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Abstract

Phylogenetic models have become increasingly complex, and phylogenetic data sets have
expanded in both size and richness. However, current inference tools lack a model specifi-
cation language that can concisely describe a complete phylogenetic analysis while remain-
ing independent of implementation details. We introduce a new lightweight and concise
model specification language, ‘LPhy’, which is designed to be both human and machine-
readable. A graphical user interface accompanies ‘LPhy’, allowing users to build models,
simulate data, and create natural language narratives describing the models. These narra-
tives can serve as the foundation for manuscript method sections. Additionally, we present a
command-line interface for converting LPhy-specified models into analysis specification
files (in XML format) compatible with the BEAST2 software platform. Collectively, these
tools aim to enhance the clarity of descriptions and reporting of probabilistic models in phylo-
genetic studies, ultimately promoting reproducibility of results.

This is a PLOS Computational Biology Software paper.

1 Introduction

Transparency is a scientific ideal, and replicability and reproducibility lie at the heart of the
scientific endeavour [1, 2]. Metaresearch efforts have uncovered the so-called ‘reproducibil-
ity crisis’ [3] in many scientific domains [3]. In recent years, the growing number of compu-
tational biology software packages available has enabled greater choice in data analyses, but
at the cost of increased complexity in the data-preparation and analytical pipelines [4]. This
increases the difficulty of accurately reporting and reproducing analyses. These barriers have
been recognised by the wider genomics research community [4] as well as within evolution-
ary biology [5].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1011226  July 18, 2023

1/16


https://orcid.org/0000-0003-4454-2576
https://orcid.org/0000-0002-4536-4057
https://orcid.org/0000-0001-6204-7208
https://orcid.org/0000-0003-0878-3380
https://doi.org/10.1371/journal.pcbi.1011226
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011226&domain=pdf&date_stamp=2023-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011226&domain=pdf&date_stamp=2023-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011226&domain=pdf&date_stamp=2023-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011226&domain=pdf&date_stamp=2023-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011226&domain=pdf&date_stamp=2023-07-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011226&domain=pdf&date_stamp=2023-07-28
https://doi.org/10.1371/journal.pcbi.1011226
https://doi.org/10.1371/journal.pcbi.1011226
https://doi.org/10.1371/journal.pcbi.1011226
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/LinguaPhylo/linguaPhylo
https://github.com/LinguaPhylo/linguaPhylo

PLOS COMPUTATIONAL BIOLOGY

LinguaPhylo: a probabilistic modelling language for reproducible phylogenetic analyses

Funding: AJD was supported by a James Cook
Fellowship (JCF-UOA1901) from the Royal Society
of New Zealand (https://www.royalsociety.org.nz).
FKM was supported by Marsden grant 16-UOA-
277 from the Royal Society of New Zealand and by
National Science Foundation (https://www.nsf.gov)
grant DEB-2040347. These funders played no role
in the study design, data collection, analysis,
decision to publish or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

In evolutionary biology, phylogenetics has become a highly technical discipline [5]. The
most general phylogenetic tools are Bayesian methods including BEAST [6], BEAST 2 [7, 8],
MrBayes [9] and RevBayes [10] that can simultaneously reconstruct phylogenetic tree topology
and divergence times, as well as estimate the related micro-evolutionary and macro-evolution-
ary parameters. Phylogenetic analyses often combine multiple models within a complex pipe-
line to answer questions in evolutionary biology such as species evolution [11, 12], ancestral
biogeographical ranges [13, 14], and epidemic dynamics [15, 16].

Reproducing, reusing and interpreting a phylogenetic model is not trivial, and requires an
understanding of the input data, details of the model (i.e., its parameters and how they are
related and their priors), and inference methodology. The latter can include complex Markov
chain Monte Carlo (MCMC) proposal distributions and sampling algorithms which are not
part of the model. Currently, little research has been done on the readability, reproducibility
and reusability of phylogenetic analyses employing phylogenetic models. Our paper presents a
tool that aims to: (i) facilitate concise and exact communication of phylogenetic models, (ii)
improve reproducibility, and (iii) increase reusability of phylogenetic models and their varia-
tions on new datasets.

Probabilistic graphical models (PGM) have previously been introduced to phylogenetic
inference by Héhna et al. [10], where they are described in the Rev language of RevBayes
[10]. Previous attempts to address model specification of Bayesian phylogenetic analyses
include BEAST-style XMLs (eXtensible Markup Language) developed for the BEAST soft-
ware [6-8], the Nexus-based language of MrBayes [9] and the aforementioned Rev program-
ming language used in RevBayes [10]. The extensibility of XMLs provides flexibility to
developers allowing them to create new descriptive tags for specifying new models. Unfortu-
nately, BEAST XMLs can be hard to read due to their XML-based, verbose syntax, which is
unfamiliar to many users. The deeply nested structures and hierarchical organisation in
BEAST XMLs make understanding model components and their relationships more chal-
lenging. In contrast, more general probabilistic programming languages such as found in
JAGS [17], BUGS [18, 19] and Stan [20] employ more concise, linear structures that simplify
comprehension and modification of models. Additionally, probabilistic programming lan-
guages are more accessible and widely applicable within the statistical modelling community,
while BEAST XMLs are more domain-specific. The Revlanguage [10] offers an alternative to
XMLs, incorporating conventional notation from general probabilistic programming lan-
guages, making model specifications more recognizable and flexible for statistically literate
users. However, users still face challenges with verbose and extraneous implementation
details, such as MCMC sampling settings, logging information, and proposal distributions.
Additionally, the task of accurately describing the Rev model in natural language for a manu-
script’s methods section can be error-prone, further complicating the process of model speci-
fication and communication.

In this study, we present LinguaPhylo (LPhy, which we pronounce ‘el-fee’), an open-
source model specification language designed to enhance the readability, reproducibility,
and reusability of phylogenetic models. LPhy boasts a simple syntax that enables succinct
specification of complex models, and is implemented within a framework that generates
accurate textual descriptions and graphical diagrams of phylogenetic models based on user
input.

2 Design and implementation

The LPhy language is designed to enable the specification of phylogenetic models using a con-
cise and readable syntax. The reference implementation is built on top of the Java
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programming language and provides features for: (i) concise formal specification of phyloge-
netic models on real or synthetic data, (ii) data simulation from phylogenetic models, (iii) inte-
gration with the BEAST 2 phylogenetic inference framework, and (iv) an extensibility
mechanism for adding new functionality and data types to the LPhy language.

2.1 Language features

The LPhy language is described by an Extended Backus-Naur form grammar (EBNF) [21]. We
used ANTLR [22, 23] to generate an LPhy parser in Java. This Java-based LPhy parser was
used as the foundation for the development of LPhyStudio and LPhyBEAST software packages.
The ANTLR parser generator can also be targeted to other general programming languages
like Python, C++ and Javascript. This gives a relatively easy path to implementation of LPhy
support in other phylogenetic software packages.

The main components of the LPhy language grammar are variables, arrays of variables, and
generators. There are three classes of generators: (i) generative distributions which produce
values for random variables, (ii) deterministic functions that produce the deterministic values
given the same input values, and (iii) method calls. For deterministic functions and method
calls, these generators produce deterministic nodes in the PGM. This is illustrated in Fig 1,
which shows a graphical representation of the model specified in Example 1. Deterministic
nodes are shown as diamonds (e.g., the ‘Q” matrix of the Jukes-Cantor model [24]). Stochastic
nodes are represented by circles (e.g., ©, the population size governing the coalescent times
generated by the Coalescent process [25]), and constant nodes are represented by squares (e.g.,
the mean of the log-normal generative distribution underlying ©).

An LPhy script is a text file with the “Iphy’ file extension and is case-sensitive. In the refer-
ence implementation, syntax checking is performed during execution. Control flow structures
are not allowed in order to promote simplicity and readability, facilitating a lower barrier to
entry and a gentler learning curve. Instead of loop structures, we provide implicit vectorization

end start
10 1

|

rangeint

sdlog names
1 \

LogNormal taxa

(€]
taxa

Coalescent jukesCantor

PhyloCTMC

Fig 1. The graphical representation of the probabilistic model defined in Example 1.
https://doi.org/10.1371/journal.pcbi.1011226.g001
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similar to R [26]. Allowing all arguments of distributions and functions to be vectorised results
in more compact and expressive model specifications. This can lead to clearer representations
of the model’s structure and relationships. Additionally an optional ‘replicates’ argument
allows users to generate vectors of independent and identically distributed (IID) random vari-
ables easily, further simplifying the model specification. When designing new generators,
optional arguments in functions and generative distributions are allowed, these arguments
may or may not have default values. Two distinct code blocks are used to differentiate between
the part of the script describing the data (the data block), and part describing the model (the
model block). The code block structure is inspired by the programming language Stan [20].
The syntax for the specification of random variables is similar to probabilistic programming
languages such as JAGS [17], BUGS [18, 19] and Stan [20]. Scripts can be loaded into LPhyStu-
dio via the menu or the toolbar. Additionally, we provide a console for executing LPhy com-
mands line by line within LPhyStudio.

The LPhy language grammar does not specify any explicit types, nor does it specify any pro-
tected pre-defined generative distributions or functions, except for a very small number of
mathematical functions that allow simple expressions. Accompanying the LPhy language
grammar is the LPhy reference implementation, a Java implementation offering standard sta-
tistical and phylogenetic distributions, as well as supporting functions with specified Java
types. Implementers of the LPhy language in other systems should support the reference distri-
butions, using equivalent types in their respective languages.

In the reference Java implementation, variables can possess primitive or custom types.
Primitive types include doubles, integers, booleans, and strings, while custom types, such as
alignments, trees, and discrete traits, are internally created as Java Objects by invoking the gen-
erator’s constructor. Variables can be vectorised into an array of elements using the ‘replicates’
argument. Java-style overloading supports function overloading, and type checking for genera-
tor arguments is performed during execution.

2.1.1 Syntax. In LPhy, each line’s syntax consists of a variable declaration on the left-hand
side, a specification operator, and a generator on the right-hand side, with lines ending with a
semicolon character. For instance:

b ~ Normal(mean= 0.0, sd=1.0);

In this example, variable b is specified by the normal generative distribution Normal ()
with two arguments: the mean mean (0.0) and the standard deviation sd (1.0).

The left-hand side declares the name of a variable or an array of variables (case sensitive).
The right-hand side specifies the values of the variable or array. This can be a constant value,
array of constant values, deterministic function or stochastic generative distribution. Deter-
ministic functions and generative distributions are matched by method signatures from con-
structors of their corresponding Java class in the reference implementation. See the LPhy
reference implementation manual available from the homepage https://linguaphylo.github.io/
for a complete list of functions and generative distributions. Arguments inside functions or
generative distributions follow the convention: (argument name) = (value).

2.1.2 Specification operators. An equal sign = is used to specify deterministic or constant
values for variables, such as:

a = 2.0;

A tilde sign ~ is a specification operator which denotes the relationship between a stochas-
tic random variable and its generator. In a Bayesian context, this is the prior distribution of the
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random variable. Or when given observed data, this specifies the likelihood function. For
example, this specifies a prior for the variable b:

b ~ Normal (mean=0.0, sd=1.0);

The type of a variable is inferred from the return type of its generator and does not need to
be declared. For arguments of functions or generative distributions, the types are defined in
the LPhy reference implementation manual available from the homepage https://linguaphylo.
github.io/.

2.1.3 Arrays. Arrays can be defined using square brackets with elements delimited by
comma separators. For sequences of consecutive integers, we allow a more compact notation
using the colon “’ to define a range. For example:

[t, 2, 3, 4, 5];
2:10;

c
d

The variable ¢ has an array with values (1, 2, 3, 4, 5). The variable d has an array with values
2 to 10.

2.1.4 Code blocks. The data and model keywords are reserved to specify code blocks
inside curly brackets. The data block is used to read in and store input data, which are used by
the model. Within the data block, we can read in alignment data via the NEXUS or FASTA
parsers, specify constant values, and store metadata about the dataset. The model block is used
to define the models and parameters in a Bayesian phylogenetic analysis.

data {
L = 200;
taxa = (names=1:10) ;

}

model {
© ~ LogNormal (meanlog=3.0, sdlog=1.0);
1) ~ Coalescent(theta=0, taxa=taxa);
D ~ PhyloCTMC(L=L, Q= O, tree=i);

}

Example 1. An LPhy script defining a constant-size coalescent tree prior with log-normally
distributed population sizes, a strict clock model, and a Jukes-Cantor model on 10 nucleotide
sequences with 200 sites (base pairs).

Example 1 specifies a complete phylogenetic model using only five lines of code inside two
blocks. The first block specifies 200" nucleotide sites in ‘L’ and ten taxa named from 1 to 10 in
‘taxa’. Taxa can be declared as strings or as numbers. In this example, the taxa names are num-
bered. The second block declares stochastic nodes or random variables highlighted in bluish-
green, and their generative distributions highlighted in blue. Constant nodes with fixed values
are shown in vermillion.

Fig 1 shows this model specification represented as a probabilistic graphical model. Sto-
chastic nodes are shown as circles, deterministic functions are shown as diamonds, and con-
stants are shown as squares.

2.1.5 Variable vectorization. Named variables can be scalars or vectors. Any generator
can be vectorized to produce a vector of IID random variables using the replicates
keyword:
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k ~ LogNormal (meanlog=0.5, sdlog=1.0, replicates=3);

In the example above, k is a random vector of three log-normally distributed IID
values.

Vectorization can also be applied to a generative distribution that produces vectors. In this
case, the output will be a matrix, as seen in the following example.

m ~ Dirichlet(conc=[2.0, 2.0, 2.0, 2.0], replicates=3);

Here, 7 contains 3 vectors, where each vector represents nucleotide base frequencies. So the
resultant matrix will be 3 x 4 (major dimension of 3 and a minor dimension of 4).

A second mechanism for vectorization can be used by passing a vector of elements instead
of a single element as an input argument of a generator:

3 =

~ LogNormal (meanlog=0.5, sdlog=1.0, replicates=3);
~ Dirichlet(conc=[2.0, 2.0, 2.0, 2.0], replicates=3);
Q= (kappa=k, freq=m);

Here, k and m are vectors, both with a major dimension of 3. These are passed as arguments
into the hky deterministic function, which returns a vector containing three instantaneous
rate matrices stored in Q.

2.1.6 Extension mechanism. LPhy is designed to be modular and extensible to encourage
integrative software development and adoption by method developers in the field. LPhy core
and its extensions are built using Java 17 with long-term support (LTS) and Gradle 4. The
LPhy extension mechanism is implemented using the Java Platform Module System (JPMS)
and the Java Service Provider Interface (SPI). This modular extension framework allows devel-
opers greater flexibility in code development and software releases. New functionality such as
generative distributions, data types, and deterministic functions can be developed within LPhy
extension modules. Additionally, software releases can be done independently to core LPhy
releases. An example of the LPhy extension mechanism is the Phylonco package [27] which is
described in the results section.

2.1.7 Parametric distributions. The LPhy reference implementation comes with a series
of parametric distributions commonly used in evolutionary models, including uniform, nor-
mal, log-normal, gamma, exponential, and dirichlet distributions. Parametric distributions
can be specified as generative distributions for model parameters by:

@~ LogNormal (meanlog=-5.0, sdlog=1.25);

Each parametric distribution is characterized by its own parameters. In the example above,
the extinction rate parameter y is drawn from a log-normal distribution with mean -5 and
standard deviation 1.25 in log space.

2.1.8 Tree models. Tree models are used to generate phylogenetic trees, and are central
components in phylogenetic simulation and analysis. We briefly describe some of the main
tree models implemented in LPhy below. This includes coalescent models and birth-death
models.

Serially sampled coalescent model

The simplest coalescent model LPhy implements is the constant-population size coalescent,
which can be extended to generate serially sampled (heterochronous) data [28]:
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© ~ LogNormal(meanlog=3.0, sdlog=1.0);
1) ~ Coalescent(theta=0, taxa= (names=["a", "b", "c", "d"],
ages=[0.0, 1.0, 2.0, 3.01));

The script above specifies a serially sampled constant-population size coalescent (a genera-
tive distribution) for tree y with four taxa, ‘@’, ‘b’, °c’, ‘d’ sampled at 0.0, 1.0, 2.0 and 3.0 time
points, respectively. Here, sample time is defined as the age of a sample, where 0.0 represents
the present moment.

Structured coalescent model. The structured coalescent [29, 30] generalizes the constant-
population size coalescent [25] by allowing multiple demes, each of which are characterized by
a distinct population size. In the simplest case this population size does not change through
time. Demes exchange individuals according to migration rates m specified in the off-diagonal
elements of a migration matrix M, where the diagonal elements store the population sizes, 0, of
each deme. For K demes, the population size parameter ‘theta’ is a K-tuple, and m is a
(K* - K)-tuple.

M= (theta=[0.1, 0.1], m=[1.0, 1.0]);
g ~ StructuredCoalescent(M=M, n=[15, 15]);

In the example above, migrationMatrix is a deterministic function and
StructuredCoalescent isa generative distribution. A stochastic node ‘g’ stores a gene
tree sampled from a two-deme structured coalescent process.

Skyline coalescent model. The skyline coalescent model [31] is a coalescent process that
models changes in population sizes. This model is characterized having a constant population
size for each coalescent interval, with instantaneous changes in population size at some coales-
cent events.

The following script specifies a Skyline coalescent model with 10 coalescent intervals (11
taxa), with four distinct population sizes.

g ~ SkylineCoalescent(theta=[0.1, 0.2, 0.3, 0.4], groupSizes=[4,3,2,1]);

Here, ‘g’ is a stochastic node in the PGM, with its value sampled from the
SkylineCoalescent generative distribution. Ten coalescent intervals are defined through
the ‘groupSizes’ argument: the first four coalescent intervals will be drawn assuming a ‘theta’
of 0.1, the next three intervals with ‘theta’ equal to 0.2, and so on.

Birth-death models. Birth-death models are commonly used in macroevolution as
sampling distributions for species trees. Models that parameterize the fossilization process
can be especially useful, as they allow users to leverage fossil ages as data. When fossil mor-
phological characters have also been scored, total-evidence dating can be carried out [12].
One such tree model is the serially sampled birth-death process [32], whose parameters
‘psi’ and ‘rho’ below represent the rate of sampling extinct and extant lineages,
respectively:

ages = [0.0, 1.0, 2.0, 3.0, 4.0];
tree ~ BirthDeathSerialSampling(lambda=1, mu=0.5, rho=0.1,
psi=1, rootAge=5, ages=ages);

Other tree models include the birth-death [33] and fossilized birth-death processes [34], as
well as the Yule process [35].
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2.1.9 Substitution models. Substitution models consist of continuous-time Markov
chains (CTMC) used to model the evolution of discrete characters, such as nucleotides and
amino acid residues. LPhy implements a general formulation of a phylogenetic CTMC,
known as the GTR model [36], under which several nested models can be specified. The
first line below constructs the instantaneous rate matrix Q for an HKY model [37], which
is then used to in Phy1oCTMC, the generative distribution for the sequence alignment

data D:
taxa = (names=1:10) ;
Q = (kappa=2.0, freq=[0.2, 0.25, 0.3, 0.25]);

© ~ LogNormal(meanlog=3.0, sdlog=1.0);
1) ~ Coalescent(theta=0, taxa=taxa);
D ~ PhyloCTMC(L=200, Q=Q, tree=1);

Other substitution models can be easily specified by passing different instantaneous transi-
tion rate matrices Q to Phy10CTMC, e.g., the matrix of the Jukes-Cantor model [24]:

D ~ PhyloCTMC(L=200, Q= O, tree=i);

For forward simulation Phy1oCTMC is used as a generative distribution for a multiple
sequence alignment, which is here represented by stochastic node ‘D’. When the model is
employed for statistical inference, and data D is known, the Phy1oCTMC represents the phylo-
genetic likelihood. More details are discussed in the Data clamping section.

2.1.10 Evolutionary clock models. Molecular clocks are used to model the rate of evolu-
tionary change and how it varies over time. The LPhy language supports strict clock [38,
39], local clock [40] and relaxed clock [41] models. Specifying a clock model is done by gen-
erating evolutionary rate values, one per phylogenetic tree branch, and then multiplying
those rates by the length of the corresponding branch. The branches of the tree are mea-
sured in units of time, effectively scaling the tree to the number of expected substitutions
per site.

The simplest clock model is the strict clock, where the evolutionary rate remains constant
over the entire tree. Specifying a strict molecular clock can be done by specifying the ‘mu’
parameter in the PhyloCTMC distribution. The default value for the clock rate ‘mu’ is 1.0.

A~ LogNormal (meanlog=3.0, sdlog=1.0);
¥ ~ Yule(lambda=\, n=16);
D ~ PhyloCTMC(L=200, Q= (), tree=vy, mu=0.5);

More realistic clock models like the uncorrelated relaxed clock model [41] assume the rate
for each branch is drawn according to a parametric distribution. For example, a relaxed clock
with rates drawn from a log-normal distribution can be constructed as follows:

A~ LogNormal (meanlog=3.0, sdlog=1.0);

1 ~ Yule(lambda=\, n=16);

branchRates ~ LogNormal(sdlog=0.5, meanlog=-0.25, replicates=1). 0);
D ~ PhyloCTMC(L=200, Q= (), branchRates=branchRates, tree=1);

Here, 30 rates are drawn independently from a log-normal distribution, and then each is
assigned to one of the 30 branches of tree y.
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2.1.11 Inference and data clamping. In addition to simulation, LPhy allows users to use a
specified model for inference. We have developed LPhyBEAST which provides support for
inference with the BEAST? engine.

To set up an inferential analysis with LPhy ‘data clamping’ is performed similar to the
Rev language [10]. Data clamping involves associating an observed value with a random var-
iable in the model, which is represented as a stochastic node in the probabilistic graphical
model (PGM). By clamping data to a node, the user is informing the inference engine that
the value of that particular variable is known and will be conditioned on for the purpose of
inference.

In LPhy, data clamping can be accomplished using the ‘data block’. This block allows the
user to specify the observed values of certain variables in the model, effectively clamping these
variables to their observed values during inference. This is useful when working with real data,
as it allows the user to incorporate the observed data into the analysis and improve the accu-
racy of the results.

In LPhy, data clamping can be achieved using the ‘data block’, for example:

data {
options = {ageDirection="forward", ageRegex="s(\d+)"};
nexusFilePath = "tutorials/data/RSV2.nex";

D = (file=nexusFilePath, options=options);
codon = D. (["3-629\3", "1-629\3", "2-629\3"1);
n = 3;

L = [209, 210, 210];

taxa = D. O

}

model {
m ~ Dirichlet(replicates=n, conc=[2.0, 2.0, 2.0, 2.0]);
k ~ LogNormal(sdlog=0.5, meanlog=1.0, replicates=n);
r ~ WeightedDirichlet(conc= (element=1.0, times=n), weights=L);
u =~ LogNormal (meanlog=-5.0, sdlog=1.25);
© ~ LogNormal (meanlog=3.0, sdlog=2.0);
1) ~ Coalescent(taxa=taxa, theta=0);
Q= (kappa=k, freq=m, meanRate=r);
~ PhyloCTMC(L=L, Q=Q, mu=p, tree=v);

Example 2. An LPhy script for phylodynamic analysis of a virus dataset containing Respira-
tory syncytial virus subgroup A (RSVA) genomic samples [42, 43].

In Example 2, we used a Respiratory syncytial virus subgroup A (RSVA) dataset [42, 43]
containing 129 molecular sequences coding for the G protein collected between years 1956
and 2002. We use three partitions corresponding to the codon position, an HKY substitu-
tion model [37], coalescent tree prior [25] and a strict molecular clock with a log-normal
prior on the mean clock rate. Within the data block we clamp the value of ‘codon’, a sto-
chastic node that appears below inside the model block. This is achieved by specifying a
data node of the same name (codon) in the data block. In this example the data is vector-
ized into three codon positions to allow different site models for the different codon
positions.
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2.2 LPhyStudio

Along with the language definition, we introduce LPhy Studio, a Graphical User Interface,
GUI, intended for (i) model specification, (ii) PGM graphical and textual display, and (iii)
visualization of simulated data. Fig 2 shows a screenshot of LPhyStudio after a simple phy-
logenetic model was specified. LPhyStudio’s features include a scripting console, syntax
highlighting, generation of PGMs and natural language text narratives of models with cita-
tions, and optionally exporting these PGM and narratives as LaTeX documents. LPhy
scripts can be imported using the toolbar or file menu, or created using the scripting
console.

2.3 LPhy and BEAST2

To facilitate the application of specified models for evolutionary inference, the companion
program ‘LPhyBEAST’ was developed as an interface between LPhy and BEAST2. LPhyBEAST
is a command-line tool that takes as input an LPhy script file specifying a model with simu-
lated or observed data, and produces a BEAST2 XML file as output.

3 Results

We present key features of the LPhy software using two models from the Phylonco package
[27] developed for single-cell data—the GT16 substitution model [44] and the GT16 error
model [44]. Starting from an LPhy script, our software generates a text description of the
model, a graphical representation of the model as a PGM, and a view of the simulated data
shown in Fig 3. Additionally, we also showcase how LPhy can be used to validate the correct-
ness of the BEAST 2 implementation of GT16.

LPhy Studio version 1.4.3 - RSV2.Iphy
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Fig 2. A screenshot of LPhy Studio showing the probabilistic graphical model on the left panel (constants hidden), and the auto-
generated text description of the data and phylogenetic model on the right panel.

https://doi.org/10.1371/journal.pchi.1011226.9g002
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Fig 3. A screenshot of LPhyStudio showing the GT16 substitution and GT16 error model [27, 44]. The left panel shows the
graphical model representation, the right panel shows the simulated tree and diploid nucleotide genotypes, and the bottom panel
shows the LPhy script.

https://doi.org/10.1371/journal.pcbi.1011226.9003

LPhy script

We start from an LPhy script shown in Example 3 which specifies a GT16 substitution model
and GT16 error model [44] for simulating single-cell diploid nucleotides with sequencing/
amplification error (epsilon) and allelic dropout error (delta). The script defines that 16
sequences ‘A’ are generated from a GT16 substitution model with rates and genotype frequen-
cies drawn from dirichlet distributions, and a coalescent tree prior with a log-normally distrib-
uted theta. The observed noisy sequences ‘E’ are generated by applying sequencing/
amplification error (epsilon), and allelic dropout error (delta) drawn from beta distributions
to the sequences ‘A’. In the dirichlet generator, the argument ‘conc’ represents the concentra-
tion parameter.

Natural language description

LPhyStudio can automatically generate a text description of the model as a narrative. The
implementation of automated natural language descriptions for phylogenetic models is not
new, and similar efforts (albeit for a different scope of phylogenetic methods) can be found in
SplitsTree [45] and MEGA4 [46]. The natural language narrative tool we have developed pro-
vides a precise starting point for the model description section in a research article that uses
Bayesian phylogenetic inference. The LPhy script in Example 3 generates the following
narrative.
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model {
7 ~ Dirichlet(conc=[3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.01);
rates ~ Dirichlet(conc=[1.0, 2.0, 1.0, 1.0, 2.0, 1.0]1);

Q= (rates=rates, freq=m);

© ~ LogNormal (meanlog=-2.0, sdlog=1.0);

) ~ Coalescent(n=16, theta=0);

A ~ PhyloCTMC(L=200, Q=Q, dataType= (), tree=1);
delta ~ Beta(alpha=1.5, beta=4.5);

epsilon ~ Beta(alpha=2, beta=18);

E ~ GT16ErrorModel (alignment=A, delta=delta, epsilon=epsilon);

Example 3. An Lphy script defining a GT'16 substitution and GT16 error model for diploid
single-cell nucleotide data.

The alignment, E has an error model [44] with sequencing and amplification error proba-
bility, epsilon, allelic dropout probability, delta and genotype alignment, A. The genotype
alignment, A is assumed to have evolved under a phylogenetic continuous time Markov
process [47] on phylogenetic time tree, y, with instantaneous rate matrix, Q, an alignment
length of 200 and the data type used for simulations. The instantaneous rate matrix, Q is the
general time-reversible rate matrix on phased genotypes [44] with relative rates, rates and
base frequencies, 71. The base frequencies, 7 have a Dirichlet distribution prior with a con-
centration of [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0]. The rela-
tive rates, rates have a Dirichlet distribution prior with a concentration of 1.0, 2.0, 1.0, 1.0,
2.0, 1.0]. The data type used for simulations is the phased genotype data type. The phyloge-
netic time tree, ¥ is assumed to come from a Kingman’s coalescent tree prior [28] with coa-
lescent parameter, ® and an n of 16. The coalescent parameter, © has a log-normal prior
with a mean in log space of -2.0 and a standard deviation in log space of 1.0. The allelic
dropout probability, delta has a Beta distribution prior with an alpha of 1.5 and a beta of
4.5. The sequencing and amplification error probability, epsilon has a Beta distribution
prior with an alpha of 2 and a beta of 18.

Model validation

The LPhy framework can be used to verify implementation correctness of new models, in
which case they are said to be well-calibrated. Bayesian model validation consists of a series of
steps, the first of which is simulation of synthetic data. Recent examples that employ well-cali-
brated simulation studies within the BEAST?2 platform include models for single-cell sequenc-
ing errors [27] and correlated continuous traits [48]. By making it possible to simulate
complex models and connect to an inference engine (e.g., BEAST 2), LPhy and LPhyBEAST
can greatly simplify the validation procedure. Fig 4 presents the validation results for the
model described above, when model specification and simulation were performed using LPhy,
LPhyBEAST and Phylonco.

Availability and future directions

LPhyStudio and LPhyBEAST are available on github. This suite of programs is accompanied
by a user guide and extensive documentation available via the homepage https://linguaphylo.
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Fig 4. Model validation for the GT16 substitution model and GT16 error model. Each plot shows the 95% highest
posterior density for model parameters: allelic dropout error J, sequencing/amplification error ¢, equilibrium frequency for
T a4, relative rate r4¢, tree height, and tree length.

https://doi.org/10.1371/journal.pchi.1011226.9g004

github.io/. A growing list of tutorials on the webpage covers common use cases and extension
mechanisms. LPhy is designed in a modular fashion, researchers interested in implementing
new models within the LPhy language can do so by releasing extension modules that can
extend the LPhy application post-deployment.

Although there are many programming languages through which statistical models can be
succintly described (e.g., Stan [20], JAGS [17], BUGS [18, 19]), these languages do not support
the unique feature of phylogenetic models—the phylogenetic tree. Phylogenetic trees are com-
plex high-dimensional objects, part discrete, part continuous. There is no bijection between
tree space and Euclidean space, so these objects cannot be treated with standard statistical dis-
tributions [49]. Hence, specialist software is commonly employed to perform inference involv-
ing phylogenetic trees [6-10].

LinguaPhylo differs from existing specialist software in the way it handles model specifica-
tion. By using vectorization, LinguaPhylo obviates the need for for-loop control flow to
describe repetitive structural elements of a model. This feature lowers the risk of syntactic or
programming logic mistakes when defining a model relative to a full programming language
such as Rev [10]. In its declarative nature, LPhy’s language resembles the XML specification
adopted by BEAST 2 [7, 8], but shares the central notion of probabilistic graphical models with
the Rev language.

LinguaPhylo provides for a form of array programming (vectorization), so that any func-
tion or generative distribution can be called with its arguments in vectorized form. In such sit-
uations the function or generative distribution is ‘broadcast’ over each element of the array,
which allows for very concise model descriptions.

Future work on integration of LPhy with other popular Bayesian phylogenetic inference
tools, such as RevBayes [10], BEAST [6], MrBayes [9] will increase the flexibility of the
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framework, and enable easy validation of and comparison between different Bayesian phyloge-
netic inference engines.

Supporting information

S1 Appendix. List of distributions and functions in the LPhy reference implementation.
(PDF)
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