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T oday’s smart devices have short battery lifetimes, high installation 
and maintenance costs, and rapid obsolescence — all leading to 
the explosion of electronic waste in the past two decades. These 
problems will worsen as the number of connected devices grows 

to one trillion by 2035. Energy harvesting, battery-free devices offer an 
alternative. Getting rid of the battery reduces e-waste, promises long 
lifetimes, and enables deployment in new applications and environments. 
Unfortunately, developing sophisticated inference-capable applications 
is still challenging. The lack of platform support for advanced (32-bit) 
microprocessors and specialized accelerators, which can execute data-
intensive machine-learning tasks, has held back batteryless devices.
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Protean: ADAPTIVE  
HARDWARE-ACCELERATED 
INTERMITTENT COMPUTING

BATTERY-FREE DEVICES AND 
INTERMITTENT COMPUTING
For at least the past decade, researchers have 
explored battery-less, energy-harvesting 
computing devices as a sustainable alternative 
to a battery-powered Internet of Things. 
Ambient energy from sunlight, motion, 
thermal gradients, and even microbes is 
stored in capacitors to power computation, 
sensing, actuation, and communication. These 
battery-free devices compute intermittently 
due to the dynamic and unpredictable nature 
of available energy, causing power failures 
to occur multiple times a second, at which 
point volatile state (stack, registers, time) of 
programs is lost. Recovering gracefully and 
efficiently from those interruptions [2] has 
been the theme for a decade of intermittent 
computing research across the stack. These 
advances have yielded significant progress: 
batteryless devices have been shot into 
space, played Nintendo Game Boy games 
[3], programmed in Python [4], Rust, and 

This article details the design of the Protean 
platform, which bridges the gap for inference-
capable battery-free sensors. Protean includes 
a modular “plug-and-play” hardware design 
with a 32-bit ARM-based microcontroller 
with a convolutional neural network accelera-
tor. An adaptive task-based runtime system 
provides intermittency-proof execution of 
machine learning tasks across heterogeneous 

processing elements. The runtime accounts 
for dynamic and intermittent power, auto-
matically scaling and dispatching compute 
tasks based on incoming energy, current 
state, and programmer annotations. Protean  
is the first general-purpose, hardware-
accelerated, adaptive battery-free platform, 
enabling new applications with data-intensive 
audio and visual workloads.

Excerpted from “Protean: An Energy-Efficient and Heterogeneous Platform for Adaptive and Hardware-Accelerated  
Battery-free Computing,” from SenSys 2022: Proceedings of the 20th ACM Conference on Embedded Networked Sensor  
Systems with permission. https://dl.acm.org/doi/10.1145/3560905.3568561 ©ACM 2022
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JavaScript, and conducted simple vision 
tasks. However, expert programmers still 
find it challenging to quickly build useful 
things with these devices, while novices 
find them confounding. Furthermore, 
constrained and weak hardware makes 
machine learning or signal processing 
workloads challenging to execute. The most 
impressive demonstrations of intermittent 
computing mentioned above are all highly 
tuned, bespoke solutions that do not offer 
foundations for general approaches. The 
average batteryless devices are passive, low 
capability, unreliable, and less valuable for 
applications where data-intensive operations 
and inference require reactive, interactive,  
or highly dynamic systems.

What should a modern battery-free  
platform look like?
The maturity of the maker movement 
and stability of longtime hardware 
manufacturers AdaFruit and Sparkfun  
has led to standardization across hard- 
ware platforms in many ways, from 
communication protocols to interconnect, 
like Adafruit’s Feather specification and 
Sparkfun’s MicroMod platform, [5] and 
sensor breakouts. Beyond hobbyists, 
students, and makers, research labs 
and industry experts regularly rely on 

these vendors and their platforms to 
rapidly prototype high-performing 
inference-capable sensing applications. 
These community-supporting platforms 
are modular and standardized and 
include support for diverse sensors and 
computational resources. They provide a 
blueprint for any platform for intermittent 
computing and a backbone of components 
and tools for hardware prototyping. We 

distill four key requirements from this 
broader context and trends to guide 
platform development for intermittent 
computing.

1. Inference capable. Modern applications 
demand sophisticated hardware to conduct 
machine learning on-device. Machine 
learning in battery-free platforms in the 
past relied on application-tailored software 

[EXPERIMENTAL METHODS]

FIGURE 2. Overview of the capabilities, modules, and important features of the hardware/software platform. 
Interchangeable compute modules plug into the carrier board, and stacks of peripheral boards can be attached  
to a common bus to enable rapid prototyping for sophisticated batteryless devices.

FIGURE 1. The three main components of Protean and how they 
interact to support adaptive accelerated applications.
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support or custom hardware. These tailored 
solutions are not scalable to general-purpose 
applications.

2. Energy-Aware Adaptation and Scalability.  
Energy is dynamic and intermittent. Any 
platform must be able to do useful things 
when energy is scarce, as well as when it is 
abundant. From reconfigurable hardware 
to runtime systems, enabling malleable 
computation in the face of dynamic energy  
is key to success.

3. Modularity and Standardization. 
Expandability has been critical to the success 
of hardware platforms due to the high cost 
(in expertise, time, and money) of building 
hardware from scratch. In the past few 
years, major platforms have been introduced 
that embrace modularity and have broad 
maker industry support, including the 
Sparkfun MicroMod platform, which 
allows modularity up to and including the 
processor itself (via the standardized on 
the M.2 interconnect). While we cannot 
predict the future, this level of community 
buy-in and existing infrastructure makes 
us stronger in our belief that we can build 
devices and frameworks that can hang 
around for a longer time, supporting a 
research community.

4. Programmability. Future platforms, like 
ours, must strongly consider the developers 
at the other end, who often struggle to 
compose a batteryless program. Simplifying 
the workflow is key to an effective platform.

Protean OVERVIEW
We design and build Protean around 
the four requirements established above, 
intended for developers who want to build 
inference-focused, adaptive, robust battery-
free applications. Our goal is to (i) provide 
multiple hardware options in terms of 
computing modalities, peripherals, and 
harvesting technologies, (ii) enable energy-
efficient inference applications, (iii) provide 
resilient runtime support for managing 
program state and memory across power 
failures, and (iv) allow rapid development 
and testing of different configurations of 
machine learning models.

We achieve these goals with a cross-
stack approach (see Figure 1), building 
(i) SuperSensor, a modular hardware 
platform inspired by Sparkfun’s MicroMod 
interconnect method, with a dynamically 
reconfigurable energy storage circuit, (ii) and 
Chameleon, an adaptive task-based runtime 
system that provides intermittency-proof 
execution of adaptive machine learning 
tasks across heterogeneous processing 
elements (in our prototype, a 32-bit ARM 
core, and a CNN accelerator). The runtime 
dynamically dispatches these tasks based 
on incoming energy and program state 
and arbitrates data movement for greater 
energy efficiency; and (iii) Metamorph, a 
code generator for transforming ML models 
developed in state-of-the-art frameworks 
(TensorFlow, PyTorch) into intermittence-
safe C programs with little to no user inter- 
vention. The following sections present the 
high-level design of Protean’s components 
(see Figures 1 and 2).

SuperSensor: Modular  
Platform Design
SuperSensor is a modular plug-and-play 
hardware design that supports four distinct 
modules — harvesters boards, sensors and 
radio peripheral boards, processors boards, 
and the carrier/main board. The boards, 
functions, and an example of how they 
work together are shown in Figure 2. The 
design is partly influenced by Sparkfun’s 
MicroMod ecosystem, which separates 

carrier and processor boards. We discuss 
specific functionalities per board below.

Carrier Board. The brawn of SuperSensor, 
the intention of the carrier board is to fit 
all the absolute necessities for successful 
intermittent computing into one place, 
encompassing the lessons and designs of the 
last decade. Each of these functions must exist 
outside of the main processing unit. Those 
essential functions are checkpoint memory, 
energy management, timekeeping, debugging, 
and expansion interconnects. To allow for 
greater flexibility in developing adaptive 
runtimes, we include power measurement 
circuitry on the carrier board as part of the 
energy management unit. Finally, the Carrier 
board includes dedicated interconnects for 
all other boards, peripherals, processors, and 
harvesters. A block diagram is shown at the 
bottom of Figure 1. 

Processor Board. The brain of SuperSensor  
consists of a microcontroller (MCU) and  
minimum supporting circuitry in a stan- 
dardized M.2 connector for MicroMod 
compatibility. By separating the processor 
and carrier boards, SuperSensor remains 
agile to new developments in MCUs, 
allowing for upgrades and alternate builds 
without significant disruption to the eco- 
system. We used the MAX78000, which 
consists of an ARM Cortex M4 core, RISC-V 
core, and a CNN accelerator. The processor 
board is programmed by the developer 
and hosts the runtime that maintains the 
forward progress and memory consistency 
of intermittently running applications. 
It manages peripheral control, energy, 
adaptation, etc. 

Peripheral Boards connect to the carrier 
board to add functionality via sensors, 
actuators, radios, and other breakout 
modules. All peripheral boards use a 
common peripheral bus of our design that 
provides analog IOs, digital IOs, and digital 
bus lines, including QSPI, SPI, I2C, UART, 
I2S, and a parallel camera interface (PCIF). 
This shared bus supports the vast majority 
of available sensors and peripherals and 
enables SuperSensor to be used in various 
applications as almost all off-the-shelf 
sensing and communication components 
use one of the interfaces that our peripheral 
bus supports.
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Harvester Boards harvest energy from 
different environmental sources. Many 
energy sources — solar, kinetic, vibration, 
radio frequency (RF), thermal, and microbial 
— all provide energy differently. Some 
provide direct current (DC), while others 
generate alternating current (AC), all at a 
variety of different voltages and currents. 
Finally, every harvester has different internal 
characteristics that require different circuitry 
to pull out maximum power in a particular 
context. The harvester boards are meant to 
support all these operations without requiring 
any change on the rest of the circuitry 
(carrier, processor, and peripheral boards.)

ADAPTIVE RECONFIGURABLE 
ENERGY STORAGE
Within SuperSensor, energy management 
and storage must be paid special attention, 
just as in previous platforms for intermittent 
computing. The key focus of the energy 
management system, called Reconfigurable 
Energy Management Unit (REMU), is to 
scale, as in to be dynamically configurable 
to provide energy for different tiers of 
execution, with tiers taking increasingly 
more energy (see top of Figure 1). The main 
challenge is in balancing capacitor size and 
program responsiveness. A bigger capacitor 
will keep the device operating for longer, 
but will also take a long time to charge (and 
even longer when ambient energy is scarce). 
In a scenario with a single static capacitor 
with a constant energy input, the capacitor 
needs to be able to sustain the system for 
the longest uninterruptible system task. For 
smaller uninterruptible tasks, the system still 

must wait until a full charge, introducing a 
penalty in the form of latency [6]. 

SuperSensor addresses this need with a  
novel reconfigurable energy storage archi- 
tecture built around a single supercapacitor 
and single control unit. The architecture 
dynamically adapts the charging threshold of 
a single supercapacitor, effectively modifying 
the amount of energy stored in the system. 
Lowering the threshold when less energy 
is available increases responsiveness and 
increasing the threshold when more energy 
is available leads to a longer on-time. 

Multi-tiered Tasks Runtime: 
Chameleon
SuperSensor provides a number of useful 
tools: energy monitoring and management, 
timekeeping, access to peripherals, and 
access to multiple computational elements. 
But hardware support alone cannot ensure 
the best configuration for the platform 
under variable energy conditions and 
unavoidable power failures. Moreover, 
supporting adaptation across heterogeneous 
computing platforms is nontrivial, as the 
same task might be drastically different 
depending on where it is executed. Put 
simply, a signal processing routine on an  
FPGA would be written in Verilog, a CNN 
would require trained weights, while an  
MCU would execute instructions. Further- 
more, a CNN might host various implementa- 
tions of the same routine that may trade 
off latency for performance. The central 
question is then: how can a programmer 
design and manage tasks that can be 
dispatched by a runtime system to various 

computing elements, and at various quality 
levels, depending on available energy?

We developed Chameleon to leverage 
the capability of the hardware for scalable, 
inference-focused intermittent computing. 
The core idea of Chameleon is to embrace 
scalability in hardware as well as software, 
providing a seamless way to degrade or 
upgrade tasks across diverse computational 
units. The basic idea is shown in Figure 1:  
as the rate of energy decreases (shown in 
the lower slope of the stored energy line), 
Chameleon changes the threshold for 
starting computation, and switches to a 
lower tier, which means switching the main 
inference task from being hosted on the 
CNN accelerator, to host on the MCU (in  
a lighter form) in this case. 

Basically, a tier is a set of tasks that 
together form a control flow graph, whereas 
tasks are atomic code blocks that perform 
sensing, computations, communication, etc. 
Chameleon allows the programmer to write 
multiple tiers of the same application with 
lower computational complexity — which 
can execute on different computational units 
(e.g., MCU, accelerators, or both) — that 
can help maintain the latency and dead-
lines requirements under changing energy 
conditions. Each tier is a complete applica-
tion with potentially different approaches 
to solving the same inference problem (i.e., 
deep learning, signal processing) and is 
computationally independent of all other 
tiers. A lower tier must require less energy 
than a higher tier. Chameleon’s scheduler 
(tier selector) can automatically adapt to 
the best tier under given energy conditions. 

FIGURE 3. Typical workflow for programmers developing inference-focused applications with Protean. Models that are designed and 
trained using state-of-the-art frameworks are too computationally intensive to execute in one power cycle. Metamorph transforms large 
models into smaller chunks for execution across multi-tier compute elements with low programmer burden.

[EXPERIMENTAL METHODS]
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FIGURE 4. Protean has higher throughput with less recovery time  
when powered using real-world RF energy trace.

underlying code generation frameworks or 
worrying about power failures. 

Figure 3 shows a typical development 
workflow of Protean. It shows how a neural 
network developed in TensorsFlow and 
PyTorch can be converted to an intermittence-
safe program that uses Chameleon’s APIs 
through different programmer specified 
parameters using Metamorph.

EVALUATION
We evaluate Protean using three different 
acoustic and vision applications/benchmarks, 
each having three tiers that utilize different 
processing units on the SuperSensor. We use 
standard datasets to train the networks. For 
speech recognition, referred to as Keyword 
Spotting (KWS), we use a subset of Google’s 
Speech Command dataset, where we have 20 
different words. For image recognition, we 
used the CIFAR-10 dataset consisting of ten 
classes of 32×32 pixel color images of auto-
mobiles and animals. For face identification, 
referred to as Face ID, we use MaximCeleb,  
a dataset created by Maxim containing 
the faces of 30 celebrities. We test these 
benchmarks or RF energy traces collected 
under two different settings. With the dipole 

antenna, the power is variable because of 
external factors like people walking between 
transmitter and receiver (RF1), and with the 
patch antenna, the power is rather consistent 
with minor variability (RF2). 

Protean is Energy-Efficient
We compare our Protean with state-of-the-
art systems and show Protean performs 
better in terms of energy consumption when 
using the same benchmarks used by existing 
approaches. Table 1 lists the comparison. 
We observe that Protean outperforms the 
existing state-of-the-art system by showing 
an improvement of 666× for MNIST, 82× 
for the KWS application, and the trend 
holds for CIFAR. It must be noted here that 
this is the least we can achieve with our 
platform as the number of classes supported 
by existing systems are very small. With the 
higher number of classes, the complexity of 
the machine learning model increases, and 
so does its computational complexity and 
energy consumption at run-time. Due to 
Protean enabling us to use accelerators on 
intermittent power, making a one-to-one 
comparison with existing systems will always 
favor Protean in terms of performance (by 
multiple orders of magnitude). In a sense, 
this is important, as Protean is the first to 
allow access to these powerful computational 
resources for intermittent computing.

Protean has higher throughput  
with less recovery time
With dynamic voltage thresholding 
configured and tier-switching ON, Figure 4  
reflects the throughput (number of 
inferences) and response time of Protean for 
two RF energy traces. We observe 12% to 
166% improvement in inference throughput 
and up to 11% faster recovery from non-
adaptive baselines across all applications. 
As SuperSensor supports dynamic turn-
on voltage based on incoming energy, it 
facilitates tier adaptation to make the best 
use of the variable available energy. Higher 
variability in the energy results in more 
adaptation by Chameleon to ensure the 
system provides timely output.

The full paper [1] includes an in-depth  
evaluation of all the components of Protean 
and offers more insights into memory 
overhead, developer overhead, and 
adaptation based on multi-tier execution 
and dynamic thresholding.

Threshold and tier selection is assisted by  
an energy prediction model, which leverages 
energy measurements and other heuristics for 
estimating current and future energy avail-
ability and choosing which tier to dispatch.

Metamorph: Intermittent-Safe  
Code Generation
Runtime systems cannot do everything 
and developing multiple tiers of a single 
application can be challenging. Using 
standard tools for TinyML in an intermittent 
computing workflow becomes challenging 
as these tools have no conception of how 
to persist state across power failures. 
Metamorph is a developer-facing code 
generation tool that bridges the gap 
between existing ML tools like PyTorch and 
TensorFlow, and intermittent computing. 
We built Metamorph, as the glue holding the 
runtime system (Chameleon) and heter- 
ogeneous hardware platform (SuperSensor)  
together. Metamorph wraps existing 
workflows to provide an automated way of 
generating intermittence-safe application 
code. Utilizing Metamorph, a developer can 
iteratively explore different design points 
of the application without dealing with 

[EXPERIMENTAL METHODS]

	 Dataset 	 Protean	 State-of-the-art	 Improvement
		  # Classes	 Energy (mJ)	 # Classes	 Energy (mJ)

	 MNIST	 10	 0.06	 10 [7]	 40, 27	 666.7x, 450x

	 CIFAR	 10	 2.12	 2 [8]	 17	 8.02x

	 KWS	 20	 1.23	 10 [9]	 313	 254.47x

	 Face ID	 30	 2.32	 -	 -	 -

TABLE 1. Comparison of energy usage of Protean.
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CONCLUSION
This short article describes Protean, a 
unified platform for robust and adaptive 
execution of inference-driven applications 
on a battery-free platform. Protean contri- 
butes to the entire development stack with 
SuperSensor, a modular plug-and-play hard- 
ware; Chameleon, an adaptive task-based  
runtime system for heterogeneous intermittent  
systems; and Metamorph, a code generator 
to convert traditional CNN models to 
intermittent-safe task-based CNN models. 
SuperSensor pushes the boundary of battery-
free computing systems by supporting 
more efficient ARM-based MCUs and CNN 
accelerators that achieve 666× more energy-
efficient inferences than traditional battery-
free platforms. Chameleon reduces the 
recovery time from power failure by 11% 
while achieving 166% higher throughput 
than non-adaptive counterparts in real-
world settings. Finally, Metamorph speeds 
up the development process while reducing 
programmer burden. n 
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