches are labeled from a to d (corresponding to patches from 1 to 4 respectively), and colors
are numbered from 1 to 12. The color interaction then lists all pairs of interacting colors, where
colors 6 and 12 are self-complementary.

PP species Patch coloring

1: (a, 11) (b, 10) (c, 10) (d, 8)
2: (a, 9) (b, 3) (c, 4) (d, 4)
3: (a, 1) (b, 7) (c, 1) (d, 3)
4: (a, 12) (b, 2) (c, 6) (d, 5)

Color interactions

(1, 10), (2, 8), (12, 12), (3, 4), (5, 11), (6, 6), (7, 9)

and orientation for each lattice position, allowing to immedi-
ately visualize the way inwhich particles can assemble into the
undesired lattice geometry. If that is the case, it means that the
original solution that we found in terms of PP types and col-
oring can also assemble into the other lattice. Similarly, other
competing lattices (if known or identified in simulations) can
be checked as well. In that case, we can reformulate the SAT
problem for the original desired lattice using different param-
eters N p and Nc and see when the solution is able to exclude
alternative lattices. These checks are very fast, for lattices of
size of tens (or less) of positions they take only fractions of a
second when usingMiniSAT. Alternatively, if we want to keep
N p and Nc fixed but find other solutions with the same number
of particle types and colors, one new clause has to be added,
which is a set of OR operators with the negation of the partic-
ular set of variables xCci,c j and x

pcol
p,s,c that describe the solution

we already tested and want to exclude:

Cavoid =
∨

ci ,c j∈I

¬xCci ,c j

∨

p∈[1,Np], s∈[1,V], c∈Cp,s

¬xpcolp,s,c (15)

where I is a set of all pairs of interacting colors and Cp,s is the
coloring of sth patch of particle type p in the solution that we
want to avoid.

Iteratively, one can then find a solution that satisfies the
target lattice and avoid competing assemblies.

4. Application to the design of the cubic diamond
lattice

4.1. Simulation model

In this section we will design a PP model that assembles
into the diamond cubic lattice and avoids the hexagonal dia-
mond one. To test the results obtained from the SAT solver
as described in section 3.3, we study the assembly using a
Monte Carlo (MC) simulation. We use tetravalent PPs with
tetrahedral patch arrangement (figure 2(c)). The positions of
the patches, in the orthonormal base associated with the PP,
are given as

p1 = R
(

√

8/9, 0,−1/3
)

p2 = R
(

−
√

2/9,
√

2/3,−1/3
)

p3 = R
(

−
√

2/9,−
√

2/3,−1/3
)

p4 = R (0, 0, 1) ,

where R = 0.5 d.u. (distance units) is the radius of the PP rep-
resented by a sphere. Each PP is modeled as a hard sphere, with
excluded volume interaction between two particles at distance
r defined as

Vhs(r) =

{

∞ if r < 2R,

0 otherwise.
(16)

The interaction between a pair of patches pi and q j on dis-
tinct particles i and j is modeled through the Kern–Frenkel
interaction potential [63, 64]:

VKF(r, θp, θq) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−1 if r < 2R+ δ and

cos θp > cos θmax and

cos θq > cos θmax,

0 otherwise,

(17)

where δ and cos θmax specify the range and width of the
patches. Furthermore, we use r = rcmq − rcmp, where r = ‖r‖
is the distance between the centers of mass of the PPs p and q,
to define angles

cos θp =
r · pi

‖r‖ ‖pi‖
(18)

cos θq =
−r · qj
‖r‖

∥

∥qj
∥

∥

(19)

where pi is the vector from center of mass of particle p towards
patch pi, and analogously for patch q j. The width (δ) and the
angular range (cos θmax) are not part of the SAT definitions.
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Figure 4. (a) Potential energy (in units of ε) as a function of MC sweeps for different temperatures (in the legend). As indicated by the
energy drop, T = 0.089 undergoes spontaneous crystallization. (b) Structure factor (S(q) with the wave-vector in units of 1/2R) for the same
temperatures as in panel a). (c) Configuration snapshots at MC sweep 7× 108, 8.5 × 108, and 13 × 108 (from left to right). Particles are
colored according to their species (species 0: red; species 1: green; species 2: cyan; species 3: magenta). Complementary patches have the
same color. (d) Same as in (c), but with particles colored according to their phase: liquid (white); cubic diamond (blue); hexagonal diamond
(orange). The shade of each color represents the number of crystalline neighbors.

The only requirement on these parameters is that they should
allow each patch to form at most one bond at a time (one
bond per patch condition). Bond range and width should be
modeled on the experimental conditions, and optimized inde-
pendently depending on the relationships between bond geom-
etry and crystallizability [65]. The simulation model is imple-
mented within the oxDNA simulation package [66], which is
mostly used for simulations of coarse-grainedmodels of DNA
or RNA, oxDNA/oxRNA [67, 68], but is also a universal sim-
ulation package that also implements other models, including
the Kern–Frenkel interaction for PP simulations.

4.2. Set of particles to assemble a cubic diamond lattice

We apply the SAT design framework to find a set of particles
that assemble into a cubic diamond lattice. Our previous solu-
tion from reference [29] was found for N p = 9 and Nc = 31.
Aside from the high number of species required, the solution
did not have equal concentrationof the particle types in the unit
lattice, meaning that particle types would have to be mixed in
different ratios, which is an added complication for experimen-
tal realization. In this work we have conducted extensive scans
of the solution space for different combinations of N p and

8
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Nc and identified a new solution with N p = 4 and Nc = 12,
with the four species used at 1:1:1:1 ratio in the assembled
16-unit cubic diamond lattice. The PP types with their col-
oring and color interaction rules are shown in table 4. In the
next section we verify this new solution via Monte Carlo sim-
ulation with the Kern–Frenkel potential model (as defined in
section 4.1).

4.3. Assembly simulations

We run Monte Carlo simulations of a system of N = 500
PPs (125 particles of each species) colored according to the
interactions of table 4. The Kern–Frenkel potential param-
eters of equation (17) are the following: cos(θmax) = 0.98
and δ = 0.12. The density is ρ = 0.2 (constant) and differ-
ent simulation runs are done at temperatures in the inter-
val T ∈ [0.085, 0.093], starting from random initial posi-
tions and orientations. Figure 4(a) shows the evolution of the
potential energy for all simulation runs. While most temper-
atures remain in metastable equilibrium for the duration of
the simulation, T = 0.089 displays a clear sign of successful
nucleation, i.e. an incubation period followed by a rapid drop
of the potential energy. Figure 4(b) shows the structure fac-
tor of the liquid phase at different temperatures. The strong
increase of the signal at q = 0with decreasingT shows that the
systems are not homogeneous, but have undergone gas–liquid
phase separation. The first two peaks of S(q), at q2R ≈ 4.3 and
q2R ≈ 8 respectively, are located in correspondenceof the pre-
peak and of the main peak of the diamond crystal structure.
This is confirmed by the crystalline peaks for the T = 0.089
trajectory (dashed line). Figure 4(b) thus shows that crystal-
lization occurs after the nucleation of a dense liquid phase [69],
whose structure is that of a tetrahedral liquid. In figures 4(c)
and (d) we plot some snapshots of the trajectory at T = 0.089
during nucleation. In figure 4(c) we color the particles accord-
ing to their species, where we can observe the regularity in the
species arrangement in the final crystalline state. In figure 4(d),
particles are colored according to their phase as identified by
the Ovito package [70]: liquid (white); cubic diamond (blue);
hexagonal diamond (orange). The snapshots visually confirm
that nucleation starts from a de-mixed state and that the final
crystalline state is our target structure, i.e. the diamond crystal,
without stacking faults.

5. Conclusion and outlook

The search for the general principles behind self-assembly
represents a fundamental step towards the promise of nan-
otechnology to deliver new materials with desired mechan-
ical, optical and thermal properties. The challenges posed
by self-assembly are typical of problems with complex free-
energy landscapes (e.g. glasses and proteins): given a set of
building blocks, there is typically a large number of local
free-energy minima that make brute-force approaches com-
putationally intractable both for structure prediction and for
its inverse problem, i.e., the design of building blocks that
have a desired structure as a global minimum. Here we have

presented a new framework, named SAT-assembly, that adopts
two strategies to tame this complexity. The first one is the use
of patchy interactions as a general model to encode bonded
interactions. The second one is the translation of the color-
ing problem into a satisfiability problem. SAT-assembly allows
the design of a multicomponent PP system capable of assem-
bling into a target structure while also avoiding competing
structures. Our framework allows to avoid both finite-size and
long-range ordered competing structures that could interfere
with the assembly. Here we have focused on 3D lattice assem-
bly, and provided a detailed explanation of the mapping of the
design problem to SAT. Furthermore, we extended our prior
work by designing a new (simpler) set of PP types that assem-
bles in the bulk a cubic diamond lattice, one of themost sought-
after crystal designs in the self-assembly community.We have
verified that spontaneous self-assembly is possible with a sim-
ulation of the Kern–Frenkel potential, with the target structure
being assembled without interference from other competing
structures.

Our approach can be also generalized to other periodic lat-
tices, as well as finite-size structures [71]. By formulating the
design problem as a SAT problem, we can harness the very
effective SAT solver tools, which can find solutions to our
design problems in the matter of seconds to hours (depending
on the size of the target structure and the total number of vari-
ables and clauses), and also very quickly check the obtained
solution against other competing structures that we want to
avoid.

Experimental realization of PP designs is still difficult,
but recent advances hold promise that the goal is within
reach. 3D DNA nanomaterials, and in particular wireframe
DNA origami, that naturally encode sequence complementary,
already allow the assembly of structures with the desired inter-
actions [72–75]. Other possible realization can be for example
via selective patterning of gold nanoparticles [76].

SAT-assembly offers a straightforward and general solu-
tion to the problem of inverse self-assembly, which can be
employed both to further our fundamental understanding of
self-assembling processes and to expand their applications.
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interactions to self-assemble arbitrary structures Phys. Rev.
Lett. 125 118003

[30] Yi G-R, Pine D J and Sacanna S 2013 Recent progress on patchy
colloids and their self-assembly J. Phys.: Condens. Matter 25
193101

[31] Gong Z, Hueckel T, Yi G-R and Sacanna S 2017 Patchy particles
made by colloidal fusion Nature 550 234–8

[32] Diaz A J A, Oh J S, Yi G-R and Pine D J 2020 Photo-printing
of faceted DNA patchy particles Proc. Natl Acad. Sci. 117
10645–53

[33] Coluzza I, van Oostrum PD, Capone B, Reimhult E and Dellago
C 2013 Sequence controlled self-knotting colloidal patchy
polymers Phys. Rev. Lett. 110 075501

[34] Mosayebi M, Shoemark D K, Fletcher J M, Sessions R B,
Linden N, Woolfson D N and Liverpool T B 2017 Beyond
icosahedral symmetry in packings of proteins in spherical
shells Proc. Natl Acad. Sci. USA 114 9014–9

[35] Rossi L, Sacanna S, Irvine W T M, Chaikin P M, Pine D J and
Philipse A P 2011 Cubic crystals from cubic colloids Soft
Matter 7 4139–42

[36] Smallenburg F, Filion L, Marechal M and Dijkstra M 2012
Vacancy-stabilized crystalline order in hard cubes Proc. Natl
Acad. Sci. 109 17886–90

[37] van Anders G, Ahmed N K, Smith R, Engel M and Glotzer S
C 2013 Entropically patchy particles: engineering valence
through shape entropy ACS Nano 8 931–40

[38] Biffi S, Cerbino R, Nava G, Bomboi F, Sciortino F and Bellini
T 2015 Equilibrium gels of low-valence DNA nanostars:
a colloidal model for strong glass formers Soft Matter 11
3132–8

[39] Lattuada E, Caprara D, Lamberti V and Sciortino F 2020 Hyper-
branched DNA clusters Nanoscale 12 23003–12

[40] Zhang Z and Glotzer S C 2004 Self-assembly of patchy particles
Nano Lett. 4 1407–13

[41] Pawar A B and Kretzschmar I 2010 Fabrication, assembly, and
application of patchy particlesMacromol. Rapid Commun. 31
150–68

10



J. Phys.: Condens. Matter 34 (2022) 354002 J Russo et al

[42] Bianchi E, Blaak R and Likos C N 2011 Patchy colloids: state
of the art and perspectives Phys. Chem. Chem. Phys. 13
6397–410

[43] Romano F and Sciortino F 2011 Patchy from the bottom up Nat.
Mater. 10 171

[44] Bianchi E, Capone B, Coluzza I, Rovigatti L and van Oostrum
P D J 2017 Limiting the valence: advancements and new
perspectives on patchy colloids, soft functionalized nanopar-
ticles and biomolecules Phys. Chem. Chem. Phys. 19
19847–68

[45] de Las Heras D, Tavares J M and da Gama M M T 2011 Phase
diagrams of binary mixtures of patchy colloids with distinct
numbers of patches: the network fluid regime Soft Matter 7
5615–26

[46] Rovigatti L, Russo J and Romano F 2018 How to simulate
patchy particles Eur. Phys. J. E 41 59

[47] Romano F, Sanz E and Sciortino F 2011 Crystallization of
tetrahedral patchy particles in silico J. Chem. Phys. 134
174502

[48] Romano F and Sciortino F 2012 Patterning symmetry in the
rational design of colloidal crystals Nat. Commun. 3 975

[49] Ronceray P and Harrowell P 2017 Suppression of crystalline
fluctuations by competing structures in a supercooled liquid
Phys. Rev. E 96 042602

[50] Trubiano A and Holmes-Cerfon M 2021 Thermodynamic sta-
bility versus kinetic accessibility: pareto fronts for pro-
grammable self-assembly (arXiv:2104.11341)

[51] Bupathy A, Frenkel D and Sastry S 2021 Temperature proto-
cols to guide selective self-assembly of competing structures
(arXiv:2110.11274)

[52] Neophytou A, Chakrabarti D and Sciortino F 2021 Facile self-
assembly of colloidal diamond from tetrahedral patchy parti-
cles via ring selectionProc. Natl Acad. Sci. 118 e2109776118

[53] Wikipedia Contributors 2021 List of NP-complete prob-
lems—wikipedia, the free encyclopedia https://en.wikipedia.
org/wiki/List_of_NP-complete_problems (accessed 1 Nov-
ember 2021)

[54] MiniSat N E 2005 A SAT solver with conflict-clause minimiza-
tion Proc. SAT-05: 8th Int. Conf. on Theory and Applications
of Satisfiability Testing pp 502–18

[55] Liang J H, Oh C, Mathew M, Thomas C, Li C and Ganesh V
2018 Machine learning-based restart policy for CDCL SAT
solvers Int. Conf. on Theory and Applications of Satisfiability
Testing (Berlin: Springer) pp 94–110

[56] Papadimitriou C H 1991 On selecting a satisfying truth assign-
ment FOCS vol 91 pp 163–9

[57] Xiao F, Luo M, Li C-M, Manya F and Lü Z 2017 Maplelrb
lcm, maple lcm, maple lcm dist, maplelrb lcmoccrestart and
glucose-3.0+ width in SAT competition 2017 Proc. of SAT
Competition pp 22–3

[58] Heule M J H, Järvisalo M and Suda M 2019 SAT competition
2018 J. Satisfiability, Boolean Model. Comput. 11 133–54

[59] Monasson R, Zecchina R, Kirkpatrick S, Selman B and
Troyansky L 1999 Determining computational complex-
ity from characteristic ‘phase transitions’ Nature 400
133–7

[60] Kirkpatrick S and Selman B 1994 Critical behavior in the
satisfiability of random Boolean expressions Science 264
1297–301
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[68] Šulc P, Romano F, Ouldridge T E, Doye J P and Louis AA 2014
A nucleotide-level coarse-grained model of RNA J. Chem.
Phys. 140 235102

[69] ten Wolde P R and Frenkel D 1997 Enhancement of protein
crystal nucleation by critical density fluctuations Science 277
1975–8

[70] Stukowski A 2010 Visualization and analysis of atomistic sim-
ulation data with OVITO-the open visualization tool Mod-
elling Simul. Mater. Sci. Eng. 18 015012

[71] Boles M A, Engel M and Talapin D V 2016 Self-assembly of
colloidal nanocrystals: from intricate structures to functional
materials Chem. Rev. 116 11220–89

[72] Liu W et al 2016 Diamond family of nanoparticle superlattices
Science 351 582–6

[73] Zhang T, Hartl C, Frank K, Heuer-Jungemann A, Fischer S,
Nickels P C, Nickel B and Liedl T 2018 3D DNA origami
crystals Adv. Mater. 30 1800273

[74] Tian Y et al 2020 Ordered three-dimensional nanomaterials
using DNA-prescribed and valence-controlled material vox-
els Nat. Mater. 19 789–96

[75] Chakraborty I, Pearce D J, Verweij R W, Matysik S C, Giomi L
andKraft D J 2021 Self-assembly dynamics of reconfigurable
colloidal molecules (arXiv:2110.04843)

[76] Xiong Y, Yang S, Tian Y, Michelson A, Xiang S, Xin H and
Gang O 2020 Three-dimensional patterning of nanoparticles
by molecular stamping ACS Nano 14 6823–33

11


	SAT-assembly: a new approach for designing self-assembling systems
	1.  Introduction
	2.  Boolean satisfiability problem
	3.  Mapping of the inverse design task to a Boolean satisfiability problem
	3.1.  Variable definition
	3.2.  Clause definition
	3.3.  Solving design problem and eliminating competing structures

	4.  Application to the design of the cubic diamond lattice
	4.1.  Simulation model
	4.2.  Set of particles to assemble a cubic diamond lattice
	4.3.  Assembly simulations

	5.  Conclusion and outlook
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


