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Abstract

Following Gromov, a Riemannian manifold is called area-extremal if any modifica-
tion that increases scalar curvature must decrease the area of some tangent 2-plane.
We prove that large classes of compact 4-manifolds, with or without boundary, with
nonnegative sectional curvature are area-extremal. We also show that all regions of
positive sectional curvature on 4-manifolds are locally area-extremal. These results are
obtained analyzing sections in the kernel of a twisted Dirac operator constructed from
pairs of metrics, and using the Finsler—Thorpe trick for sectional curvature bounds in
dimension 4.

Mathematics Subject Classification 53C21 - 53C23 - 53C24 - 53C27

1 Introduction

A lower bound scal > ¢ > 0 on the scalar curvature of a Riemannian n-manifold
does not constrain either its diameter or volume, provided n > 2. However, there are
other types of upper bounds on the “size” of such manifolds, in terms of “dilations of
topologically significant maps”, as explained by Gromov [15, Sect. 4]. Since shrinking
areas of surfaces on manifolds with scal > 0 always increases scalar curvature, it is
natural to ask in which cases this is the only way of doing so. Motivated by this
question, following Gromov [15, Sect. 4], we call a metric gy on a closed manifold M
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area-extremal (for scalar curvature) if, for all metrics g on M,
A g1 = A%gy and scal(gy) > scal(go) (L.1)

imply that scal(g;) = scal(gp); and area-rigid if (1.1) implies g = go. The first
condition in (1.1) means that areas measured with g; are no smaller than those mea-
sured with go. For instance, this is the case whenever the stronger condition g1 > go
holds, i.e., whenever distances are no smaller under g; than under go. Thus, area-
extremality can be summarized as the impossibility of increasing scalar curvature
without shrinking the area of some surface (or infinitesimal 2-plane).

Round metrics on spheres are area-rigid, by a result of Llarull [20]. Expanding on
work of Min-Oo [23], Goette and Semmelmann [14] proved that any metric g with
positive-semidefinite curvature operator (R > 0) on a manifold with nonzero Euler
characteristic is area-extremal, and area-rigid if %al g > Ric > 0. Furthermore, Goette
and Semmelmann [13] proved that Kédhler metrics with Ric > 0 are area-extremal, and
area-rigid if Ric > 0. However, since these previous results only apply to either spheres
or manifolds with special holonomy, finding broader criteria for area-extremality/area-
rigidity and describing particular classes of these metrics remain important problems
[15, Prob. C].

In this paper, we prove new area-extremality and area-rigidity criteria in dimension
4, relying on a unique characterization of sectional curvature bounds. Namely, by the
so-called Finsler—Thorpe trick, an orientable Riemannian 4-manifold has sec > 0
if and only if there exists a function t such that R + t* > 0, where R denotes
the curvature operator, and * the Hodge star operator, each acting on 2-vectors, see
Proposition 2.2 for details. Other geometric applications of the Finsler—Thorpe trick
have recently appeared in [3-6].

1.1 Main results

Our first result is the following extremality/rigidity criterion:

Theorem A Let (M*, g) be a closed simply-connected Riemannian manifold with
sec > 0. If t: M — R such that R + t+ > 0 can be chosen nonpositive
or nonnegative, then g is area-extremal. If, in addition, % g > Ric > O, then g

is area-rigid.

As a consequence of Bettiol and Mendes [6, Theorem D], the 4-manifolds (M 4, g)
to which Theorem A applies either have definite intersection form, or are isometric to
$? x $2 endowed with a product metric. By classical work of Donaldson and Freedman,
the former are homeomorphic to $* or to a connected sum CP?# . .. #C P2 of finitely
many copies of CP2. Conjecturally, such manifolds only admit metrics with sec > 0
if at most one summand is used (i.e., if M* is either $* or CPz), and with sec > 0 if
at most two summands are used (i.e., if M* is either $¢, CP2, or CP2#CP?).

Previously known area-extremal metrics on simply-connected 4-manifolds M are:

e metrics with R > 0, hence M is diffeomorphic to $4, see e.g. [28, Theorem 1.10];
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e metrics with R > 0 (but R ¥ 0), hence M is isometric to either a product metric
on $2 x 82 or a Kihler metric on C P2, see e.g. [28, Theorem 1.13];

e Kihler metrics on CP2#C P2 with Ric > 0, which exist by Yau’s solution [29] to
the Calabi conjecture, and are area-rigid by [13].

Thus, using Theorem A, we obtain new examples of area-rigid metrics:

Corollary B The following hold:

(i) On CP2, metrics in a neighborhood of the Fubini-Study metric are area-rigid;
(i) On CP*#C P2, Cheeger metrics with vanishing neck length are area-rigid.

To our knowledge, Corollary B (i) gives the first example of an open set of area-rigid
metrics on a closed manifold other than the sphere. Moreover, note that both (i) and (ii)
yield the existence of area-rigid metrics with generic holonomy. Recall that Cheeger
metrics on the connected sum of two compact rank one symmetric spaces are metrics
with sec > 0 obtained gluing complements of disks along a “neck” region isometric
to a round cylinder $" x [0, £] of arbitrary length £ > 0, see [9]. In particular, the
neck region does not have Ric > 0. For this reason, £ = 0 is necessary in Corollary
B (ii), since then Ric > 0 on the (dense) complement of the neck hypersurface.
Meanwhile, Cheeger metrics on CPX#CP? with ¢ > 0 are area-extremal but not area-
rigid, see Theorem 4.7 and Remark 4.8. We note that C P>#C P2 admits no metrics
with R > 0, nor complex structures, and thus no previous methods can be used to
identify area-extremal metrics on this manifold.

As a consequence of Corollary B and previous examples, there are area-extremal
metrics with sec > 0 on all closed simply-connected 4-manifolds currently known to
admit metrics with sec > 0, namely, g4 CP?, 82 x $2, and CP%# + C P2, which are
conjectured to be all of them. Furthermore, metrics in a neighborhood of the round
metric on $* have R > 0 and are thus area-rigid by [14], so we conclude there is
an open set of area-rigid metrics with sec > 0 on each of the two simply-connected
closed 4-manifolds known (and conjectured to be all) to admit metrics with sec > 0.

There is a natural extension of the above notions of area-extremality and area-
rigidity to Riemannian manifolds with boundary. Given such a manifold (M, g), we
denote by I35, the second fundamental form of M with respect to the inward unit
normal, and by H(g) = trll) the mean curvature of dM. A metric gop on M is
area-extremal (for scalar curvature) if all metrics g; satisfying (1.1) on M with

gilom = golam and  H(g1) > H(go) (1.2)

must have scal(g;) = scal(gp) as well as H(gy) = H(go); and area-rigid if (1.1)
and (1.2) imply g1 = go. It is striking that area-extremality, in the above sense for
4-manifolds with boundary, holds locally around any point with sec > 0, as follows:

Theorem C If (X*, g) is a Riemannian 4-manifold, then g is area-extremal on suf-
ficiently small convex neighborhoods M of any point in X at which g has sec >
0.

In particular, Theorem C implies that any metric deformation supported in a suf-
ficiently small convex subset M of a 4-manifold with sec > 0 either preserves both
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scal and H, or else decreases the area of some surface in M, or scal somewhere on M,
or H somewhere on d M. On the other hand, recall that for generic g, any sufficiently
small deformation of the function scal|,; is realized as the (restriction to M of the)
scalar curvature of a metric near g, by a result of Corvino [10].

Theorem C follows from an extension of Theorem A to 4-manifolds (M?, g) with
convex boundary, i.e., with I3, > 0. (Note that a geodesic ball of sufficiently small
radius in any Riemannian manifold has convex boundary.)

Theorem D Let (M 4 g) be an orientable compact Riemannian 4-manifold with sec >
Oand Mgy > 0. If t: M — R such that R + t©x > 0 can be chosen nonpositive
or nonnegative, then g is area-extremal. If, in addition, %al g > Ric > 0, then g is

area-rigid.

Similar criteria for manifolds with boundary have been recently proven in all even
dimensions under the more restrictive assumption R > 0. Lott [21] showed that
metrics with R > 0 and [, > 0 on compact manifolds with boundary and nonzero
Euler characteristic are area-extremal (in a more general sense; namely, relaxing the
first condition in (1.2) to g1|smr > golam). Cecchini and Zeidler [8] obtained area-
extremality results for certain warped product metrics on M x [—1, 1], where M
has R > 0 and nonvanishing Euler characteristic; those results have recently been
extended in [2]. It is noteworthy that Theorem D does not require M to be simply-
connected, nor to have nonzero Euler characteristic. Indeed, by the Soul Theorem, any
(M*, g) as in Theorem D is a disk bundle over a totally geodesic closed submanifold,
whose topology is constrained by the fact it has sec > 0 and dimension < 3. In turn,
this has topological implications on M which are sufficient to apply our methods and
prove area-extremality.

Theorem D yields new examples of area-extremal and area-rigid metrics; e.g., the
metrics on the complement of a ball in C P2 used in the construction of Cheeger metrics
on C P%#C P2, described above. No other previous criteria apply to this manifold, since
it is diffeomorphic to the normal disk bundle of CP! c CP?, which is known not
to admit metrics with R > 0 and I35, > 0, see [24]. Examples with vanishing Euler
characteristic are provided by standard metrics with R > 0 on products of spheres
and disks, see Example 5.7. With different boundary conditions, such examples are
also addressed in the related result [21, Theorem 1.3]. Finally, note that the round
hemisphere Si is area-rigid as a consequence of Theorem D, or [21, Corollary 1.2],
so the counterexamples to the Min-Oo conjecture constructed in [7] must shrink areas
somewhere on Sﬁ_, a fact that was shown in [22].

Both Theorems A and D follow from more general results (Theorems 4.4, 5.3),
in which we prove area-extremality/area-rigidity in a broader sense, also discussed
in [13, 15, 20, 21]. Namely, metrics can be compared similarly to (1.1) and (1.2)
but using maps other than the identity, including maps between different manifolds,
which Gromov describes as allowing for competitors with “topological modifications”.
Indeed, Theorems A and D are simplified versions of such statements on comparisons
with self-maps of nonzero degree, see Corollaries 4.5 and 5.5.
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1.2 Outline of proofs

For the reader’s convenience, we briefly describe a general framework to prove area-
extremality/area-rigidity based on spin geometry, which is used in the above results.
Let (M, go) and (N, g1) be oriented Riemannian manifolds and f: N — M be a spin
map; e.g., one may take N = M and f = id; see Sect. 4 for details. Consider the
Dirac operator D(gg, g1) on spinors over N twisted with the pullback bundle via f of
the spinor bundle over M.

The Bochner-Lichnerowicz—Weitzenbock formula for D(gg, g1) is given by

D(g1, 20)* = V*V + Lscal(g)) + R(R, df),

where R(R, d f) is abundle endomorphism that depends only on the curvature operator
Rof (M,go) anddf: TN — T M. Algebraic considerations show that

R(R,df) = T(R,df) — jtue(R)o f — jtr(F*oRo F) o f,

where F: A>TN — A>T Misthemap F(vAw) = d f(v)Adf(w),andT(R,df) = 0
whenever R > 0, see Lemmas 3.2 and 3.4. For instance, if f = id and g; = go, then
T(R, d f) is the curvature term in the Weitzenbdck formula for the Hodge Laplacian on
forms. Further algebraic considerations (see Lemma 3.3) show that if A>g; > f*AZg
and R has sec > 0, then tr(F* o Ro F) < tr(R) = %scal(go).

We thus search for conditions on R such that sec > 0 and 7(R, d f) > 0 whenever
A2g1 = f* A% g, since then

D(g0, 81)> = V¥V + %(scal(gl) — scal(go) o f)

and so scal(g)) > scal(ggp) o f forces scal(g)) = scal(go) o f if the underlying
topologies imply, by way of the Atiyah—Singer Index Theorem, that ker D(g1, go) #
{0}.

In Sect. 3, we show that the curvature assumption in Theorem A ensures that
T(R,df) > 0, up to restricting this endomorphism to an appropriate subbundle. In
Sect. 4.1, we give topological conditions on M and N sufficient to have a nontrivial
section £ of that subbundle with D(gg, g1)& = 0. In the earlier area-extremality/area-
rigidity works mentioned above, this topological condition is the nonvanishing of
the Euler characteristic, and the corresponding grading is used on the tensor product
of spinor bundles. However, the specific subbundle stemming from computations in
Sect. 3 requires us to use anovel method, combining the so-called “Euler characteristic"
and “signature” gradings of the tensor product of spinor bundles, an idea reminiscent
of Goette and Semmelmann [14, Remark 2.3]. We then use & to prove our most general
area-extremality and area-rigidity result for closed manifolds, Theorem 4.4, which in
turn implies Theorem A. In Sect. 4.3, we describe metrics satisfying the required
curvature assumption, proving Corollary B.

Following Lott [21], the above method is extended to manifolds with boundary in
Sect. 5, proving Theorem 5.3 along with two corollaries, which imply Theorems C
and D. The convexity assumption Iy, > 0 is used to ensure that V*V > 0, while the
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existence of a nontrivial section & of the appropriate subbundle involves an application
of the Atiyah—Patodi—Singer Index Theorem for manifolds with boundary.

2 Preliminaries

In this section, we fix conventions, definitions, and notations, and recall basic facts
from linear algebra and spin geometry, closely following Lawson [19]. Throughout,
V and W denote (finite-dimensional) oriented real inner product spaces.

2.1 Linear algebra

Given a linear map [: W — V, its adjoint [*: V — W is the linear map such that
({(w), v)y = (w,*(v))w forall v € V and w € W. The space of linear maps
[: W — Visdenoted Hom(W, V), and, if V = W, we write End(V) = Hom(V, V).
We identify Hom (W, V) = W®YV by means of (w®v)(-) = (w, -)v. The subspaces of
symmetric and skewsymmetric endomorphisms of V,i.e.,! € End(V) such that[* =
and [* = —[, are denoted Symz(V) C End(V) and AV C End(V), respectively, and
End(V) = Sym?(V) @ A2V. The special orthogonal group of V, i.e., the group of
linear isometries of V is denoted SO(V) C Symz(V).

All of End(V), Symz(V), A2V, Hom(W, V), Hom(/\2W, /\2V), etc., are endowed
with the compatible inner products determined by those in V and W. For example, if
a linear map L: AZ W — A2V is of the form L = A%l forsomel: W — V, i.e.,

L(wi Awp) = 1(wy) Al(wp), forallwy, wy e W, 2.1

then its adjoint L*: A%V — AZW is given by L* = A2([*).
We will make repeated use of the following elementary fact from Linear Algebra:

Lemma 2.1 (Singular value decomposition) Given any linearmapl: W — V between
real inner product spaces of the same dimension, there exist orthonormal bases {w;}
of W and {v;} of V, and real numbers L; > 0, such that [(w;) = A; v;.

Proof Let A € Symz(W) be the linear map such that (Ax, y)w = (I[(x), [(y))y forall
x,y € W.Clearly, A is symmetric and positive-semidefinite, so it can be diagonalized
by an orthonormal basis {w;} of W, on which A = diag(k%) for some A; > 0. By the
above, {{(w;)} are pairwise orthogonal vectors in V that span the image /(W). The
unit-length vectors corresponding to the nonzero / (w;) form a set that can be extended
to an orthonormal basis {v;} of V, and, by construction, /(w;) = X; v;. O

We say that a linear map [: W — V is nonincreasing if ||[(w)| < ||w] for all
w € W, or, equivalently, if all A; > 0 arising from Lemma 2.1 satisfy A; < 1. Note
thatif/: W — V is nonincreasing, thensois L = A%l: A2W — A%V givenin (2.1).
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2.2 Algebraic curvature operators

For convenience, we treat endomorphisms R € Sym? (A% V) both as a symmetric linear
maps R: A2V — A2V andaslinearmaps V xV 3 (x,y) = Ryy € A?V C End(V)
such that R, y = —Ry y, where

(Rey(@), w) =(R(x Ay),wAz), forallx,y,z,weV. (2.2)

The linear subspace of Sym>(A2V) formed by those R that satisfy the first Bianchi
identity Ry y(2) + Ry ;(x) + R, (y) = Ois denoted Sym,% (A2V), and its elements are
called algebraic curvature operators. These are pointwise models at each V = T, M
for the curvature tensor/operator R of a Riemannian manifold (M, g). Accordingly,
the sectional curvature of a 2-plane o = x A y € AV with respect to R is

secr(0) = (Ry,y(¥), x) = (R(0), o),

while Ricg (x, y) is the trace of the endomorphism z — R ,(y), and scalg = 2tr R.
As usual, by secg > 0 and Ricg > 0 we mean secg(o) > 0 for all 2-planes 0 C V
and Ricg (x, x) > O for all x € V, respectively; similarly for secg > 0 and Ricg > O.
The orthogonal complement of Symi(/\zV) in Sym?(A2V) can be identified with
AV, where @ € A*V C Sym?(A2V) is given by (w(«), 8) = (w,a A B). In
particular, if dim V = 4, this is a one-dimensional space spanned by the Hodge star
operator : A2V — A2V. Moreover, o € A2V satisfies 0 A o = 0 if and only if
(x0, o) = 0, i.e., the quadric defined by * in A%V is precisely the Pliicker embedding
of the oriented Grassmannian of 2-planes Gri|r (V) € A2V. As shown by Finsler [12],
a quadratic form (R(o), o) is nonnegative when restricted to the quadric (xo, o) = 0
if and only if some linear combination of R and * is positive-semidefinite, yielding:

Proposition 2.2 (Finsler—Thorpe trick) Let R € Symi(/\2V) be an algebraic curva-
ture operator on V, with dim 'V = 4. Then secg > 0, respectively secg > 0, if and
only if there exists T € R such that R 4+ © % > 0, respectively R + 7 % > 0.

Remark 2.3 The above has been referred to as Thorpe’s trick, as it was rediscovered by
Thorpe [27], see [4] for details. In the mathematical optimization and control literature,
this fact is known as S-lemma, or S-procedure, see [25].

It is an easy consequence of convexity that the set of T € R suchthat R+ v > 0
for a fixed R € Symi (/\2V) with secg > 0, as in Proposition 2.2, is a closed interval
[Tmin, Tmax], Which degenerates to a single point (i.e., Tmin = Tmax) if and only if R
has secg > 0 but does not have secg > 0, see [4, Proposition 3.1].

2.3 Clifford algebra and spinors
If dimg V = 2n, then the complex Clifford algebra C£(V) associated to V has a

unique irreducible complex representation S(V'), which is a complex vector space of
dimension 2" of so-called (Dirac) spinors. We endow S(V) with a Hermitian inner
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product for which the action of unit vectors in C£(V) is isometric. The complex
volume element wg € C£(V), which is given by wg = (v/—1)"e1es . . . e, for any
orthonormal basis {ey, ..., e3,} of V, satisfies wé = 1. Thus, it induces splittings of
C£(V) and S(V) as orthogonal direct sums of eigenspaces of w¢ with eigenvalue 1,
denoted

CeV)Y=Cer(VY® Ce— (V) and S(V)=SHV)® S™(V), (2.3)

respectively. We write S := S(V) and SE = SEWV)to simplify notation, when the
inner product space V in question is clear from the context.

The homomorphism C£(V) — End(S) defining the representation S is an isomor-
phism; and, just as in the real case discussed above, the Hermitian inner product (, )
on $ allows us to identify End(S) = S® Svia (¢ @ ¥)(-) = (¢, -) ¥, forall ¢, ¢ € S.
The composition of these isomorphisms is an isomorphism C¢(V) = S ® S which is
Ct(V)-equivariant with respect to left multiplication on C£(V') and multiplication on
the second factor of S ® S. Thus, in light of (2.3), it restricts to isomorphisms

Cr(V)ZS®ST and CL(V)ESQS™. 2.4)

As a vector space, the Clifford algebra C£(V) is isomorphic to the complexified
exterior algebra ALV = P » APV @R C, via the linear map given on orthonormal
basis elements by ¢;, ...ei, — ej; A--- Ae;,. Thisis a Zp-graded isomorphism: the
natural splitting C£(V) = C£°(V) @ C¢' (V) arising from the Z,-grading of C£(V)
is mapped to the splitting AGV = A"V @ /\%ddV into exterior powers of even
and odd degrees. The action of C£0(V) = NGV on S preserves S* while that of
cel(vy = OdG‘V interchanges these subspaces Since the Z,-graded isomorphism
AV — (DZ(V) conjugates the duality isomorphism A”?V — A?"~PV given by

(v/—1)P=D+7 & where « is the Hodge star operator, and left multiplication by w¢
in C£(V), it follows that

/\%/en + evenV ® /\ evenV, odd V= + oddV ® /\ oddV

Ceo(V) = e+ Yy ce vy, Ce (V)= z+ Twvye ce v,
where vertically aligned spaces are isomorphic, i.e.,

:I:,even Vo~ Cgi,o(v) ~ st @ St
/\% My = oetl(v) = 5T @ sE, 22

and this notation is compatible with (2.4), i.e., C¢* (V) = C¢H0(V) @ Ce+1(V).
2.4 Spin group

The nontrivial double cover of the special orthogonal group SO(V) is the spin group
Spin(V), and it can be realized as Spin(V) C CeO(V), see [19, Chapter I] for details.
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Thus, its Lie algebra is isomorphic to the Lie algebra so(V) of SO(V), which is
identified with A2V as usual, i.e., (x A y)(-) = (x,-)y — (v, -)x corresponds to an
infinitesimal rotation in the 2-plane of V spanned by x and y.

The inverse of the Lie algebra isomorphism E( induced by the double cover
CO(vV) o Spin(V) — SO(V) is the map E, 1. A2V X s0(V) — spin(V) C
CeO(V) given on x A y, where x, y € V are onhogonal vectors, by

—~—

g (x AY) = 2)cy, (2.6)

cf. [19, Proposition. 1.6.2]. Note that &, U differs by a factor of % from the restriction
to A2V of the isomorphism AV — CE(V) mentioned above, for which x Ay > xy.

2.5 Spinor bundles and Dirac operators
Let (M 2n g) be an oriented Riemannian manifold of dimension 2n, and denote by yLC
its Levi—Civita connection on 7M. Applying the above constructions pointwise, i.e.,
to each tangent space V = T, M, p € M, we obtain the spinor bundle S(T M) over M
and analogous isomorphisms and splittings compatible with the natural connections
induced by V€ on each of these bundles. In particular, we note that w¢ is parallel.
Once again, to simplify notation, we write S := S(TM) and S* := ST(TM)
if the Riemannian manifold (M, g) is clear from the context, as well as S, and Sgi,
respectively, to indicate the Riemannian metric g being used, when necessary. The
connection on Sg induced by VL€ is obtained applying the map (2.6) to the connection
forms. Namely, given a local orthonormal frame {eq, ..., e2,} of T M we can choose
a local frame for S such that the connection VS on S is given by

ee'
—d+Z e,,eJ 121.

The curvature tensor RS: TM x TM — A> S C End(S) of VS is given by

— eé;é;j
RYy =85 oRey =) g(Reyle) ej) =" 2.7)

i<j

where R: TM x TM — A*TM C End(T M) is the curvature tensor of VEC.
The Dirac operator is the first-order differential operator on sections of S given by

2n

D)= eVie

More generally, if E is a complex vector bundle over M, with a connection VE we
can consider the spinor bundle twisted by E, which is the bundle S ® E endowed with
the tensor product connection V and Clifford multiplication on the S factor, which
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makes it a Clifford bundle with a natural twisted Dirac operator Dg. Similarly to the
above, Dg acts on a decomposable local section ¢ ® ¢ of S ® E by

2n
Dp(p®e) =Y (eVip) ®e+ (eip) ® VEe. 2.8)
i=1

The Bochner—Lichnerowicz—Weitzenbock formula, cf. [19, Theorem I1.8.17], relates
D% and the connection Laplacian V*V acting on sections of § ® E as follows

D} = V*V + lscal(g) + Zeiej ® Rg’ej, (2.9)

i<j

where RE: TM x TM — A*E C End(E) is the curvature tensor of VZ, and
scal(g) is the scalar curvature of (M, g). For example, if E is the trivial bundle, one
recovers the well-known formula D? = V*V + }Tscal(g) for sections of S; while if
E = S, the twisted Dirac operator Dg on S ® S is conjugate to d + d* acting on
AeTM* = CUTM) = S ® S, via the isomorphisms above.

3 Pointwise inequalities

In this section, we analyze algebraic properties and provide estimates for two types of
curvature terms: the last term R in the Bochner-Lichnerowicz—Weitzenbock formula
29)if E = f*(S(TM)) is the pullback by f: N — M of the spinor bundle of
M, and (a modification of) the curvature term 7 in the Weitzenbock formula for the
Hodge Laplacian on differential forms on M. This is done pointwise, so we work
with oriented real inner product spaces V and W of the same dimension, a linear map
[: W — V which encodes d f, and the induced map L = A2l asin (2.1).

Definition 3.1 Forevery R € Sym?(A2V) and L € Hom(A2W, A2V), we define two
elements in the space of endomorphisms End(S W S(V)) by means of

R(R, L) = =2 B ® R(L(B)),

TR L):=—) (L") ® 1+ 1®a)o (L*(R@)) ® 1 + 1 ® R(e)).

i
where {«;} and {B;} are orthonormal bases of A2V and A2W, respectively, and
A*V CEnd(S(V)) and A?W C End(S(W)) 3.1
via the respective actions of A2V and AW on S(V) and S(W), determined by the
map Eal in (2.6). Moreover, we canonically identify End(S(W)) ® End(S(V)) and
End(S WS (V)), and o in the definition of 7(R, L) is composition in the latter.
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The endomorphisms R(R, L) and 7(R, L) of S(W) ® S(V) do not depend on the
choices of {e;} and {8;}. Indeed, identifying A>W ® A2V = Hom(A?W, A2V), and
considering R € Sym2(/\2 V) C End(A2V) = A2V ® A2V, we have that

R(R,L)=—2RoL and T(R,L) = —c((T; ® T.)(R)),

where T : A2V — End(S(W))®End(S(V))is givenby T () = (L*(0)@1+1®«),
and c is the composition c(A®Q B) = AoBforall A, B € End(S(W)@S(V)). Clearly,
the maps R — R(R, L), L — R(R, L), and R — 7(R, L) are linear.

As elements of C£(W) ® C£(V) = End(S(W)) ® End(S(V)), both R(R, L) and
T(R, L) belong to C£O(W) ® C£°(V), and hence, as endomorphisms, they restrict to
endomorphisms of ST(W) ® ST (V) and of S™(W) ® S~ (V).

Lemma 3.2 For all algebraic curvature operators R € Symi(/\2 V), we have
R(R,L) =T(R,L) — Jtr(L* o Ro L) — gscalg.
Proof By Lemma 2.1, we may choose orthonormal bases {«;} of A2V and {Bi} of

AZW such that L(B;) = »ja; for some A; > 0. Note that L*(«;) = A; ;. Since R is
symmetric, we may write R(¢;) = Zj Rijaj with R;; = Rj;, and hence

—Zﬂi ® R(Ajo;) — Zﬁi ® A ZRijOlj
; ; |
—Z/\iﬂi ® R(a;) — ZZRji?»i,Bi R aj

R(R, L)

J

=Y L*) ® R(e) — Y L*(R(e)) ®a;
i J

=T(R. L)+ ) (L") o L*(R(@)) ® 1+ ) 1 ® (& o R(et)).

1 l

A routine argument using the symmetries of Clifford multiplication and of the
curvature operator R, including the Bianchi identity, see [19, Theorem II.8.8], implies

Zai o R(wj) = —%tr(R) = —%scalR.
i

Since L*o Ro L € Sym?(A>W) has the same symmetries as R, the above also implies

ZL*(O{,-) o L*(R(a;)) = Zﬂi o(L*oRoL(f)) = —tr(L* o Ro L).

]

We now estimate the terms in the right-hand side of the identity in Lemma 3.2.
The following two lemmas were observed in [14, Sect. 1.1], but, for completeness, we
supply their proofs below using our notations.
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Lemma3.3 IfR € Symi(AzV) is an algebraic curvature operator with secg > 0
andl: W — V is a linear map such that L = A%l is nonincreasing, then

tr(L*oRoL) < %scalR.

If, in addition, %scal R > Ricgr > 0O, then equality above implies [ is an isometry.

Proof By Lemma 2.1, we may choose orthonormal bases {v;} of V and {w;} of W
such that /(w;) = A;v; for some A; > 0. Then {w; A w;};<; is an orthonormal basis
of A2W and (R o L)(w; A w;) = AiAj R(w; Aw;) foralli < j, so

tr(L* o Ro L) =Y A7A% secr(v; A vj).

i<j

Since L is nonincreasing, A;A; < 1foralli < j, which proves the desired inequality.
Iftr(L*oRo L) = %scalR, then

2(1 — A71%) secp(vi Avj) =0. (3.2)

i<j

If, furthermore, %scal r > Ricg, then for each fixed a, we have ), secg(vy A vp) <
e j secr(vj A vj), or equivalently,

0< Z secr(v; A vj).
i<j

i,j#a

Thus there exist i, j # a so that secg(v; Av;) > 0. (Note that %scalR > Ricg implies
dimV > 3.) Assecg > 0, it follows that (3.2) implies A;A; = 1. But ;A, < 1 and
Ajiqg <1, s0 we conclude that A, < 1 forall a, i.e., [ is nonincreasing. If, moreover,
Ricg > 0, then, for each a, there exists b # a such that secg (v, A vp) > 0. Again it
follows that A,A, = 1, and we conclude that A, = A, = 1, so [ is an isometry. O

Lemma3.4 IfR € Symz(/\2V) is such that R > 0, then 7(R, L) > 0.

Proof Choose an orthonormal basis «; of A2V that diagonalizes R, i.e., such that
R(a;) = p; ;. Since R > 0, we have that p; > 0. Then, by Definition 3.1,

TR.L)=-) p(L @)@l +1®a).

1

Since «; € spin(V) and L*(e;) € spin(W), i.e., these are elements of C£°(V) and
C°(W) in the images of the corresponding isomorphisms (2.6), the endomorphisms
L*(a;)) @14+ 1® a; of S(W) ® S(V) are skewsymmetric, so the conclusion follows.

O
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Let us now assume that both V and W are 4-dimensional. We denote the Hodge star
operators of V and W by %" € Sym?(A2V) and " € Sym?(A2W), and similarly for
wg, € Ce(V)andwl € CL(W). Recall from Sects. 2.3 and (2.6) that B! (x(x A y)) =

% wc xy if x and y are orthogonal.

Lemma 3.5 If the linear map 1: W — V is such that L = A?l is nonincreasing and
dimp V = dimg W = 4, then the restriction of TV, L) to ST(W) @ ST(V) is
positive-semidefinite.

Proof By Lemma 2.1, we may choose orthonormal bases {v;} of V and {w;} of W
such that /(w;) = A;v; for some A; > 0. The assumption on / ensures that A;A; < 1
for all i # j. We first note that, with these choices,

L*(*V (vi A vj)) = Wij *W (w; A wj),

where |wij| = |L*(+V (v; Avj))| < 1, since +V is an isometry of A?V. Symmetries
of Clifford multiplication in C£°(W) ® Ceow) = End(S+(W) ® S+(V)) and the

fact that &, Yo (x A y)) = %a)@ xy if x and y are orthonormal imply that:

L*(*V (vi A vj)) ®1+1 ®>1<V(v,- /\vj) = % (/Mj a)gw,-wj ®1+1 ®a)gv,~vj)

(,u,ij wiwja)g RI+1I® v,-vng)

D= N—

(pLij wiw; ®1+1 ®U,‘Uj),

where the last equality holds because the above endomorphisms are restricted to the
tensor product ST (W) ® ST(V) of +1-eigenspaces of a)g and a)g Therefore,

'T(*V,L) = _211 (}\.,’)\,j wiw; ®1+1 ®v,~vj) o (/L,'j wiw; ®1+1® vivj)
i<j
= };Z(_)‘i)‘j + wiw; ®vivj) o (—,u,ij + wiwj ®vivj),

i<j

and, since (wiwj & v,-vj)2 =1, and |A;A;] < 1 as well as |u;;| < 1, we may use a
basis of eigenvectors of w;w; ® v;v; to conclude that the eigenvalues of each of the
above summands are (—A;A; + 1)(—p;j +1) > 0or (=A;A; — D(—u;; —1) > 0.0

Remark 3.6 Under the hypotheses of Lemma 3.5, it also follows that the restriction of
T+, L) to S~(W) ® S~ (V) is negative-semidefinite.
4 Extremality and rigidity on closed 4-manifolds

In this section, we prove Theorem A and Corollary B in the Introduction, by showing
that a certain twisted Dirac operator has nontrivial kernel and using the results of
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Sect. 3 to analyze the curvature term in the corresponding Bochner-Lichnerowicz—
Weitzenbock formula.

We begin by recalling and generalizing the notions of area-extremality and
area-rigidity for scalar curvature discussed in the Introduction to also account for
“topologically modified” competitors, cf. Gromov [15, Sect. 4] and [16, Sect. 5%].
Henceforth, all manifolds are assumed connected.

Definition 4.1 A closed oriented Riemannian manifold (M, guy) is area-extremal with
respectto a classC = {f: (N, gny) = (M, gy)} of competitors, consisting of closed
oriented Riemannian manifolds (N, gy) with dim M = dim N and smooth spin maps
f: N — M of nonzero degree, if the inequalities

A2gy = f*Agy and scal(gy) > scal(gy) o f (4.1)

imply scal(gy) = scal(gy) o f. If, in addition, there exists ¢ € M such that (4.1)
implies d f(p): T,N — T, M is a linear isometry for all competitors f: N — M in
Candall p € f~'(q), then (M, gy) is called area-rigid at ¢ € M with respect to C.
If (M, gu) is area-rigid at all of its points with respect to C, then it is simply called
area-rigid with respect to C.

Recall that a smooth map f: N — M is spin if it is compatible with second
Stiefel-Whitney classes, i.e., f*w»(M) = wo(N), and A’gy > f* A% gj means that
f: (N, gn) — (M, gy) is area-nonincreasing, i.e., A>d f is nonincreasing, namely

lx Ayl = [dfp)x Adf iy,

forallx,y € T, N and all p € N. For example, this holds if f: (N, gy) — (M, gm)
is distance-nonincreasing, see Sect. 2.1.

Remark 4.2 The notions of area-extremality and area-rigidity for closed manifolds
in the Introduction correspond to using the class C%)d = {id: M, g1) > (M, g)}
in Definition 4.1, cf. (1.1). Note that competitors given by any diffeomorphisms
f: (M, g)) — (M, go) reduce to the above case, pulling back g by f~1.

4.1 Index theory

Let (M, gyr) and (N, gy ) be closed oriented Riemannian 4-manifolds, and denote by
S(T M) and S(T N) their (locally defined) spinor bundles. Given a spinmap f: N —
M, the twisted spinor bundle S(TN) ® f*S(T M) is globally defined; namely, it is
the spinor bundle of the spin bundle TN & f*T M.

Let E = f*ST(T M), and consider the twisted Dirac operator

DE:T(S(TN)®E) — I'(S(N)® E). 4.2)

Recall from (2.8) that, if we denote by VSV and V3™ the connections on S(7'N) and
S(T M) respectively, and by {e;} a local gy-orthonormal frame for TN, then on a
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decomposable local section ¢ @ f*i of S(TN) ® E, the operator D acts as

De(¢®v) = 24: (VS0) @ £ v + @)@ £ (Vi ).

i=1

We respectively denote by x (X) and o (X) the Euler characteristic and signature
of an oriented 4-manifold X, and by deg(f) the degree of f: N — M.

Lemmad4.3 If f: N — M has deg(f) # 0 and

o(N)

2x(M) +30(M) > dea ()’

(4.3)

then the restriction of Dg to T(ST(TN) ® E) has nontrivial kernel.
Proof By the splitting principle, we may assume that TM @ C = A @ 1| D Ar B A2,
where A1, A are complex line bundles. Let x1, x; denote the ﬁrst Chern classes of

A1, Ao respectively. If A; and A, are spin, ST(T M) = Xz ® Az @ Az ® Xz, cf. [19,
p. 238], and the Chern character of ST(7 M) is given by

ch(ST(TM)) = 2cosh (3 + 2) =2+ L p1(TM) + $e(TM),

where p; is the first Pontryagin class and e is the Euler class. By an argument in [26,
Appendix A4], the same formula also holds in the case that A1 and A, are not spin.
Then, by the Atiyah—Singer Index Theorem,

ind(Dsls+rer) = (ATN) - feh(S* (T b)), [N)

= (—f—zmeN) + L7 U M)+ fre(T M), [N])
— 30 (N) +deg(f) (o (M) + 3 x (M) > 0,

and hence ker (D Elstrne E) is nontrivial. O

Note that all hypotheses of Lemma 4.3 are satisfied if deg(f) = 1 and M = N has
vanishing first Betti number b1 (M) = 0, e.g., if M is simply-connected, since then
XM)=24+by(M)+b_(M)ando (M) = by (M) — b_(M), where by (M) are the
self-dual/anti-self-dual second Betti numbers, so (4.3) simplifies to 4 +4b, (M) > 0.

4.2 Extremality and rigidity

We now combine the pointwise inequalities from Sect. 3 with the Bochner—
Lichnerowicz—Weitzenbock formula (2.9) for the twisted Dirac operator (4.2) and
Lemma 4.3 to prove our main result on area-extremality and area-rigidity of closed
4-manifolds, in the sense of Definition 4.1.
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Theorem 4.4 A closed oriented Riemannian 4-manifold (M, gyy) with sec > 0 such
that R 4 t x > 0 for a nonpositive t: M — R is area-extremal with respect to

A . o (N)
Co:=1{f:(N,gn) = (M,gn) : 2x(M) + 30 (M) > )
deg(f)

If, in addition, %gﬁ,{ > Ric(gy) > 0atq € M, then (M, gy) is area-rigid at
q € M with respect to Cy.

Proof Let f: (N, gn) — (M, gy) be a competitor in Cp, and let E = f*ST(TM).
The Bochner—Lichnerowicz—Weitzenbock formula for the square D% of the twisted
Dirac operator (4.2) is given by (2.9), setting g = gy . From (2.2) and (2.7),
R = —87 (R(x A y)),

where R: A2TM — A2T M is the curvature operator of (M, gjs). Working pointwise
withW =T,N,V =T ,yM,l: W — V givenbyd f(p),and L = A2l we see that
(2.9) can be written using the endomorphism R (R, L) from Definition 3.1 as

D = V*V + 4scal(gy) + R(R, L). 4.4)

Let £ € I'(ST(TN) ® E) be a nonzero section in the kernel of Dg, which exists by
Lemma 4.3. Applying (4.4) and integrating, we obtain, using Lemma 3.2,

o—fw*vs s>+4f scal(gmnsn%/Nm(R, L)%, €)
f IVEN* + f (T(R, L)%, &)
+1 /N (scal(gy) — Sscal(gm) o f —tr(L* o Ro L) o f) €% (4.5)
Linearity of R — 7(R, L) and Lemmas 3.4 and 3.5 imply that, on ST(TN) ® E,

TR,L)=T(R+1% L)—17 T+, L) >0, (4.6)

since T < 0. Thus, combining (4.1), (4.5), and (4.6) with Lemma 3.3, which may be
applied because secg > 0 and L is nonincreasing by (4.1), we conclude that

0> /N IVEN* + 4 / (scal(gy) — %scal(gy) o f —tr(L* o Ro L) o f) ]|
> /N Ve + L /N (scal(gw) — scal(gar) o f) [£]% = 0.

Therefore, V& vanishes identically and hence ||| # O is constant, so it follows that
scal(gy) = scal(gy) o f everywhere. Furthermore, tr(L* o Ro L) = %scal(gM) SO,

if sC“l(g’”)g > Ric(gy) > 0atg = f(p), then [ is an isometry by Lemma 3.3. O
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Let us briefly discuss some situations in which the hypotheses of Theorem 4.4
are satisfied. If (M, gyy) is simply-connected and its curvature operator R satisfies
R + % > 0 with T < 0, then, by the proof of Bettiol and Mendes [6, Theorem D],
either (M, gy) is isometric to %2 x %2 and 7 = 0, hence it is area-extremal with respect
to any class of competitors by Goette and Semmelmann [14], or else M has negative-
definite intersection form, i.e., b1 (M) = 0, and hence 0 (M) = —b_(M) = —by(M).
In this latter case, restricting ourselves to self-map competitors, i.e., setting N = M,
the class Cq simplifies to

C(s)e]f — {f (M,gl) — (M,go) : 4+< bZ(M) > 0} .

1
- 1
deg(f) )

Clearly, C})d C Cf)elf, and this proves Theorem A in the Introduction, since we may
choose the orientation of M for which 7 < 0 in order to apply Theorem 4.4, see
Remark 4.2. Moreover, if b(M) < 4, then Cf)elf contains all (smooth spin) self-maps
f:(M,g1) = (M, go) of nonzero degree. Thus, more generally, we have:

Corollary 4.5 A closed simply-connected Riemannian 4-manifold (M, gpr) whose cur-
vature operator R satisfies R + t x > 0 with t < 0 is area-extremal with respect to
any (smooth spin) self-maps of degree 1, and (smooth spin) self-maps of arbitrary
nonzero degree if bo(M) < 4. If, in addition, ng > Ric(gy) > 0atq € M,
then (M, gpr) is area-rigid at g € M with respect to the same classes of self-maps.

4.3 Examples

The only closed simply-connected 4-manifolds currently known to admit metrics with
sec > OQare $¢, CP2, 8% x $2, CP2#C P2, and CP2#C P2, and this list is conjectured
to be exhaustive. We now analyze the existence of families of area-extremal and
area-rigid metrics on these manifolds, starting with those known to admit sec > 0.

Theorem 4.6 The spaces of Riemannian metrics on $* and CP? have nonempty open
subsets consisting of area-rigid metrics with respect to self-maps of any nonzero
degree, that contain the round metric and the Fubini—Study metric, respectively.

Proof Any metric on $* with R > 0 is area-rigid with respect to self-maps of any
nonzero degree by Corollary 4.5 (taking t = 0), or by Goette and Semmelmann [14].
In particular, there is a neighborhood of the round metric consisting of such metrics.

Let g¢ p2 be the Fubini-Study metric on CP? and denote by R¢p2 its curvature
operator, with | < sec < 4.1In aself-dual/anti-self-dual basis of /\QTPCPZ, i.e., abasis
that diagonalizes the Hodge star operator as *gp2 = diag(l, 1,1, —1, =1, —1), we
have Rgp2 = diag(0,0,6,2,2,2),50 Rgp2 + T*gpz > Oifandonly if 0 < 7 < 2.
Thus, to apply Theorem 4.4, we must set M to be CP2, i.e., CP? with the opposite
orientation, which is isometric to CP? and hence has the same curvature operator
R=%5 = Rgp2,but —#gp2,580 Repr+ 7T *gpz > Oifandonlyif =2 < 7 < 0.

CcPz — cPr T cp2T " Fcp2 . /
We may then take, e.g., T = —1, and, by continuity, there exists a neighborhood I/ of
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ggop2 inthe C 2_topology formed by metrics g that also satisfy Ry + T *g > 0 for the
constant function T = —1. Furthermore, since g¢ p2 is an Einstein metric,

scal(gCPz)g . scal(ggp2)

2 cp? 4 gcp2 = Ric(ggp2) > 0,

so, up to shrinking I/, we may assume that all g € U satisfy Wg > Ric(g) > 0.

Therefore, since b> (CP?) = 1, it follows from Corollary 4.5 that (C P2, g) is area-rigid
with respect to self-maps of any nonzero degree, for all g € U. O

Let us consider the remaining simply-connected 4-manifolds known to admit sec >
0. On $? x $2, any product of metrics on $ with sec > 0 has R > 0 and %g >
Ric(g) > O, thus it is area-rigid with respect to self-maps of any nonzero degree
by Corollary 4.5; or, in a more general sense, by Goette and Semmelmann [14]. On

(DPZ#(D_P2 and CP%#C P2, metrics with sec > 0 were constructed by Cheeger [9],
using a gluing method that endows the connected sum M;#M> of any two (oriented)
compact n-dimensional rank one symmetric spaces with sec > 0. These Cheeger
metrics contain a neck region isometric to a round cylinder gn—1 » [0, £], to which
the complement of a ball in each M; is glued. The length £ > 0 of the neck can be

chosen arbitrarily, including £ = 0. There do not exist metrics on (DPZ#(D_P2 that
satisfy the hypotheses of Theorem 4.4, as a consequence of Bettiol and Mendes [6,

Theorem D]. However, (DPZ#(D_P2 admits Kéhler metrics of positive Ricci curvature
[29], which are area-rigid by [13]. Meanwhile, existence of area-extremal or area-rigid
metrics on C P2#C P? cannot be established with any previous results, since they either
require metrics that are Kihler or have positive-semidefinite curvature operator, and
C P2#C P? admits neither. We overcome these restrictions as follows:

Theorem 4.7 The Cheeger metrics on CP*#CP? are area-extremal with respect to
self-maps of any nonzero degree, and area-rigid with respect to these maps on all
points in the complement CP*#CP? \ ($3 x [0, £]) of the neck region.

Proof The manifold C P?#C P? is obtained gluing together two equally oriented copies
of the normal disk bundle v(CP') of CP! ¢ CP? along their boundary $3, with an
orientation-reversing diffeomorphism «. Since bi-invariant metrics on SU(2) = $3 are
round (in particular, they support orientation-reversing isometries), Cheeger metrics
on each copy of v(CP!) are isometric to the metrics with sec > 0 constructed by Grove
and Ziller [17] on v(CP') = G x D? that are invariant under the action of G = SU(2)
with orbit space v((DPl) /G = [0, rmax], where O corresponds to the singular orbit
with isotropy K = $! and all other (principal) orbits have trivial isotropy H = {1}. A
detailed treatment of Grove—Ziller metrics on a related disk bundle G’ xg D? over
CP! = G/K = G'/K’ is given in [3], where G’ = SO(3),K’ = SO2)12, and H' = Z»,
including the explicit computation of their curvature operator, see [3, Proposition 3.5].
This computation applies mutatis mutandis to G x D?, as the Lie groups (G, K, H) and
(G, K’, H') have isomorphic Lie algebras. Namely, one must only replace the constant
p(b) = b/2 with p(b) = 2b when passing from G’ xx' D? to G xg D?. Then Bettiol
and Krishnan [3, Proposition 3.5] implies that, in a basis induced by an orthonormal
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frame, the curvature operator R of a Grove—Ziller metric g on v(CP') = G xg D? is
block diagonal, i.e., R = diag(R1, R>, R3), where

w3t i
Ri=| %, bil. Re=Ry=|% 271, 4.7
v Ty w0

b > 0 is an arbitrary constant, ¢: [0, rmax] — R is a nonnegative smooth function
satisfying ¢(0) = 0, ¢'(0) = 1/2, @0 ©) = 0 for all k € N, ¢/(r) > 0 for all
r € [0, rmax], " (r) < Oforall r € [0, rmax], and (r) = b for all r € [rg, rmax], with
0 < ro < rmax and ro chosen sufficiently large.

Clearly, all data on (w(CPYH, g) which is invariant under isometries, such as R,
is determined by its value along a unit speed horizontal geodesic parametrized on
[0, rmax], and (v(CPY), g) is isometric to the round cylinder g3 (2b) x [rg, Fmax] near
its boundary, where $3(2b) is a round 3-sphere of radius 2b. Thus, gluing two copies
of (W(CP), g) along $3(2b) using an orientation-reversing isometry « produces a
smooth metric on CP2#CP? = v(CP') U, v(CP), which we also denote by g. The
preimage of [rg, rmax] under the projection map v(CPYY = [0, rmax] is half of the
neck region in CPX*#CP2%;in particular, the neck region is isometric to $3(2b) x [0, £],
where £ = 2(rmax — o) > 0. Note that while ro > 0 must be chosen sufficiently large
in order for ¢ as above to exist, the value of rp,x > rg is arbitrary.

The matrix of the Hodge star operator * is also block diagonal in the basis used in
(4.7), namely x = diag(H, H, H), where

Therefore, the unique function t: v(CP') - Rsuchthat R+t > 0is 7 = —%,

and hence the unique function 7: CP?#CP? — R such that R 4+ 7 % > 0 satisfies
T < 0and v = 0 along the neck region. Routine computations with (4.7) yield
. . 2 /" 2 2 "
Ric(g) = diag (% -, blz - 27 blz - 37 —%) ,
2 2 "
scal(g) = 33 — 37 — 2%

scal(g) . T 41)273 2 2 1 2 1" 4b27 2
salele — Ric(g) = dlag( e e S )

for all r € [0, rmax]. In particular, %g > Ric(g) = 0 on all of CP?#C P2, and
Ric(g) > 0 outside the neck region. Thus, as by(CP*#CP?) = 2, Corollary 4.5
implies that g is area-extremal with respect to self-maps of any nonzero degree, and
area-rigid with respect to these maps on all points outside the neck region. O

Remark 4.8 The statement concerning area-rigidity in Theorem 4.7 is sharp. In fact,
given a Cheeger metric gy on CP?#CP? with neck length £y > 0, one can easily
produce nonisometric competitor Cheeger metrics g; that satisfy (1.1) by elongating
the neck length to any ¢; > £o. However, Cheeger metrics with vanishing neck length
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are area-rigid (at all points) with respect to diffeomorphisms, since any diffeomor-
phism which is an isometry on the complement CP2#C P?\($> x {0}) of the neck
hypersurface, which is dense, must be an isometry on all of C P>#C P2.

Theorems 4.6 and 4.7 and Remark 4.8 imply Corollary B in the Introduction.

Remark 4.9 Although both halves of v(CP') U, v(CP') = CP?*#C P? have coho-
mogeneity one SU(2)-actions, these actions do not extend to C P?#CP?. Indeed, the
gluing isometry o : $3(2b) — $3(2b) is orientation-reversing and hence cannot be
SU(2)-equivariant. Using an orientation-preserving isometry B instead, the resulting
manifold is v(CP) Ug v(CP') = CP?#C P2, which carries a cohomogeneity one
SU(2)-action and invariant Cheeger metrics with sec > 0. Nevertheless, the corre-
sponding function t assumes opposite signs on each half due to the flip in orientation,
hence Theorem 4.4 and Corollary 4.5 do not apply, cf. [6, Theorem D].

5 Extremality and rigidity on 4-manifolds with boundary

In this section, we prove Theorems C and D in the Introduction, adapting the approach
from the previous section to the case of compact manifolds with boundary. We begin
by generalizing the notions of area-extremality and area-rigidity for closed manifolds
in Definition 4.1 to manifolds with boundary, along the lines of Lott [21].

Given a compact Riemannian manifold (M, g) with boundary d M, we denote by
Iy, the second fundamental form of d M with respect to the inward unit normal, and
by H(g) = tr I3 the mean curvature of 9 M computed accordingly.

Definition 5.1 A compact oriented Riemannian manifold (M, g,,) with boundary is
area-extremal with respect to a class C = {f: (N, gn) — (M, gpr)} of competitors,
consisting of compact oriented Riemannian manifolds (N, gx) with boundary such
that dim M = dim N, and smooth boundary-preserving spin maps f: N — M of
nonzero degree, if the inequalities

Nlgy = f* A2 gy, scal(gy) > scal(guy) o f,
gnlon = femlom, H(gn) = H(gm) o f 5.D

imply scal(gy) = scal(gy) o f and H(gy) = H(gm) o f. If, in addition, there
exists ¢ € M such that (5.1) impliesd f (p): T, N — T, M is a linear isometry for all
competitors f: N — M inCandall p € f~!(q), then (M, gy) is called area-rigid
at q € M with respect to C. If (M, gyy) is area-rigid at all of its points with respect to
C, then it is simply called area-rigid with respect to C.

The notions of area-extremality and area-rigidity for manifolds with boundary
discussed in the Introduction correspond to using the class

cy = {id: (M, g1) > (M, 20) : gilomr = golom}-
Note that in the case dM = @, the class ng is simply Ci)d from Remark 4.2.
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Index theory

Let (M, gpr) and (N, gy) be oriented Riemannian 4-manifolds as in Sect. 4, except
here we allow these manifolds to have nonempty boundary and assume f|yy: 0N —
dM is an orientation-preserving isometry, which we also refer to as an oriented
isometry for shortness.

Let E = f*ST(TM). As described in Sect. 4, gy and gy induce connections
VSV and VS on S(TN) and S(T M), respectively. The connections VSN and f*VSu
then induce a connection V on S(TN) ® E, which is used to define the twisted
Dirac operator Dg on sections of that bundle. While V restricts to a connection on
ST(TN) ® E|yn, we will next define another connection V9 on that bundle, which is
induced by the boundary metrics gy |yn and gas|ya, rather than the ambient metrics
gn and gy, and thus differs from V by a term related to the second fundamental form
of the boundaries, see (5.11).

Letr: N — R be the distance from d N and choose ¢ > 0 smaller than the focal
radius of 9N, so that the normal exponential map of dN is a diffeomorphism from
IN x [0,e]toU = {x € N : r(x) < ¢g}. Let v = 0,, so v|py is the inward unit
normal. There is an isomorphism

CUTIN) — CLYTN)|sn

generated by TON 3> v — —vv € CL(T N). Using this isomorphism, we identify
S(TAN) and ST(TN)|yn. Let VPN be the connection on S(TAN) = ST(TN)|sn
induced by the restriction of gy to dN. Similarly, let V?™ be the connection induced
by gulap on S(TAM) = ST (T M)|yp. The connections VOV and f*V?M induce a
connection V? on ST(TN) ® E|yn.

Using parallel translation along normal geodesics, we can identify

T (S(TN) ® Ely) = C([0, ¢], T (S(TN) ® Ely)), (5.2)

that is, sections of S(T'N) ® E on the collar neighborhood U are 1-parameter families
of sections of S(TN) ® E on the boundary d N. Using this identification, we have

DE'F(S*(TN)®E|U) =v(@0+B+A),

where, in a local orthonormal frame {e;} for TN such that ey = —v,
4 4
B=Y ee;Vi. A=Y ee;(Ve—Vi). (5.3)
i=2 =2

Recall that Clifford multiplication is only on the first factor of S(TN) ® E, so B is
a first-order self-adjoint elliptic differential operator on S(TN) ® E|sny and A is a
self-adjoint linear endomorphism of the same bundle.

Let P-o and P<o be the projections onto the subspaces of C(ST(TN) ® Elyn)
spanned by eigenvectors of B with positive and nonpositive eigenvalues, respectively.
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We impose boundary conditions on D by setting sz := Dg|p+, where

I :={§ e T(ST(TN)® E) : Poo (lan) = 0). (5.4)
The adjoint D of DE is the restriction of D to

":={ el (TN)Q®E) : P<o (v§|yn) = 0}.

We use the convention that o (M) is the signature of the bilinear form induced by the
cup product on the image of H?*(M,dM) in H*(M), and similarly for o (N).

Lemma5.2 If 2x (M) + 30 (M) + 2bo(0 M) + 2b2(0M) > o(N), then Dg has
nontrivial kernel.

Proof With the boundary conditions given by ', we claim that the index of the
operator D7 is

ind(D}) = (= o (N) +2x (M) + 30 (M) + 2by(AM) +2b2(3M)),  (5.5)

which implies the desired result, since ind(D}) = dimker(D}}) — dimker(Dj).
Using the identification (5.2), the formal adjoint of Dg on U is

Dp = (=0, + B+ A)(—v) = v(3; + vBv +vAv).

This operator satisfies assumptions (2.2) in [18], with P, oy, A, and ¥ in the notation
of [18] given by D, v, vBv, and vAv|yp, respectively, in our notation.

Let P;O and P/<O be the projections onto the subspaces of I'(S™(TN) ® E|yn)
spanned by eigenvectors of v Bv with nonnegative and negative eigenvalues, respec-
tively. Since v is skewsymmetric, we have that

Im={ el (S (TN)®E): PLyElan) =0},
' ={£ e (ST(TN)®E) : PLy(vE|yn) = 0}.

These spaces define exactly the boundary conditions given by (2.8) in [18]. Thus,
by Grubb [18, Lemma 2.2], we can realize Dy with boundary conditions I'™ as a
Fredholm operator, with adjoint given by a realization of DZ: with boundary conditions
I'*. Furthermore, by Grubb [18, Theorem 2.3], and the discussion which follows
(see in particular the paragraph preceding Corollary 2.4), the index of D with these
boundary conditions is constant under a deformation that fixes the boundary conditions
I'* and induces a continuous deformation of the principal symbol of Dy . In particular,
a smooth deformation of the map f: N — M and of the metrics gjs and gn that keeps
the boundary conditions fixed meets those stipulations, since the principal symbol of
Dy, as a twisted Dirac operator, is given by Clifford multiplication on ™ (TN) ® E
and varies continuously with the metric gy .

Thus, since B depends only on f|sn and its tangential derivatives, along with
gnlan and garlam, we may deform gy without changing the index and assume that
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enlu = gnlon + dr? with respect to the identification U = dN x [0, €], deform f|y
so that it is a diffeomorphism onto its image, and deform g, so that f |y is an isometry.
It follows that VSV and f*VS¥ are isomorphic and independent of r. Since gy is of
product form near 9N, the slices N x {r} are totally geodesic and V5V is equal to
VN when restricted to each, so V = V2. Thus A = 0, and, near the boundary,

Dy =v(d, +vBv).

This is the product form and boundary conditions used by Atiyah—Patodi—Singer for
the operator D, with boundary operator v Bv and adjoint DE. (Note that the conditions
for DZC and Dy, differ by the role of the strict and nonstrict inequalities.) Thus, applying
the Atiyah—Patodi-Singer Index Theorem [1, Theorem 4.2] to D,

ind(D}) = =ind(D) = = [ a(pp)+ HEEITIEED

= [ awp + HEID
N

(5.6)
2 9

where a is the integrand in the Atiyah—Singer Index Theorem (in the closed case),
which has opposite signs for adjoints, () = dimker(-) is the dimension of the
kernel, and 7 is the n-spectral invariant, which commutes with sign changes. (Note
that vBv = —(v~! Bv) has opposite spectrum to B.)

By the discussion in the closed case (see Lemma 4.3), we have that

a(Df) = = pilen) + 1 pilem) + % fre(gm),

where p; and e denote the Pontryagin and Euler forms from Chern—Weil theory.
Since f|yn is an oriented isometry, there is an isomorphism of ST(TN)|jy =
F*ST(T M)|3p identifying VOV with £*V?M_ Under the isomorphisms

ST(TN)® Elgny = ST(TN)® ST(TN) oy = AG"TN*yy
A;"DV"‘“TBN*,

12

where the final isomorphism is given by restriction, and its inverse on /\ép TON* is
given by « — o — (—1)? * «, the operator B corresponds to (—1)? (xynydagn —
dyn*sn) on /\ép TON*. The latter is the boundary operator in the Atiyah—Patodi—
Singer Signature Theorem [1, Theorem 4.14], from which we obtain that

fN%pl(gN)=o<N)+n<B), and /M§p1<gM)=o<M>+n<B>,

where we are using that f is an isometry on the boundary, hence both boundary
operators have the same spectrum. Moreover, since f is an orientation-preserving
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diffeomorphism near the boundary, it follows that

/ a(D}) = —/ Hpi(EN) +/ 1pi(em) + Se(en)
N N M
=—lo(N)+ 3o(M) + 1n(B) + Lx(m). (5.7)

Thus, (5.5) follows from (5.6) and (5.7), as the kernel of £(xgnydyny — dygn*yn) is the
space of even harmonic forms on dN = 9 M, and hence h(B) = by(0 M) + br(dM)
by Hodge theory. O

5.1 Extremality and rigidity

We now combine the Bochner—Lichnerowicz—Weitzenbock formula with Lemma 5.2
to prove our main result on area-extremality and area-rigidity of compact 4-manifolds
with boundary (see Definition 5.1), closely following the proof of Theorem 4.4, but
also handling boundary terms.

Theorem 5.3 A compact oriented Riemannian 4-manifold (M, gr) with sec > 0 such

that R + ©x > 0 for a nonpositive t: M — R and convex boundary oM, i.e.,
My > O, is area-extremal with respect to

is an oriented isometry onto oM, and
ca={f:(N,gN>»(M,gM)-f'aN y }

2% (M) + 306 (M) + 2by(dM) + 2b2(dM) > o (N)

If, in addition, ng > Ric(gy) > 0at g € M, then (M, gy) is area-rigid at
q € M with respect to Cy.

Proof Let f: (N, gy) — (M, g)) be a competitor in Cy, and let E = f*ST(TM).
As in Theorem 4.4, working pointwise with W = T,N, V = Ty n)yM,l: W — V
given by d f(p), and L = A2 1, we have from (4.4) that

D} = V*V + iscal(gy) + R(R, L).

Let £ € I'(ST(T'N) ® E) be a nonzero section in the kernel of D, which exists by
Lemma 5.2. Using Lemmas 3.2-3.5 as in the proof of Theorem 4.4, we have:

0=/(V*V$,€)+£/ Scal(gN)I|$I|2+/ (R(R,L)§,§)
N N N

2/N(V*VS,E)Jr}L/N(scal(gN)—scal(gM)Of)lléllz. (5.8)

A standard computation using the divergence theorem implies that

V*VE, £) = ve|? V,E, E), 5.9
/N< £.£) /Nn s||+/aN< £ ) (5.9)
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where, as above, v is the inward unit normal along dN. In a local gy-orthonormal

frame {e;} of N with ej = —v, since Dg& = 0, we may use (5.3) to compute
4
Vo€ = ) veiVyE = —BE — A&, (5.10)
i=2

As& e I't, we have (BE, &) < 0 from (5.4). To analyze the endomorphism A at the
boundary, let ¥ be an the inward unit normal field of dM. For allv € TN,

VS — VN = My () - v € CUT N)law, 5.11)
Vi = Vieh = u () -V € CUT M)y, (5.12)

where we use the same symbol I3y to denote the symmetric endomorphism of 7o N
induced by I3y, namely so that Iy (x, y) = gN(V)ICVy, v) = gn{any(x), y) for all
x,y € TAN, and similarly for II3,,. Using the above and (5.3), we compute

4
A=-vY e (Vrei+1evy - ViNe1-18 Vi)
i=2
4 4
=3 eillhn(e) @ 1+ 3> ve @ VI (l(e)).
i=2 =2

By the symmetries of [y and of Clifford multiplication, the first term above is
— % H (gy). The second term can be written using the pointwise formalism from Sect. 3,
as follows. Given p € N, since f|any: N — 9dM is an isometry and {e3, €3, e4} is
an orthonormal frame of 7,0 N C W, its image {l(e2), [(e3), [(e4)} is an orthonormal
frame of Typ)dM C V. Let Q: A2V — A2V be the symmetric endomorphism
such that Q(V A l(e;)) =V Allgy(I(e;)) and Q(I(e;) Al(ej)) =0,for2 <i, j <4,
and note that Q € Symi(AZV), i.e., Q satisfies the first Bianchi identity. Moreover,
let!’: W — V be the linear map such that I’(e;) = I(e;) for2 <i <4 and!’(v) =7,
and set L’ = A2l’. From Definition 3.1, we have that

—R(Q, L) =) eiej ® Ql(er) Al(e))

i<j

=1 ve; @TMyu(l(e))),
j=2

so we conclude that A = —%H(gN) — R(Q, L"). Applying Lemmas 3.2-3.4, since
Iy > 0 and ! is an isometry, it follows that Q > 0 and

—(AE, &) > S(H(gn) — u(Q) N1 = $(H (gn) — Hgm) &I
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From (5.9) and the above, the left-hand side of (5.10) can be bounded from below:

f<V*vs,s>=/ ||vs||2—/ <Bs,s>—f (A, &)
N N oN oN

z/ ||vsn2+§/ (H(zn) — Hga) o )£
N ON

Combined with (5.8), this yields:

0> fN Ve + 4 /N (scal(gn) — scal(gm) o f) &I
+3 /BN (H(gn) — H(gm) o f)IEN

The stated conclusions now follow exactly as in the proof of Theorem 4.4. O

Remark 5.4 The boundary conditions used to compute the index in Lemma 5.2 are
Atiyah—Patodi-Singer-type conditions defined in terms of the intrinsic Dirac operator
on the boundary. This introduces terms involving the second fundamental form I in the
above computation, hence into the hypotheses of Theorem 5.3; similarly to Lott [21,
Theorem 1.1]. That is in contrast to Lott [21, Theorem 1.3], where Atiyah—Patodi—
Singer conditions are used, defined in terms of the ambient Dirac operator restricted
to the boundary. That method avoids the assumption I > 0, but requires stronger
assumptions on the map f at the boundary.

Our method is necessary in order to work with the bundle S™(TN) ® f*S™(T M),
as required by our curvature condition. Even in the realm of metrics with R > 0,
our result extends [21] in dimension 4, as it yields a version of area-extremality with
the geometric conditions of Lott [21] but with a topological assumption weaker than
vanishing Euler characteristic, see Example 5.7. Future work will attempt a similar
generalization in higher dimensions.

The following result implies Theorem D in the Introduction, since Ciad C C?flf.

Corollary 5.5 A compact oriented Riemannian 4-manifold (M, go) with sec > 0 such
that R + t * > 0 for a nonpositive or nonnegative t: M — R and convex boundary
oM, i.e., Uyp > O, is area-extremal with respect to

C?aelf = {f: (M, g1) = (M, go): flom is an oriented isometry onto 8M}. (5.13)

Proof Choose the orientation of M for which t < 0, and let N be either M or M, i.e., M
with an orientation that will be fixed later. Let f: N — M be a boundary-preserving
spin map and g; be a metric on N such that

scal(g1) > scal(go) o f. A%gi > f*A?go, H(g1) > H(go) o f,
and f|yy is an isometry between g1 |3y and golyn . Orient N such that f|sy preserves

orientation, i.e., is an oriented isometry. The conclusion will follow from Theorem 5.3
by showing that the topological condition in Cj is satisfied by f: N — M.
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By the Soul Theorem, see e.g. [11, Sect. 9-10], since (M, go) has sec > 0 and
I > 0, it is diffeomorphic to the total space of a disk bundle over a closed totally
geodesic submanifold ¥ C M. We proceed case-by-case in terms of 0 < dim ¥ < 3.

Ifdim £ < 1, then x (M) = x(2) > 0,and H>(M) = H*(%) = 0, which implies
o (M) = o(N) = 0. Thus, the topological condition in Cj is satisfied, as bg(d M) > O.

If dim ¥ = 3, then M — X is an interval bundle which restricts to a covering
map dM — X. Such a map is homotopic to the inclusion dM — M, and thus
H*(M) — H?*(dM) is injective and H>(M,dM) — HZ*(M) is trivial. Therefore,
o (M) = o(N) = 0, so the conclusion follows as in the previous case, since x (X) = 0.

Finally, assume dim ¥ = 2, in which case the Gauss—Bonnet Theorem implies
that x(X) > 0. If ¥ is nonorientable, then H*(M) = H*(X) = 0 and o (M) = 0,
so the topological condition in Cj is satisfied as in the previous cases. Else, X is
orientable, s0 by (M) = b>(X) = 1 and |0 (M)| < 1.If ¥ is diffeomorphic to $2, then
2x(M)+30(M)—0o(N) =44 3=x1)oc(M) > 0and hence the topological condition
in C, is again satisfied. If ¥ is diffeomorphic to T2, then dM is diffeomorphic to an
oriented $!-bundle over T2 so by(dM) > 2. Once again, the topological condition in
Cy is satisfied, as 2bg(AM) + 2b,(0M) > 6 > (=3 £ 1)o(M). m]

Our final main result implies Theorem C in the Introduction because Cir,d C Coc if
o (M)| < 4, and is captured by the vague but clear statement that, near a point where
sec > 0, a Riemannian metric on a 4-manifold cannot be modified to have greater
scalar curvature without decreasing the area of some tangent 2-plane.

Corollary 5.6 If (X, g) is a Riemannian 4-manifold and p € X is a point at which
sec > 0, then there is a neighborhood M = D* of p such that g|y is area-extremal
with respect to
s _flan is an oriented isometry onto OM,
Cloc—{f-(N,gN)—>(M,g|M)-and|a(N)|<4 .

Proof At each stage of the proof, we shrink M if needed, in order to make a series of
assumptions. First, we may choose a neighborhood M of p € X such that sec > 0
at all points of M. Then, by the Finsler—Thorpe trick (see Proposition 2.2), there
exists a function 7: M — R such that the curvature operator R of (M, g|) satisfies
R+ 1 % > 0. Moreover, there is an open interval (Tymin(x), Tmax (X)) of possible values
for t at each point x € M that depends continuously on x, so we may choose 7 to be
continuous and 7 (p) # 0. Shrinking M if necessary, we may assume t # 0 throughout
M, and, changing the orientation of M if necessary, we may assume t < 0 on all M.
Finally, we shrink M to be the closure of a convex ball in X containing p € X. Then
(M, g|p) satisfies all the hypotheses of Theorem 5.3 and, since 30 (M) + 2x (M) +
2bo(0M) + 2b (0 M) = 4, the corollary follows. O

Example 5.7 Let §', denote the unit #n-dimensional hemisphere. Standard metrics on
Si, gl x Si, %2 x Si_, and $3 x [—1, 1] have positive-semidefinite curvature operator
and totally geodesic boundary, and are hence area-extremal with respect to Cy by
Theorem 5.3. In particular, they are area-extremal with respect to C‘?f]f C Cy defined
in (5.13). The first and third spaces are also area-rigid, as they satisfy the additional
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hypothesis %al g > Ric > 0. Note that the second and fourth spaces have vanishing

Euler characteristic. Similar results, with different boundary conditions, are implied
by [21, Theorem 1.3]; see also Remark 5.4.

The SU(2)-invariant metrics with totally geodesic boundary on the normal disk
bundle v(CPL) of CP! C C P2, described in the proof of Theorem 4.7, also satisfy
the hypotheses of Theorem 5.3. Thus, these metrics are area-extremal with respect to
Cy and CF!f. Moreover, if such a metric has vanishing neck length, then it is area-rigid
with respect to diffeomorphisms. Indeed, the neck in that case consists solely of the
boundary dv(CP') and %g > Ric > 0 everywhere else, so the same continuity
argument in Remark 4.8 applies. This example is notable because v(CP') does not
admit metrics with both R > 0 and Hau(e Py = 0, to which previous methods could
be applied to prove area-extremality: a simply-connected manifold admitting such a
metric is diffeomorphic to a trivial disk bundle over its soul, see e.g. [24].
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