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We explain a general mathematical method that allows one to calculate the electrostatic potential
created by a uniformly charged rectangular plate with arbitrary length and width at an arbitrary
point in space. Exact analytical results for the electrostatic potential due to a uniformly charged
finite rectangular plate are shown for special cases in order to illustrate the implementation of
the formalism. Results of this nature are very important to various problems in physical sciences,
applied mathematics and potential theory.

Keywords: Rectangular plate, Electrostatic potential, Potential theory, Uniform charge distribution,

Coulomb potential.

I. INTRODUCTION

Calculation of the electrostatic potential created by
charged body is one of the most important problems in
potential theory and electrostatics [1–5]. However, in
most cases, this problem for a charged body with arbi-
trary shape can be solved only numerically and not ana-
lytically. One reason for such an outcome has to do with
the fact that the exact determination of the equilibrium
charge distribution (that makes the body an equipoten-
tial) represents a very difficult mathematical problem to
solve even for apparently simple cases such a straight
finite wire [6–9]. Notable exceptions where the equilib-
rium charge distribution is analytically known are few
trivial cases such as a conducting spherical surface or a
conducting circular disk [10]. For these reasons, when
dealing with those situations in which the distribution of
charge cannot be calculated exactly, one resorts to ap-
proximations where the most common one is that of a
uniform charge distribution. However, even for the case
of a uniform charge distribution, an exact analytical cal-
culation of the electrostatic potential is possible only for
those bodies that have a regular shape and possess some
symmetry. As typical examples where calculations are
simple we may mention systems such as a spherical sur-
face with uniform surface charge density, a solid sphere
with uniform volume charge density [11] and few similar
systems with either spherical or axial symmetry.

On the other hand, a uniformly charged rectangular
plate represents a system without spherical or axial sym-
metry. For this reason, the calculation of its electro-
static potential at an arbitrary point in space represents
a very challenging problem. Obtaining an analytic ex-
pression for such a case is of great importance since
many electric and electronic devices contain charged,
flat square/rectangular plates as their components. The
most noteworthy example would be a parallel-plate ca-
pacitor consisting of two oppositely charged finite-sized
square/rectangular [12] or circular plates [13, 14]. As well
known, capacitors are key building blocks for any device

that serve the main purpose of storing electric energy in
circuits. Knowing the electrostatic potential creating by
a plate gives one the opportunity to obtain the amount
of the electrostatic energy stored in the plate as well
as the electrostatic interaction energy between the two
plates. In particular, the problem of the energy stored in
a charged body, namely, calculation of its Coulomb self-
energy [15, 16] is intrinsically connected to that of the
electrostatic potential. For these reasons, in this work,
we consider the problem of a uniformly charged finite
rectangular plate and calculate in analytical closed form
the electrostatic potential created by such a system at an
arbitrary point in space. The solution method that we
explain is general and rather elegant. The expressions
obtained allow one to calculate the electrostatic poten-
tial at any arbitrary point where, in our opinion, direct
integration methods may either not succeed, or are very
difficult to apply.

II. MODEL AND RESULTS

The model under consideration is that of uniformly
charged rectangular plate with arbitrary length and
width, Lx and Ly, respectively. The constant surface
charge density of the uniformly charged rectangular plate
is written as:

σ =
Q

Lx Ly
, (1)

where Q is the total charge uniformly spread on the sur-
face of the rectangular plate. The Cartesian system of
coordinates is chosen in such a way as to have its origin
at the center (intersection of diagonals) of the rectangu-
lar plate. The x and y axes are taken parallel to the
sides, Lx and Ly, respectively, with z perpendicular to
the rectangular plate. A view of the system lying on the
z = 0 plane is shown in Fig. 1.
With this choice of the coordinative system, one can

write the expression for the Coulomb electrostatic poten-
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and

f(u, y, Ly) =

∫ +Ly/2

−Ly/2

dy′ e−u2 (y−y′)2 . (8)

Aside differences in notation, these functions are similar
in spirit to the one used to solve the problem of the elec-
trostatic potential due to a uniformly charged straight
wire [20]. One can calculate explicitly that:

f(u, x, Lx) =

√
π

2u

{

erf

[

u

(

Lx

2
− x

)]

+ erf

[

u

(

Lx

2
+ x

)]}

,

(9)

where erf(x) = (2/
√
π)
∫ x

0
dt e−t2 is an error function.

Obviously, one attains the function f(u, y, Ly) by replac-
ing x with y and Lx with Ly in Eq.(9).

This means that one can write the expression for the
electrostatic potential in Eq.(6) in a very compact way
as:

V (x, y, z, Lx, Ly) = ke σ
2√
π

∫

∞

0

du e−u2 z2

f(u, x, Lx) f(u, y, Ly) . (10)

The one-dimensional integral expression in Eq.(10) rep-
resents a concise and a convenient general result which
allows one to calculate the electrostatic potential due to
a uniformly charged finite rectangular plate at any ar-
bitrary point in space. The only remaining task left at
this point is to calculate the resulting integrals which are
either available in the mathematical literature or can be
calculated analytically.
In order to illustrate this point, let us show some exact

analytical results for two selected cases, V (0, 0, 0, Lx, Ly)
and V (0, 0, z, Lx, Ly). With little mathematical effort,
one can see that:

V (0, 0, 0, Lx, Ly) = ke σ 2
√
π

∫

∞

0

du
erf(u Lx

2 ) erf(u
Ly

2 )

u2
.

(11)
The integral appearing in Eq.(11) has the form:

I(a, b) =

∫

∞

0

dx
erf(a x) erf(b x)

x2
=

2√
π

[

a sinh−1

(

b

|a|

)

+ b sinh−1

(

a

|b|

)

]

, (12)

where sinh−1(x) = ln(x +
√
x2 + 1) is an inverse hyper-

bolic sine function and a, b are considered to be real
constants (one must be careful to write

√
a2 = |a| and√

b2 = |b| for arbitrary real a and b). Note that both the
error function and the inverse hyperbolic sine function
are odd functions. Thus, one can easily check that:

I(a, b) = −I(−a, b) , I(a, b) = −I(a,−b) . (13)

The use of the formula in Eq.(12) immediately leads
to the expression:

V (0, 0, 0, Lx, Ly) = ke σ

[

2Lx sinh−1

(

Ly

Lx

)

+2Ly sinh−1

(

Lx

Ly

)

]

.

(14)

The process is clear in case one wants to express the
final result in terms of the total charge, Q instead of the
constant surface charge, σ. For such a situation, one uses
the fact that σ = Q/(Lx Ly), and from here one proceeds
to obtain:
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V (0, 0, 0, Lx, Ly) = ke Q

[

2

Ly
sinh−1

(

Ly

Lx

)

+
2

Lx
sinh−1

(

Lx

Ly

)

]

. (15)

One may find convenient to express the value of the
electrostatic potential in terms of, what we call, the

”symmetric” unit, ke Q/
√

Lx Ly resulting in the follow-
ing expression:

V (0, 0, 0, Lx, Ly) =
ke Q

√

Lx Ly

[

2

√

Lx

Ly
sinh−1

(

Ly

Lx

)

+ 2

√

Ly

Lx
sinh−1

(

Lx

Ly

)

]

. (16)

The result for a square plate (Lx = Ly = L) readily
follows:

V (0, 0, 0, L, L) =
ke Q

L
4 sinh−1(1) ≈ 3.52549

ke Q

L
.

(17)
Another advantage of using the ”symmetric” unit is that
one can easily compare the electrostatic potential of a
square plate to that of a rectangular plate with the same
surface area. For instance, let us assume that we have
a rectangular plate with length Lx = 2L and width
Ly = L/2. Note that this rectangular plate has an
area, Lx Ly = L2 identical to that of a square plate with
length, L. By using Eq.(16) for Lx/Ly = 4 one easily
sees that:

V (0, 0, 0, 2L,
L

2
) ≈ 3.08458

ke Q

L
. (18)

The fact that a uniformly charged rectangular plate cre-
ates a smaller potential (in this case at the center) than
its square counterpart with the same surface area is easy
to understand. Obviously, given the same amount of to-
tal charge and the same surface charge density (since the
square plate and the rectangular plate have the same
area), there is more charge of the rectangular plate situ-
ated away from the center as the case of its square coun-
terpart. This leads to a somewhat smaller electrostatic
potential created by the rectangular plate at the center
as shown by the the result in Eq.(18).

The calculation of the electrostatic potential along the
z-axis leads to a slightly more complicated integral as can
be seen below:

V (0, 0, z, Lx, Ly) = ke σ 2
√
π

∫

∞

0

du e−u2 z2 erf(u Lx

2 ) erf(u
Ly

2 )

u2
. (19)

The integral appearing in the above expression has the
following mathematical form that has been solved ana-

lytically:

F (a, b, c) =

∫

∞

0

dx e−a2x2 erf(b x) erf(c x)

x2
=

2√
π

[

b sinh−1

(

c√
a2 + b2

)

+c sinh−1

(

b√
a2 + c2

)

−a tan−1

(

b c

a∆

)

]

,

(20)

where tan−1(x) is an inverse tangent function, a, b, c are considered to be real constants and

∆ =
√

a2 + b2 + c2 , (21)



5

is an auxiliary parameter. Details of the calculation of
the above integral can be found in the Appendix B of an
earlier work [21].

By applying the formula from Eq.(20) to the integral
expression appearing in Eq.(19), one eventually obtains
the result:

V (0, 0, z, Lx, Ly) = ke σ

[

2Lx sinh−1

(

Ly
√

4 z2 + L2
x

)

+2Ly sinh−1





Lx
√

4 z2 + L2
y



−4 z tan−1





Lx Ly

2 z
√

4 z2 + L2
x + L2

y





]

.

(22)

By recalling that Coulomb’s electric constant can be
written as ke = 1/(4π ε0), one may rewrite the result in

Eq.(22) in the following form:

V (0, 0, z, Lx, Ly) =
σ

π ε0

[

Lx

2
sinh−1





Ly

2
√

z2 +
(

Lx

2

)2



+
Ly

2
sinh−1









Lx

2
√

z2 +
(

Ly

2

)2









−z tan−1









Lx

2
Ly

2

z

√

z2 +
(

Lx

2

)2
+
(

Ly

2

)2









]

(23)

This expression, with the proper substitutions of Lx =
2 a and Ly = 2 b, is in agreement with the formula found
in Eq.(3) of a recent work by Fagundes [22] which uses a
different method of calculation.
The prior result was obtained via direct integration

techniques through careful integration by parts, trigono-
metric substitution and partial fraction decomposition
with the details of such a calculation covering around four
pages in Appendix A of that work [22]. In contrast, the
present approach avoids a direct integration of the defin-
ing expression of the electrostatic potential in Eq.(2).
Instead, we choose to transform such an expression in a
way as to obtain a more convenient one-dimensional inte-

gral presentation as provided by the quantity in Eq.(10).
There is only one type of integral appearing in the quan-
tity in Eq.(10). This integral is of the general form
given by Eq.(20). This means that we have the discre-
tion to use only one integral formula to obtain the re-
sult in Eq.(22) for V (0, 0, z, Lx, Ly) as well as calculate
V (x, y, z, Lx, Ly), which is going to be very long, with
the added benefit that such an integral formula is already
available from the literature as shown in Eq.(20).

If one wants to express the result in Eq.(22) in terms
of the total charge, Q one substitutes σ = Q/(Lx Ly) to
obtain:

V (0, 0, z, Lx, Ly) = ke Q

[

2

Ly
sinh−1

(

Ly
√

4 z2 + L2
x

)

+
2

Lx
sinh−1





Lx
√

4 z2 + L2
y



− 4 z

Lx Ly
tan−1





Lx Ly

2 z
√

4 z2 + L2
x + L2

y





]

.

(24)

As illustrated earlier for the case of V (0, 0, 0, Lx, Ly)
in Eq.(16), one can express the electrostatic potential,
V (0, 0, z, Lx, Ly) in terms of the ”symmetric” unit of

ke Q/
√

Lx Ly. In Fig. 2, we show the dependence of
the electrostatic potential, V (0, 0, z, Lx, Ly) (in units of

ke Q/
√

Lx Ly) as a function of the dimensionless dis-

tance, |z|/
√

Lx Ly for the cases of a square plate with
Lx = L and Ly = L (solid line) and a rectangular plate

with Lx = 2L and Ly = L/2 (dotted line). Note that
the values of Lx and Ly above are chosen in such a way
that both the square and the rectangular plate have the
same surface area. As can be already deduced from the
results in Eq.(17) and Eq.(18) one can conclude that, for
equal charge and equal surface area, the electrostatic po-
tential of the uniformly charged rectangular plate along
the z direction is always smaller than that of the square
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counterpart. Obviously, the electrostic potential becomes
Coulomb-like in the |z| → ∞ limit (for fixed finite Lx and

Ly).
The result for a square plate (Lx = Ly = L) reads:

V (0, 0, z, L, L) =
ke Q

L

[

4 sinh−1

(

L√
4 z2 + L2

)

− 4 z

L
tan−1

(

L2

2 z
√
4 z2 + 2L2

)

]

. (25)

Note the expression in Eq.(25) is equivalent and can be written as:

V (0, 0, z, L, L) =
ke Q

L

[

4 sinh−1

(

1√
4Z2 + 1

)

− 4Z tan−1

(

1

2Z
√
4Z2 + 2

)

]

, (26)

Lx=L ; Ly=L

Lx= 2L ; Ly=L/2
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FIG. 2: Plot of V (0, 0, z, Lx, Ly) in units of ke Q/
√

Lx Ly

as a function of dimensionless distance, |z|/
√

Lx Ly for two
cases: (i) Square plate, Lx = L;Ly = L (solid line) and
(ii) Rectangular plate, Lx = 2L;Ly = L/2 (dotted line).
Note that the square and the rectangular plate have the same
surface area.

where we introduce the dimensionless variable, Z = z/L.
The result in Eq.(26) is the same as the one reported in
Eq.(12) of an earlier work [23] that dealt solely with a
uniformly charged square plate, thus, serving as a good
check of accuracy and consistency.

III. CONCLUSIONS

In this work we explain the application of a general
mathematical method that allows one to calculate the
electrostatic potential at an arbitrary point in space due
to a uniformly charged rectangular plate with arbitrary
length and width. Calculation of the electrostatic po-
tential due to a uniformly charged rectangular plate is
a very difficult task for standard integration techniques
that must involve Cartesian coordinates. For most of its
part, the method presented here represents an elegant
way to calculate the electrostatic potential by avoiding
to calculate the initial cumbersome integrals in the for-
mula that defines it. Case in point, the expression in
Eq.(10) stands out as a very useful general result that
allows one to obtain the electrostatic potential at any ar-
bitrary point in space if one is inclined to use simple nu-
merical methods that can calculate one-dimensional in-
tegrals. By proceeding further, we also note that explicit
exact analytic results are also possible once one completes
the calculation of the resulting one-dimensional integrals.
To illustrate this point, we show several exact analytical
results for the electrostatic potential due to a uniformly
charged finite rectangular plate for special cases.

We believe that the present mathematical method that
leads to the result in Eq.(10) is the simplest possible way
to lead to a useful general expression of the electrostatic
potential created by a uniformly charged finite rectangu-
lar plate at an arbitrary point in space. In fact, we point
out that a fully analytic expression for V (x, y, z, Lx, Ly)
in Eq.(10) can be derived for the general scenario where
all quantities x, y, z, Lx, Ly are arbitrary since the result-
ing integrals can be done analytically. However, the re-
sulting mathematical expression for such a case is ex-
pected to be very long and we leave it out of this work.
In our opinion, a calculation of V (x, y, z, Lx, Ly) by us-
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ing direct integration techniques from the start will lead
to formidable mathematical difficulties. As already seen
for the case of V (0, 0, z, Lx, Ly), calculations of electro-
static potentials by direct integration of charge densi-
ties can be cumbersome and lead to long analytical so-
lutions [22]. At this juncture, we also point out that
one can obtain the electrostatic potential at an arbitrary
point in space, namely V (x, y, z, Lx, Ly) in Eq.(10), by
avoiding an explicit analytic calculation of the resulting
integrals in Eq.(10) and do them numerically using ap-
propriate software [24]. Overall, the reported results are
related to important problems in electrostatics and ap-
plied mathematics that deal with potential theory. From
this point of view, this work may be of interest to both
specialized researchers and broad audiences [25].
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