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Abstract— Autonomous systems increasingly rely on machine

learning techniques to transform high-dimensional raw inputs

into predictions that are then used for decision-making and

control. However, it is often easy to maliciously manipulate such

inputs and, as a result, predictions. While effective techniques

have been proposed to certify the robustness of predictions

to adversarial input perturbations, such techniques have been

disembodied from control systems that make downstream use

of the predictions. We propose the first approach for composing

robustness certification of predictions with respect to raw input

perturbations with robust control to obtain certified robustness

of control to adversarial input perturbations. We use a case

study of adaptive vehicle control to illustrate our approach and

show the value of the resulting end-to-end certificates through

extensive experiments.

I. INTRODUCTION

Traditional autonomous systems rely on highly reliable
control algorithms and high quality sensory information to
perform relatively narrowly defined tasks, such as vehicle
autopilot [1] and robotic assembly line control [2], [3].
Increasingly, however, the notion of autonomy has broadened
to involve complex behavior in broader domains, such as
autonomous driving, where sensory measurements are high-
dimensional, obtained using a camera and/or LiDAR [4],
[5]. In such domains, modern algorithmic approaches for
computer vision have become critical as a means to compress
complex sensory data into interpretable information that can
subsequently be used in control. In particular, transformative
advances in the use of deep neural networks for common
vision tasks such as image classification and object detec-
tion have enabled practical advances in problems such as
autonomous driving [6].

Despite considerable advances, however, neural network
models that are highly effective in visual prediction tasks are
nevertheless also highly susceptible to small (often impercep-
tible) adversarial perturbations to the same inputs [6]. In turn,
extensive literature has emerged to investigate approaches for
robust machine learning [7], [8], where robustness is either
an empirical property (evaluated using actual techniques for
generating adversarial perturbations) [9] or can be formally
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verified through approaches often termed certified robust-

ness [7], [8], [10], [11]. A common goal of certified robust-
ness is prediction invariance: that is, what is the maximum
that an input can be adversarially perturbed without changing
the prediction [7], [8]? As prediction invariance is only
sensible in classification, its natural regression counterpart
certifies a prediction interval for a specified bound on the
magnitude of the adversarial perturbation [10].

However, predictions are typically a means to control,
and mistakes in predictions are significant because they can
result in catastrophic mistakes in control, such as a crash
of an autonomous car. As such, disembodied certification
on prediction properties is inherently limited. For example,
invariance is often too strict since alternative predictions may
have little impact on system properties, such as safety and
stability. It is clearly crucial to couple certified robustness of
predictions with control in a way that enables us to certify the
natural robustness properties of controllers, such as stability.

We propose a simple approach for combining robustness
certification of prediction (either classification or regression)
with control by making use of robust control algorithms
that leverage uncertainty sets about time-invariant dynamic
system parameters as input. This, coupled with a notion
of class-conditional safety sets, enables us to obtain end-
to-end certificates of controller robustness under adversarial
perturbations to raw high-dimensional sensory inputs. We
then instantiate our approach in the context of vehicle lateral
dynamics, obtaining a control algorithm that yields a robust
controller that is composed of interval-based prediction cer-
tificates. Finally, we extensively evaluate the proposed ap-
proach for end-to-end certified robustness of composition of
vision and control, demonstrating the value of the certificates.

II. RELATED WORK

The problem of adversarial perturbations to inputs has
now been studied, particularly in the context of computer
vision [12]–[15]. Moreover, a number of recent efforts have
been devoted to developing techniques to improve the robust-
ness of machine learning to adversarial perturbations [16]–
[19], with many such approaches aiming to formally certify
robustness [10], [20]. Our work blends certified robustness of
perceptual reasoning with robust adaptive control. Adaptive
control, which adapts a controlled system to an uncertain
environment by adjusting uncertain parameters, has been
studied for a few decades [21], [22]. With the advance of
machine learning, recent works expand adaptive control to
learning-based control, which can learn more complex and
higher dimensional functions [23]–[25]. Since the learning-
based control cares about system stability and safety, it is



often called a safe-learning. The common idea is to defer ex-
ploring potentially unsafe regions until after getting sufficient
data. Due to this assumption, the system with learning-based
controls is in danger of failure when applied to autonomous
vehicles that operate in dynamically changing environments,
where they cannot choose mild and safe environments to
explore. As a result, when they begin to learn dynamic
systems in uncertain environments, they may already lose
control, and it is too late to restore controllability. In terms
of learning-based control, the current paper addresses the
problem of those controllers’ reactive nature with respect
to environmental changes by incorporating vision. In par-
ticular, the proposed control system predicts an uncertain
environment from look-head information and adapts to this
environment in advance.

III. PRELIMINARIES

Consider the dynamical system of the following form:

ṡ(t) = G(y, s(t),⇡(t), w, ✓,�(t)) (1a)
o(t) = c

T
s(t) (1b)

where s(t) is true system state at time t, ⇡(t) is controller,
y 2 Rm is a vector of real-valued parameters that influence
system dynamics, c is the known output matrix, o(t) are
measurements, and w, ✓, and �(t) are unknown input gain,
state-dependent uncertainty, and time-varying uncertainty,
respectively. All of the uncertainties can also depend on y.
We will discuss this later. A common goal in robust adaptive
control, such as L1 adaptive control, is to design a controller
⇡(t) which yields stability in the limit and also guarantees
bounded transient tracking error. We formalize this goal as
follows. Let ⇡ref be the reference controller and sref the
reference state, which correspond to system behavior when
uncertainty is perfectly tracked during uncertainty estimation
(this will be clear below when we instantiate our setting in
the concrete lateral vehicle control setting). Additionally, let
⇡des and sdes be the design controller and state, respectively
which are associated with ideal system behavior (i.e., where
error is 0 for all t). We now formalize our particular meaning
of robust control here.

Definition 1. A controller ⇡(t) is robust if there exist

positive constants c1 and c2 such that (1) ksdes � s(t)k1 
c1 & k⇡des�⇡(t)k1  c2 for 8t, and (2) limt!1 ksref (t)�
s(t)k1 = 0 & limt!1 k⇡ref (t)� ⇡(t)k1 = 0.

Our central focus is the case where uncertainty in the
dynamics stems predominantly from uncertainty about y. In
particular, below we will consider an autonomous driving
setting in which y corresponds to friction (more precisely,
cornering stiffness of the vehicle that results from it), and we
estimate y by first obtaining a high-dimensional visual input
x (e.g., a camera frame) through the use of a deep neural
network f(x). Thus, the dynamical system is a composition
of predictions mapping raw sensory inputs x into parameters
of system dynamics, state, and controller. In particular, the
central source of uncertainty that we are concerned about are
adversarial perturbations to the input image x, denoted by

�, where f(x + �) is substantively different from f(x). We
consider two prediction cases: classification and regression.

A common assumption in prior literature on adversarial
perturbation attacks is that all errors are equally bad [12],
[26], [27]. Consequently, common efforts on certifying ro-
bustness of predictions to adversarial perturbations is fo-
cused on prediction invariance [7], [10]. When we couple
predictions f(x) and dynamics and control in Equation (1),
however, not all errors are equally consequential (some may
destabilize the system, whereas others will not significantly
change stability), and some prediction errors may seem small
in absolute terms, but can result in severe safety violations.
Our goal is to enable certification of robust control to
adversarial perturbations to raw sensory inputs x of the
system described above composed of predictions f(x) and
dynamics in Equation (1).

It will be useful below to take advantage of the transparent
semantics of parameters y in the context of classification-
based predictions f(x) to define for each label l 2 L a safe

set of labels S(l). For example, if the true label is that the
weather is sunny, predicting that it is rainy is “safe” in the
sense that it would cause the controller to only be more
conservative. On the other hand, predicting that the weather
is sunny on a rainy day potentially leads to unsafe behavior.

IV. CERTIFYING ROBUSTNESS OF CONTROL TO
ADVERSARIAL INPUT PERTURBATIONS

We now present our approach for certifying robustness of
control of dynamical systems described in Equation (1) in
which a function f(x) (e.g., a deep neural network) uses
raw perceptual inputs x to predict parameters y of system
dynamics. We focus attention on adversarial perturbations
� with bounded `2 norm. In particular, we will build on
the techniques of randomized smoothing [7] and percentile

smoothing [10] in order to obtain bounds on k�k2 that
guarantee that the controller is robust as formalized in Def-
inition 1 to arbitrary adversarial perturbations within these
bounds. We first consider the classification and subsequently
the regression variants of the prediction problem.

a) Classification Settings: Consider a classifier f(x)
that outputs a label l which is then mapped to a set Y

of possible values for system parameters y, and recall that
for each l 2 L, S(l) is a set of safe predictions. We
now construct a smoothed classifier g(x) as follows. Let �
be a random variable distributed according to a zero-mean
isotropic Gaussian distribution N (0, v2I), where I is the
identity matrix and v

2 the variance (which we would specify
exogenously to balance the tradeoff between performance
and robustness). Then g(x) = argmaxl0 P{f(x + �) = l

0}
is the smoothed counterpart of f(x) for each input x, where
the probability is with respect to �. In practice, we estimate
g(x) by Monte-Carlo sampling [7]. The next result is a direct
adaptation of prior results certifying robustness of g(x) to
allow us to consider safe sets of labels S(l). Proposition
1 gives the robust function g(x) a certificate in terms of
the strength of the adversarial perturbation. If the additive
corruption to the input is within this certificate, the smoothed



function guarantees its prediction of this adversarial input is
within the safe set.

Proposition 1. Let a = argmaxa2L g(x) and b =
argmaxb2L\S(a) g(x). Then g(x + �) ✓ S(a), for all �

such that k�k2  ⌧ , where ⌧ = v
2 (�

�1(Pa)���1(Pb)),and

Pa = P(f(x+ �) = a),Pb = P(f(x+ �) = b).

Proof. Using the Lipschitz continuity result [7], we have
����1(f(x)a)� ��1(f(x+ �)ai)

��  1

v
k�k2

where ai 2 S(a)\a. For an adversary �, f(x+ �)b � f(x+
�)ai , for some class b 2 L \ S(a),

k�k2 � v

2
(��1(Pai)� ��1(Pb)) (2)

8ai 2 S(a), the above equation gives a lower bound on
the minimum l2 adversarial perturbation required to flip the
classification from any ai to b. We know that the bound is
minimized when Pb is maximized over the set of classes
L \ S(a). In order to have the prediction not be any of the
class in set S(A), we should have inequality (2), 8ai 2 S(A).
Therefore k�k2 should be bigger than when Pai is maximized
over the set of classes S(a).

We use Proposition 1 combined with conventional robust
control to provide the end-to-end robustness guarantee. First,
we define what we mean by a robust control algorithm.

Definition 2. Suppose that A is a control algorithm that

takes as input a specification (1) of a dynamical system and

a set Y such that the true system parameters y 2 Y . We say

that A is robust if it returns a robust policy ⇡(t). We use

A(Y ) to explicitly indicate that A takes the set Y as input.

We will discuss a particular robust adaptive control method
for vehicle lateral dynamics. The next key result follows by
the definition of a robust control algorithm and Proposition 1.

Theorem IV.1 (Classification Setting). Suppose that y 2
⇣(g(x)) (i.e., g(x) produces a prediction, and maps ⇣ to

system parameters) and let A be a robust control algorithm.

Then A(⇣(g(x+�))) is robust for any � such that k�k2  ⌧ ,

where ⌧ is as defined in Proposition 1.

In the adversarial setting, if the malicious corruption in
the environment is within the certified radius, the predicted
y system dynamics parameters from the robust model g with
input image x is within the safe range. The control algorithm
A thus returns a robust policy.

b) Regression Settings: Consider now a case in which
f(x) is a regression. Since we can treat each coordinate of y
independently, we will assume that y is a scalar (i.e., a single
parameter of system dynamics). Let � again be zero-mean
isotropic Gaussian noise as above, and define

hp(x) = inf{y 2 R|P
⇣
f(x+ �)  y

⌘
� p}. (3)

At the high level, hp(x) is the pth percentile of the distri-
bution of values of y = f(x + �). We will use the median

of this distribution as our smoothed regression prediction,

which we denote by h
⇤(x) ⌘ h0.5(x). We make use of the

following result due to Chiang et al. [10]:

Proposition 2 ( [10]). For any ✏ and k�k2  ✏,

hp(x)  hp(x+ �)  hp(x), (4)

where p := �(��1(p)� ✏
v ) and p := �(��1(p) + ✏

v ).

In particular, if p := �(��1(0.5) � ✏
v ) and p :=

�(��1(0.5) + ✏
v ), then h

⇤(x + �) 2 [hp(x), hp(x)] for any
adversarial perturbation � with k�k2  ✏. We can again make
use of this to obtain the following key result:

Theorem IV.2 (Regression Setting). Suppose that |h⇤(x)�
y|  �, where y is the true parameter value given

input x. Let y = min{hp(x), h⇤(x) � �} and y =
max{hp(x), h⇤(x) + �}, where p := �(��1(0.5)� ✏

v ) and

p := �(��1(0.5) + ✏
v ). Then for any ✏ > 0, A([y, y]) is

robust for any � with k�k2  ✏.

The result follows since the conditions in the theorem
ensure that the true parameters y 2 [y, y]. What is par-
ticularly surprising is that this holds true for an arbitrary

✏—that is, adversarial perturbations of arbitrary magnitude.
The reason that arbitrary perturbations cannot destabilize the
system A(⇣(g(x+�))) is that although the perception of the
environment can be maliciously modified, the robust per-
ception model g still yields a certified interval that contains
the true system dynamics parameter at the current state.
The downstream control algorithm A thus always returns
a stable control policy. While this is so, higher levels of ✏

entail looser intervals [y, y], which in turn means degraded
controller performance accordingly (e.g., the vehicle stops).

V. CERTIFIED ROBUST VEHICLE CONTROL

A. Vehicle Lateral Dynamics

The current section describes the model for (1) on which
the paper relies and the control goal.

a) Dynamic model: We use the bicycle model [28] to
model the vehicle longitudinal dynamic for lateral position
q
y and yaw angle q

 . Given longitudinal velocity V , desired
lateral position q

y,des, and desired yaw angle q
 ,des, the

differential equation of the bicycle model can be expressed
as the error dynamics ((2.45) in [28]):

ṡ = As+ b⇡ + gq̇
 ,des

, (5)

where s = [s1, ṡ1, s2, ṡ2]>, s1 = q
y � q

y,des and s2 =
q
 � q

 ,des are the error states, q̇
 ,des = V

R is the rate
of the desired yaw angle, and R is the radius of the road.
Control input u = d represents front steering angle. The
system matrices are

A =

2

6664

0 1 0 0

0 �2
Cf+Cr

mV 2
Cf+Cr

m 2
�Cf `f+Cr`r

mV
0 0 0 1

0 �2
Cf `f�Cr`r

IzV
2
Cf `f�Cr`r

Iz
�2

Cf `2f+Cr`
2
r

IzV

3

7775

b =

2

664

0
2Cf

m
0

2Cf `f
Iz

3

775 g =

2

6664

0

�2
Cf `f�Cr`r

mV � V
0

�2
Cf `2f+Cr`

2
r

IzV

3

7775



where m is the vehicle mass and Iz is the yaw moment of
inertia, `f , `r are the front/rear tire distance from the center
of gravity, and Cf , Cr are front/rear cornering stiffness.
Matrices A and g depend on velocity V , and A, b, and g

depend on cornering stiffnesses Cf and Cr. The cornering
stiffness Cf and Cr have a linear relation Ff = Cf⌫ with
respect to the lateral force Ff for a small sliding angle ⌫.

b) Uncertainty model: The cornering stiffnesses Cf

and Cr are the road parameters where the vehicle is driving.
Thus it is reasonable to assume that they are time-varying
and unknown in advance. Consequently, we obtain them by
predicting road friction from raw sensory inputs x. However,
we aim to ensure the robustness of control to adversarial per-
turbations � to raw inputs x, and the resulting prediction error
induces uncertainty in the dynamic model (5). Henceforth,
to simplify discussion we assume Cf = Cr ⌘ C.

c) Control objective: We aim to stabilize the error state
s in (5) so that the vehicle can keep the desired center lane
despite adversarial perturbations to raw sensory inputs x.

B. L1 Adaptive Control Design

The key control challenge is that the system matrices
in the lateral error dynamic (5) are unknown because they
are subject to unknown and time-varying cornering stiffness
C. Instead, we observe raw camera input x that provides
indirect and potentially noisy information about C, using
two approaches for predicting C: 1) classification and 2)
regression. In the classification variant, we have a model
f(x) that predicts discrete properties of the scene captured by
a camera, such as weather or road surface type. In addition,
each predicted class l is associated with a cornering stiffness
(friction) interval [Cl, Cl]. In regression, our model f(x)
directly predicts road cornering stiffness, i.e., C = f(x).

To induce provable robustness to adversarial perturbations,
rather than using f(x) directly for predictions, we apply
randomized smoothing in the case of classification, obtaining
a smoothed function f(x), or median smoothing in the case
of regression, obtaining h

⇤(x). As discussed in Section IV,
these can be associated with either a safe prediction set
S(l) and associated certification radius for classification or
a certified interval for h

⇤(x). In either case, the procedure
yields an uncertainty interval [C,C] for cornering stiffness.

To deal with the control problem in the presence of
uncerainty about cornering stiffness, we will utilize L1 adap-
tive controller [21] that can rapidly compensate the impact
of uncertainties within the designed filter bandwidth of it,
and guarantee transient tracking error even when unknown
parameters are changing. In what follows, we will explain
controller design procedure in detail.

1) Nominal Model: The first step is to transform the
model (5) into a nominal model, where we will move any
uncertainties out of the system matrices. As a result, the
nominal system matrices are known, and have desired system
properties including stability. We will then design the L1

adaptive controller whihc forces the system (5) to behave
like the nominal model by canceling out the uncertainties.

Recall that our prediction models (either classification
or regression) yield an uncertainty interval for cornering
stiffness. The key assumption we make about this interval is
that it includes both the true and predicted (nominal) values:

Assumption 1. The control algorithm takes as input an

interval [C,C] such that C, Ĉ 2 [C,C], where C is the

true and Ĉ nominal cornering stiffness.

If we take ⇡(t) = �kms(t) + ⇡ad(t), the system (5) can
then be transformed into the following nominal model:

ṡ(t) = Ams(t) + bm(w⇡ad(t) + ✓
>
s(t) + �(t))

o(t) = c
>
s(t) x(0) = x0, (6)

where Am = A(Ĉ, V ) � kms is Hurwitz, and bm =
b(Ĉ). The gain km will be determined later. The unknown
parameters w, ✓, and �(t) are induced by the uncertainty
about cornering stiffness C.

2) Adaptive Controller Design: In order to obtain both
system stability and bounded transient error, we design an
adaptive controller ⇡ad(t) in (6) that aims to cancel out
the residual uncertainty w⇡ad(t) + ✓

>
s(t) + �(t) = 0

stemming from uncertainty about C. Adaptive controller
⇡ad(t) consists of state predictor, adaptation law, and low-
pass filter as described below. The state predictor is designed
using the known parts of the dynamic system in (6) and the
states of uncertainties:

˙̂s(t) = Amŝ(t) + bm(ŵ(t)⇡ad(t) + ✓̂
>
s(t) + �̂(t))

ŷ(t) = c
>
ŝ(t), ŝ(0) = ŝ0.

We design the adaptation law to estimate uncertainties:
˙̂w(t) = �Proj(ŵ(t),�s̃

>(t)Pbm⇡ad(t)) ŵ(0) = ŵ0

˙̂
✓(t) = �Proj(✓̂(t),�s̃

>(t)Pbms(t)) ✓̂(0) = ✓̂0

˙̂�(t) = �Proj(�̂(t),�s̃
>(t)Pbm) �̂(0) = �̂0, (7)

where � > 0 is an adaptation gain, s̃(t) = ŝ(t) � s(t) is
the prediction error, and Proj(·, ·) is the projection operator
defined in Definition B.3 in [21]. Symmetric positive definite
matrix P is the solution of the algebraic Lyapunov equation
AmP +PA

>
m = �Q, given a symmetric positive definite Q.

Adaptive control is designed using the adaptation states
in (7) as follows:

⇡ad(s) = �kD(s)(⌘̂(s)� kgr(s)), (8)

where r(s) is the reference signal in the Laplacian form, and
D(s) = 1/s is a strictly proper transfer function that forms
stable low-pass filter F (s) = wkD(s)

1+wkD(s) . The gain k > 0

is constant, and kg = �1/(c>A�1
m bm). The signal ⌘̂(t) is

obtained by ⌘̂(t) = ŵ(t)⇡ad(t) + ✓̂
>(t)s(t) + �̂(t).

3) Design Control Parameters: Now we design control
parameters �, km, P , V , k, such that the proposed control
input ⇡(t) = �kms(t) + ⇡ad(t) guarantees desired perfor-
mance and robustness of the lateral state x in (5).

We need to define the desired system behavior. Let us
denote sref , ⇡ref non-adaptive version control, i.e., the
system behavior when (7) tracks the uncertainty perfectly.



However, the control input cannot satisfy w⇡ad(t)+✓
>
s(t)+

�(t) = 0 because the perfect control input is filtered in (8)
before the implementation. Let us denote sdes and ⇡des

the design system having the ideal system behavior such
that w⇡ad(t) + ✓

>
s(t) + �(t) = 0 holds for 8t. Using the

above definition, we can say that the system well-behaves if
ks(t)� sdes(t)k and k⇡(t)� ⇡des(t)k are small enough.

We can choose an arbitrary large adaptation gain � > 0
so that the system performs arbitrarily close to the reference
system (sref (t) and ⇡ref (t)) by Theorem 2.2.2 in [21] with-
out sacrificing robustness, where the reference system refers
the L1 adaptive controller without adaptation. Then, the
performance of the system is rendered as the error between
the reference system and the design system (ksref � sdesk1
and k⇡ref � ⇡desk1), where the design system is the ideal
system that does not depend on the uncertainties.

Since Am in (6) must be Hurwitz and Am(V )P +
PA

>
m(V ) < 0 should hold, we choose km and P such that

Am(V ) is Hurwitz and Am(V )P + PA
>
m(V ) < 0 holds for

all Vmin  V  Vmax, where Vmax � Vmin � 0 are the
maximum and minimum velocity of the area.

Finally, we design V and k together balancing perfor-
mance and robustness as follows:

max
k,V 2[Vmin,Vmax]

V

s.t. kG(s)k1  �gp, for 8w 2 ⌦

k  k̄ (9)

for constants k̄ > 0, and �gp <
1
L , where G(s) = H(s)(1�

F (s)), H(s) = (sI � Am)�1
bm and L = max✓2⇥ k✓k1.

The first constraint refers minimum performance guarantee
and the second constraint indicates a minimum robustness
guarantee, where r is the certified radius obtained by the
classifier. By increasing k, one can render kG(s)k1 arbitrary
close to zero and this improve the performance ksref �
sdesk1 and k⇡ref �⇡desk1 (Lemma 2.1.4 in [21]). However,
the time delay margin decreases as k increases. It is worth
noting that the problem (9) is always feasible with V = 0.

The following result shows that the control algorithm
we thus constructed (with the design parameters as chosen
above) is robust in precisely the sense of Definition 2.

Theorem V.1. (Robust Control Pipeline) Given a perturbed

sensory input x + �, if � is within a given certificate ⌧ , the

robust model g returns a robust prediction such that the cor-

responding cornering stiffness interval ⇣(g(x+ �)) includes

the true and nominal cornering stiffness. Assumption 1 holds.

Therefore there exists positive constants c1 and c2 such that

the constraints in definition 1 are satisfied , thus the end to
end pipeline A(⇣(g)) is robust per definition 2.

Proof. The controller with the system satisfy L1 adaptive
control assumptions, and thus by Theorem 2.1.1 and Lemma
2.1.4 in [21], the statement holds true. Constant bounds c1

and c2 are found in [21]. Consequently, we can combine
this robust control algorithm with both classification-based
and regression-based approaches described in Section IV to
obtain provably robust control algorithms under adversarial

perturbations to raw sensory inputs. In other words, we can
now directly apply our main results, Theorem IV.1 in the
case of classification-based cornering stiffness prediction and
Theorem IV.2 when we use regression.

VI. EXPERIMENTS

In this section, we empirically study the robustness of
the robust driving system described above with and without
proposed formal end-to-end robustness certification across
different weathers and road types, comparing the vulnera-
bility of the non-robust driving system. We conduct exper-
iments on three datasets, including driving frames from the
Carla simulator [29] as well as the physical world (Road
Traversing Knowledge (RTK) [30], robotCar [31]). These
datasets contain driving frames across four types of weather:
sunny, light rain, heavy rain, and snow, and three different
road surfaces: asphalt, cobblestone, and sand (in descend-
ing order of friction). In particular, Carla contains images
across three weathers, light rain, heavy rain and sunny.
Each weather has 4000 images. RTK contains different road
surface types: asphalt, cobblestone and sand. This dataset
contains 400 frames for each road type. RobotCar dataset
captures many different combinations of weather, traffic , and
pedestrians and contains three different kinds of weathers,
sunny, rain, and snow. Each weather has 2000 images.
We use cornering stiffness to define road friction for lateral
dynamic control. Typical cornering stiffness ranges from
20000�120000N/rad, depending on many parameters such
as road condition, rim size, and inflation pressure [32]. In our
experiments, the range of cornering stiffness, as a function
of road type or weather condition, is given in Table I.

Recall that the vision-based perception-control system has
a perception model and a control algorithm A. The input to
the perception model is a driving frame, and the perception
model’s output is a predicted cornering stiffness interval.
This predicted cornering stiffness range is the input to A.
We, once given this range, then decide the maximum safe
velocity and control parameters. If this upper bound is too
high (i.e., exceeding the true safe velocity), the vehicle may
drive dangerously or crash. For example, if the vehicle drives
at high speed on a snowy day, it may crash into other cars due
to the poor driving conditions (i.e., the low friction induced
by the snowy weather). If this upper bound is too low, the
car may drive inefficiently. For example, the vehicle drives
inefficiently if it drives extremely slow on a sunny day in
which diving conditions are good.

We consider two types of attacks by the attacker’s objec-
tive: (1) increasing the velocity, (2) decrease the velocity. In
the first case, the attacker decreases the stability. For exam-
ple, the malicious perturbation may increase the predicted
corner stiffness, causing the car to drive at high and unsafe
speeds, e.g., a Snowy driving frame may now be predicted
as Sunny, causing the car to drive at higher speeds and crash
into other vehicles. Alternatively, the attacker decreases the
efficiency of the car by decreasing the velocity, e.g., a Sunny

driving frame may now be predicted as Snowy, causing the
car to drive at lower speeds. We will refer these two types



Weather Sunny Light Rain Heavy Rain Snow Asphalt Cobblestone Sand

Road Friction 80k-120k 60k-80k 40k-60k 20k-40k 40k-60k 40k-60k 30k-45k

TABLE I
GROUND TRUTH CORNERING STIFFNESS (K=1000). THE TABLE IS FOR THE ASPHALT ROAD TYPE IN DIFFERENT WEATHERS AND DIFFERENT ROAD

TYPES IN THE DRY ROAD CONDITION.

Carla RTK RobotCar

Accuracy 98.6% 94.2% 95.6%
Instability 0.00 0.00 0.00
Velocity 29.42 28.45 28.46

TABLE II
ROAD CONDITION CLASSIFICATION: ACCURACY AND PERFORMANCE

WITHOUT MALICIOUS ATTACKS

of attacks as Stability Attack (SA) and Efficiency Attack

(EA). From the optimization perspective, these two types of
attacks differ in objectives. The objective of Stability Attack

is maximizing corner stiffness prediction:

argmax
�

f(x+ �). (10)

The objective of Efficiency Attack is minimizing corner
stiffness prediction:

argmin
�

f(x+ �). (11)

We consider velocity and instability as the car’s performance
measurements. Specifically, velocity is the maximum safe
velocity from A, and Instability implies control system in-
stability in Lyapunov sense. Intuitively speaking, a dynamic
system is Lyapunov stable if it starts near an equilibrium
point (center lane) and its trajectory stays near the equilib-
rium point forever. The higher the speed, the more efficient
the car. The lower the instability, the more stable a vehicle
is. In the rest of this section, we separately discuss the
Road condition Classification and Road Friction Regression

problems. For each of the two problems, we start by showing
the performance of the non-robust system A(⇣(f) in the
unmodified environment, and we show the vulnerability of
this non-robust system in malicious environments. Next, we
show the efficacy of the certified robust system A(⇣(g))
across malicious environments. We empirically show that this
certified robust system A(⇣(g)) ensures the car drives safely
and efficiently in malicious driving environments.

1) Road Condition Classification: The perception model
takes the driving frame as input in the classification problem
and predicts the weather or road types. Next, this predicted
class is converted to a range of cornering stiffness by
referring to Table I. Table II shows the accuracy of the non-
robust perception model f without malicious attacks. Table
V shows the velocity and instability of the car driving in the
unmodified environment, where the attacker doesn’t modify
the environment.

a) Vulnerability: The first question we ask is Is percep-

tion model f vulnerable to malicious attacks?, and to this,
we answer yes. The attacker attacks a classifier by flipping
the predicted to another label by adding malicious noises
to the input image. Without loss of generality, we use a

common attack, PGD attack [33] as the malicious attacking
approach. Table V shows the accuracy of the perception
model in the maliciously modified environment. We see that
the accuracy of classification accuracy dropped significantly
under the attacks. Table V shows the velocity and deviation in
the malicious environment. We observe that the accuracy of
the classification model f , and correspondingly the efficiency
and stability of the driving system, drops significantly in the
presence of malicious attacks. We find system A(⇣(f)) is
indeed vulnerable to malicious attacks. Now, we discuss the
robustness of the robust system A(⇣(g)). We will empirically
show the effectiveness of the robust perception model g when
defending against Stability Attacks and Efficiency Attacks,
and provides the certificate of this robust model.

b) Certified Robustness: We start with looking at the
results of defending against Stability Attacks. We start with
discussing the robustness to stability attacks. The attacker
aims to increase the velocity by modifying the driving frame.
The driving system takes the modified driving frame as
input and predicts a high and unsafe velocity. Specifically,
in the classification problem, the attacker aims to flip the
predicted label to a class corresponding to a higher cornering
stiffness. The control algorithm A takes this incorrect range
of cornering stiffness as input and controls the car at a
dangerous speed. In such a case, the car deviates from its
safe trajectory significantly.

As a defender, we want the car to drive safely in the
malicious environment. To achieve this goal for different
weathers or road types, we defined the safe set for each label
in Table VI. For example, the prediction of a corrupted rain

image could be snow, yet not sunny, to satisfy the safety
criteria. A model g is robust if the prediction from g is in
the safe set, given a corrupted image x+ �. Table III shows
the efficacy of the robust model g for safety guarantee. The
numbers in the table are the instability measures. The smaller
the number is, the more stable the driving system is.

We conduct ablation analysis on different Gaussian noises
� being added to the smooth function g. Combining Table III
and Table V, we observe that (1) in carla dataset, � = 0.25
is the best in terms of defending against Stability Attack.
The robust driving system decreases the instability from 200
(shown in Table V) to 6.36. (2) RTK dataset is the least
vulnerable dataset to malicious attacks, however, the attacker
still increases the instability from 0.0 to 37.50. The robust
driving system decreases this instability to 18.99 when � =
0.25. (3) in RobotCar dataset, the robust model deceases the
instability from 61.50 to 6.82 when � = 0.5.

After discussing the performance of the robust model g

in the malicious environment, we now show the certification
of this robust model. Given a sensory input x, the smoothed



Noise Carla RTK RobotCar

� Velocity Certificate Velocity Certificate Velocity Certificate

0.25 6.36 0.61 18.99 1.19 23.29 2.26
0.50 12.50 0.58 22.50 1.09 6.82 1.99
1.00 25.00 0.57 29.30 1.14 19.13 2.06

TABLE III
INSTABILITY UNDER Safety Attack(� = 255) AND THE CERTIFICATION FOR THIS ATTACK.

Noise Carla RTK RobotCar

� Instability Certificate Instability Certificate Instability Certificate

0.25 29.41 0.61 28.13 0.57 27.64 0.55
0.50 29.41 1.19 28.10 1.06 28.12 1.11
1.00 29.42 2.26 28.22 1.84 28.01 1.92

TABLE IV
EFFICIENCY(VELOCITY)(� = 255) UNDER Efficiency Attack AND THE CERTIFICATION FOR THIS ATTACK

Carla RTK RobotCar

Accuracy 0% 80% 69%
Instability (SA) 200.00 37.50 61.50
Velocity (EA) 27.36 27.83 25.35

TABLE V
VUNERABILITY OF THE NON-ROBUST PERCEPTION MODEL f , THE

NUMBERS ARE THE ACCURACY AND PERFORMANCE OF f UNDER PGD

ATTACKS WITH THE ADVERSARIAL RADIUS � = 255.
Label Safe Set

Sunny Sunny, Heavy Rain, Light Rain, Snow
Light Rain Light Rain, Heavy Rain, Snow
Heavy Rain Heavy Rain, Snow

Snow Snow
Asphalt Asphalt, Cobblestone, Sand

Cobblestone Cobblestone, Sand
Sand Sand

TABLE VI
SAFETY CLASS SET.

perception model g guarantees the predictions will be within
a defined set of labels, if the attack is less than a radius tau.
This certificate tau is computed via randomized smoothing
techniques. In practice, as in [7], we apply Monte Carlo
process to get an empirical bound. The exact values of these
empirical bounds across different datasets are shown in Table
III.

Now we discuss the robustness to efficiency attacks In
this case, the attacker aims to decrease the car’s velocity.
Thus the car may drive unnecessarily cautious under this
type of attack. Recall the result in Table V, this type of
attack significantly hurts the driving efficiency. Specifically,
the average speed across different weathers in Carla Dataset

drops from around 28 to 13. As a defender, we want to
have the car driving efficiently meanwhile safely, i.e., a
relatively high yet safe velocity. In practice, the defender
aims to have the same prediction with and without malicious
attacks. In other words, the robust model g is not effected
by the malicious attacks, formally, g(x + �) = f(x). Table
IV shows the efficacy of the robust model. Comparing Table
IV and Table V We observe that the efficiency of A(⇣(g))
is increased by using g. Lastly, Table also IV gives the

certificate of the defense strategy.
2) Road Friction Regression: We use a ResNet-style re-

gression model. Specifically, we modify a ResNet50 classifi-
cation model to a regressor by taking the convolutional layers
in the classification model, and combining it with a linear
support vector regression (SVR) model. We take the weights
of the convolutional layers from the trained classification
model, and use transfer learning train the parameters in SVR.
We use datasets, Carla, RTK, Robotcar, mentioned above.
Recall that each image in these datasets corresponds to a
class. This class contains weather and road-type information.
We convert each class to a corner stiffness by referring to
Table I. In particular, we use the mean of the corner stiffness
interval in Table I as a class’s ground truth corner stiffness.

a) Vulnerability: We measure the vulnerability of f .
Table VIII shows the mean square error and performance of
f without any attacks. Table IX shows the mean square error
and performance of f under PGD attack. From these two
tables, we observe f is malicious to adversarial attacks, as
the MSE increases and performance decreases significantly.

b) Certified Robustness: At last, we evaluate the ro-
bustness of the h. Table VII show the performance of the
robust driving system. By looking at these tables, we find
that combining the certified robust regression model h with
the robust control algorithm A guarantees the stability and
efficiency in the malicious environment.

VII. CONCLUSION

We are the first work combining certified robustness of
predictions concerning input adversarial perturbations and
robust control. We evaluate our proposed approach by apply-
ing it to adaptive vehicle control and empirically show our
approach significantly increases the stability and efficiency
of a self-driving car compared with the non-robust baseline
counterpart in the malicious environment.
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Noise Carla RTK RobotCar

� Instability Velocity Instability Velocity Instability Velocity

0.25 0.0 16.78 0.0 15.97 0.0 16.00
0.50 0.0 16.79 0.0 15.93 0.0 15.99
1.00 0.0 16.65 0.0 15.83 0.0 15.89

TABLE VII
ROBUSTNESS : INSTABILITY AND EFFICIENCY

Carla RTK RobotCar

MSE 0.008 0.017 0.016
Efficiency(EA) 16.82 16.01 16.03
Instability(SA) 0.0 0.0 0.0

TABLE VIII
THE MEAN SQUARED ERROR (MSE) AND DRIVING PERFORMANCE OF

NON-ROBUST ROAD FRICTION REGRESSION IN A BENIGN ENVIRONMENT.

Carla RTK RobotCar

MSE 0.44 0.43 0.45
Efficiency(EA) 16.32 15.64 15.04
Instability(SA) 200.00 200.00 200.0

TABLE IX
THE MEAN SQUARED ERROR (MSE) AND DRIVING PERFORMANCE OF

NON-ROBUST ROAD FRICTION REGRESSION IN ADVERSARIAL

ENVIRONMENT (PGD ATTACK WITH � = 255.).
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