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Abstract
Following Gromov, a Riemannian manifold is called area-extremal if any modifica-
tion that increases scalar curvature must decrease the area of some tangent 2-plane.
We prove that large classes of compact 4-manifolds, with or without boundary, with
nonnegative sectional curvature are area-extremal. We also show that all regions of
positive sectional curvature on 4-manifolds are locally area-extremal. These results are
obtained analyzing sections in the kernel of a twisted Dirac operator constructed from
pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in
dimension 4.

Mathematics Subject Classification 53C21 · 53C23 · 53C24 · 53C27

1 Introduction

A lower bound scal ≥ c > 0 on the scalar curvature of a Riemannian n-manifold
does not constrain either its diameter or volume, provided n > 2. However, there are
other types of upper bounds on the “size” of such manifolds, in terms of “dilations of
topologically significant maps”, as explained byGromov [15, Sect. 4]. Since shrinking
areas of surfaces on manifolds with scal > 0 always increases scalar curvature, it is
natural to ask in which cases this is the only way of doing so. Motivated by this
question, following Gromov [15, Sect. 4], we call a metric g0 on a closed manifold M
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area-extremal (for scalar curvature) if, for all metrics g1 on M ,

∧2 g1 � ∧2g0 and scal(g1) ≥ scal(g0) (1.1)

imply that scal(g1) = scal(g0); and area-rigid if (1.1) implies g1 = g0. The first
condition in (1.1) means that areas measured with g1 are no smaller than those mea-
sured with g0. For instance, this is the case whenever the stronger condition g1 � g0
holds, i.e., whenever distances are no smaller under g1 than under g0. Thus, area-
extremality can be summarized as the impossibility of increasing scalar curvature
without shrinking the area of some surface (or infinitesimal 2-plane).

Round metrics on spheres are area-rigid, by a result of Llarull [20]. Expanding on
work of Min-Oo [23], Goette and Semmelmann [14] proved that any metric g with
positive-semidefinite curvature operator (R � 0) on a manifold with nonzero Euler
characteristic is area-extremal, and area-rigid if scal

2 g � Ric � 0. Furthermore, Goette
and Semmelmann [13] proved that Kähler metrics with Ric � 0 are area-extremal, and
area-rigid if Ric � 0.However, since these previous results only apply to either spheres
ormanifolds with special holonomy, finding broader criteria for area-extremality/area-
rigidity and describing particular classes of these metrics remain important problems
[15, Prob. C].

In this paper, we prove new area-extremality and area-rigidity criteria in dimension
4, relying on a unique characterization of sectional curvature bounds. Namely, by the
so-called Finsler–Thorpe trick, an orientable Riemannian 4-manifold has sec ≥ 0
if and only if there exists a function τ such that R + τ ∗ � 0, where R denotes
the curvature operator, and ∗ the Hodge star operator, each acting on 2-vectors, see
Proposition 2.2 for details. Other geometric applications of the Finsler–Thorpe trick
have recently appeared in [3–6].

1.1 Main results

Our first result is the following extremality/rigidity criterion:

Theorem A Let (M4, g) be a closed simply-connected Riemannian manifold with
sec ≥ 0. If τ : M → R such that R + τ ∗ � 0 can be chosen nonpositive
or nonnegative, then g is area-extremal. If, in addition, scal

2 g � Ric � 0, then g
is area-rigid.

As a consequence of Bettiol and Mendes [6, Theorem D], the 4-manifolds (M4, g)
to which Theorem A applies either have definite intersection form, or are isometric to
S2×S2 endowedwith a productmetric. By classicalwork ofDonaldson and Freedman,
the former are homeomorphic to S4 or to a connected sum CP2# . . . #CP2 of finitely
many copies of CP2. Conjecturally, such manifolds only admit metrics with sec > 0
if at most one summand is used (i.e., if M4 is either S4 or CP2), and with sec ≥ 0 if
at most two summands are used (i.e., if M4 is either S4, CP2, or CP2#CP2).

Previously known area-extremal metrics on simply-connected 4-manifolds M are:

• metrics with R � 0, hence M is diffeomorphic to S4, see e.g. [28, Theorem 1.10];
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• metrics with R � 0 (but R � 0), hence M is isometric to either a product metric
on S2 × S2 or a Kähler metric on CP2, see e.g. [28, Theorem 1.13];
• Kähler metrics on CP2#CP2 with Ric � 0, which exist by Yau’s solution [29] to
the Calabi conjecture, and are area-rigid by [13].

Thus, using Theorem A, we obtain new examples of area-rigid metrics:

Corollary B The following hold:

(i) On CP2, metrics in a neighborhood of the Fubini–Study metric are area-rigid;
(ii) On CP2#CP2, Cheeger metrics with vanishing neck length are area-rigid.

To our knowledge, CorollaryB (i) gives the first example of an open set of area-rigid
metrics on a closedmanifold other than the sphere.Moreover, note that both (i) and (ii)
yield the existence of area-rigid metrics with generic holonomy. Recall that Cheeger
metrics on the connected sum of two compact rank one symmetric spaces are metrics
with sec ≥ 0 obtained gluing complements of disks along a “neck” region isometric
to a round cylinder Sn × [0, �] of arbitrary length � ≥ 0, see [9]. In particular, the
neck region does not have Ric � 0. For this reason, � = 0 is necessary in Corollary
B (ii), since then Ric � 0 on the (dense) complement of the neck hypersurface.
Meanwhile, Cheeger metrics onCP2#CP2 with � > 0 are area-extremal but not area-
rigid, see Theorem 4.7 and Remark 4.8. We note that CP2#CP2 admits no metrics
with R � 0, nor complex structures, and thus no previous methods can be used to
identify area-extremal metrics on this manifold.

As a consequence of Corollary B and previous examples, there are area-extremal
metrics with sec ≥ 0 on all closed simply-connected 4-manifolds currently known to
admit metrics with sec ≥ 0, namely, S4, CP2, S2 × S2, and CP2#±CP2, which are
conjectured to be all of them. Furthermore, metrics in a neighborhood of the round
metric on S4 have R � 0 and are thus area-rigid by [14], so we conclude there is
an open set of area-rigid metrics with sec > 0 on each of the two simply-connected
closed 4-manifolds known (and conjectured to be all) to admit metrics with sec > 0.

There is a natural extension of the above notions of area-extremality and area-
rigidity to Riemannian manifolds with boundary. Given such a manifold (M, g), we
denote by II∂ M the second fundamental form of ∂ M with respect to the inward unit
normal, and by H(g) = tr II∂ M the mean curvature of ∂ M . A metric g0 on M is
area-extremal (for scalar curvature) if all metrics g1 satisfying (1.1) on M with

g1|∂ M = g0|∂ M and H(g1) ≥ H(g0) (1.2)

must have scal(g1) = scal(g0) as well as H(g1) = H(g0); and area-rigid if (1.1)
and (1.2) imply g1 = g0. It is striking that area-extremality, in the above sense for
4-manifolds with boundary, holds locally around any point with sec > 0, as follows:

Theorem C If (X4, g) is a Riemannian 4-manifold, then g is area-extremal on suf-
ficiently small convex neighborhoods M of any point in X at which g has sec >

0.

In particular, Theorem C implies that any metric deformation supported in a suf-
ficiently small convex subset M of a 4-manifold with sec > 0 either preserves both
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scal and H , or else decreases the area of some surface in M , or scal somewhere on M ,
or H somewhere on ∂ M . On the other hand, recall that for generic g, any sufficiently
small deformation of the function scal|M is realized as the (restriction to M of the)
scalar curvature of a metric near g, by a result of Corvino [10].

Theorem C follows from an extension of Theorem A to 4-manifolds (M4, g) with
convex boundary, i.e., with II∂ M � 0. (Note that a geodesic ball of sufficiently small
radius in any Riemannian manifold has convex boundary.)

Theorem D Let (M4, g) be an orientable compact Riemannian 4-manifold with sec ≥
0 and II∂ M � 0. If τ : M → R such that R + τ ∗ � 0 can be chosen nonpositive
or nonnegative, then g is area-extremal. If, in addition, scal

2 g � Ric � 0, then g is
area-rigid.

Similar criteria for manifolds with boundary have been recently proven in all even
dimensions under the more restrictive assumption R � 0. Lott [21] showed that
metrics with R � 0 and II∂ M � 0 on compact manifolds with boundary and nonzero
Euler characteristic are area-extremal (in a more general sense; namely, relaxing the
first condition in (1.2) to g1|∂ M � g0|∂ M ). Cecchini and Zeidler [8] obtained area-
extremality results for certain warped product metrics on M × [−1, 1], where M
has R � 0 and nonvanishing Euler characteristic; those results have recently been
extended in [2]. It is noteworthy that Theorem D does not require M to be simply-
connected, nor to have nonzero Euler characteristic. Indeed, by the Soul Theorem, any
(M4, g) as in Theorem D is a disk bundle over a totally geodesic closed submanifold,
whose topology is constrained by the fact it has sec ≥ 0 and dimension ≤ 3. In turn,
this has topological implications on M which are sufficient to apply our methods and
prove area-extremality.

Theorem D yields new examples of area-extremal and area-rigid metrics; e.g., the
metrics on the complement of a ball inCP2 used in the construction ofCheegermetrics
onCP2#CP2, described above.No other previous criteria apply to thismanifold, since
it is diffeomorphic to the normal disk bundle of CP1 ⊂ CP2, which is known not
to admit metrics with R � 0 and II∂ M � 0, see [24]. Examples with vanishing Euler
characteristic are provided by standard metrics with R � 0 on products of spheres
and disks, see Example 5.7. With different boundary conditions, such examples are
also addressed in the related result [21, Theorem 1.3]. Finally, note that the round
hemisphere S4+ is area-rigid as a consequence of Theorem D, or [21, Corollary 1.2],
so the counterexamples to the Min-Oo conjecture constructed in [7] must shrink areas
somewhere on S4+, a fact that was shown in [22].

Both Theorems A and D follow from more general results (Theorems 4.4, 5.3),
in which we prove area-extremality/area-rigidity in a broader sense, also discussed
in [13, 15, 20, 21]. Namely, metrics can be compared similarly to (1.1) and (1.2)
but using maps other than the identity, including maps between different manifolds,
whichGromovdescribes as allowing for competitorswith “topologicalmodifications”.
Indeed, Theorems A and D are simplified versions of such statements on comparisons
with self-maps of nonzero degree, see Corollaries 4.5 and 5.5.
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1.2 Outline of proofs

For the reader’s convenience, we briefly describe a general framework to prove area-
extremality/area-rigidity based on spin geometry, which is used in the above results.
Let (M, g0) and (N , g1) be oriented Riemannian manifolds and f : N → M be a spin
map; e.g., one may take N = M and f = id; see Sect. 4 for details. Consider the
Dirac operator D(g0, g1) on spinors over N twisted with the pullback bundle via f of
the spinor bundle over M .

The Bochner–Lichnerowicz–Weitzenböck formula for D(g0, g1) is given by

D(g1, g0)
2 = ∇∗∇ + 1

4 scal(g1)+R(R, d f ),

whereR(R, d f ) is a bundle endomorphism that dependsonlyon the curvature operator
R of (M, g0) and d f : T N → T M . Algebraic considerations show that

R(R, d f ) = T(R, d f )− 1
4 tr(R) ◦ f − 1

4 tr
(
F∗ ◦ R ◦ F

) ◦ f ,

where F : ∧2T N → ∧2T M is themap F(v∧w) = d f (v)∧d f (w), andT(R, d f ) � 0
whenever R � 0, see Lemmas 3.2 and 3.4. For instance, if f = id and g1 = g0, then
T(R, d f ) is the curvature term in theWeitzenböck formula for the Hodge Laplacian on
forms. Further algebraic considerations (see Lemma 3.3) show that if∧2g1 � f ∗∧2g0
and R has sec ≥ 0, then tr

(
F∗ ◦ R ◦ F

) ≤ tr(R) = 1
2 scal(g0).

We thus search for conditions on R such that sec ≥ 0 and T(R, d f ) � 0 whenever
∧2g1 � f ∗ ∧2 g0, since then

D(g0, g1)
2 � ∇∗∇ + 1

4

(
scal(g1)− scal(g0) ◦ f

)

and so scal(g1) ≥ scal(g0) ◦ f forces scal(g1) = scal(g0) ◦ f if the underlying
topologies imply, by way of the Atiyah–Singer Index Theorem, that ker D(g1, g0) �=
{0}.

In Sect. 3, we show that the curvature assumption in Theorem A ensures that
T(R, d f ) � 0, up to restricting this endomorphism to an appropriate subbundle. In
Sect. 4.1, we give topological conditions on M and N sufficient to have a nontrivial
section ξ of that subbundle with D(g0, g1)ξ = 0. In the earlier area-extremality/area-
rigidity works mentioned above, this topological condition is the nonvanishing of
the Euler characteristic, and the corresponding grading is used on the tensor product
of spinor bundles. However, the specific subbundle stemming from computations in
Sect. 3 requires us to use anovelmethod, combining the so-called “Euler characteristic"
and “signature" gradings of the tensor product of spinor bundles, an idea reminiscent
of Goette and Semmelmann [14, Remark 2.3].We then use ξ to prove our most general
area-extremality and area-rigidity result for closed manifolds, Theorem 4.4, which in
turn implies Theorem A. In Sect. 4.3, we describe metrics satisfying the required
curvature assumption, proving Corollary B.

Following Lott [21], the above method is extended to manifolds with boundary in
Sect. 5, proving Theorem 5.3 along with two corollaries, which imply Theorems C
and D. The convexity assumption II∂ M � 0 is used to ensure that ∇∗∇ � 0, while the
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existence of a nontrivial section ξ of the appropriate subbundle involves an application
of the Atiyah–Patodi–Singer Index Theorem for manifolds with boundary.

2 Preliminaries

In this section, we fix conventions, definitions, and notations, and recall basic facts
from linear algebra and spin geometry, closely following Lawson [19]. Throughout,
V and W denote (finite-dimensional) oriented real inner product spaces.

2.1 Linear algebra

Given a linear map l : W → V , its adjoint l∗ : V → W is the linear map such that
〈l(w), v〉V = 〈w, l∗(v)〉W for all v ∈ V and w ∈ W . The space of linear maps
l : W → V is denoted Hom(W , V ), and, if V = W , we write End(V ) = Hom(V , V ).
We identifyHom(W , V ) = W⊗V bymeans of (w⊗v)(·) = 〈w, ·〉v. The subspaces of
symmetric and skewsymmetric endomorphisms of V , i.e., l ∈ End(V ) such that l∗ = l
and l∗ = −l, are denoted Sym2(V ) ⊂ End(V ) and ∧2V ⊂ End(V ), respectively, and
End(V ) = Sym2(V ) ⊕ ∧2V . The special orthogonal group of V , i.e., the group of
linear isometries of V is denoted SO(V ) ⊂ Sym2(V ).

All of End(V ), Sym2(V ),∧2V , Hom(W , V ), Hom(∧2W ,∧2V ), etc., are endowed
with the compatible inner products determined by those in V and W . For example, if
a linear map L : ∧2 W → ∧2V is of the form L = ∧2l for some l : W → V , i.e.,

L(w1 ∧ w2) = l(w1) ∧ l(w2), for all w1, w2 ∈ W , (2.1)

then its adjoint L∗ : ∧2 V → ∧2W is given by L∗ = ∧2(l∗).
We will make repeated use of the following elementary fact from Linear Algebra:

Lemma 2.1 (Singular value decomposition)Given any linear map l : W → V between
real inner product spaces of the same dimension, there exist orthonormal bases {wi }
of W and {vi } of V , and real numbers λi ≥ 0, such that l(wi ) = λi vi .

Proof Let A ∈ Sym2(W ) be the linear map such that 〈Ax, y〉W = 〈l(x), l(y)〉V for all
x, y ∈ W . Clearly, A is symmetric and positive-semidefinite, so it can be diagonalized
by an orthonormal basis {wi } of W , on which A = diag(λ2i ) for some λi ≥ 0. By the
above, {l(wi )} are pairwise orthogonal vectors in V that span the image l(W ). The
unit-length vectors corresponding to the nonzero l(wi ) form a set that can be extended
to an orthonormal basis {vi } of V , and, by construction, l(wi ) = λi vi . ��

We say that a linear map l : W → V is nonincreasing if ‖l(w)‖ ≤ ‖w‖ for all
w ∈ W , or, equivalently, if all λi ≥ 0 arising from Lemma 2.1 satisfy λi ≤ 1. Note
that if l : W → V is nonincreasing, then so is L = ∧2l : ∧2 W → ∧2V given in (2.1).
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2.2 Algebraic curvature operators

For convenience,we treat endomorphisms R ∈ Sym2(∧2V ) both as a symmetric linear
maps R : ∧2V → ∧2V and as linearmaps V×V � (x, y) �→ Rx,y ∈ ∧2V ⊂ End(V )

such that Rx,y = −Ry,x , where

〈Rx,y(z), w〉 = 〈R(x ∧ y), w ∧ z〉, for all x, y, z, w ∈ V . (2.2)

The linear subspace of Sym2(∧2V ) formed by those R that satisfy the first Bianchi
identity Rx,y(z)+ Ry,z(x)+ Rz,x (y) = 0 is denoted Sym2

b(∧2V ), and its elements are
called algebraic curvature operators. These are pointwise models at each V = Tp M
for the curvature tensor/operator R of a Riemannian manifold (M, g). Accordingly,
the sectional curvature of a 2-plane σ = x ∧ y ∈ ∧2V with respect to R is

secR(σ ) = 〈Rx,y(y), x〉 = 〈R(σ ), σ 〉,

while RicR(x, y) is the trace of the endomorphism z �→ Rz,x (y), and scalR = 2 tr R.
As usual, by secR ≥ 0 and RicR � 0 we mean secR(σ ) ≥ 0 for all 2-planes σ ⊂ V
and RicR(x, x) ≥ 0 for all x ∈ V , respectively; similarly for secR > 0 and RicR � 0.

The orthogonal complement of Sym2
b(∧2V ) in Sym2(∧2V ) can be identified with

∧4V , where ω ∈ ∧4V ⊂ Sym2(∧2V ) is given by 〈ω(α), β〉 = 〈ω, α ∧ β〉. In
particular, if dim V = 4, this is a one-dimensional space spanned by the Hodge star
operator ∗: ∧2 V → ∧2V . Moreover, σ ∈ ∧2V satisfies σ ∧ σ = 0 if and only if
〈∗σ, σ 〉 = 0, i.e., the quadric defined by ∗ in ∧2V is precisely the Plücker embedding
of the oriented Grassmannian of 2-planes Gr+2 (V ) ⊂ ∧2V . As shown by Finsler [12],
a quadratic form 〈R(σ ), σ 〉 is nonnegative when restricted to the quadric 〈∗σ, σ 〉 = 0
if and only if some linear combination of R and ∗ is positive-semidefinite, yielding:

Proposition 2.2 (Finsler–Thorpe trick) Let R ∈ Sym2
b(∧2V ) be an algebraic curva-

ture operator on V , with dim V = 4. Then secR ≥ 0, respectively secR > 0, if and
only if there exists τ ∈ R such that R + τ ∗ � 0, respectively R + τ ∗ � 0.

Remark 2.3 The above has been referred to as Thorpe’s trick, as it was rediscovered by
Thorpe [27], see [4] for details. In themathematical optimization and control literature,
this fact is known as S-lemma, or S-procedure, see [25].

It is an easy consequence of convexity that the set of τ ∈ R such that R + τ ∗ � 0
for a fixed R ∈ Sym2

b(∧2V ) with secR ≥ 0, as in Proposition 2.2, is a closed interval
[τmin, τmax], which degenerates to a single point (i.e., τmin = τmax) if and only if R
has secR ≥ 0 but does not have secR > 0, see [4, Proposition 3.1].

2.3 Clifford algebra and spinors

If dimR V = 2n, then the complex Clifford algebra C�(V ) associated to V has a
unique irreducible complex representation S(V ), which is a complex vector space of
dimension 2n of so-called (Dirac) spinors. We endow S(V ) with a Hermitian inner
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product for which the action of unit vectors in C�(V ) is isometric. The complex
volume element ωC ∈ C�(V ), which is given by ωC = (

√−1)ne1e2 . . . e2n for any
orthonormal basis {e1, . . . , e2n} of V , satisfies ω2

C = 1. Thus, it induces splittings of
C�(V ) and S(V ) as orthogonal direct sums of eigenspaces of ωC with eigenvalue±1,
denoted

C�(V ) = C�+(V )⊕ C�−(V ) and S(V ) = S+(V )⊕ S−(V ), (2.3)

respectively. We write S := S(V ) and S± := S±(V ) to simplify notation, when the
inner product space V in question is clear from the context.

The homomorphism C�(V )→ End(S) defining the representation S is an isomor-
phism; and, just as in the real case discussed above, the Hermitian inner product 〈, 〉
on S allows us to identify End(S) = S⊗ S via (φ⊗ψ)(·) = 〈φ, ·〉ψ , for all φ,ψ ∈ S.
The composition of these isomorphisms is an isomorphism C�(V ) ∼= S ⊗ S which is
C�(V )-equivariant with respect to left multiplication on C�(V ) and multiplication on
the second factor of S ⊗ S. Thus, in light of (2.3), it restricts to isomorphisms

C�+(V ) ∼= S ⊗ S+ and C�−(V ) ∼= S ⊗ S−. (2.4)

As a vector space, the Clifford algebra C�(V ) is isomorphic to the complexified
exterior algebra ∧∗CV = ⊕

p ∧pV ⊗R C, via the linear map given on orthonormal
basis elements by ei1 . . . ei p �→ ei1 ∧ · · · ∧ ei p . This is a Z2-graded isomorphism: the
natural splitting C�(V ) = C�0(V )⊕ C�1(V ) arising from the Z2-grading of C�(V )

is mapped to the splitting ∧∗CV = ∧evenC V ⊕ ∧oddC V into exterior powers of even
and odd degrees. The action of C�0(V ) ∼= ∧evenC V on S preserves S± while that of
C�1(V ) ∼= ∧oddC V interchanges these subspaces. Since the Z2-graded isomorphism
∧∗CV → C�(V ) conjugates the duality isomorphism ∧pV → ∧2n−pV given by
(
√−1)p(p−1)+n ∗, where ∗ is the Hodge star operator, and left multiplication by ωC

in C�(V ), it follows that

∧evenC V = ∧+,even
C V ⊕∧−,even

C V , ∧oddC V = ∧+,odd
C V ⊕∧−,odd

C V ,

C�0(V ) = C�+,0(V )⊕ C�−,0(V ), C�1(V ) = C�+,1(V )⊕ C�−,1(V ),

where vertically aligned spaces are isomorphic, i.e.,

∧±,even
C V ∼= C�±,0(V ) ∼= S± ⊗ S±,

∧±,odd
C V ∼= C�±,1(V ) ∼= S∓ ⊗ S±, (2.5)

and this notation is compatible with (2.4), i.e., C�±(V ) = C�±,0(V )⊕ C�±,1(V ).

2.4 Spin group

The nontrivial double cover of the special orthogonal group SO(V ) is the spin group
Spin(V ), and it can be realized as Spin(V ) ⊂ C�0(V ), see [19, Chapter I] for details.
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Thus, its Lie algebra is isomorphic to the Lie algebra so(V ) of SO(V ), which is
identified with ∧2V as usual, i.e., (x ∧ y)(·) = 〈x, ·〉y − 〈y, ·〉x corresponds to an
infinitesimal rotation in the 2-plane of V spanned by x and y.

The inverse of the Lie algebra isomorphism 
0 induced by the double cover
C�0(V ) ⊃ Spin(V ) → SO(V ) is the map 
−10 : ∧2 V ∼= so(V ) → spin(V ) ⊂
C�0(V ) given on x ∧ y, where x, y ∈ V are orthogonal vectors, by


−10 (x ∧ y) = 1
2 xy, (2.6)

cf. [19, Proposition. I.6.2]. Note that 
−10 differs by a factor of 1
2 from the restriction

to∧2V of the isomorphism∧∗CV → C�(V )mentioned above, for which x∧ y �→ xy.

2.5 Spinor bundles and Dirac operators

Let (M2n, g) be an orientedRiemannianmanifold of dimension 2n, and denote by∇LC

its Levi–Civita connection on T M . Applying the above constructions pointwise, i.e.,
to each tangent space V = Tp M , p ∈ M , we obtain the spinor bundle S(T M) over M
and analogous isomorphisms and splittings compatible with the natural connections
induced by ∇LC on each of these bundles. In particular, we note that ωC is parallel.

Once again, to simplify notation, we write S := S(T M) and S± := S±(T M)

if the Riemannian manifold (M, g) is clear from the context, as well as Sg and S±g ,
respectively, to indicate the Riemannian metric g being used, when necessary. The
connection on Sg induced by∇LC is obtained applying the map (2.6) to the connection
forms. Namely, given a local orthonormal frame {e1, . . . , e2n} of T M we can choose
a local frame for S such that the connection ∇S on S is given by

∇S
v = d +

∑

i< j

g
(∇LC

v ei , e j
)ei e j

2
.

The curvature tensor RS : T M × T M → ∧2 S ⊂ End(S) of ∇S is given by

RS
x,y = 
−10 ◦ Rx,y =

∑

i< j

g
(
Rx,y(ei ), e j

)ei e j

2
, (2.7)

where R : T M × T M → ∧2T M ⊂ End(T M) is the curvature tensor of ∇LC.
The Dirac operator is the first-order differential operator on sections of S given by

D(φ) =
2n∑

i=1
ei∇S

ei
φ.

More generally, if E is a complex vector bundle over M , with a connection ∇E , we
can consider the spinor bundle twisted by E , which is the bundle S⊗ E endowed with
the tensor product connection ∇ and Clifford multiplication on the S factor, which
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makes it a Clifford bundle with a natural twisted Dirac operator DE . Similarly to the
above, DE acts on a decomposable local section φ ⊗ ε of S ⊗ E by

DE (φ ⊗ ε) =
2n∑

i=1
(ei∇S

ei
φ)⊗ ε + (eiφ)⊗∇E

ei
ε. (2.8)

The Bochner–Lichnerowicz–Weitzenböck formula, cf. [19, Theorem II.8.17], relates
D2

E and the connection Laplacian ∇∗∇ acting on sections of S ⊗ E as follows

D2
E = ∇∗∇ + 1

4 scal(g)+
∑

i< j

ei e j ⊗ RE
ei ,e j

, (2.9)

where RE : T M × T M → ∧2E ⊂ End(E) is the curvature tensor of ∇E , and
scal(g) is the scalar curvature of (M, g). For example, if E is the trivial bundle, one
recovers the well-known formula D2 = ∇∗∇ + 1

4 scal(g) for sections of S; while if
E = S, the twisted Dirac operator DS on S ⊗ S is conjugate to d + d∗ acting on
∧∗CT M∗ ∼= C�(T M) ∼= S ⊗ S, via the isomorphisms above.

3 Pointwise inequalities

In this section, we analyze algebraic properties and provide estimates for two types of
curvature terms: the last termR in the Bochner–Lichnerowicz–Weitzenböck formula
(2.9) if E = f ∗(S(T M)) is the pullback by f : N → M of the spinor bundle of
M , and (a modification of) the curvature term T in the Weitzenböck formula for the
Hodge Laplacian on differential forms on M . This is done pointwise, so we work
with oriented real inner product spaces V and W of the same dimension, a linear map
l : W → V which encodes d f , and the induced map L = ∧2l as in (2.1).

Definition 3.1 For every R ∈ Sym2(∧2V ) and L ∈ Hom(∧2W ,∧2V ), we define two
elements in the space of endomorphisms End

(
S(W )⊗ S(V )

)
by means of

R(R, L) := −2
∑

i

βi ⊗ R(L(βi )),

T(R, L) := −
∑

i

(
L∗(αi )⊗ 1+ 1⊗ αi

) ◦ (
L∗(R(αi ))⊗ 1+ 1⊗ R(αi )

)
,

where {αi } and {βi } are orthonormal bases of ∧2V and ∧2W , respectively, and

∧2 V ⊂ End
(
S(V )

)
and ∧2 W ⊂ End

(
S(W )

)
(3.1)

via the respective actions of ∧2V and ∧2W on S(V ) and S(W ), determined by the
map 
−10 in (2.6). Moreover, we canonically identify End

(
S(W )

)⊗ End
(
S(V )

)
and

End
(
S(W )⊗ S(V )

)
, and ◦ in the definition of T(R, L) is composition in the latter.
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The endomorphismsR(R, L) and T(R, L) of S(W )⊗ S(V ) do not depend on the
choices of {αi } and {βi }. Indeed, identifying ∧2W ⊗ ∧2V = Hom(∧2W ,∧2V ), and
considering R ∈ Sym2(∧2V ) ⊂ End(∧2V ) = ∧2V ⊗∧2V , we have that

R(R, L) = −2 R ◦ L and T(R, L) = −c((TL ⊗ TL)(R)),

where TL : ∧2V → End(S(W ))⊗End(S(V )) is given by TL(α) = (L∗(α)⊗1+1⊗α),
and c is the composition c(A⊗B) = A◦B for all A, B ∈ End

(
S(W )⊗S(V )

)
. Clearly,

the maps R �→ R(R, L), L �→ R(R, L), and R �→ T(R, L) are linear.
As elements of C�(W )⊗ C�(V ) ∼= End(S(W ))⊗ End(S(V )), both R(R, L) and

T(R, L) belong to C�0(W )⊗C�0(V ), and hence, as endomorphisms, they restrict to
endomorphisms of S+(W )⊗ S+(V ) and of S−(W )⊗ S−(V ).

Lemma 3.2 For all algebraic curvature operators R ∈ Sym2
b(∧2V ), we have

R(R, L) = T(R, L)− 1
4 tr(L∗ ◦ R ◦ L)− 1

8 scalR .

Proof By Lemma 2.1, we may choose orthonormal bases {αi } of ∧2V and {βi } of
∧2W such that L(βi ) = λiαi for some λi ≥ 0. Note that L∗(αi ) = λiβi . Since R is
symmetric, we may write R(αi ) =∑

j Ri jα j with Ri j = R ji , and hence

R(R, L) = −
∑

i

βi ⊗ R(λiαi )−
∑

i

βi ⊗ λi

∑

j

Ri jα j

= −
∑

i

λiβi ⊗ R(αi )−
∑

j

∑

i

R jiλiβi ⊗ α j

= −
∑

i

L∗(αi )⊗ R(αi )−
∑

j

L∗(R(α j ))⊗ α j

= T(R, L)+
∑

i

(
L∗(αi ) ◦ L∗(R(αi ))

)⊗ 1+
∑

i

1⊗ (
αi ◦ R(αi )

)
.

A routine argument using the symmetries of Clifford multiplication and of the
curvature operator R, including the Bianchi identity, see [19, Theorem II.8.8], implies

∑

i

αi ◦ R(αi ) = − 1
4 tr(R) = − 1

8 scalR .

Since L∗ ◦ R ◦L ∈ Sym2(∧2W ) has the same symmetries as R, the above also implies

∑

i

L∗(αi ) ◦ L∗(R(αi )) =
∑

i

βi ◦ (L∗ ◦ R ◦ L(βi )) = − 1
4 tr(L∗ ◦ R ◦ L).

��
We now estimate the terms in the right-hand side of the identity in Lemma 3.2.

The following two lemmas were observed in [14, Sect. 1.1], but, for completeness, we
supply their proofs below using our notations.
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Lemma 3.3 If R ∈ Sym2
b(∧2V ) is an algebraic curvature operator with secR ≥ 0

and l : W → V is a linear map such that L = ∧2l is nonincreasing, then

tr(L∗ ◦ R ◦ L) ≤ 1
2 scalR .

If, in addition, 1
2 scalR � RicR � 0, then equality above implies l is an isometry.

Proof By Lemma 2.1, we may choose orthonormal bases {vi } of V and {wi } of W
such that l(wi ) = λivi for some λi ≥ 0. Then {wi ∧ wi }i< j is an orthonormal basis
of ∧2W and (R ◦ L)(wi ∧ w j ) = λiλ j R(wi ∧ w j ) for all i < j , so

tr(L∗ ◦ R ◦ L) =
∑

i< j

λ2i λ
2
j secR(vi ∧ v j ).

Since L is nonincreasing, λiλ j ≤ 1 for all i < j , which proves the desired inequality.
If tr(L∗ ◦ R ◦ L) = 1

2 scalR , then

∑

i< j

(1− λ2i λ
2
j ) secR(vi ∧ v j ) = 0. (3.2)

If, furthermore, 1
2 scalR � RicR , then for each fixed a, we have

∑
b secR(va ∧ vb) <∑

i< j secR(vi ∧ v j ), or equivalently,

0 <
∑

i< j
i, j �=a

secR(vi ∧ v j ).

Thus there exist i, j �= a so that secR(vi ∧v j ) > 0. (Note that 1
2 scalR � RicR implies

dim V ≥ 3.) As secR ≥ 0, it follows that (3.2) implies λiλ j = 1. But λiλa ≤ 1 and
λ jλa ≤ 1, so we conclude that λa ≤ 1 for all a, i.e., l is nonincreasing. If, moreover,
RicR � 0, then, for each a, there exists b �= a such that secR(va ∧ vb) > 0. Again it
follows that λaλb = 1, and we conclude that λa = λb = 1, so l is an isometry. ��
Lemma 3.4 If R ∈ Sym2(∧2V ) is such that R � 0, then T(R, L) � 0.

Proof Choose an orthonormal basis αi of ∧2V that diagonalizes R, i.e., such that
R(αi ) = ρi αi . Since R � 0, we have that ρi ≥ 0. Then, by Definition 3.1,

T(R, L) = −
∑

i

ρi
(
L∗(αi )⊗ 1+ 1⊗ αi

)2
.

Since αi ∈ spin(V ) and L∗(αi ) ∈ spin(W ), i.e., these are elements of C�0(V ) and
C�0(W ) in the images of the corresponding isomorphisms (2.6), the endomorphisms
L∗(αi )⊗ 1+ 1⊗ αi of S(W )⊗ S(V ) are skewsymmetric, so the conclusion follows.

��
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Let us now assume that both V and W are 4-dimensional. We denote the Hodge star
operators of V and W by ∗V ∈ Sym2(∧2V ) and ∗W ∈ Sym2(∧2W ), and similarly for
ωV
C ∈ C�(V ) andωW

C ∈ C�(W ). Recall fromSects. 2.3 and (2.6) that
−10 (∗(x∧y)) =
1
2 ωC xy if x and y are orthogonal.

Lemma 3.5 If the linear map l : W → V is such that L = ∧2l is nonincreasing and
dimR V = dimR W = 4, then the restriction of T(∗V , L) to S+(W ) ⊗ S+(V ) is
positive-semidefinite.

Proof By Lemma 2.1, we may choose orthonormal bases {vi } of V and {wi } of W
such that l(wi ) = λivi for some λi ≥ 0. The assumption on l ensures that λiλ j ≤ 1
for all i �= j . We first note that, with these choices,

L∗
( ∗V (vi ∧ v j )

) = μi j ∗W (wi ∧ w j ),

where |μi j | =
∥∥L∗(∗V (vi ∧ v j ))

∥∥ ≤ 1, since ∗V is an isometry of ∧2V . Symmetries
of Clifford multiplication in C�0(W ) ⊗ C�0(V ) ∼= End

(
S+(W ) ⊗ S+(V )

)
and the

fact that 
−10 (∗(x ∧ y)) = 1
2 ωC xy if x and y are orthonormal imply that:

L∗
( ∗V (vi ∧ v j )

)⊗ 1+ 1⊗ ∗V (vi ∧ v j ) = 1
2

(
μi j ωW

C wiw j ⊗ 1+ 1⊗ ωV
Cviv j

)

= 1
2

(
μi j wiw jω

W
C ⊗ 1+ 1⊗ viv jω

V
C

)

= 1
2

(
μi j wiw j ⊗ 1+ 1⊗ viv j

)
,

where the last equality holds because the above endomorphisms are restricted to the
tensor product S+(W )⊗ S+(V ) of +1-eigenspaces of ωW

C and ωV
C . Therefore,

T(∗V , L) = − 1
4

∑

i< j

(
λiλ j wiw j ⊗ 1+ 1⊗ viv j

) ◦ (
μi j wiw j ⊗ 1+ 1⊗ viv j

)

= 1
4

∑

i< j

(−λiλ j + wiw j ⊗ viv j
) ◦ (−μi j + wiw j ⊗ viv j

)
,

and, since
(
wiw j ⊗ viv j

)2 = 1, and |λiλ j | ≤ 1 as well as |μi j | ≤ 1, we may use a
basis of eigenvectors of wiw j ⊗ viv j to conclude that the eigenvalues of each of the
above summands are (−λiλ j + 1)(−μi j + 1) ≥ 0 or (−λiλ j − 1)(−μi j − 1) ≥ 0. ��
Remark 3.6 Under the hypotheses of Lemma 3.5, it also follows that the restriction of
T(∗V , L) to S−(W )⊗ S−(V ) is negative-semidefinite.

4 Extremality and rigidity on closed 4-manifolds

In this section, we prove Theorem A and Corollary B in the Introduction, by showing
that a certain twisted Dirac operator has nontrivial kernel and using the results of



    7 Page 14 of 29 R. G. Bettiol, M. J. Goodman

Sect. 3 to analyze the curvature term in the corresponding Bochner–Lichnerowicz–
Weitzenböck formula.

We begin by recalling and generalizing the notions of area-extremality and
area-rigidity for scalar curvature discussed in the Introduction to also account for
“topologically modified” competitors, cf. Gromov [15, Sect. 4] and [16, Sect. 5 4

9 ].
Henceforth, all manifolds are assumed connected.

Definition 4.1 A closed oriented Riemannianmanifold (M, gM ) is area-extremal with
respect to a class C = { f : (N , gN )→ (M, gM )} of competitors, consisting of closed
oriented Riemannian manifolds (N , gN )with dim M = dim N and smooth spin maps
f : N → M of nonzero degree, if the inequalities

∧2 gN � f ∗ ∧2 gM and scal(gN ) ≥ scal(gM ) ◦ f (4.1)

imply scal(gN ) = scal(gM ) ◦ f . If, in addition, there exists q ∈ M such that (4.1)
implies d f (p) : Tp N → Tq M is a linear isometry for all competitors f : N → M in
C and all p ∈ f −1(q), then (M, gM ) is called area-rigid at q ∈ M with respect to C.
If (M, gM ) is area-rigid at all of its points with respect to C, then it is simply called
area-rigid with respect to C.

Recall that a smooth map f : N → M is spin if it is compatible with second
Stiefel–Whitney classes, i.e., f ∗w2(M) = w2(N ), and∧2gN � f ∗ ∧2 gM means that
f : (N , gN )→ (M, gM ) is area-nonincreasing, i.e., ∧2d f is nonincreasing, namely

∥
∥x ∧ y

∥
∥
gN
≥ ∥

∥d f (p)x ∧ d f (p)y
∥
∥
gM

for all x, y ∈ Tp N and all p ∈ N . For example, this holds if f : (N , gN )→ (M, gM )

is distance-nonincreasing, see Sect. 2.1.

Remark 4.2 The notions of area-extremality and area-rigidity for closed manifolds
in the Introduction correspond to using the class Cid0 := {id : (M, g1) → (M, g0)}
in Definition 4.1, cf. (1.1). Note that competitors given by any diffeomorphisms
f : (M, g1)→ (M, g0) reduce to the above case, pulling back g1 by f −1.

4.1 Index theory

Let (M, gM ) and (N , gN ) be closed oriented Riemannian 4-manifolds, and denote by
S(T M) and S(T N ) their (locally defined) spinor bundles. Given a spin map f : N →
M , the twisted spinor bundle S(T N ) ⊗ f ∗S(T M) is globally defined; namely, it is
the spinor bundle of the spin bundle T N ⊕ f ∗T M .

Let E = f ∗S+(T M), and consider the twisted Dirac operator

DE : �(S(T N )⊗ E) −→ �(S(T N )⊗ E). (4.2)

Recall from (2.8) that, if we denote by ∇SN and ∇SM the connections on S(T N ) and
S(T M) respectively, and by {ei } a local gN -orthonormal frame for T N , then on a
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decomposable local section φ ⊗ f ∗ψ of S(T N )⊗ E , the operator DE acts as

DE (φ ⊗ ψ) =
4∑

i=1

(
ei∇SN

ei
φ
)
⊗ f ∗ψ + (eiφ)⊗ f ∗

(
∇SM
d f (ei )

ψ
)

.

We respectively denote by χ(X) and σ(X) the Euler characteristic and signature
of an oriented 4-manifold X , and by deg( f ) the degree of f : N → M .

Lemma 4.3 If f : N → M has deg( f ) �= 0 and

2χ(M)+ 3σ(M) >
σ(N )

deg( f )
, (4.3)

then the restriction of DE to �(S+(T N )⊗ E) has nontrivial kernel.

Proof By the splitting principle, we may assume that T M ⊗C ∼= λ1⊕ λ1⊕ λ2⊕ λ2,
where λ1, λ2 are complex line bundles. Let x1, x2 denote the first Chern classes of

λ1, λ2 respectively. If λ1 and λ2 are spin, S+(T M) ∼= λ
1
2
1 ⊗ λ

1
2
2 ⊕ λ

1
2
1 ⊗ λ

1
2
2 , cf. [19,

p. 238], and the Chern character of S+(T M) is given by

ch(S+(T M)) = 2 cosh
( x1
2 + x2

2

) = 2+ 1
4 p1(T M)+ 1

2e(T M),

where p1 is the first Pontryagin class and e is the Euler class. By an argument in [26,
Appendix A4], the same formula also holds in the case that λ1 and λ2 are not spin.
Then, by the Atiyah–Singer Index Theorem,

ind
(
DE |S+(T N )⊗E

) =
〈
Â(T N ) · f ∗ch(S+(T M)), [N ]

〉

= 〈− 1
12 p1(T N )+ 1

4 f ∗ p1(T M)+ 1
2 f ∗e(T M), [N ]〉

= − 1
4σ(N )+ deg( f )

( 3
4σ(M)+ 1

2χ(M)
)

> 0,

and hence ker
(
DE |S+(T N )⊗E

)
is nontrivial. ��

Note that all hypotheses of Lemma 4.3 are satisfied if deg( f ) = 1 and M = N has
vanishing first Betti number b1(M) = 0, e.g., if M is simply-connected, since then
χ(M) = 2+ b+(M)+ b−(M) and σ(M) = b+(M)− b−(M), where b±(M) are the
self-dual/anti-self-dual second Betti numbers, so (4.3) simplifies to 4+ 4b+(M) > 0.

4.2 Extremality and rigidity

We now combine the pointwise inequalities from Sect. 3 with the Bochner–
Lichnerowicz–Weitzenböck formula (2.9) for the twisted Dirac operator (4.2) and
Lemma 4.3 to prove our main result on area-extremality and area-rigidity of closed
4-manifolds, in the sense of Definition 4.1.
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Theorem 4.4 A closed oriented Riemannian 4-manifold (M, gM ) with sec ≥ 0 such
that R + τ ∗ � 0 for a nonpositive τ : M → R is area-extremal with respect to

C0 :=
{

f : (N , gN )→ (M, gM ) : 2χ(M)+ 3σ(M) >
σ(N )

deg( f )

}
.

If, in addition, scal(gM )
2 gM � Ric(gM ) � 0 at q ∈ M, then (M, gM ) is area-rigid at

q ∈ M with respect to C0.

Proof Let f : (N , gN )→ (M, gM ) be a competitor in C0, and let E = f ∗S+(T M).
The Bochner–Lichnerowicz–Weitzenböck formula for the square D2

E of the twisted
Dirac operator (4.2) is given by (2.9), setting g = gN . From (2.2) and (2.7),

RSM
x,y = −
−10

(
R(x ∧ y)

)
,

where R : ∧2T M → ∧2T M is the curvature operator of (M, gM ).Working pointwise
with W = Tp N , V = T f (p)M , l : W → V given by d f (p), and L = ∧2l, we see that
(2.9) can be written using the endomorphism R(R, L) from Definition 3.1 as

D2
E = ∇∗∇ + 1

4 scal(gN )+R(R, L). (4.4)

Let ξ ∈ �(S+(T N )⊗ E) be a nonzero section in the kernel of DE , which exists by
Lemma 4.3. Applying (4.4) and integrating, we obtain, using Lemma 3.2,

0 =
∫

N
〈∇∗∇ξ, ξ 〉 + 1

4

∫

N
scal(gN )‖ξ‖2 +

∫

N
〈R(R, L)ξ, ξ 〉

=
∫

N
‖∇ξ‖2 +

∫

N
〈T(R, L)ξ, ξ 〉

+ 1
4

∫

N

(
scal(gN )− 1

2 scal(gM ) ◦ f − tr(L∗ ◦ R ◦ L) ◦ f
) ‖ξ‖2. (4.5)

Linearity of R �→ T(R, L) and Lemmas 3.4 and 3.5 imply that, on S+(T N )⊗ E ,

T(R, L) = T(R + τ ∗, L)− τ T(∗, L) � 0, (4.6)

since τ ≤ 0. Thus, combining (4.1), (4.5), and (4.6) with Lemma 3.3, which may be
applied because secR ≥ 0 and L is nonincreasing by (4.1), we conclude that

0 ≥
∫

N
‖∇ξ‖2 + 1

4

∫

N

(
scal(gN )− 1

2 scal(gM ) ◦ f − tr(L∗ ◦ R ◦ L) ◦ f
) ‖ξ‖2

≥
∫

N
‖∇ξ‖2 + 1

4

∫

N
(scal(gN )− scal(gM ) ◦ f ) ‖ξ‖2 ≥ 0.

Therefore, ∇ξ vanishes identically and hence ‖ξ‖ �= 0 is constant, so it follows that
scal(gN ) = scal(gM ) ◦ f everywhere. Furthermore, tr(L∗ ◦ R ◦ L) = 1

2 scal(gM ), so,

if scal(gM )
2 gM � Ric(gM ) � 0 at q = f (p), then l is an isometry by Lemma 3.3. ��
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Let us briefly discuss some situations in which the hypotheses of Theorem 4.4
are satisfied. If (M, gM ) is simply-connected and its curvature operator R satisfies
R + τ ∗ � 0 with τ ≤ 0, then, by the proof of Bettiol and Mendes [6, Theorem D],
either (M, gM ) is isometric to S2×S2 and τ ≡ 0, hence it is area-extremal with respect
to any class of competitors by Goette and Semmelmann [14], or else M has negative-
definite intersection form, i.e., b+(M) = 0, and hence σ(M) = −b−(M) = −b2(M).
In this latter case, restricting ourselves to self-map competitors, i.e., setting N = M ,
the class C0 simplifies to

Cself0 :=
{

f : (M, g1)→ (M, g0) : 4+
(

1

deg( f )
− 1

)
b2(M) > 0

}
.

Clearly, Cid0 ⊂ Cself0 , and this proves Theorem A in the Introduction, since we may
choose the orientation of M for which τ ≤ 0 in order to apply Theorem 4.4, see
Remark 4.2. Moreover, if b2(M) ≤ 4, then Cself0 contains all (smooth spin) self-maps
f : (M, g1)→ (M, g0) of nonzero degree. Thus, more generally, we have:

Corollary 4.5 A closed simply-connected Riemannian 4-manifold (M, gM ) whose cur-
vature operator R satisfies R + τ ∗ � 0 with τ ≤ 0 is area-extremal with respect to
any (smooth spin) self-maps of degree 1, and (smooth spin) self-maps of arbitrary
nonzero degree if b2(M) ≤ 4. If, in addition, scal(gM )

2 gM � Ric(gM ) � 0 at q ∈ M,
then (M, gM ) is area-rigid at q ∈ M with respect to the same classes of self-maps.

4.3 Examples

The only closed simply-connected 4-manifolds currently known to admit metrics with
sec ≥ 0 are S4, CP2, S2×S2, CP2#CP2, and CP2#CP2, and this list is conjectured
to be exhaustive. We now analyze the existence of families of area-extremal and
area-rigid metrics on these manifolds, starting with those known to admit sec > 0.

Theorem 4.6 The spaces of Riemannian metrics on S4 and CP2 have nonempty open
subsets consisting of area-rigid metrics with respect to self-maps of any nonzero
degree, that contain the round metric and the Fubini–Study metric, respectively.

Proof Any metric on S4 with R � 0 is area-rigid with respect to self-maps of any
nonzero degree by Corollary 4.5 (taking τ ≡ 0), or by Goette and Semmelmann [14].
In particular, there is a neighborhood of the round metric consisting of such metrics.

Let gCP2 be the Fubini–Study metric on CP2 and denote by RCP2 its curvature
operator, with 1 ≤ sec ≤ 4. In a self-dual/anti-self-dual basis of∧2TpCP2, i.e., a basis
that diagonalizes the Hodge star operator as ∗CP2 = diag(1, 1, 1,−1,−1,−1), we
have RCP2 = diag(0, 0, 6, 2, 2, 2), so RCP2 + τ ∗CP2 � 0 if and only if 0 ≤ τ ≤ 2.
Thus, to apply Theorem 4.4, we must set M to be CP2, i.e., CP2 with the opposite
orientation, which is isometric to CP2 and hence has the same curvature operator
R
CP2 = RCP2 , but ∗

CP2 = −∗CP2 , so R
CP2+τ ∗

CP2 � 0 if and only if−2 < τ < 0.
We may then take, e.g., τ ≡ −1, and, by continuity, there exists a neighborhood U of
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gCP2 in the C2-topology formed by metrics g that also satisfy Rg + τ ∗g � 0 for the
constant function τ ≡ −1. Furthermore, since gCP2 is an Einstein metric,

scal(gCP2)

2
gCP2 � scal(gCP2)

4
gCP2 = Ric(gCP2) � 0,

so, up to shrinking U, we may assume that all g ∈ U satisfy scal(g)
2 g � Ric(g) � 0.

Therefore, sinceb2(CP2) = 1, it follows fromCorollary 4.5 that (CP2, g) is area-rigid
with respect to self-maps of any nonzero degree, for all g ∈ U. ��

Let us consider the remaining simply-connected 4-manifolds known to admit sec ≥
0. On S2 × S2, any product of metrics on S2 with sec > 0 has R � 0 and scal(g)

2 g �
Ric(g) � 0, thus it is area-rigid with respect to self-maps of any nonzero degree
by Corollary 4.5; or, in a more general sense, by Goette and Semmelmann [14]. On

CP2#CP
2
and CP2#CP2, metrics with sec ≥ 0 were constructed by Cheeger [9],

using a gluing method that endows the connected sum M1#M2 of any two (oriented)
compact n-dimensional rank one symmetric spaces with sec ≥ 0. These Cheeger
metrics contain a neck region isometric to a round cylinder Sn−1 × [0, �], to which
the complement of a ball in each Mi is glued. The length � ≥ 0 of the neck can be

chosen arbitrarily, including � = 0. There do not exist metrics on CP2#CP
2
that

satisfy the hypotheses of Theorem 4.4, as a consequence of Bettiol and Mendes [6,

Theorem D]. However, CP2#CP
2
admits Kähler metrics of positive Ricci curvature

[29], which are area-rigid by [13].Meanwhile, existence of area-extremal or area-rigid
metrics onCP2#CP2 cannot be establishedwith any previous results, since they either
require metrics that are Kähler or have positive-semidefinite curvature operator, and
CP2#CP2 admits neither. We overcome these restrictions as follows:

Theorem 4.7 The Cheeger metrics on CP2#CP2 are area-extremal with respect to
self-maps of any nonzero degree, and area-rigid with respect to these maps on all
points in the complement CP2#CP2 \ (S3 × [0, �]) of the neck region.

Proof ThemanifoldCP2#CP2 is obtained gluing together two equally oriented copies
of the normal disk bundle ν(CP1) of CP1 ⊂ CP2 along their boundary S3, with an
orientation-reversing diffeomorphism α. Since bi-invariant metrics on SU(2) ∼= S3 are
round (in particular, they support orientation-reversing isometries), Cheeger metrics
on each copy of ν(CP1) are isometric to themetricswith sec ≥ 0 constructed byGrove
and Ziller [17] on ν(CP1) ∼= G×K D2 that are invariant under the action ofG = SU(2)
with orbit space ν(CP1)/G = [0, rmax], where 0 corresponds to the singular orbit
with isotropy K = S1 and all other (principal) orbits have trivial isotropy H = {1}. A
detailed treatment of Grove–Ziller metrics on a related disk bundle G′ ×K′ D2 over
CP1 = G/K = G′/K′ is given in [3], where G′ = SO(3), K′ = SO(2)1,2, and H′ = Z2,
including the explicit computation of their curvature operator, see [3, Proposition 3.5].
This computation applies mutatis mutandis toG×K D2, as the Lie groups (G, K,H) and
(G′, K′,H′) have isomorphic Lie algebras. Namely, one must only replace the constant
ρ(b) = b/2 with ρ(b) = 2b when passing from G′ ×K′ D2 to G×K D2. Then Bettiol
and Krishnan [3, Proposition 3.5] implies that, in a basis induced by an orthonormal
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frame, the curvature operator R of a Grove–Ziller metric g on ν(CP1) ∼= G×K D2 is
block diagonal, i.e., R = diag(R1, R2, R3), where

R1 =
[
4b2−3ϕ2

4b4
− ϕ′

b2

− ϕ′
b2

−ϕ′′
ϕ

]

, R2 = R3 =
[

ϕ2

4b4
ϕ′
2b2

ϕ′
2b2

0

]

, (4.7)

b > 0 is an arbitrary constant, ϕ : [0, rmax] → R is a nonnegative smooth function
satisfying ϕ(0) = 0, ϕ′(0) = 1/2, ϕ(2k)(0) = 0 for all k ∈ N, ϕ′(r) ≥ 0 for all
r ∈ [0, rmax], ϕ′′(r) ≤ 0 for all r ∈ [0, rmax], and ϕ(r) ≡ b for all r ∈ [r0, rmax], with
0 < r0 ≤ rmax and r0 chosen sufficiently large.

Clearly, all data on (ν(CP1), g) which is invariant under isometries, such as R,
is determined by its value along a unit speed horizontal geodesic parametrized on
[0, rmax], and (ν(CP1), g) is isometric to the round cylinder S3(2b)× [r0, rmax] near
its boundary, where S3(2b) is a round 3-sphere of radius 2b. Thus, gluing two copies
of (ν(CP1), g) along S3(2b) using an orientation-reversing isometry α produces a
smooth metric on CP2#CP2 = ν(CP1)∪α ν(CP1), which we also denote by g. The
preimage of [r0, rmax] under the projection map ν(CP1) → [0, rmax] is half of the
neck region inCP2#CP2; in particular, the neck region is isometric to S3(2b)×[0, �],
where � = 2(rmax− r0) ≥ 0. Note that while r0 > 0 must be chosen sufficiently large
in order for ϕ as above to exist, the value of rmax ≥ r0 is arbitrary.

The matrix of the Hodge star operator ∗ is also block diagonal in the basis used in
(4.7), namely ∗ = diag(H , H , H), where

H =
[
0 1
1 0

]
.

Therefore, the unique function τ : ν(CP1)→ R such that R + τ ∗ � 0 is τ = − ϕ′
2b2

,

and hence the unique function τ : CP2#CP2 → R such that R + τ ∗ � 0 satisfies
τ ≤ 0 and τ = 0 along the neck region. Routine computations with (4.7) yield

Ric(g) = diag
(

ϕ2

2b4
− ϕ′′

ϕ
, 1

b2
− ϕ2

2b4
, 1

b2
− ϕ2

2b4
, −ϕ′′

ϕ

)
,

scal(g) = 2
b2
− ϕ2

2b4
− 2ϕ′′

ϕ
,

scal(g)
2 g− Ric(g) = diag

(
4b2−3ϕ2

4b4
,

ϕ2

4b4
− ϕ′′

ϕ
,

ϕ2

4b4
− ϕ′′

ϕ
,

4b2−ϕ2

4b4

)
,

for all r ∈ [0, rmax]. In particular, scal(g)
2 g � Ric(g) � 0 on all of CP2#CP2, and

Ric(g) � 0 outside the neck region. Thus, as b2(CP2#CP2) = 2, Corollary 4.5
implies that g is area-extremal with respect to self-maps of any nonzero degree, and
area-rigid with respect to these maps on all points outside the neck region. ��
Remark 4.8 The statement concerning area-rigidity in Theorem 4.7 is sharp. In fact,
given a Cheeger metric g0 on CP2#CP2 with neck length �0 ≥ 0, one can easily
produce nonisometric competitor Cheeger metrics g1 that satisfy (1.1) by elongating
the neck length to any �1 > �0. However, Cheeger metrics with vanishing neck length
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are area-rigid (at all points) with respect to diffeomorphisms, since any diffeomor-
phism which is an isometry on the complement CP2#CP2\(S3 × {0}) of the neck
hypersurface, which is dense, must be an isometry on all of CP2#CP2.

Theorems 4.6 and 4.7 and Remark 4.8 imply Corollary B in the Introduction.

Remark 4.9 Although both halves of ν(CP1) ∪α ν(CP1) = CP2#CP2 have coho-
mogeneity one SU(2)-actions, these actions do not extend to CP2#CP2. Indeed, the
gluing isometry α : S3(2b) → S3(2b) is orientation-reversing and hence cannot be
SU(2)-equivariant. Using an orientation-preserving isometry β instead, the resulting
manifold is ν(CP1) ∪β ν(CP1) = CP2#CP2, which carries a cohomogeneity one
SU(2)-action and invariant Cheeger metrics with sec ≥ 0. Nevertheless, the corre-
sponding function τ assumes opposite signs on each half due to the flip in orientation,
hence Theorem 4.4 and Corollary 4.5 do not apply, cf. [6, Theorem D].

5 Extremality and rigidity on 4-manifolds with boundary

In this section, we prove Theorems C and D in the Introduction, adapting the approach
from the previous section to the case of compact manifolds with boundary. We begin
by generalizing the notions of area-extremality and area-rigidity for closed manifolds
in Definition 4.1 to manifolds with boundary, along the lines of Lott [21].

Given a compact Riemannian manifold (M, g) with boundary ∂ M , we denote by
II∂ M the second fundamental form of ∂ M with respect to the inward unit normal, and
by H(g) = tr II∂ M the mean curvature of ∂ M computed accordingly.

Definition 5.1 A compact oriented Riemannian manifold (M, gM ) with boundary is
area-extremal with respect to a class C = { f : (N , gN )→ (M, gM )} of competitors,
consisting of compact oriented Riemannian manifolds (N , gN ) with boundary such
that dim M = dim N , and smooth boundary-preserving spin maps f : N → M of
nonzero degree, if the inequalities

∧2gN � f ∗ ∧2 gM , scal(gN ) ≥ scal(gM ) ◦ f ,

gN |∂ N � f ∗gM |∂ M , H(gN ) ≥ H(gM ) ◦ f (5.1)

imply scal(gN ) = scal(gM ) ◦ f and H(gN ) = H(gM ) ◦ f . If, in addition, there
exists q ∈ M such that (5.1) implies d f (p) : Tp N → Tq M is a linear isometry for all
competitors f : N → M in C and all p ∈ f −1(q), then (M, gM ) is called area-rigid
at q ∈ M with respect to C. If (M, gM ) is area-rigid at all of its points with respect to
C, then it is simply called area-rigid with respect to C.

The notions of area-extremality and area-rigidity for manifolds with boundary
discussed in the Introduction correspond to using the class

Cid∂ =
{
id : (M, g1)→ (M, g0) : g1|∂ M = g0|∂ M

}
.

Note that in the case ∂ M = ∅, the class Cid∂ is simply Cid0 from Remark 4.2.
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Index theory

Let (M, gM ) and (N , gN ) be oriented Riemannian 4-manifolds as in Sect. 4, except
here we allow these manifolds to have nonempty boundary and assume f |∂ N : ∂ N →
∂ M is an orientation-preserving isometry, which we also refer to as an oriented
isometry for shortness.

Let E = f ∗S+(T M). As described in Sect. 4, gN and gM induce connections
∇SN and ∇SM on S(T N ) and S(T M), respectively. The connections ∇SN and f ∗∇SM

then induce a connection ∇ on S(T N ) ⊗ E , which is used to define the twisted
Dirac operator DE on sections of that bundle. While ∇ restricts to a connection on
S+(T N )⊗ E |∂ N , we will next define another connection ∇∂ on that bundle, which is
induced by the boundary metrics gN |∂ N and gM |∂ M , rather than the ambient metrics
gN and gM , and thus differs from ∇ by a term related to the second fundamental form
of the boundaries, see (5.11).

Let r : N → R be the distance from ∂ N and choose ε > 0 smaller than the focal
radius of ∂ N , so that the normal exponential map of ∂ N is a diffeomorphism from
∂ N × [0, ε] to U = {x ∈ N : r(x) ≤ ε}. Let ν = ∂r , so ν|∂ N is the inward unit
normal. There is an isomorphism

C�(T ∂ N ) −→ C�0(T N )|∂ N

generated by T ∂ N � v �→ −νv ∈ C�(T N ). Using this isomorphism, we identify
S(T ∂ N ) and S+(T N )|∂ N . Let ∇∂ N be the connection on S(T ∂ N ) = S+(T N )|∂ N

induced by the restriction of gN to ∂ N . Similarly, let ∇∂ M be the connection induced
by gM |∂ M on S(T ∂ M) = S+(T M)|∂ M . The connections ∇∂ N and f ∗∇∂ M induce a
connection ∇∂ on S+(T N )⊗ E |∂ N .

Using parallel translation along normal geodesics, we can identify

� (S(T N )⊗ E |U ) ∼= C∞
([0, ε], � (S(T N )⊗ E |∂ N )

)
, (5.2)

that is, sections of S(T N )⊗ E on the collar neighborhood U are 1-parameter families
of sections of S(T N )⊗ E on the boundary ∂ N . Using this identification, we have

DE |�(S+(T N )⊗E |U ) = ν (∂r + B + A) ,

where, in a local orthonormal frame {ei } for T N such that e1 = −ν,

B =
4∑

i=2
e1ei∇∂

ei
, A =

4∑

i=2
e1ei

(
∇ei −∇∂

ei

)
. (5.3)

Recall that Clifford multiplication is only on the first factor of S(T N ) ⊗ E , so B is
a first-order self-adjoint elliptic differential operator on S(T N ) ⊗ E |∂ N and A is a
self-adjoint linear endomorphism of the same bundle.

Let P>0 and P≤0 be the projections onto the subspaces of �(S+(T N ) ⊗ E |∂ N )

spanned by eigenvectors of B with positive and nonpositive eigenvalues, respectively.
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We impose boundary conditions on DE by setting D+E := DE |�+ , where

�+ := {ξ ∈ �(S+(T N )⊗ E) : P>0 (ξ |∂ N ) = 0}. (5.4)

The adjoint D−E of D+E is the restriction of DE to

�− := {ξ ∈ �(S−(T N )⊗ E) : P≤0 (νξ |∂ N ) = 0}.

We use the convention that σ(M) is the signature of the bilinear form induced by the
cup product on the image of H2(M, ∂ M) in H2(M), and similarly for σ(N ).

Lemma 5.2 If 2χ(M) + 3σ(M) + 2b0(∂ M) + 2b2(∂ M) > σ(N ), then D+E has
nontrivial kernel.

Proof With the boundary conditions given by �+, we claim that the index of the
operator D+E is

ind
(
D+E

) = 1
4

(− σ(N )+ 2χ(M)+ 3σ(M)+ 2b0(∂ M)+ 2b2(∂ M)
)
, (5.5)

which implies the desired result, since ind(D+E ) = dim ker(D+E )− dim ker(D−E ).

Using the identification (5.2), the formal adjoint of D+E on U is

D−E = (−∂r + B + A)(−ν) = ν(∂r + νBν + ν Aν).

This operator satisfies assumptions (2.2) in [18], with P , σ0, A, and ψ in the notation
of [18] given by D−E , ν, νBν, and ν Aν|∂ N , respectively, in our notation.

Let P ′≥0 and P ′<0 be the projections onto the subspaces of �(S−(T N ) ⊗ E |∂ N )

spanned by eigenvectors of νBν with nonnegative and negative eigenvalues, respec-
tively. Since ν is skewsymmetric, we have that

�− = {ξ ∈ �(S−(T N )⊗ E) : P ′≥0(ξ |∂ N ) = 0},
�+ = {ξ ∈ �(S+(T N )⊗ E) : P ′<0 (νξ |∂ N ) = 0}.

These spaces define exactly the boundary conditions given by (2.8) in [18]. Thus,
by Grubb [18, Lemma 2.2], we can realize D−E with boundary conditions �− as a
Fredholm operator, with adjoint given by a realization of D+E with boundary conditions
�+. Furthermore, by Grubb [18, Theorem 2.3], and the discussion which follows
(see in particular the paragraph preceding Corollary 2.4), the index of D−E with these
boundary conditions is constant under a deformation that fixes the boundary conditions
�± and induces a continuous deformation of the principal symbol of D−E . In particular,
a smooth deformation of the map f : N → M and of the metrics gM and gN that keeps
the boundary conditions fixed meets those stipulations, since the principal symbol of
D−E , as a twisted Dirac operator, is given by Clifford multiplication on S−(T N )⊗ E
and varies continuously with the metric gN .

Thus, since B depends only on f |∂ N and its tangential derivatives, along with
gN |∂ N and gM |∂ M , we may deform gN without changing the index and assume that
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gN |U = gN |∂ N + dr2 with respect to the identification U ∼= ∂ N ×[0, ε], deform f |U
so that it is a diffeomorphism onto its image, and deform gM so that f |U is an isometry.
It follows that ∇SN and f ∗∇SM are isomorphic and independent of r . Since gN is of
product form near ∂ N , the slices ∂ N × {r} are totally geodesic and ∇SN is equal to
∇∂ N when restricted to each, so ∇ = ∇∂ . Thus A = 0, and, near the boundary,

D−E = ν(∂r + νBν).

This is the product form and boundary conditions used by Atiyah–Patodi–Singer for
the operator D−E with boundary operator νBν and adjoint D+E . (Note that the conditions
for D+E and D−E differ by the role of the strict and nonstrict inequalities.) Thus, applying
the Atiyah–Patodi–Singer Index Theorem [1, Theorem 4.2] to D−E ,

ind
(
D+E

) = −ind(D−E
) = −

∫

N
a(D−E )+ h(νBν)+ η(νBν)

2

=
∫

N
a(D+E )+ h(B)− η(B)

2
,

(5.6)

where a is the integrand in the Atiyah–Singer Index Theorem (in the closed case),
which has opposite signs for adjoints, h(·) = dim ker(·) is the dimension of the
kernel, and η is the η-spectral invariant, which commutes with sign changes. (Note
that νBν = −(ν−1Bν) has opposite spectrum to B.)

By the discussion in the closed case (see Lemma 4.3), we have that

a(D+E ) = − 1
12 p1(gN )+ 1

4 f ∗ p1(gM )+ 1
2 f ∗e(gM ),

where p1 and e denote the Pontryagin and Euler forms from Chern–Weil theory.
Since f |∂ N is an oriented isometry, there is an isomorphism of S+(T N )|∂ N ∼=
f ∗S+(T M)|∂ M identifying ∇∂ N with f ∗∇∂ M . Under the isomorphisms

S+(T N )⊗ E |∂ N ∼= S+(T N )⊗ S+(T N )|∂ N ∼= ∧+,even
C T N∗|∂ N

∼= ∧evenC T ∂ N∗,

where the final isomorphism is given by restriction, and its inverse on ∧2p
C T ∂ N∗ is

given by α �→ α − (−1)p ∗ α, the operator B corresponds to (−1)p(∗∂ Nd∂ N −
d∂ N∗∂ N ) on ∧2p

C T ∂ N∗. The latter is the boundary operator in the Atiyah–Patodi–
Singer Signature Theorem [1, Theorem 4.14], from which we obtain that

∫

N

1
3 p1(gN ) = σ(N )+ η(B), and

∫

M

1
3 p1(gM ) = σ(M)+ η(B),

where we are using that f is an isometry on the boundary, hence both boundary
operators have the same spectrum. Moreover, since f is an orientation-preserving



    7 Page 24 of 29 R. G. Bettiol, M. J. Goodman

diffeomorphism near the boundary, it follows that

∫

N
a(D+E ) = −

∫

N

1
12 p1(gN )+

∫

M

1
4 p1(gM )+ 1

2e(gM )

= − 1
4σ(N )+ 3

4σ(M)+ 1
2η(B)+ 1

2χ(M). (5.7)

Thus, (5.5) follows from (5.6) and (5.7), as the kernel of±(∗∂ Nd∂ N − d∂ N∗∂ N ) is the
space of even harmonic forms on ∂ N ∼= ∂ M , and hence h(B) = b0(∂ M)+ b2(∂ M)

by Hodge theory. ��

5.1 Extremality and rigidity

We now combine the Bochner–Lichnerowicz–Weitzenböck formula with Lemma 5.2
to prove our main result on area-extremality and area-rigidity of compact 4-manifolds
with boundary (see Definition 5.1), closely following the proof of Theorem 4.4, but
also handling boundary terms.

Theorem 5.3 A compact oriented Riemannian 4-manifold (M, gM ) with sec ≥ 0 such
that R + τ ∗ � 0 for a nonpositive τ : M → R and convex boundary ∂ M, i.e.,
II∂ M � 0, is area-extremal with respect to

C∂=
{

f : (N , gN )→(M, gM ) : f |∂ N is an oriented isometry onto ∂ M, and
2χ(M)+ 3σ(M)+ 2b0(∂ M)+ 2b2(∂ M)>σ(N )

}
.

If, in addition, scal(gM )
2 gM � Ric(gM ) � 0 at q ∈ M, then (M, gM ) is area-rigid at

q ∈ M with respect to C∂ .

Proof Let f : (N , gN )→ (M, gM ) be a competitor in C∂ , and let E = f ∗S+(T M).
As in Theorem 4.4, working pointwise with W = Tp N , V = T f (p)M , l : W → V
given by d f (p), and L = ∧2 l, we have from (4.4) that

D2
E = ∇∗∇ + 1

4 scal(gN )+R(R, L).

Let ξ ∈ �(S+(T N )⊗ E) be a nonzero section in the kernel of DE , which exists by
Lemma 5.2. Using Lemmas 3.2–3.5 as in the proof of Theorem 4.4, we have:

0 =
∫

N
〈∇∗∇ξ, ξ 〉 + 1

4

∫

N
scal(gN )‖ξ‖2 +

∫

N
〈R(R, L)ξ, ξ 〉

≥
∫

N
〈∇∗∇ξ, ξ 〉 + 1

4

∫

N

(
scal(gN )− scal(gM ) ◦ f

)‖ξ‖2. (5.8)

A standard computation using the divergence theorem implies that

∫

N
〈∇∗∇ξ, ξ 〉 =

∫

N
‖∇ξ‖2 +

∫

∂ N
〈∇νξ, ξ 〉, (5.9)
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where, as above, ν is the inward unit normal along ∂ N . In a local gN -orthonormal
frame {ei } of N with e1 = −ν, since DEξ = 0, we may use (5.3) to compute

∇νξ =
4∑

i=2
νei∇ei ξ = −Bξ − Aξ. (5.10)

As ξ ∈ �+, we have 〈Bξ, ξ 〉 ≤ 0 from (5.4). To analyze the endomorphism A at the
boundary, let ν̃ be an the inward unit normal field of ∂ M . For all v ∈ T ∂ N ,

∇SN
v −∇∂ N

v = 1
2 II∂ N (v) · ν ∈ C�(T N )|∂ N , (5.11)

∇SM
l(v) −∇∂ M

l(v) = 1
2 II∂ M (l(v)) · ν̃ ∈ C�(T M)|∂ M , (5.12)

where we use the same symbol II∂ N to denote the symmetric endomorphism of T ∂ N
induced by II∂ N , namely so that II∂ N (x, y) = gN (∇N

x y, ν) = gN (II∂ N (x), y) for all
x, y ∈ T ∂ N , and similarly for II∂ M . Using the above and (5.3), we compute

A =− ν

4∑

i=2
ei

(
∇SN

ei
⊗ 1+ 1⊗∇SM

l(ei )
− ∇∂ N

ei
⊗ 1− 1⊗∇∂ M

l(ei )

)

= 1
2

4∑

i=2
ei II∂ N (ei )⊗ 1+ 1

2

4∑

i=2
ν ei ⊗ ν̃ II∂ M (l(ei )).

By the symmetries of II∂ N and of Clifford multiplication, the first term above is
− 1

2 H(gN ).The second termcan bewritten using the pointwise formalism fromSect. 3,
as follows. Given p ∈ ∂ N , since f |∂ N : ∂ N → ∂ M is an isometry and {e2, e3, e4} is
an orthonormal frame of Tp∂ N ⊂ W , its image {l(e2), l(e3), l(e4)} is an orthonormal
frame of T f (p)∂ M ⊂ V . Let Q : ∧2 V → ∧2V be the symmetric endomorphism
such that Q(̃ν ∧ l(ei )) = ν̃ ∧ II∂ M (l(ei )) and Q(l(ei ) ∧ l(e j )) = 0, for 2 ≤ i, j ≤ 4,
and note that Q ∈ Sym2

b(∧2V ), i.e., Q satisfies the first Bianchi identity. Moreover,
let l ′ : W → V be the linear map such that l ′(ei ) = l(ei ) for 2 ≤ i ≤ 4 and l ′(ν) = ν̃,
and set L ′ = ∧2l ′. From Definition 3.1, we have that

−R(Q, L ′) =
∑

i< j

ei e j ⊗ Q(l(ei ) ∧ l(e j ))

= 1
2

∑

j≥2
ν e j ⊗ ν̃ II∂ M (l(e j )),

so we conclude that A = − 1
2 H(gN ) −R(Q, L ′). Applying Lemmas 3.2–3.4, since

II∂ M � 0 and l ′ is an isometry, it follows that Q � 0 and

−〈Aξ, ξ 〉 ≥ 1
2

(
H(gN )− tr(Q)

)‖ξ‖2 = 1
2

(
H(gN )− H(gM )

)‖ξ‖2.
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From (5.9) and the above, the left-hand side of (5.10) can be bounded from below:

∫

N
〈∇∗∇ξ, ξ 〉 =

∫

N
‖∇ξ‖2 −

∫

∂ N
〈Bξ, ξ 〉 −

∫

∂ N
〈Aξ, ξ 〉

≥
∫

N
‖∇ξ‖2 + 1

2

∫

∂ N

(
H(gN )− H(gM ) ◦ f

)‖ξ‖2.

Combined with (5.8), this yields:

0 ≥
∫

N
‖∇ξ‖2 + 1

4

∫

N

(
scal(gN )− scal(gM ) ◦ f

)‖ξ‖2

+ 1
2

∫

∂ N

(
H(gN )− H(gM ) ◦ f

)‖ξ‖2.

The stated conclusions now follow exactly as in the proof of Theorem 4.4. ��
Remark 5.4 The boundary conditions used to compute the index in Lemma 5.2 are
Atiyah–Patodi–Singer-type conditions defined in terms of the intrinsic Dirac operator
on the boundary. This introduces terms involving the second fundamental form II in the
above computation, hence into the hypotheses of Theorem 5.3; similarly to Lott [21,
Theorem 1.1]. That is in contrast to Lott [21, Theorem 1.3], where Atiyah–Patodi–
Singer conditions are used, defined in terms of the ambient Dirac operator restricted
to the boundary. That method avoids the assumption II � 0, but requires stronger
assumptions on the map f at the boundary.

Our method is necessary in order to work with the bundle S+(T N )⊗ f ∗S+(T M),
as required by our curvature condition. Even in the realm of metrics with R � 0,
our result extends [21] in dimension 4, as it yields a version of area-extremality with
the geometric conditions of Lott [21] but with a topological assumption weaker than
vanishing Euler characteristic, see Example 5.7. Future work will attempt a similar
generalization in higher dimensions.

The following result implies Theorem D in the Introduction, since Cid∂ ⊂ Cself∂ .

Corollary 5.5 A compact oriented Riemannian 4-manifold (M, g0) with sec ≥ 0 such
that R + τ ∗ � 0 for a nonpositive or nonnegative τ : M → R and convex boundary
∂ M, i.e., II∂ M � 0, is area-extremal with respect to

Cself∂ = {
f : (M, g1)→ (M, g0) : f |∂ M is an oriented isometry onto ∂ M

}
. (5.13)

Proof Choose the orientation of M forwhich τ ≤ 0, and let N be either M or M , i.e., M
with an orientation that will be fixed later. Let f : N → M be a boundary-preserving
spin map and g1 be a metric on N such that

scal(g1) ≥ scal(g0) ◦ f , ∧2g1 � f ∗ ∧2 g0, H(g1) ≥ H(g0) ◦ f ,

and f |∂ N is an isometry between g1|∂ N and g0|∂ N .Orient N such that f |∂ N preserves
orientation, i.e., is an oriented isometry. The conclusion will follow from Theorem 5.3
by showing that the topological condition in C∂ is satisfied by f : N → M .
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By the Soul Theorem, see e.g. [11, Sect. 9–10], since (M, g0) has sec ≥ 0 and
II∂ M � 0, it is diffeomorphic to the total space of a disk bundle over a closed totally
geodesic submanifold � ⊂ M . We proceed case-by-case in terms of 0 ≤ dim� ≤ 3.

If dim� ≤ 1, then χ(M) = χ(�) ≥ 0, and H2(M) = H2(�) = 0, which implies
σ(M) = σ(N ) = 0. Thus, the topological condition in C∂ is satisfied, as b0(∂ M) > 0.

If dim� = 3, then M → � is an interval bundle which restricts to a covering
map ∂ M → �. Such a map is homotopic to the inclusion ∂ M → M , and thus
H2(M) → H2(∂ M) is injective and H2(M, ∂ M) → H2(M) is trivial. Therefore,
σ(M) = σ(N ) = 0, so the conclusion follows as in the previous case, sinceχ(�) = 0.

Finally, assume dim� = 2, in which case the Gauss–Bonnet Theorem implies
that χ(�) ≥ 0. If � is nonorientable, then H2(M) = H2(�) = 0 and σ(M) = 0,
so the topological condition in C∂ is satisfied as in the previous cases. Else, � is
orientable, so b2(M) = b2(�) = 1 and |σ(M)| ≤ 1. If � is diffeomorphic to S2, then
2χ(M)+3σ(M)−σ(N ) = 4+(3±1)σ (M) ≥ 0 and hence the topological condition
in C∂ is again satisfied. If � is diffeomorphic to T 2, then ∂ M is diffeomorphic to an
oriented S1-bundle over T 2 so b2(∂ M) ≥ 2. Once again, the topological condition in
C∂ is satisfied, as 2b0(∂ M)+ 2b2(∂ M) ≥ 6 ≥ (−3± 1)σ (M). ��

Our final main result implies Theorem C in the Introduction because Cid∂ ⊂ Cloc if
|σ(M)| < 4, and is captured by the vague but clear statement that, near a point where
sec > 0, a Riemannian metric on a 4-manifold cannot be modified to have greater
scalar curvature without decreasing the area of some tangent 2-plane.

Corollary 5.6 If (X , g) is a Riemannian 4-manifold and p ∈ X is a point at which
sec > 0, then there is a neighborhood M ∼= D4 of p such that g|M is area-extremal
with respect to

Cloc =
{

f : (N , gN )→ (M, g|M ) : f |∂ N is an oriented isometry onto ∂ M,

and |σ(N )| < 4

}
.

Proof At each stage of the proof, we shrink M if needed, in order to make a series of
assumptions. First, we may choose a neighborhood M of p ∈ X such that sec > 0
at all points of M . Then, by the Finsler–Thorpe trick (see Proposition 2.2), there
exists a function τ : M → R such that the curvature operator R of (M, g|M ) satisfies
R+ τ ∗ � 0.Moreover, there is an open interval (τmin(x), τmax(x)) of possible values
for τ at each point x ∈ M that depends continuously on x , so we may choose τ to be
continuous and τ(p) �= 0.Shrinking M if necessary,wemay assume τ �= 0 throughout
M, and, changing the orientation of M if necessary, we may assume τ < 0 on all M .
Finally, we shrink M to be the closure of a convex ball in X containing p ∈ X . Then
(M, g|M ) satisfies all the hypotheses of Theorem 5.3 and, since 3σ(M) + 2χ(M) +
2b0(∂ M)+ 2b2(∂ M) = 4, the corollary follows. ��
Example 5.7 Let Sn+ denote the unit n-dimensional hemisphere. Standard metrics on
S4+, S1×S3+, S2×S2+, and S3×[−1, 1] have positive-semidefinite curvature operator
and totally geodesic boundary, and are hence area-extremal with respect to C∂ by
Theorem 5.3. In particular, they are area-extremal with respect to Cself∂ ⊂ C∂ defined
in (5.13). The first and third spaces are also area-rigid, as they satisfy the additional
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hypothesis scal
2 g � Ric � 0. Note that the second and fourth spaces have vanishing

Euler characteristic. Similar results, with different boundary conditions, are implied
by [21, Theorem 1.3]; see also Remark 5.4.

The SU(2)-invariant metrics with totally geodesic boundary on the normal disk
bundle ν(CP1) of CP1 ⊂ CP2, described in the proof of Theorem 4.7, also satisfy
the hypotheses of Theorem 5.3. Thus, these metrics are area-extremal with respect to
C∂ and Cself∂ . Moreover, if such a metric has vanishing neck length, then it is area-rigid
with respect to diffeomorphisms. Indeed, the neck in that case consists solely of the
boundary ∂ν(CP1) and scal

2 g � Ric � 0 everywhere else, so the same continuity
argument in Remark 4.8 applies. This example is notable because ν(CP1) does not
admit metrics with both R � 0 and II∂ν(CP1) � 0, to which previous methods could
be applied to prove area-extremality: a simply-connected manifold admitting such a
metric is diffeomorphic to a trivial disk bundle over its soul, see e.g. [24].
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