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Abstract—A common vision for large-scale autonomous vehicle
deployment is in a ride-hailing context. While this promises
tremendous societal benefits, large-scale deployment can also
exacerbate the impact of potential vulnerabilities of autonomous
vehicle technologies. One particularly concerning vulnerability
demonstrated in recent security research involves GPS spoofing,
whereby a malicious party can introduce significant error into
the perceived location of the vehicle. However, such attack focus
on a single target vehicle. Our goal is to understand the systemic
impact of a limited number of carefully placed spoofing devices
on the quality of the ride hailing service that employs a large
number of autonomous vehicles. We consider two variants of
this problem: 1) a static variant, in which the spoofing device
locations and their configuration are fixed, and 2) a dynamic
variant, where both the spoofing devices and their configuration
can change over time. In addition, we consider two possible attack
objectives: 1) to maximize overall travel delay, and 2) to minimize
the number of successfully completed requests (dropping off
passengers at the wrong destinations). First, we show that the
problem is NP-hard even in the static case. Next, we present
an integer linear programming approach for solving the static
variant of the problem, as well as a novel deep reinforcement
learning approach for the dynamic variant. Our experiments on
a real traffic network demonstrate that the proposed attacks on
autonomous fleets are highly successful, and even a few spoofing
devices can significantly degrade the efficacy of an autonomous
ride-hailing fleet.

I. INTRODUCTION

Autonomous driving has the potential to transform mobility.

A common (although by no means universal) vision for this
transformation is that autonomous vehicles would come to
serve in large fleets as part of ride-hailing services, ultimately
obviating the need for people to own and drive cars (3; [14).
Indeed, Waymo has already begun a limited deployment of
a fully autonomous ride hailing service (13)). However, given
the potentially transformative impact such services may have
on communities, it is imperative that we comprehensively
understand their potential limitations.

One class of such limitations come in the form of security
vulnerabilities, whereby a malicious party attempts to subvert
the ride hailing service, either to specific ends, or simply
to wreak havoc. We consider one important class of such
vulnerabilities in which attackers can tamper with the vehicles’
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perception of their location; we refer to these as location
spoofing attacks. One means of actualizing such attacks is
to use GPS spoofing which interferes with the vehicles GPS
signal, causing the vehicle to have an 10514 1lincorrect belief
about its current position (2 [155 [165 [195 1215 22). Attacks of
this kind involve a spoofing device placed near, or in, a target
vehicle. Most prior works focus on the technical aspects of
implementing the attack itself. We take such GPS spoofing
attacks as a given, and ask a broader systemic question: is
it possible to leverage GPS spoofing attacks to significantly
impact a ride-hailing service at scale with a limited number of
spoofing devices?

To answer this question, we consider three threat models that
involve placing a limited number of location (GPS) spoofing
devices in a traffic network. In the first, the spoofing devices
are placed in a set of fixed locations (intersections) in the traffic
network, and each device spoofs a fixed target location; we refer
to this as the static-static model (static device locations with
static spoofed locations). In our second model, the spoofing
device locations are still fixed, but the target locations being
spoofed can now be time-varying (the static-dynamic model).
Finally, our third model allows both the devices and the
locations to vary with time, for example, with devices being
transported in malicious drones. We consider two possible
attack goals: 1) maximizing overall delay of servicing requests,
and 2) maximizing the number of failed (not completed)
requests, where a failed request is one in which a passenger is
dropped off at an incorrect location.

We begin with a negative result from an attacker’s perspective
(positive from the vantage point of a fleet manager): even in
the static-static setting, computing an optimal location spoofing
attack is NP-hard, even when one targets a single vehicle and
has an unlimited spoofing budget. Next, we present algorithmic
approaches for each of the three threat models. For the static-
static model, we propose an integer linear programming (ILP)
formulation for both service delay and service failure attacks.
In addition, we present a simple greedy heuristic approach for
the service delay attack in this setting. We then adapt the ILP
formulation from the static-static to the static-dynamic setting,
blending it with a greedy heuristic approach for selecting
spoofed locations. Finally, we present a deep Q-network (DQN)-
based reinforcement learning approach for learning a spoofing
attack strategy in the dynamic-dynamic setting.

We evaluate the proposed attack methods through extensive
experiments. Our results demonstrate that attacks can indeed
be highly effective, despite the negative worst-case hardness



Fig. 1: Routes from starting location (circle) to destination (star)
of two fleet vehicles with no spoofing (green and blue) and
with 4 spoofing devices (red and orange) in OpenStreetView.
The traffic graph (radius 1000) is marked in black; spoofing
locations and effects are marked as purple arrows.

results. We show that our proposed approaches outperform
several baselines, often by a significant margin, particularly as
the problem size increases.

In summary, we make the following contributions:

« We systematically study the effects of GPS spoofing
attacks on multi-vehicle self-driving fleets, under two types
of attacking objectives (maximizing delay and maximizing
number of incomplete trips) and three paradigms of spoof-
ing capabilities (static-static, static-dynamic, dynamic-
dynamic).

o We show that the attacker’s problem is intractable for each
combination of spoofing capabilities and objective.

« Despite this intractability we provide efficient solutions
for developing attacks in practice: an ILP formulation for
the static-static case, an effective greedy heuristic for the
static-dynamic case, and a deep reinforcement learning
approach in the dynamic-dynamic case.

o We experimentally demonstrate the effectiveness of each
attack method on a simulated traffic network of New York
City (sourced from OpenStreetMap and Uber Movment),
and demonstrate that even a few spoofing devices can
significantly impact the performance and reliability of a
large autonomous vehicle fleet.

II. RELATED WORK

In recent years extensive research, both academically and
commercially, has focused on developing fully autonomous
vehicles (4516 [1). Many of these autonomous driving paradigms
can be thought of as consisting of two systems: a low-level
system which is responsible for controlling the vehicle and
effectively navigating the roadway, and a high-level system
which is responsible for routing the vehicle to its destination.

Our focus will be primarily on the high-level system. Within
this high-level navigation system GPS is the de facto means of
determining vehicle location. When navigating via GPS location
information, the vehicle possesses a receiver which accepts GPS
signals which indicate the vehicle’s current location. Recent
work has demonstrated that the GPS signal received by the
vehicle can be maliciously altered by spoof devices (22 12 [7}
25 (155 1165 1195 215 22). In GPS spoofing, the attacker transmits
fabricated GPS signals with greater signal power than the
authentic ones, thus causing the victim receiver to lock onto
the attacker’s signals, rather than the authentic signal, and
resolve positions controlled by the attacker. GPS spoofing has
been proven feasible theoretically (8)) and empirically (22 [16).
More importantly, it has been demonstrated that autonomous
driving vehicles are vulnerable to GPS spoofing attacks, such
as Tesla cars (10), in the physical world. Further, (22; 9) has
shown that modern spoofers are cheap to manufacture.
Another orthognal line of research has investigated the capa-
bility of using GPS spoofers to reroute autonomous vehicles.
In particular, (22) has developed a spoofing attack which is
capable of successfully rerouting a victim car such that it
arrives at an incorrect destination. This work conducted physical
experiments in New York City in which they successfully
rerouted a vehicle and reached a location that is different
from its destination, thus demonstrating that GPS spoofing
attacks are physically realizable. In their design, the attackers
knows the vehicle’s destination, the vehicles location at each
time timestep, and the vehicle’s routing algorithm. Spoofers
are placed at every intersection and the attacker designs a
signal for each spoofer such that when the vehicle’s routing
system uses the designed signal, the vehicle is rerouted to
the attacker’s target location. These and similar GPS spoofing
attacks typically impose two constraints: first, they require a
spoofing device to be close to the target vehicle, and second,
they require the spoofed location to be reasonably close to
the vehicle’s true location. The latter constraint is intended to
create subtle attacks, which are more difficult to detect.
While GPS spoofing attacks have been demonstrated to
consequentially impact autonomous driving, prior work has
only considered single-vehicle attacks. In contrast, we consider
attacks on a multi-vehicle ride-hailing fleet involving multiple
spoofing devices. Our attacks share some structure with variants
of multi-agent routing problems (125 [17; [18), although many
technical details differ from our problem structure differ.

III. MODEL

We begin with a model of a ride-hailing system, in which
K vehicles traverse a traffic network G = (V, E), where V
is the set of nodes representing intersections and E is the set
of edges connecting the intersections. We use the set N (z) to
denote the neighbors of node 7 € V. Each edge ¢;; € E in the
traffic network G is associated with a travel time c; ;, which
we normalize without loss of generality to be in [0, 1]. We
identify each vehicle with an index k € {1,..., K}. Vehicle
k is associated with a current location s; and a destination d,.
Further, we assume that each vehicle k follows the shortest



path from any location v € V to its destination dj;. We assume
that both G and the edge costs are fixed (e.g. the traffic
of each street is roughly invariant over time), and we can
therefore pre-compute a shortest path from each starting point
and destination.

Our model of spoofing effect on the vehicle routes is
based on the model proposed by Zeng et al. (22), who
constructed a physically realizable spoofing attack which
effectively manipulated a single vehicle. In this model, the
attacker chooses the intended effect of a spoofing device on a
target vehicle with the objective of inducing a desired behavior,
e.g. maximally deviating from the target destination. In our
setting, we focus on a fleet of autonomous vesicles, each of
which traverse the network that may be affected by the same
spoofing device. Consequently, the same spoofing device and
effect will be reflected in any vehicle that comes within the
proximity of the device. We capture the behavior of each such
vehicle by a matrix M, where M; ; = « if a vehicle at node
1 € V, heading to destination j, will take action «, which can
be a high-level action such as which next road segment to
take, or a low-level action, such as a steering angle. In our
experiments, we focus on the latter. Note that the matrix M is
independent of the identity of the vehicles (indeed, it caRn also
represent any deterministic behavior of vehicles, not merely
shortest paths

As in Zeng et al., we assume that the attacker knows the
network G, edge costs ¢; ; and vehicle behavior matrix M.
These are mild assumptions: G is typically public knowledge,
ci,; can be obtained in nearly real-time from mapping applica-
tions, and M is vehicle agnostic and can be pre-computed by
the attacker. In addition, the attacker knows the current state
of the K fleet vehicles, for example, as a consequence of a
separate cyber-attack on the fleet management service.

The attacker is endowed with a collection of B spoofing
devices. Each device can be placed at a location ¢ € V, and
spoof an alternative target location j € V chosen by the
adversary. As a consequence of such an attack, a vehicle at
location ¢ erroneously perceives that it is actually at location j.
It will be useful to represent the attacker’s decision by a binary
variable xz, where x; ; = 1 iff there is a location spoofing
device placed at location ¢ which targets location j.

In general, we allow the attack to vary with time, in which
case x; will denote the attacker choice at time ¢. In particular,
we consider three attack settings that represent three distinct
attack capabilities, in increasing order of strength:

1) static-static: both the spoofing device and target locations

are fixed (independent of time),

2) static-dynamic: spoofing device locations are fixed, but

target locations can vary with time,

3) dynamic-dynamic: both the spoofing device locations

and target locations can vary with time.

The former two threat models simply involve placing the
spoofing devices at target intersections. The third requires an

'Our results and attack framework can be applied to any routing deterministic
routing system which is 1) agnostic to vehicle id and 2) assumes that congestion
is static.

additional capability that these devices are placed on adversarial
mobile vehicles, such as cars or drones. In order to capture
any difference in the time scale of vehicle and spoofing device
motion, we assume that the devices can change location every ¢
steps for ¢ > 1 (i.e., they are no faster, but could be somewhat
slower, than the vehicles).

We consider two attack objectives:

1) service delay attack: maximize the total travel time of
the vehicles in the fleet, subject to the constraint that
requests are ultimately correctly completed (that is, the
rider is not dropped off at the wrong destination), and

2) service failure attack: maximize the number of requests
in which the rider is dropped off at the wrong destination.

In the case of the first attack, the constraint that each request

is ultimately completed serves as a form of stealth, as we also
suppose in this context that spoofing devices are on for a finite
time duration, and turned off thereafter. The second attack,
in contrast, entails vehicles actually believing that they had
reached their target destinations, but in fact they have reached
locations in which a spoofing device is currently active and
spoofing to their dropoff location.

We begin by first noting that the spoofing problem is

computationally intractable in general.

Theorem 1. Maximum delay is NP-hard even for a single fleet
car, a single request, unlimited spoofers and uniform congestion
for both the online and offline settings, as well as for each of
the three spoofing paradigms.

Proof. We can reduce from Hamiltonian cycle. Let G' be an
unweighted connected graph. An instance of our problem can
be constructed by assigning every edge in the graph weight 1
and creating two nodes called s and d where s has an outgoing
edge with weight 1 to each node in G and each node in G has
an outgoing edge with weight 1 to d. Let s and d be the fleet
car’s starting location and destination respectively. A second
set of nodes and edges is created such that for each edge (u,v)
in G a new node v’ is created and the edge (u’,d) is created
to correspond to (u,v) so that if the vehicle is at node w, but
has perceived location u' it will move to v since it thinks
it is moving to d. Since congestion is uniform, the spoofing
budget is unlimited, and each edge (u,v) has a corresponding
edge (u/,d) the attacker has arbitrary control over the vehicle’s
movement and thus the attacker is selecting the vehicle’s path
with the constraint that the path must start at s and end at d.

Suppose that a solution to Hamiltonian cycle on G is given,
then starting from some node » and ending at some node v we
have a path which reaches every node in GG exactly once. If the
adversary where to choose to send the vehicle from s to u and
then along the Hamiltonian cycle solution path to v and then
from v to d the vehicle’s travel time would be n + 1. Since
each node can be visited at most once by the car, otherwise
the car will never reach its destination, and traveling between
any two neighbor nodes has cost 1, the maximum travel time
the car could have is n + 1. Therefore given a solution to
Hamiltonian cycle, the spoof attack with the largest travel time
can be created. If instead we had an optimal spoofing attack,



then since traveling between any two nodes has cost 1 and
the agent cannot repeat nodes, otherwise they will not reach d,
the number of nodes visited is equal to ¢ + 1 where ¢ is travel
time. Since the agent can only reach nodes s, d and all nodes
in GG, and must reach nodes s and s, if travel time is ¢ then
the agent reached ¢ — 1 nodes in G. Thus if the spoof attack
returns travel time n + 1 then the vehicle reaches n nodes in
G exactly once, and G has a Hamiltonian cycle. Therefore,
given a solution to GPS spoofing a solution to Hamiltonian
cycle can be found, and given a solution to Hamiltonian cycle
a solution to GPS spoofing can be found. O

Despite the hardness result, we next proceed to develop
effective algorithms for both static and dynamic spoofing.

IV. DESIGN OF GPS SPOOFING ATTACKS ON AUTONOMOUS
FLEETS

A. Static Location of Spoofing Devices and Spoofing Targets

We begin by considering static-static attacks in which B
spoofing devices are placed at fixed locations in the traffic
network, and each is configured to spoof a fixed target location.
We first develop an integer linear programming approach when
the attack goal is to maximize service delay (with the constraint
that the destination is ultimately reached). Subsequently, we
show that the second problem of maximizing service failure is
tractable, and present an efficient algorithm for it.

1) Service Delay Attack: Recall that when a spoofer and
a fleet vehicle are on the same node in the graph, the fleet
vehicle will perceive its location to be a different node in
the graph specified by the spoofer. Our goal is to find the
placement and effect of B spoofers, resulting in the maximum
delay to the K fleet vehicles. We adopt two constraints on
GPS spoofing attacks proposed by Zeng et al. (22) which
ensure physical realizability. The first constraint is on the
maximum spoofing distance from the device location. The
second constraint prevents the action « induced by the spoofing
device from being infeasible in the actual location that the
vehicle is in, such as turning left when no left turn is available.

Recall that x is a matrix representing spoofing device loca-
tions (rows) and targets (columns); since both are static, x does
not depend on time. Let (¢, j, ) denote the travel time from
location ¢ to destination j if spoofing devices are placed and
configured according to x. Then the attacker’s Kgoal is to solve
the following optimization problem: max, » ., 7(Sk, di, ),
that is, to choose spoofing device placement and configuration
x that maximizes total travel time for all vehicles from their
starting locations to their respective destinations. Note that
travel time is also implicitly a function of the movement tensor
M which represents actions vehicles take in each location
and for each possible destination. Critically, when we spoof
locations, the net effect is that the vehicles are choosing their
actions using an induced movement tensor M’, where the
entries in M corresponding to a location ¢ are replaced with
entries corresponding to a spoofed location j (when a spoofing
device is placed at ¢ and targets j).

We propose an ILP formulation for this problem. In this
formulation, we construct the movement matrix induced by
the spoofing devices M’, as well as the associated shortest
paths encoded by y for each vehicle, as an explicit function
of the binary spoofing decision matrix x, where z; ; = 1 if
we place a spoofing device at location ¢ and spoof location
J, and x; ; = 0 otherwise. As mentioned above, we constrain
spoofing distance from the location of the spoofing device, and
impose a constraint that a vehicle action induced by the GPS
spoofing device is feasible in its actual location. We encode
these constraints using a 3 dimensional tensor F{V:V>4} and
construct this feasibility tensor F' beforehand, where A is the
set of possible vehicle actions. Specifically, F; ; , = 1 when
both (1) the distance between location i and location j is within
the maximum spoofing radius of a spoofer, and (2) it is feasible
to take action « at location 7. However, if either constraint
doesn’t hold, Fj ; , is set to be —1. Let yf ; be binary variables
that represent whether the edge (4, j) is traversed by the vehicle
k. Armed with this notation, formulation gives an integer
program that computes the optimal static-static attack.
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The objective maximizes the total travel cost (time) incurred
by all vehicles. Constraints (Ib)-(Id) are standard network
flow constraints. Constraint effectively copies the entries
from M to M’ corresponding to the spoofed locations (the
first term on the right-hand-side), and leaves unspoofed entries
as given by M for locations without a spoofing device (the
second term on the right-hand-side). Shortest path actions y
are then computed using the movement tensor M’ induced by
the attack in Constraints and (Ig). Finally, Constraints
include the constraint on the maximum number of spoofing
devices, and ensure that only one location can be spoofed by
any device. While the ILP has constraints which are bilinear,
linearization is straightforward (given in the Supplement).

VkE{l,...,K},Z’EVZi#Sk,dk



2) Service Failure Attack: To maximize the number of failed
requests is to maximize the number of vehicles that mistakenly
drop off a passenger at the wrong destination. This clearly
entails two features of any spoofing strategy: 1) a device must
be placed in a location which some vehicle reaches at some
point during its commute, and 2) the device spoofs a destination
for these vehicles. This suggests the following simple SF-
GREEDY algorithm for choosing spoofing device locations and
targets:

1) Partition the vehicles into groups such that each group
G4, I # d, contains all the vehicles having two
properties: a) they share the destination d and b) their
paths to destination induced by M intersect at location
l.

2) Choose B largest groups Gpq with distinct locations [
(that is, if there are two groups G4 and G4 for some
location [, we choose the larger group and omit all others).
For each chosen group, place the spoofing device in
location ! with a spoofing target d.

This algorithm clearly runs in polynomial time. The next result,
which is proved in the Supplement, shows that this algorithm
yields an optimal solution.

Theorem 2. SF-GREEDY yields an optimal solution to the
service failure attack in the static-static setting.

Proof Sketch. First, note that if we have multiple vehicles
traversing [, any spoofing sequence starting with the device
placed in [ will group them together, since we constrain that
only a single location can be spoofed by any spoofing device
(and no more than one such device can be placed at an
intersection). Thus, we would ultimately only cause service
failure for the the largest subgroup of vehicles who traverse
[ that share a destination. But this means that all of these
vehicles can simply be directly pointed to their destination
by the spoofing device at [. Consequently, there is always an
alternative optimal solution in which each spoofing device at
location [ simply points to the destination d of the largest
group that shares the destination, yielding the structure of the
solution in SF-GREEDY. O

B. Static Location of Spoofing Devices with Dynamic Spoofing
Targets

In the case of static spoofing device location, but dynamic
spoofing (effect can update over time), we can no longer
directly apply either the ILP when the objective is to maximize
delay, nor the greedy algorithm above if the objective is to
maximize service failure. We propose the following heuristic
for this case when the objective is to maximize delay. First,
we compute optimal spoofer placement via the the ILP (T)),
assuming that target locations are also static. We then greedily
and dynamically modify the spoofing targets in each time step,
choosing the targets that maximize the marginal increase to
delay. If the objective is to maximize the number of service
failures, we replace the first step above with SF-Greedy, while
the second step greedily maximizes marginal increase to the
number of service failures.

C. Dynamic Location of Spoofing Devices and Spoofing Targets

In the fully dynamic case, instead of making only a single
decision regarding spoofing location, the attacker now makes a
sequence of decisions within a time window. At each decision
time, the attacker can change both the spoofing effect and
spoofing location by moving a spoofing device in one of
a collection of locations L (e.g., up, down, left, right, and
no change, if the traffic network is a grid). This can be
implemented, for example, if the spoofing devices are located in
malicious vehicles or drones. Figure ?? illustrates the process.
We will refer to a spoofing device (which is now mobile)
as an agent in this section. The underlying problem in this
setting is a dynamic (discrete time) decision about the location
and spoofing target of each agent (each spoofing device)
through a given horizon, and extremely complex combinatorial
optimization problem. We approach this problem using a multi-
agent reinforcement learning (MARL) paradigm. Specifically,
each agent independently learns to decide which location to
visit and what the spoofing effect (i.e., spoofing target location)
is at each decision time. A key challenge in applying MARL in
our setting is how to design individual agent rewards, as well
as the state space representation, to enable effective learning.
Next, we present our solution to both of these issues.

a) Rewards: We designed delay attack reward and service
failure reward for the each of the attacking objectives discussed
in Section [[IT, In the attack aiming to maximize the overall
delay of the fleet, which we denote by 7, the objective is

n= Z Z(Tt/k -7,
kot

where 7/¥ is the travel time after the attack while 7} is the
travel time before the attack. The incremental delay at time t
of car k is p¥ = n, — n;. This incremental delay of car k is
caused by spoofer j, if the spoofer j is directly next to car k
(i.e., they share the intersection). We use the notation z;(k, )
as a delay indication variable for agent j, z;(k,j) = 1 if agent
7 shares the intersection with car k£ (i.e., is able to spoof the
location for this car). We use the incremental delay caused by
agent j as the reward for this agent at time ¢, i.e.,

pr = Zzt(k,j) ':0:]:c
k
In the case of service failure attack, the reward is simpler:
if the agent succeeds in causing service failure in step ¢, it
receives the reward of 1; otherwise, it receives reward of 0.
b) State Representation: In the dynamic-dynamic case,
we construct state representation based on two types of
information relating to the traffic network: invariant, consisting
of information which does not change from one time-step
to another (e.g., traffic network structure), and real-time,
consisting of information which changes over time (e.g., vehicle
locations). This representation is deigned to be applicable to
any transformer-based architecture.
The invariant information is represented in the form of node
features, which capture important and static aspects of each
node ¢ € V. We refer to the matrix of all node features as



&, where £, denotes the features of node . Specifically, each
node ¢ is mapped to two types of features. First, we include
information about costs (e.g., congestion) of all out-edges
incident to ¢, which in our case of grid networks includes
(up to) four incident edges. This implicitly assumes (as does
our model above) that spoofing has no effect on edge costs
(e.g., when the size of the fleet is small relative to overall
traffic). Second features of node ¢ include movement features
consisting of M; ; 4, flattened as a vector, over all values of
destinations j and movement directions d.

Real-time (or time-evolving) features consist of features
corresponding the vehicles’ behavior, and action of other agents
(i.e., other spoofing devices), at each time ¢. Recall that in
the static-static setting, M’ denoted the movement tensor of
vehicles after spoofing. Here, as this quantity now changes
over time, we denote the corresponding tensor by M;/; this
is our first set of real-time features. Next, we associate the
following real-time features with each vehicle &:

1) &F, which is the vehicle’s current destination (which we
now allow to evolve in time); this allows us to know
which portion of the movement tensor M’ the vehicle is
effectively using to determine its next action,

2) hF, the time that the vehicle requires to complete its
current action (i.e., to travel to the next node); again,
note that this generalizes our model by allowing this to
vary by vehicle and edge, as well as in time,

3) lf , the current location of the vehicle, and

4) M, the current move instruction, and

5) ¢F, the vehicle’s path induced by the current positions
of spoofing devices and their spoofing targets.

Finally, we include as a feature the location of the spoofing

agent j at time ¢, denoted by l{. We denote the real-time
features by s;.

V. EXPERIMENTS

A. Experiment Setup

For our experiments, we use a Manhattan, NY traffic network
obtained using OpenStreetMap (3)). Following the convention
in (22), we construct a directed graph G = (V, E) to represent
the road network. Each node represents an intersection, and

has a unique id as well as coordinates in the constructed graph.

Adjacent nodes i, j € V, which are intersections connected by

a road, are themselves connected by a directed edge ¢; ; € E.

Additionally, each pair of edges e;;, ¢;; has a turning angle
ajk, which gives the angle required for a car to turn from
intersection j (when arriving from road e;;) onto road e;y.
In addition to the purely geographic information about
the traffic network obtained from OpenStreetMap, we add
congestion to each edge e; ; using real traffic congestion data
for each road segment obtained from Uber Movement (20),
an open source platform that provides real time traffic flow
data collected by Uber users. Specifically, we use the average
congestion for each Friday at 5 pm in March, 2020; this is
the most recent traffic data available for New York City. Uber
Movement and OpenStreetMap use the same convention to

label both locations and road segments, and the data from
these can therefore be directly integrated.

We conduct experiments in a geographic area centered at
350 5™ Ave, Manhattan, New York, with a radius of 500 or
1000 meters; Figure |I gives this network (black lines) for a
1000m radius. Finally, we build a traffic simulator based on
the downloaded traffic network and the traffic flow information.
In this simulator, requests are assigned to fleet vehicles by the
routing center, thereby defining each vehicle’s destination as
either the pickup or dropoff location of the assigned request.
Requests are spawned uniformly at random across the network.

Evaluation Metric: We use delay ratio to evaluate the
effectiveness of the attack, defined as w = T/’T, where T
is the original travel time and 7’ the travel time in the presence
of malicious spoofing. We conduct experiments varies from 1
to 20 fleet sizes with a spoofing budget of 1, 5, or 10.

Baselines: We compare our method to two baseline methods.
First, random spoofing, where the locations and targets of
spoofing devices are chosen randomly (in the dynamic settings,
these are chosen randomly in each time step). The second
baseline is greedy spoofing. In the static-static case, greedy
spoofing consists of iteratively choosing both the location
and target of each spoofing device to maximize the marginal
increase in delay. In the static-dynamic case, spoofing devices
are placed at locations that maximize the number of intersecting
vehicle paths, while the spoofing targets (chosen at every time
step) are selecting to maximize the increase in delay. In the
dynamic-dynamic case, each spoofing device moves greedily
at each iteration to minimize the distance to the closest non-
spoofed fleet vehicle, while spoofing effects are chosen to
maximize the marginal increase in total delay. When using the
random spoofing strategy in the dynamic-dynamic case, the
attacker randomly moves the spoofers and randomly selects
their spoofing effect.

B. Results

1) Static-Static Case: Recall that in the static-static case,
both the locations and targets of spoofing devices are fixed. In
the modified driving environment, if a GPS spoofing device
is placed at location ¢ and spoofs location 7, any fleet vehicle
passing through ¢ will receive the modified GPS signal, thus
perceiving its current location as j. This discrepancy between
physical and perceived location may result in a detour from
a vehicle’s intended path. Such detours may cause the car
to arrive at its destination late, or be unable to complete the
request.

We begin by showing the results for the maximum-delay at-
tack, in which the attacker aims to maximize the fleet’s average
delay while ensuring that the requests are still completed. Table
[[ shows the results on different traffic network sizes. In this
table we see that even with a single spoofer, delay attacks can
successfully increase the fleets average travel time. As to be
expected, delay ratio decreases as the number of fleet vehicles
relative to the number of spoofers, increases. Moreover, we
see that our proposed method outperforms random in all cases,
and outperforms greedy when the spoofing budget is greater



Spoofing  Spoofing  #Target | Travel Proposed Greedy Random
Radius Budget Cars Time  Delay Ratio Delay Ratio Delay Ratio
1 1 1 200 0.11 0.11 0.0
1 1 5 262 0.02 0.02 0.0
1 5 5 262 0.5 0.3 0.00
1 5 10 242.7 0.3 0.3 0.01
2 5 5 262.2 0.9 0.56 0.00
2 5 10 242.7 0.75 0.34 0.00
1 10 10 242.7 0.93 0.5 0.00
1 10 20 252.79 0.72 0.37 0.02
2 10 10 242.7 1.1 0.7 0.01
2 10 20 252 0.9 0.75 0.02

TABLE I: The average travel time in unmodified driving environment and delay ratio induced by spoofers in the static-static
case in a dist-1000 meters traffic network. The travel time unit is second.

Spoofing Spoofing #Target| Travel Proposed Random
Radius Budget Cars | Time Delay Ratio Delay Ratio
1 1 1 200 0.4 0.01
1 1 5 262 0.22 0.00
2 1 1 200 0.5 0.01
2 1 5 262 0.28 0.00
1 5 5 262 0.35 0.04
1 5 10 | 2427 0.92 0.06
2 5 5 262 1.9 0.05
2 5 10 | 2427 1.2 0.09
1 10 10 | 2427 0.17 0.03
1 10 20 |252.79 0.16 0.02
2 10 10 | 2427 0.17 0.03
2 10 20 252 0.16 0.02

TABLE II: The average travel time in unmodified driving
environment and delay ratio induced by spoofers in the static-
dynamic case in a dist — 1000 traffic network.

than 1 (note that for B = 1 greedy is optimal). This trend
persists for other cases outlined in the Supplement.

2) Static-Dynamic Case: In the static-dynamic case, the
attacker can update the spoofing effect over time. We propose
a two-step approach to solving this case (The Algorithm
is defered to the Appendix ). First we run static-static ILP
formation [T to get location of each spoofer. Second, at each
timestep we greedily select the spoof effect, for each spoofer,
which results in the maximum increase to travel. Table
shows delay ratio for different numbers of victim cars, spoof
budget, network size. We defer the results of network size 500
to the appendix. Our method outperforms random selection
significantly in every case.

3) Dynamic-Dynamic Case: In the dynamic-dynamic case,
the attacker is able to move the spoofing devices and change
the spoofing targets at each timestep. A problem instance is
specified by 1) the starting location of each agent (spoofing
device), 2) the starting location of each fleet vehicle, and 3)
the pickup and dropoff locations of the requests. We refer to
the combination of these three elements as the configuration
of the problem.

TABLE III: The delay ratio in the dynamic-dynamic case in a
dist — 500 traffic network with induced by spoof devices with
spoofing raidus 1.

Spoofing #Target| Travel Proposed  Greedy Random

Budget Cars | Time Delay Ratio Delay Ratio Delay Ratio
1 1 200 0.90 0.89 0.03
5 5 262 2.0 1.2 0.09
5 10 |242.7 1.11 0.67 0.05
10 20 252 1.0 0.78 0.09

TABLE IV: The delay ratio in the dynamic-dynamic case in
a dist — 1000 traffic network induced by spoof devices with
spoofing radius 1.

TABLE V: The delay ratio in the dynamic-dynamic case in a
dist — 500 traffic network with induced by spoof devices with
spoofing raidus 1.

Spoofing #Target| Travel Proposed  Random

Budget Cars | Time Delay Ratio Delay Ratio
1 1 200 0.4 0.03
5 5 262 0.35 0.09
5 10 2427 0.72 0.05
10 20 252 0.85 0.09

TABLE VI: The delay ratio in the static-dynamic case in a
dist — 1000 traffic network induced by spoof devices with
spoofing radius 1.

We train on examples with random problem configurations,
and evaluate our proposed method and the baseline methods,
on a randomly generated test set of 500 problem configurations.
We make use of the reinforcement learning paradigm known as
Target Deep Q Networks in which a deep neural network is used
to approximate the Q-values of each state action pair. Here a
state, the representation (described in Section [[V-COb) consists
of the traffic network, requests, fleet locations, and adversarial
car locations. Each action consists of both a direction for
the adversarial device to move as well as a spoofing target.
Stochastic gradient decent is used to update the model. We



TABLE VII: The delay ratio in the dynamic-dynamic case in a
dist — 500 traffic network with induced by spoof devices with
spoofing raidus 1.

Spoofing #Target| Travel Proposed  Greedy Random

Budget Cars | Time Delay Ratio Delay Ratio Delay Ratio
1 1 200 0.11 0.11 0.0
5 5 262 0.2 0.15 0.00
5 10 2427 0.3 0.2 0.01
10 20 252 0.52 0.32 0.02

TABLE VIII: The delay ratio in the static-static case in a
dist — 1000 traffic network induced by spoof devices with
spoofing radius 1.

provide full implementation details and hyperparameter choices
in the Supplement.

We see that in all cases, our proposed model outperforms
random and greedy.In particular, as the number of agents
and fleet vehicles increases, the proposed method outperforms
greedy by an increasing margin. This is to be expected as the
dynamics of the problem become more subtle as the number of
agents and fleet vehicles increases. Moreover, note that spoofing
in the dynamic-dynamic case is more effective (causing larger
delay) than the static-static case. The ability to dynamically
update the spoofer device locations and targets greatly improves
the efficacy of the attacks.

Finally, we evaluate our dynamic-dynamic attacks in an
online setting. In this setting, new requests are dynamically
spawned over time by uniformly selecting a pickup and dropoff
location in the traffic network. Fleet assignment to requests
is also dynamically updated once a vehicle has completed its
current request. In our simulations, we adopt the assignment
strategy proposed by (L1). On average, each car takes 50
requests. Complete details of the the online setting are provided
in the Supplement. As shown in Table the delays induced
by our RL-based attacks in the online setting are comparable
to those induced when vehicle requests (i.e., destinations) are
statically assigned. This corresponds to a 100-180% increase
in delay.

VI. CONCLUSION AND FUTURE WORK

We systematically investigate the impact of malicious GPS
spoofing on ride-sharing. We propose three models of multi-
device GPS spoofing in urban autonomous ride-hailing settings:
1) static spoofing device locations and targets, 2) static locations,
but dynamic spoofer targets, and 3) allowing both spoofing
locations and targets to change over time. We then propose
algorithmic approaches for each attack setting. We observe
that each of the three classes of attacks can cause significant
increases in fleet travel time or significant numbers of failed
requests. There are many interesting extensions to this work
that merit further exploration. In particular, one can consider
the effect of spoofing on network congestion, which will in-
turn impact the travel time of the fleet. Moreover, the success
of GPS spoofing attacks we propose gives rise to the need for

ride hailing and routing frameworks that are robust to spoofing,
as well as other information failures.
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