Interaction potential between coplanar uniformly charged disk and ring
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We consider a system made up of a uniformly charged disk and a uniformly charged ring that
are coplanar with each other. The disk and ring have arbitrary radii and contain arbitrary amounts
of net charge that is spread uniformly over area and length, respectively. This study is seen as the
first necessary step towards a classical model treatment of a two-dimensional system of electrons
in a weak perpendicular magnetic field. In this scenario, the uniformly charged disk represents the
neutralizing background in a jellium approximation while a uniformly charged ring is viewed as a
classical approximation to the cyclotron motion of the electron in presence of a uniform perpendicular
magnetic field. In this work, we obtain an exact integral expression for the interaction potential
energy of the system as a function of the separation distance between the centers of the two bodies
and discuss various interesting emerging features of the model.
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I. INTRODUCTION

There have been many important developments and
discoveries in the field of low-dimensional systems in the
last decade [1-4]. A solid-state system in which the spa-
tial dimension is less than that of the more common
three-dimensional (3D) bulk counterpart manifests novel
properties that have drawn the interest of many stud-
ies [5-16]. In practice, a two-dimensional (2D) system
is a layer or a thin film [17] and a one-dimensional (1D)
system is a thin wire [18]. Clusters of particles and very
small crystals can be considered as zero-dimensional sys-
tems. In particular, the two-dimensional electron gas
(2DEG) formed in a GaAs-AlGaAs heterostructure is
a very useful system for investigating interaction and
quantum effects. In such experimental systems, electrons
are confined to a very narrow layer which, in theoretical
studies, is considered ideally 2D. At low temperatures
and with a high quality material, electrons can travel
relatively long distances without much scattering. The
most remarkable thing about such 2D systems is that,
in a strong perpendicular magnetic field, they manifest
novel quantum-mechanical phenomena such as the inte-
ger [19, 20] or the fractional quantum Hall effect [21-24].

A common treatment for interacting electrons in a
solid is the jellium model where the positive neutralizing
charges are assumed to be uniformly distributed in space.
The neutralizing background charge interacts electrostat-
ically with itself and the electrons. The most common ge-
ometry of the neutralizing background in quantum Hall
studies of 2D systems of electrons in a perpendicular
magnetic feld is the disk geometry [25-27]. Therefore,
a typical 2D jellium model for N electrons in a perpen-
dicular magnetic field sees them moving in 2D space in
presence of a positively charged background disk with
uniform (constant) charge density.
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A quantum treatment is required to understand quan-
tum Hall systems that typically occur at very high mag-
netic fields. On the other hand, a classical treatment
may work well for a weak magnetic field. Within the
framework of classical theory, a particle with charge ¢,
with mass m, moving with some velocity ¥, may undergo
cyclotron motion, if a uniform magnetic field is applied
perpendicular to the plane of motion. Both the radius,
R and the center of the circle of rotation of the charged
particle can be easily calculated [28]. Based on this de-
scription, the simplest way to model a rotating charged
particle is to see it as a uniformly charged ring with a
constant linear charge density, A = ¢/(27 R). Therefore,
a necessary first step in a classical treatment of a 2D sys-
tem of electrons in a weak perpendicular magnetic field
(with a disk jellium background) is the calculation of the
interaction potential energy between a uniformly charged
disk and a uniformly charged ring that is coplanar with
it.

In this work, we calculate the interaction potential en-
ergy between a uniformly charged disk and a uniformly
charged ring situated at an arbitrary distance relative to
each other, but coplanar. The uniformly charged disk
and ring contain arbitrary amounts of charge and have
arbitrary radii. We obtain a closed-form analytical ex-
pression, in integral form, for the interaction potential
energy as a function of the separation distance between
the centers of the two bodies as well as their sizes. Some
possible applications of this model are also discussed from
the perspective of the consideration of a classical model
for 2D systems of electrons in a vanishingly small (very
weak) perpendicular magnetic magnetic field.

The article is organized as follows. In Section II we
explain the model and the theoretical approach. In Sec-
tion III we display the key results and discuss their impli-
cations. In Section IV we briefly summarize the findings
and provide some concluding remarks.



II. MODEL

The model consists of a perfectly 2D flat circular uni-
formly charged disk and a uniformly charged ring with
the understanding that the two objects are coplanar. The
disk has a radius, R4y and carries an arbitrary charge, @
that is spread uniformly over its surface. This gives rise
to a constant surface density:

o= —. (1)

A cylindrical (2D polar) system of coordinates is chosen
in such a way that the disk lies in the x — y plane with
its center at the origin.

On the other hand, the uniformly charged ring is situ-
ated at an arbitrary location in the z — y plane where 7,
represents the arbirary position of the center of the ring.
We assume that a charge, ¢ is spread uniformly over the
length of the ring with radius, R resulting in a constant
linear charge density:

q
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We assume Coulomb interaction between elementary
charges, dQ = o d*>r1 (object 1, disk) and dg = A dly (ob-
ject 2, ring) where d?r; is an elementary surface area on
the disk at position vector, 71 while dl5 is an elementary
length in the ring at a position vector, 7o = 7. + Ry as
shown in Fig. 1. In this geometry, 7. is the center-to-
center separation vector and R, is a 2D radius vector of
magnitude, | R3] = R relative to the center of the ring.

Based on symmetry arguments, we expect that the po-
tential energy of interaction between the two charged
objects will depend on the center-to-center distance,
re = |Fe] > 0 and respective radii, Ry and R. For
this reason, we denote this quantity as Uja(re, R4, R).
It is expected that this quantity will be Coulomb-like
for r. > max (R4, R) where max(Rg, R) represents the
largest of the two radii.

However, the outcome is not predictable for other dif-
ferent instances. As a result, we must carry out a full
calculation of U (r., R4, R) in order to fully understand
the features of this interaction potential. Such a calcula-
tion starts from the following integral expression:
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where k. is Coulomb’s electric constant, the 2D integral
is over the disk domain denoted as ” Disk” and the closed

line integral is over the ring domain denoted as ” Ring”.
The calculation of the quantity above is very challenging
for direct integration techniques. However, we show in
this work that there is an elegant way to obtain useful re-
sults by using the the method of Fourier transforms [29].

FIG. 1. Schematic view of a uniformy charged disk and a
uniformly charged ring. The two objects are coplanar to each
other. The radius of the disk is R4 while that of ring is R.
The total charge of the disk is denoted ) while that of ring
is ¢. The uniform surface charge density of the disk is 0 =
Q/(m R3) while the uniform linear charge density of the ring
is A=q/(2m R).

III. RESULTS AND DISCUSSIONS

We define the 2D Fourier transform integrals as:
P = [[ e 1) (®)

and

10 =[] e R, 5)

where k and 7 are 2D vectors. The 2D Fourier transform
of a Coulomb-like function, 1/|7] is 27 /|k|. By thinking

of #; — 7. — Ry as the vector 7 in Eq.(5) one has:
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where k = |k| > 0 is the magnitude of 2D vector k.
After substituting the expression from Eq.(6) into
Eq.(3) one has:
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The reader can verify that:
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where Ry is the radius of the disk and J; () is a Bessel
function of the first kind of order 1. Integrals over angular
variables are, sometimes, very challenging [30]. However,
in this case, one can easily check that:

?{ dly X F B2 — 91 R Jy(k R) (9)
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where | Ry| = R and Jy(z) is a Bessel function of the first
kind of order 0. The next step is to substitute the results
from Eq.(8) and Eq.(9) into Eq.(7). After straightfor-
ward, but somehow lengthy, algebraic manipulations one
obtains:
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where Vpiak(re, Ra) = 2ke Q [ dk Jo(kre) 2

resents the electrostatic potential created by a uniformly
charged disk with radius, R; and total charge, @) at a
distance r. away from its center on the plane of the disk.
Derivation of the electrostatic potential created by a uni-

rep-

Uss(re. Ra = 0, R) = k. Qq / ke Jo(kv2) Jo(k R) = Q Vizing (res R) |
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where Viing(re, R) = ke q [ dk Jo(krc) Jo(k R) denotes
the electrostatic potential created by a uniformly charged
ring with radius, R and total charge, ¢ at a distance r,
away from its center on the plane of the ring. A cal-
culation of the electrostatic potential created by a uni-
formly charged ring at an arbitrary point in space and
various mathematical expressions of this quantity (with
slight differences of notation from the current work) are
readily available in literature [32].

An exact analytic result is possible for . = 0 and arbi-
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The integral expression in the above form is very ap-
pealing because it allows one to obtain quite easily the
expected results in the limit of the interacting objects be-
coming particles (point charges). To check such limiting
results one must rely on the knowledge of the following
mathematical formulae:

(11)
First of all, one can easily see from the results in Eq.(11)

that:
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which represents correctly the Coulomb energy of two
charged particles at a separation distance of 7.

In the R — 0 limit (when the ring becomes a point
with charge, ¢) one obtains:

Ji(kRa)
Ek Ra) 4 Vpisk(re, Ra) , (13)

(

formly charged disk at an arbitrary point in space and
various mathematical expressions (with slight differences
of notation from the current work) are available from an
earlier study [31].

In the Ry — 0 limit (when the disk becomes a point
with charge, @)) one obtains:

(14)

(

trary Rg and R. This setup corresponds to the situation
in which the disk and the ring are concentric. For such a
case, the integral is written as:
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With help from integral formulas for Bessel functions [31]
one eventually obtains:
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are, respectively, the complete elliptic integral of the first =
and second kind defined, respectively, for 0 < m < 1 <
and 0 < m < 1 as in the book by Arfken and We- E 1
ber [33] (see pages 355-356). Omne can see from the .
defining expressions of the complete elliptic integrals that £
Kim=0)=7/2, Klim = 1) = oo, E(m =0) = 7/2 S0
and E(m=1)=1. =
The complexity of the calculation for r. = 0 as seen 5
from the result in Eq.(16) seems to hint that explicit S S R AR R BN AR
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exact analytical results are not feasible for arbitrary r..
The only other result that we can guess for finite arbi-
trary Ry and R would involve the r. — oo limit where
one expects:
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From this point on, we assume that both Ry > 0 and
R > 0. This means that we can introduce a dimensionless
variable either as r./Rg or r./R in order to simplify the
calculation of the integral in Eq.(10). A quick look at
Eq.(10) suggests that the simplest choice is to express the
energy in units of k. @ ¢/ R4 and, thus, write the integral
d

in Eq.(10) as:
( (20)

where u = k Ry is an auxiliary variable. As one can see,
the resulting integral depends on two parameters, r./Rq4
and R/R4. From a mathematical point of view, the ex-
pression in Eq.(20) involves a variant of the integral of
the product of three Bessel functions divided by a power
function of the form:

/Oodx
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where a, b are real parameters. As far as we know, there
are no compact analytical expressions available for such
integrals at arbitrary values of a and b. Therefore, given
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FIG. 2. Electrostatic interaction energy between a uniformly
charged disk with radius, R4 and total charge, @ and a uni-
formly charged ring with radius, R and total charge, g. The
case of a ring with radius smaller than that of a disk is con-
sidered, R/Rq = 0.5. The quantity is calculated as a function
of r./Rq where r. is the center-to-center distance between the
the disk and ring (filled circles). The result is compared to the
case R/Rq = 0.0 which would represent the interaction energy
of a disk with a point charge (filled squares) and a standard
Coulomb interaction potential, ke Q ¢/rc (solid line). The en-
ergy is expressed in units of k. Q ¢/Rq .

that a complete exact calculation cannot be done ana-
lytically, the integral presentation in Eq.(20) is of fun-
damental importance because it is compact, simple and
easy to implement numerically.

In fact, we were able to calculate the integral expres-
sion in Eq.(20) numerically, with very high precision,
for arbitrary values of r./R and R/R; by using stan-
dard integration packages [34]. A sample of such re-
sults is displayed in Fig. 2 where we show the result-
ing interaction potential energy, Ujs(r., R4, R) in units
of ke Qq/Ry as a function of r./R; for the case of
R/R4y = 0.5 (filled circles). This result is compared to
the case R/Rq = 0.0 which would represent the interac-
tion energy of a disk with a point charge (filled squares)



and a standard Coulomb interaction potential (solid line)
of the form:

1 kQq
Tc/Rd Ry

UC(TC) = (22)

As can be clearly seen, the differences between the func-
tions become visible for distances in the range, r./Rq <
2. Interestingly, the standard Coulomb interaction po-
tential is always weaker than the disk-ring potential at
large distances. As the separation distance decreases,
the Coulomb potential grows faster and eventually in-
tersects with disk-ring and disk-point potential energy
curves at some small separation distance. For distances
shorter than this value, the Coulomb potential climbs
much faster while the disk-ring and disk-point potentials
slowly saturate to their respective finite values at r. = 0.

IV. CONCLUSIONS

To summarize, we calculated the potential energy of in-
teraction between a uniformly charged disk and a copla-
nar uniformly charged ring as a function of the distance
separating them. This calculation is a necessary first step
in a classical treatment of a 2D electron system subject
to a weak perpendicular magnetic field where the disk
represents the jellium background while the ring approx-
imates the rotating electron in cyclotron motion. We de-
rived a closed-form formula in integral form for this quan-
tity in terms of the arbitrary center-to-center separation
distance between the two objects and their respective
geometry, namely, the arbitrary radii of disk and ring.
We checked that the general expression for the potential
energy reduces to the appropriate forms in the limiting
cases of (i) particle-particle; (ii) disk-particle; and (iii)
ring-particle interactions in which the particle (a point
charge) is coplanar to the disk and ring for cases (ii) and

(iil), respectively. We note that the interaction poten-
tial is always finite at 7. = 0 except for the particle-
particle special case. At this juncture, we also remark
that we looked more closely to the situation where the
radius of the ring is smaller than that of the disk since we
are typically thinking of a model in which many rotating
electrons, namely, uniformly charged rings are contained
inside the disk. For such a case, the results for the inter-
action energy are similar to those for a pair of identical
coplanar uniformly charged nanodisks [35] since the po-
tential created by the large disk as felt by the smaller
ring (assuming R; > R) is the dominant factor.

The model studied in this work is an important com-
ponent for the implementation of a classical model to
study 2D electron systems in a weak magnetic field wher-
ever the picture of a rotating electron is seen as a rea-
sonable starting point. It is known that 2D systems of
electrons in quantum Hall effect studies [36-40] typically
happen in very high magnetic field and require a full
quantum treatment. However, it is possible that an effec-
tive classical treatment may work reasonaby well in the
limit of a weak magnetic field. By adopting this logic,
one may argue that such a treatment can give some use-
ful information even for Fermi liquid states in half-filled
Landau levels at large filling factors [41]. Such states
can be viewed as representing effective charged particles
called composite fermions (electrons coupled to an even
number of magnetic flux quanta) in a vanishingly small
(very weak) effective magnetic field based on the present
Chern-Simons theories for even-denominator filled quan-
tum Hall states [42, 43].

ACKNOWLEDGMENTS

This research was supported in part by U.S. Air Force
Office of Scientific Research (AFOSR) Grant No. 421890
(K.S.) and National Science Foundation (NSF) Grant No.
DMR-2001980 (O.C.).

[1] M. A. Kastner, Phys. Today 46, 24 (June 1993).
[2] D. Heitmann and J. P. Kotthaus, Phys. Today 46, 56
(June 1993).
[3] R. C. Ashoori, Nature 379, 413 (1996).
[4] O. Ciftja, Nanomaterials 13, 364 (2023).
[5] O. Ciftja, B. Sutton, and A. Way, AIP Adv. 3, 052110
(2013).
[6] O. Ciftja, Physica B 458, 92 (2015).
[7] O. Ciftja, Sci. Rep. 11, 3181 (2021).
[8] U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43,
7320 (1991).
[9] S. Bednarek, B. Szafran, and J. Adamowski, Phys. Rev.
B. 59, 13036 (1999).
[10] J. Kainz, S. A. Mikhailov, A. Wensauer, and U. Rossler,
Phys. Rev. B 65, 115305 (2002).
[11] H. Saarikoski, M. J. Puska, and R. M. Nieminen, Int. J.
Quantum Chem. 91, 490 (2003).

[12] M. B. Tavernier, E. Anisimovas, F. M. Peeters, B.
Szafran, J. Adamowski, and S. Bednarek, Phys. Rev. B
68, 205305 (2003).

[13] O. Ciftja, J. Phys.: Condens. Matter 19, 046220 (2007).

[14] O. Ciftja, Mod. Phys. Lett. B 23, 3055 (2009).

[15] N. Q. Huong and N. H. Hong, J. Magn. Magn. Mater.
534, 167944 (2021).

[16] E. Kawakami, P. Scarlino, L. R. Schreiber, J. R. Prance,
D. E. Savage, M. G. Lagally, M. A. Eriksson, and L. M.
K. Vandersypen, Appl. Phys. Lett. 103, 132410 (2013).

[17] D. Elam, E. Ortega, A. Nemashkalo, Y. Strzhemechny,
A. Ayon, A. Ponce, and A. A. Chabanov, Appl. Phys.
Lett. 119, 142101 (2021).

[18] N. N. Dat and N. T. T. Hien, Eur. Phys. J. B 95, 31
(2022).

[19] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev.
Lett. 45, 494 (1980).



[20] O. Ciftja, J. Phys. Chem. Solids 156, 110131 (2021).

[21] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).

[22] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[23] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

[24] O. Ciftja and C. Wexler, Solid State Commun. 122, 401

(2002).

R. Morf and B.I. Halperin, Phys. Rev. B 33, 2221 (1986).

O. Ciftja and C. Wexler, Phys. Rev. B 67, 075304 (2003).

G. Dev and J. K. Jain, Phys. Rev. B 45, 1223 (1992).

O. Ciftja, Cent. Eur. J. Phys. 11(2), 173 (2013).

O. Ciftja, Eur. J. Phys. 42, 025204 (2021).

O. Ciftja, J. Phys.: Conf. Ser 200, 022002 (2010).

O. Ciftja and I. Hysi, Appl. Math. Lett. 24, 1919 (2011).

O. Ciftja, A. Babineaux, and N. Hafeez, Eur. J. Phys.

30, 623 (2009).

WO W NN
DH OO0 NS

[33] G. B. Arfken and H. J. Weber, Mathematical Methods
For Physicists, Fifth Edition, Harcourt/Academic Press,
Burlington, Massachusetts, USA (2001).

[34] Wolfram Research, Inc., Mathematica,
Champaign, Illinois, USA (2012).

[35] O. Ciftja and I. Berry, AIP Adv. 8, 035209 (2018).

[36] E. Rezayi, and N. Read, Phys. Rev. Lett. 72, 900 (1994).

[37] O. Ciftja, Europhys. Lett. 74, 486 (2006).

[38] J. Xia, J. Math. Phys. 40, 150 (1999).

(39] O. Ciftja, Int. J. Mod. Phys. B 24, 3489 (2010).

[40

[41

[42

Version 9.0,

] O. Ciftja, Sci. Rep. 12, 2383 (2022).
] J. Quintanilla and O. Ciftja, Sci. Rep. 13, 1400 (2023).
] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47,
7312 (1993).
[43] E. Rezayi and N. Read, Phys. Rev. Lett. 72, 900 (1994).



