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oday’s smart devices have short battery lifetimes, high installation
and maintenance costs, and rapid obsolescence — all leading to
the explosion of electronic waste in the past two decades. These
problems will worsen as the number of connected devices grows
to one trillion by 2035. Energy harvesting, battery-free devices offer an
alternative. Getting rid of the battery reduces e-waste, promises long

lifetimes, and enables deployment in new applications and environments.

Unfortunately, developing sophisticated inference-capable applications
is still challenging. The lack of platform support for advanced (32-bit)
microprocessors and specialized accelerators, which can execute data-
intensive machine-learning tasks, has held back batteryless devices.

This article details the design of the Protean
platform, which bridges the gap for inference-
capable battery-free sensors. Protean includes
a modular “plug-and-play” hardware design
with a 32-bit ARM-based microcontroller
with a convolutional neural network accelera-
tor. An adaptive task-based runtime system
provides intermittency-proof execution of
machine learning tasks across heterogeneous

processing elements. The runtime accounts
for dynamic and intermittent power, auto-
matically scaling and dispatching compute
tasks based on incoming energy, current
state, and programmer annotations. Protean
is the first general-purpose, hardware-
accelerated, adaptive battery-free platform,
enabling new applications with data-intensive
audio and visual workloads.

BATTERY-FREE DEVICES AND
INTERMITTENT COMPUTING

For at least the past decade, researchers have
explored battery-less, energy-harvesting
computing devices as a sustainable alternative
to a battery-powered Internet of Things.
Ambient energy from sunlight, motion,
thermal gradients, and even microbes is
stored in capacitors to power computation,
sensing, actuation, and communication. These
battery-free devices compute intermittently
due to the dynamic and unpredictable nature
of available energy, causing power failures
to occur multiple times a second, at which
point volatile state (stack, registers, time) of
programs is lost. Recovering gracefully and
efficiently from those interruptions [2] has
been the theme for a decade of intermittent
computing research across the stack. These
advances have yielded significant progress:
batteryless devices have been shot into
space, played Nintendo Game Boy games
[3], programmed in Python [4], Rust, and
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JavaScript, and conducted simple vision
tasks. However, expert programmers still
find it challenging to quickly build useful
things with these devices, while novices
find them confounding. Furthermore,
constrained and weak hardware makes
machine learning or signal processing
workloads challenging to execute. The most
impressive demonstrations of intermittent
computing mentioned above are all highly
tuned, bespoke solutions that do not offer
foundations for general approaches. The
average batteryless devices are passive, low
capability, unreliable, and less valuable for
applications where data-intensive operations
and inference require reactive, interactive,
or highly dynamic systems.

What should a modern battery-free
platform look like?

The maturity of the maker movement
and stability of longtime hardware
manufacturers AdaFruit and Sparkfun
has led to standardization across hard-
ware platforms in many ways, from
communication protocols to interconnect,
like Adafruit’s Feather specification and
Sparkfun’s MicroMod platform, [5] and
sensor breakouts. Beyond hobbyists,
students, and makers, research labs

and industry experts regularly rely on
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FIGURE 1. The three main components of Protean and how they
interact to support adaptive accelerated applications.
]

these vendors and their platforms to
rapidly prototype high-performing
inference-capable sensing applications.
These community-supporting platforms
are modular and standardized and
include support for diverse sensors and
computational resources. They provide a
blueprint for any platform for intermittent
computing and a backbone of components
and tools for hardware prototyping. We

distill four key requirements from this
broader context and trends to guide
platform development for intermittent
computing.

1. Inference capable. Modern applications
demand sophisticated hardware to conduct
machine learning on-device. Machine
learning in battery-free platforms in the
past relied on application-tailored software
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FIGURE 2. Overview of the capabilities, modules, and important features of the hardware/software platform.
Interchangeable compute modules plug into the carrier board, and stacks of peripheral boards can be attached
to a common bus to enable rapid prototyping for sophisticated batteryless devices.
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support or custom hardware. These tailored
solutions are not scalable to general-purpose
applications.

2. Energy-Aware Adaptation and Scalability.
Energy is dynamic and intermittent. Any
platform must be able to do useful things
when energy is scarce, as well as when it is
abundant. From reconfigurable hardware

to runtime systems, enabling malleable
computation in the face of dynamic energy
is key to success.

3. Modularity and Standardization.
Expandability has been critical to the success
of hardware platforms due to the high cost
(in expertise, time, and money) of building
hardware from scratch. In the past few
years, major platforms have been introduced
that embrace modularity and have broad
maker industry support, including the
Sparkfun MicroMod platform, which
allows modularity up to and including the
processor itself (via the standardized on

the M.2 interconnect). While we cannot
predict the future, this level of community
buy-in and existing infrastructure makes
us stronger in our belief that we can build
devices and frameworks that can hang
around for a longer time, supporting a
research community.
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4. Programmability. Future platforms, like
ours, must strongly consider the developers
at the other end, who often struggle to
compose a batteryless program. Simplifying
the workflow is key to an effective platform.

Protean OVERVIEW
We design and build Protean around
the four requirements established above,
intended for developers who want to build
inference-focused, adaptive, robust battery-
free applications. Our goal is to (i) provide
multiple hardware options in terms of
computing modalities, peripherals, and
harvesting technologies, (ii) enable energy-
efficient inference applications, (iii) provide
resilient runtime support for managing
program state and memory across power
failures, and (iv) allow rapid development
and testing of different configurations of
machine learning models.

We achieve these goals with a cross-
stack approach (see Figure 1), building
(i) SuperSensor, a modular hardware
platform inspired by Sparkfun’s MicroMod
interconnect method, with a dynamically
reconfigurable energy storage circuit, (ii) and
Chameleon, an adaptive task-based runtime
system that provides intermittency-proof
execution of adaptive machine learning
tasks across heterogeneous processing
elements (in our prototype, a 32-bit ARM
core, and a CNN accelerator). The runtime
dynamically dispatches these tasks based
on incoming energy and program state
and arbitrates data movement for greater
energy efficiency; and (iii) Metamorph, a
code generator for transforming ML models
developed in state-of-the-art frameworks
(TensorFlow, PyTorch) into intermittence-
safe C programs with little to no user inter-
vention. The following sections present the
high-level design of Protean’s components
(see Figures 1 and 2).

SuperSensor: Modular

Platform Design

SuperSensor is a modular plug-and-play
hardware design that supports four distinct
modules — harvesters boards, sensors and
radio peripheral boards, processors boards,
and the carrier/main board. The boards,
functions, and an example of how they
work together are shown in Figure 2. The
design is partly influenced by Sparkfun’s
MicroMod ecosystem, which separates

[EXPERIMENTAL METHODS]

carrier and processor boards. We discuss
specific functionalities per board below.

Carrier Board. The brawn of SuperSensor,
the intention of the carrier board is to fit

all the absolute necessities for successful
intermittent computing into one place,
encompassing the lessons and designs of the
last decade. Each of these functions must exist
outside of the main processing unit. Those
essential functions are checkpoint memory,
energy management, timekeeping, debugging,
and expansion interconnects. To allow for
greater flexibility in developing adaptive
runtimes, we include power measurement
circuitry on the carrier board as part of the
energy management unit. Finally, the Carrier
board includes dedicated interconnects for

all other boards, peripherals, processors, and
harvesters. A block diagram is shown at the
bottom of Figure 1.

Processor Board. The brain of SuperSensor
consists of a microcontroller (MCU) and
minimum supporting circuitry in a stan-
dardized M.2 connector for MicroMod
compatibility. By separating the processor
and carrier boards, SuperSensor remains
agile to new developments in MCUs,
allowing for upgrades and alternate builds
without significant disruption to the eco-
system. We used the MAX78000, which
consists of an ARM Cortex M4 core, RISC-V
core, and a CNN accelerator. The processor
board is programmed by the developer

and hosts the runtime that maintains the
forward progress and memory consistency
of intermittently running applications.

It manages peripheral control, energy,
adaptation, etc.

Peripheral Boards connect to the carrier
board to add functionality via sensors,
actuators, radios, and other breakout
modules. All peripheral boards use a
common peripheral bus of our design that
provides analog IOs, digital 10s, and digital
bus lines, including QSPI, SPI, I12C, UART,
12S, and a parallel camera interface (PCIF).
This shared bus supports the vast majority
of available sensors and peripherals and
enables SuperSensor to be used in various
applications as almost all off-the-shelf
sensing and communication components
use one of the interfaces that our peripheral
bus supports.
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Harvester Boards harvest energy from
different environmental sources. Many
energy sources — solar, kinetic, vibration,
radio frequency (RF), thermal, and microbial
— all provide energy differently. Some
provide direct current (DC), while others
generate alternating current (AC), all at a
variety of different voltages and currents.
Finally, every harvester has different internal
characteristics that require different circuitry
to pull out maximum power in a particular
context. The harvester boards are meant to
support all these operations without requiring
any change on the rest of the circuitry
(carrier, processor, and peripheral boards.)

ADAPTIVE RECONFIGURABLE
ENERGY STORAGE

Within SuperSensor, energy management
and storage must be paid special attention,
just as in previous platforms for intermittent
computing. The key focus of the energy
management system, called Reconfigurable
Energy Management Unit (REMU), is to
scale, as in to be dynamically configurable
to provide energy for different tiers of
execution, with tiers taking increasingly
more energy (see top of Figure 1). The main
challenge is in balancing capacitor size and
program responsiveness. A bigger capacitor
will keep the device operating for longer,
but will also take a long time to charge (and
even longer when ambient energy is scarce).
In a scenario with a single static capacitor
with a constant energy input, the capacitor
needs to be able to sustain the system for
the longest uninterruptible system task. For
smaller uninterruptible tasks, the system still

must wait until a full charge, introducing a
penalty in the form of latency [6].
SuperSensor addresses this need with a
novel reconfigurable energy storage archi-
tecture built around a single supercapacitor
and single control unit. The architecture
dynamically adapts the charging threshold of
a single supercapacitor, effectively modifying
the amount of energy stored in the system.
Lowering the threshold when less energy
is available increases responsiveness and
increasing the threshold when more energy
is available leads to a longer on-time.

Multi-tiered Tasks Runtime:
Chameleon

SuperSensor provides a number of useful
tools: energy monitoring and management,
timekeeping, access to peripherals, and
access to multiple computational elements.
But hardware support alone cannot ensure
the best configuration for the platform
under variable energy conditions and
unavoidable power failures. Moreover,
supporting adaptation across heterogeneous
computing platforms is nontrivial, as the
same task might be drastically different
depending on where it is executed. Put
simply, a signal processing routine on an
FPGA would be written in Verilog, a CNN
would require trained weights, while an
MCU would execute instructions. Further-
more, a CNN might host various implementa-
tions of the same routine that may trade
off latency for performance. The central
question is then: how can a programmer
design and manage tasks that can be
dispatched by a runtime system to various

Optional

computing elements, and at various quality
levels, depending on available energy?

We developed Chameleon to leverage
the capability of the hardware for scalable,
inference-focused intermittent computing.
The core idea of Chameleon is to embrace
scalability in hardware as well as software,
providing a seamless way to degrade or
upgrade tasks across diverse computational
units. The basic idea is shown in Figure 1:
as the rate of energy decreases (shown in
the lower slope of the stored energy line),
Chameleon changes the threshold for
starting computation, and switches to a
lower tier, which means switching the main
inference task from being hosted on the
CNN accelerator, to host on the MCU (in
a lighter form) in this case.

Basically, a tier is a set of tasks that
together form a control flow graph, whereas
tasks are atomic code blocks that perform
sensing, computations, communication, etc.
Chameleon allows the programmer to write
multiple tiers of the same application with
lower computational complexity — which
can execute on different computational units
(e.g., MCU, accelerators, or both) — that
can help maintain the latency and dead-
lines requirements under changing energy
conditions. Each tier is a complete applica-
tion with potentially different approaches
to solving the same inference problem (i.e.,
deep learning, signal processing) and is
computationally independent of all other
tiers. A lower tier must require less energy
than a higher tier. Chameleon’s scheduler
(tier selector) can automatically adapt to
the best tier under given energy conditions.
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Step 1: Train desired model
using standard machine
learning dev workflow.

Step 2: Specify task
division method,
processors, etc.

Step 3: Metamorph trained
model into an intermittence-
proof tasked-based code.

Step 4: Add sensing and
other app-specific tasks not
a part of the trained model.

Step 5: Develop other tiers for
the application, with varied
energy requirements.

Step 6: Tune harvester,
on/off thresholds, and
adaptation knobs.

Step 7: Compile, debug, link
with Chamelon runtime,
flash on Supersensor.

FIGURE 3. Typical workflow for programmers developing inference-focused applications with Protean. Models that are designed and
trained using state-of-the-art frameworks are too computationally intensive to execute in one power cycle. Metamorph transforms large
models into smaller chunks for execution across multi-tier compute elements with low programmer burden.
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TABLE 1. Comparison of energy usage of Protean.

Protean

State-of-the-art

Dataset Improvement
# Classes Energy (mJ) # Classes Energy (mJ)
MNIST 10 0.06 10 [7] 40, 27 666.7x, 450x
CIFAR 10 2.12 2[8] 17 8.02x
KWS 20 1.23 10 [9] 313 254.47x
Face ID 30 2.32 = =
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FIGURE 4. Protean has higher throughput with less recovery time

when powered using real-world RF energy trace.

Threshold and tier selection is assisted by

an energy prediction model, which leverages
energy measurements and other heuristics for
estimating current and future energy avail-
ability and choosing which tier to dispatch.

Metamorph: Intermittent-Safe

Code Generation

Runtime systems cannot do everything

and developing multiple tiers of a single
application can be challenging. Using
standard tools for TinyML in an intermittent
computing workflow becomes challenging
as these tools have no conception of how

to persist state across power failures.
Metamorph is a developer-facing code
generation tool that bridges the gap
between existing ML tools like PyTorch and
TensorFlow, and intermittent computing.
We built Metamorph, as the glue holding the
runtime system (Chameleon) and heter-
ogeneous hardware platform (SuperSensor)
together. Metamorph wraps existing
workflows to provide an automated way of
generating intermittence-safe application
code. Utilizing Metamorph, a developer can
iteratively explore different design points

of the application without dealing with

underlying code generation frameworks or
worrying about power failures.

Figure 3 shows a typical development
workflow of Protean. It shows how a neural
network developed in TensorsFlow and
PyTorch can be converted to an intermittence-
safe program that uses Chameleon’s APIs
through different programmer specified
parameters using Metamorph.

EVALUATION

We evaluate Protean using three different
acoustic and vision applications/benchmarks,
each having three tiers that utilize different
processing units on the SuperSensor. We use
standard datasets to train the networks. For
speech recognition, referred to as Keyword
Spotting (KWS), we use a subset of Google’s
Speech Command dataset, where we have 20
different words. For image recognition, we
used the CIFAR-10 dataset consisting of ten
classes of 32x32 pixel color images of auto-
mobiles and animals. For face identification,
referred to as Face ID, we use MaximCeleb,
a dataset created by Maxim containing

the faces of 30 celebrities. We test these
benchmarks or RF energy traces collected
under two different settings. With the dipole
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antenna, the power is variable because of
external factors like people walking between
transmitter and receiver (RF1), and with the
patch antenna, the power is rather consistent
with minor variability (RF2).

Protean is Energy-Efficient

We compare our Protean with state-of-the-
art systems and show Protean performs
better in terms of energy consumption when
using the same benchmarks used by existing
approaches. Table 1 lists the comparison.
We observe that Protean outperforms the
existing state-of-the-art system by showing
an improvement of 666x for MNIST, 82x
for the KWS application, and the trend
holds for CIFAR. It must be noted here that
this is the least we can achieve with our
platform as the number of classes supported
by existing systems are very small. With the
higher number of classes, the complexity of
the machine learning model increases, and
so does its computational complexity and
energy consumption at run-time. Due to
Protean enabling us to use accelerators on
intermittent power, making a one-to-one
comparison with existing systems will always
favor Protean in terms of performance (by
multiple orders of magnitude). In a sense,
this is important, as Protean is the first to
allow access to these powerful computational
resources for intermittent computing.

Protean has higher throughput

with less recovery time

With dynamic voltage thresholding
configured and tier-switching ON, Figure 4
reflects the throughput (number of
inferences) and response time of Protean for
two RF energy traces. We observe 12% to
166% improvement in inference throughput
and up to 11% faster recovery from non-
adaptive baselines across all applications.
As SuperSensor supports dynamic turn-

on voltage based on incoming energy, it
facilitates tier adaptation to make the best
use of the variable available energy. Higher
variability in the energy results in more
adaptation by Chameleon to ensure the
system provides timely output.

The full paper [1] includes an in-depth
evaluation of all the components of Protean
and offers more insights into memory
overhead, developer overhead, and
adaptation based on multi-tier execution
and dynamic thresholding.
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CONCLUSION

This short article describes Protean, a
unified platform for robust and adaptive
execution of inference-driven applications
on a battery-free platform. Protean contri-
butes to the entire development stack with
SuperSensor, a modular plug-and-play hard-
ware; Chameleon, an adaptive task-based
runtime system for heterogeneous intermittent
systems; and Metamorph, a code generator
to convert traditional CNN models to
intermittent-safe task-based CNN models.
SuperSensor pushes the boundary of battery-
free computing systems by supporting
more efficient ARM-based MCUs and CNN
accelerators that achieve 666x more energy-
efficient inferences than traditional battery-
free platforms. Chameleon reduces the
recovery time from power failure by 11%
while achieving 166% higher throughput
than non-adaptive counterparts in real-
world settings. Finally, Metamorph speeds
up the development process while reducing
programmer burden. B
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