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Calculation of the Coulomb self-energy of a solid hemisphere with uniform volume charge density
represents a very challenging task. This system is an interesting example of a body that lacks
spherical symmetry though it can be conveniently dealt with in spherical coordinates. In this work,
we explain how to calculate the Coulomb self-energy of a solid hemisphere with uniform volume
charge density by using a method that relies on the expansion of the Coulomb potential as an
infinite series in terms of Legendre polynomials. The final result for the Coulomb self-energy of a
uniformly charged solid hemisphere turns out to be quite simple.
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I. INTRODUCTION

Knowing the Coulomb self-energy of a given charge
distribution is very important since this quantity repre-
sents the electrostatic potential energy stored in the given
system! 6. Generally speaking, the Coulomb self-energy
of a charged body with an arbitrary shape cannot be
calculated exactly in analytical form. For all such situ-
ations, one must resort to numerical methods. This im-
plies that exact analytical results may be possible only
for regular bodies with known charge distributions” .
However, even in such cases, the calculation of the equi-
librium charge distribution for conventional regular bod-
ies such as a square, a cube or a cylinder is one of the
most difficult problems in potential theory'®. Trivial ex-
ceptions are systems such as a conducting spherical sur-
face (which is a textbook example) or a conducting circu-
lar disk which illustrates very well how complicated this
problem is'!.

This means that working on such a well-established
field remains relevant to this day and continues to be a
rewarding pursuit given that there are many challenges
to overcome when solving problems of this nature. A
remarkable example worth mentioning is the case of a
charged straight wire. Although the theory has been de-
veloped for over a century, we still have ambiguous an-
swers to the very simple question of what is the equi-
librium charge distribution which makes the body of
the straight charged wire an equipotential'?> 5. Since
finding the equilibrium charge distribution on a given
charged body is a very difficult problem to solve, one
typically assumes a uniform charge distribution over the
length, surface or volume of any given one-dimensional,
two-dimensional or three-dimensional body, respectively.
This is done in the hope of simplifying a little bit the
mathematics of the problem.

Past work has shown that one can use a variety of spe-
cialized methods to successfully obtain analytical results
for the Coulomb self-energy of bodies such as a uniformly
charged solid cylinder'®, solid cube!” or square plate'®.
On the other hand, a uniformly charged solid sphere or
a uniformly charged spherical surface are typical text-
book examples where various results are wellknown. For

instance, a quick description of some mathematical ap-
proaches as well as a pedagogical implementation of the
Fourier transform method to calculate the Coulomb self-
energy of a solid sphere with uniform volume charge den-
sity is readily available!®. At this juncture, it is worth
noting that, while a uniformly charged square plate or
a solid cube is a unique system as far as the symmetry
is concerned, all the other bodies (solid cylinders, cylin-
drical shells, solid spheres, etc.) represent systems that
possess cylindrical symmetry and/or spherical symmetry.

As already mentioned, the Coulomb self-energy of a
solid sphere with constant volume charge density is easy
to calculate!. Obviously, a solid sphere is made up of
two solid hemispheres. Therefore, an interesting prob-
lem that arises is that of the calculation of the Coulomb
self-energy of a single solid hemisphere with uniform vol-
ume charge density. Within the realm of various regu-
lar bodies?? 28, a uniformly charged solid hemisphere has
axial symmetry, but it is most easily treated in spheri-
cal coordinates. However, direct integration methods as
well as the Fourier transform method that works well to
calculate the Coulomb self-energy of a solid sphere with
uniform volume charge density do not succeed for the
case of a solid hemisphere. This means that one must be
proactive and search for some other special approach to
attempt to solve this problem.

In this work, we apply a solution method which allows
us to obtain an exact analytic result for the Coulomb
self-energy of a solid hemisphere with uniform volume
charge density. The starting point of this mathematical
method is the expansion of the Coulomb potential as an
infinite series in terms of Legendre polynomials. Its suc-
cess hinges on the ability to transform a mathematical
expression involving challenging integrals that cannot be
calculated via direct integration into an expression that
involves an infinite sum of terms that can be calculated
exactly. At the end of the process, the final result ob-
tained for the Coulomb self-energy of a uniformly charged
solid hemisphere turns out to be quite simple.



II. MODEL AND RESULTS

We consider a solid hemisphere with uniform volume
charge density. The solid hemisphere has a radius, R and
contains a total charge, (). The resulting uniform volume
charge density is:
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The Coulomb self-energy of the uniformly charged solid
hemisphere can be written as:
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where k is Coulomb’s electric constant and D is the vol-
ume domain of the solid hemisphere. We choose a ”north-
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ern” solid hemisphere and adopt a spherical system of
coordinates with origin at the center of the solid hemi-
sphere and x — y plane on the ”"equator”. For this choice,
the volume domain, D reads:
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where r (r’) is the radial distance from the origin, 6 (6') is
the polar angle and ¢ (¢') is the azimuthal (longitudinal)
angle of a pair of elementary charges located at position
vectors, 7 (') belonging to the solid hemisphere volume
domain.

The quantity in Eq.(2) can be written more explicitly
as a six-dimensional integral:
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One way to simplify the calculation of the integral above
is to write the Coulomb potential factor, 1/|7 — 7’| as an
infinite series expansion in terms of Legendre polynomials
as explained in pg. 62 of Ref.( 11):
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where | = 0,1,... is an index, r< (rs) is the smaller
(larger) of r = |F] and r' = |7”’|, v is the angle included
between vectors ¥ and 7' and P;(cos~y) are Legendre poly-
nomials?®. Another important mathematical result that
turns out to be very useful is the so-called addition the-
orem of Legendre polynomials. This theorem allows one
to express a Legendre polynomial of order [ in the an-
gle v in terms of products of the spherical harmonics, or
equivalently, in terms of associated Legendre polynomi-
als [See pg. 69 of Ref.( 11) and/or pg. 599 of Ref.( 29)]
which allows one to write P;(cos~) as:

Py(cosvy) = Py(cos 6) P(cos 6")+
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where P/ (cosf) are the associated Legendre polynomi-
als30 732, Integrals over angular variables are, sometimes,
very complicated3334. In this specific case, integration
over the azimuthal angles, ¢ and ¢’ in Eq.(4) will pro-
duce:
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The results above in Eq.(6) and Eq.(7) have been succes-
fullly used in earlier calculations to facilitate studies of
systems with hemispherical geometry3°:36,

At this juncture, one can write the expression for the
Coulomb self-energy as:
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One notes that the integrals over polar angles, 6 (6')

in Eq.(8) are of the same type and may be coined in



the form of an integral of Legendre polynomials over half
range3% written as:
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To simplify the expressions, one can write the quantity
in Eq.(8) by using a compact notation as:

U= w Z a? ¢ (R) , (10)

where

a :/0 dx Py(z) , (11)

/drr / dr'r ﬁ. (12)

One can calculate both quantities, a; (that depends on 1)
and ¢;(R) (that depends on [ and R) in analytical form.
The result for ¢;(R) reads:
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Hence,
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The calculation of a; is challenging but has been done
in an earlier work®® with the final results being: ag = 1,
ag =a4=0ag=...=0and a; #az #as #...# 0. One
can write the results in a succinct mathematical way by
substituting the dummy index, | with a new index, n so
that, l = 2n (n = 1,2,...) gives [ = 2,4,... while | =
2n+1(n=0,1,2,...) gives the odd values, I = 1,3, ...
as below:

ap = /0 dx Po(x) =1, (15)
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and
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Based on the above results, one can write the infinite sum
in Eq.(14) as:
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where ag = 1 and aq, ag, ...
follows that:

are given from Eq.( 17). It
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The formula above was obtained by using symbolic com-
putation software3” and the result was checked numeri-
cally to a very high degree of accuracy. One substitutes
the result from Eq.(19) into Eq.(14) to obtain:
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One can easily verify that:
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Therefore, based on Eq.(21), one can write the quantity
in Eq.(20) as:
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where () represents the total charge spread uniformly
throughout the volume of a solid hemisphe with radius
R. The analytical exact result in Eq.(22) is, unexpect-
edly, quite simple in view of the many challenges faced
while solving the problem.

III. CONCLUSIONS

We calculated exactly the Coulomb self-energy of a
solid hemisphere with uniform volume charge density.
Calculation of this quantity which represents the elec-
trostatic energy stored in such a system poses a very
difficult mathematical problem partly because the body
lacks spherical symmetry. Nevertheless, it is shown in
this work that an exact analytic result is possible by us-
ing a method that relies on an infinite series expansion
of the standard Coulomb potential in terms of Legendre
polynomials. The method leads to new integrals, that
while challenging, can be calculated analytically. Ulti-
mately, one ends up with an expression for the Coulomb
self-energy given as an infinite sum that can be calculated
exactly. The final result for the Coulomb self-energy of
a solid hemisphere with uniform volume charge density

turns out to be amazingly simple.

Obtaining such a result is quite rewarding given the
many challenges which one must face when solving prob-
lems of this nature. The outcome is also important since
the solution method and treatment of the problem can
be useful to various different disciplines®®“3. For exam-
ple, individuals working in the field of applied mathe-
matics or applications of computational methods in sci-
ences may use the present result to gauge the accuracy



of various numerical methods and/or standard computa-
tional software. After all, the calculation of the Coulomb
self-energy of a solid hemisphere with uniform volume
charge density is not a simple problem to solve. As far
as we know, its calculation cannot be done analytically
via straightforward standard integration methods. As
a result, the quantity in Eq.(4) represents a challeng-
ing six-dimensional integral that is difficult to calculate
even numerically and, there will always be some result-
ing numerical errors when such a calculation is done via
standard numerical methods or tools**. Therefore, it is

pointed out that the work reported here can be of in-
terest to a broader readership that extends beyond that
associated with the field of electrostatics.
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