7106

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

Shield Model Predictive Path Integral: A
Computationally Efficient Robust MPC Method
Using Control Barrier Functions

Ji Yin
Chuchu Fan

Abstract—Model Predictive Path Integral (MPPI) control is a
type of sampling-based model predictive control that simulates
thousands of trajectories and uses these trajectories to synthesize
optimal controls on-the-fly. In practice, however, MPPI encoun-
ters problems limiting its application. For instance, it has been
observed that MPPI tends to make poor decisions if unmodeled
dynamics or environmental disturbances exist, preventing its use
in safety-critical applications. Moreover, the multi-threaded simu-
lations used by MPPI require significant onboard computational
resources, making the algorithm inaccessible to robots without
modern GPUs. To alleviate these issues, we propose a novel (Shield-
MPPI) algorithm that provides robustness against unpredicted
disturbances and achieves real-time planning using a much smaller
number of parallel simulations on regular CPUs. The novel Shield-
MPPI algorithm is tested on an aggressive autonomous racing
platform both in simulation and in hardware. The results show that
the proposed controller greatly reduces the number of constraint
violations compared to state-of-the-art robust MPPI variants and
stochastic Model Predictive Control methods.

Index Terms—Autonomous driving, computational efficiency,
optimal control and motion planning, vehicle safety.

I. INTRODUCTION

S ROBOTICS technologies develop, autonomous robots
A are expected to carry out more challenging tasks reliably.
To accomplish these tasks in the presence of complex underly-
ing dynamics and unknown environmental conditions, control
methods are required to take into account the dynamics along
with other user-specified safety constraints. Receding horizon
control, also known as Model Predictive Control (MPC), is a
control methodology that has been applied to generate opti-
mal controls for constrained robotic systems [8]. Unlike more
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traditional PID or LQR controllers, MPC considers the future
evolution of the system’s behavior given the current observation
of the states, thus achieving more robust planning [9], [10]. We
refer the interested reader to [3] for a brief review of various
categories of MPC algorithms.

Model Predictive Path Integral (MPPI) control is a sampling-
based MPC method that relies on forward simulation of ran-
domly sampled trajectories to synthesize an optimal control [11].
Compared with other MPC approaches, MPPI allows for more
general forms of cost functions, including non-convex and even
non-smooth costs. Typically, MPPI samples a large number of
trajectories using a GPU, utilizing the GPU’s parallel-computing
ability to plan in real-time with a sufficiently high control update
frequency. Despite its attractive properties (e.g., simplicity and
support for general nonlinear dynamics and cost functions),
MPPI encounters several practical issues when deployed on
actual hardware.

First, there exists a gap between the theory of MPPI and its
practical implementation. Theoretically, given unlimited com-
putational resources, MPPI will find the globally optimal control
sequence, i.e., the algorithm is globally optimal if its planning
horizon and trajectory sample budget are infinite. In practice,
however, the available on-board computational power is always
limited. In the past, this problem has been mitigated with the
use of GPUs using multi-threaded sampling. However, the ma-
jority of existing robots still do not have onboard GPUs due
to their large size, high cost, and increased power consumption
compared to CPUs.

Second, a limited computational budget means that MPPI
becomes essentially alocal search method. As aresult, it requires
good-quality samples in order to achieve satisfactory perfor-
mance. Sampling trajectories close to the optimal solutions will
significantly improve the performance of the baseline MPPI, just
as the quality of initialization affects the performance of any
local optimization method. A bad set of simulated trajectories
with no feasible solutions can cause MPPI to make erroneous
control decisions, leading to safety violations. In most cases,
unexpected dynamic and environmental disturbances lead to a
decline in the quality of sample trajectories, as demonstrated in
Fig. 1(a) and (b). In Fig. 1(a), the vehicle has a desirable sampling
distribution inside the track, but then it ends up in a state far from
the simulated next state due to unexpected disturbances, which
may lead to divergence as shown in Fig. 1(b).

Third, the baseline MPPI does not consider uncertainty in
the environment or the dynamics, and thus neglects poten-
tial risks. Specifically, the original MPPI algorithm assumes
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Comparison of MPPI variants in the presence of unexpected disturbances. Blue circles indicate disturbances, gray curves show sample trajectories and

green curves are resulting optimal trajectories. (a)—(b) Environmental disturbances may cause the baseline MPPI to diverge. (c) Some MPPI variants [1], [2] penalize
trajectories that enter uncertain regions, but provide no guarantees of safety. (d) Others variants [3], [4], [5] tune the sampling distribution to avoid infeasible states,
but these methods can be sub-optimal due to limited exploration or can be biased due to insufficient training data. (e) Variants like [6], [7] pair MPPI with a tracking
controller, providing good performance when disturbance is small but without formal safety guarantee. (f) The proposed Shield-MPPI recovers safety even when
all samples deviate from the safe regions, generating feasible solutions shown by the yellow trajectory.

deterministic dynamics in its trajectory sampling process and
imposes a penalty in the cost function as a soft constraint rather
than enforcing hard constraints. This use of cost penalties causes
two implementation issues. First, the cost function has to be
carefully tuned and weighted between rewards and penalties,
creating the possibility that the algorithm can exploit loopholes
in the cost design to make undesirable decisions (so-called
“reward hacking” [12]). Secondly, MPPI has no firm guaran-
tees of safety, which can be problematic for many time- and
safety-critical applications, such as autonomous driving and
aerial taxis.

A. Related Work

Many variants of MPPI have been proposed to address the
previous practical limitations. These variants fall into three
general categories. The first category includes methods designed
to address potential planning risks by adding an extra penalty
to the sample trajectories that come close to areas of high
uncertainties or risk, pushing the resulting optimal trajectory
to high confidence, safer regions, as demonstrated in Fig. 1(c).
For example, [1] uses a data-driven approach to identify uncer-
tainties and avoid potential dangers. Reference [2] proposes a
method to generate risk-averse controls by evaluating the risk in
real-time and accounting for systematic uncertainties. The major
drawback of these algorithms is that they may still generate
infeasible solutions if none of the sampled trajectories is feasible.

The second category of MPPI variants achieves robust plan-
ning by adjusting the distribution of the simulated trajectories
to improve sampling efficiency, as described in Fig. 1(d). Ref-
erence [3] utilizes covariance steering theory to accomplish
flexible trajectory distribution control for MPPI, introducing
the final state covariance as a hyper-parameter to adjust the
sampling distribution. Other similar methods include [5], which
uses a control barrier function to create trust regions for reliable
samples, and [4], which uses a normalizing flow to produce effi-
cient sampling distributions. The limitation of these controllers
is that their distribution generation method may be biased due
to insufficient training data, leading to poor performance. In
addition, the constraints on the sampling distribution may limit
exploration and lead to sub-optimal plans.

The third category of MPPI extensions addresses systematic
uncertainties by closing the gap between MPPI simulations and

the actual system [6], [7] using an additional complimentary
controller, such as iLQG, to track the MPPI optimal trajectory,
as demonstrated in Fig. 1(e). These approaches perform well
when the sim-to-real gap is small; however, they do not explicitly
address risk and they provide no guarantees of safety when the
environment changes. Such cases are common in autonomous
car and drone racing.

B. Contributions

In this work, we combine control barrier functions with MPPI
to develop a safe control approach for general nonlinear systems.
Control Barrier Functions (CBF) are a commonly used veri-
fication approach for safety-critical systems that have gained
popularity in recent years due to the CBF ability to ensure
safety for a wide variety of dynamical systems with safety
constraints [13], [14], [15].

We integrate discrete-time control barrier functions
(DCBF [16]) with the MPPI algorithm. The resulting
Shield-MPPI controller uses an approximate DCBF as a shield
to improve safety, by modifying the control actions chosen by
MPPI to fulfill the safety constraints. Our approach is inspired by
the use of similar safety shields in reinforcement learning [17],
as demonstrated in Fig. 1(f). The proposed Shield-MPPI
possesses two properties that ensure robust planning. First, the
control actions generated by the Shield-MPPI controller tend
to keep the agent within a specified safe set if the initial state
belongs to the set. Second, if the agent exits the safe set (for
example, due to unexpectedly large disturbances), its state will
converge back to the safe set, recovering safety. We will discuss
these properties in more detail in Sections III and IV before
providing an experimental validation of the proposed approach
in Section VI. In our experiments, the proposed Shield-MPPI
controller reduced the chances of a potential car crash to
almost zero, while achieving approximately 10 — 15% speed
improvement with less than 0.5% of the trajectory samples used
by MPPIL.

II. MODEL PREDICTIVE PATH INTEGRAL CONTROL

Consider a deterministic, discrete nonlinear system,

Tr+1 = f(xk:a Uk;), (1)
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where x;, € D C R"= isthe state and u,, € R™* is the control in-
putattimestepk = 0,..., K — 1.Itis assumed that, given some
mean control vy € R™ and covariance matrix . € R™*", the
actual control follows a Gaussian distribution ug, ~ N (vg, X¢).
Consequently, the controlled system becomes stochastic with
the control sequence u = (uo, ..., ux_1) having a distribution
Q with density function,

aw) = ((2m)"™[<.]) 5He Buon) TS () (g)

Define the objective function

[ TK) +Z< (zx) + ukz vkﬂ 3)

where g(x) and ¢(x k) are the state-dependent step cost and
the terminal cost, respectively. As shown in [11], the optimal
distribution Q* that achieves the minimal value of (3) has a
density function given by

J(v) =

Lo HoE0rEiSd an) pu),
I

where p(u) is the density function of an (uncontrolled) base
distribution P resulting from a zero-mean control sequence
(v =0), and,

[ /6—%(¢<m>+z§;&q<xk>) p(u) du.

q(u) = “)

&)

Consequently, the problem of optimizing (3) is converted to one
of minimizing the KL divergence between (4) and (2). Applying
importance sampling, the resulting optimal mean controls v},
can be evaluated using the distribution Q as,

vi = Eglurw(u)], (©)
where,
1
w(u) = xS (7)
n
and the trajectory cost S(u) is given by
K-1
S(u) = d(xr) + Y qlzr) +2 Y oIS up. (®)
k=0 k=0
The denominator 7 in (7) is
n= /e’%s(“) du. )

In practice, (6) can be calculated using Monte-Carlo sampling
as follows. Let uy = vy, + €)', where €} ~ N(0,%,) is the
sampled control noise for the mth simulated trajectory at the
kth time step. The control update law (6) can then be converted
to,

M
~ v+ Z wirer wy,

m=1
(10)
given by (7), which can be

v = Eg[(vk + ex)w(

where w; is the weight for €
evaluated as,

m o __ 1 mo_ : m
w™ = exp <_k (S m:nf,l.?,MS )) , (11)
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where the hyper-parameter A can be used to determine how
selective the MPPI algorithm is for the sampled trajectories.
For simplicity, in (11) we use S™ in place of S(u™) to de-
note the cost of the mth simulated trajectory, and the term
ming,,—1,..a S™ is introduced to ensure numerical stability
without changing the solution. It follows from (8) that the cost
of the mth trajectory sample is evaluated as,

K-1

o)+ > al
k=0

S = i)+ ()TEC (W + ). (12)

III. DISCRETE-TIME CONTROL BARRIER FUNCTION

Let a Lipschitz continuous function /& : R — R, and define
asafe set S C D C R", such that,

S :={x € D|h(x) > 0}. (13)

Let U denote the set of feasible controls. The function h is a

DCBEF for system (1) if, for all x € D, there exists a control
v € U, such that,

h(f(x,v)) =

for a class-x function p: R — R. In this work, we use the
specific form of class-« function p(r) = Sr, 8 € (0,1).

Property I11.1: Given an initial condition g € S and a con-
trol sequence {vy }7° , such that all (z, vg) pairs satisfy (14),
then z, € S forall k € Zo.

Proof 3.1: Condition (14) implies that h(zy) > (Id — ) o
h(zy_1), where o denotes function composition and Id denotes
the identity function [16]. Since h(z1) > (Id — ) o h(xg), i
follows that,

h(z) = —p(h(z)), (14)

h(zi) > (Id — B)* o h(xo).

Since (Id — ) is a class-x function for 5 € (0, 1), it follows
from h(xg) > 0 that h(zg) > 0. Hence, the set S is forward
invariant for system (1).

Property I11.2: Let zy € D\ S and let a control sequence
{vr}p2, such that, for all k € Z~, the pair (z,vy) satis-
fies (14). Then, the state xj, converges to the safe set S asymp-
totically.

Proof 3.2: Note that, as k — oo, (Id — )% o h(xg) — 0.
Hence, (15) yields h(zy) > 0.

5)

IV.

To allow the controller to preserve safety while saving com-
putation using a shorter planning horizon, we incorporate a
(discrete) control barrier function term into our cost function;
this CBF enables the controller to determine whether an action
is safe or not, while only considering a handful of steps into
the future. However, even including a CBF term in the cost
may not be enough to ensure safety when the MPPI controller
runs with a small population of sample trajectories (as this can
result in sub-optimal behavior and violation of the CBF’s safety
guarantee). To mitigate this issue and allow the controller to
maintain safety using even less computation, we combine the
CBF-augmented MPPI controller with a gradient-based local
repair step, as shown in Fig. 2.

DOUBLE-LAYER SAFETY SHIELD USING A DCBF
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A. Safe Shielding by Modified Trajectory Costs

The first component of the proposed control architecture is a
standard MPPI sampling process with a state-dependent barrier
function term included in the costs of the sampled trajectories.
Tothisend, letaw = 1 — 3 € (0, 1), we define a DCBF constraint
violation penalty cost,

Covf(xg, 2p—1) = C max{—h(zg) + ah(xr_1),0}, (16)

where C' is a parameter that determines how high a penalty
cost should be applied in proportion to the amount of constraint
violation. In order to augment the CBF constraint into the MPPI
cost, we introduce, for each k = 1, ..., K, the augmented state
2 = (z,(g ) z,(f)) = (g, xp-1) €
augmented state system

(1)

R2?7= and the corresponding

(1)
Zht1 T, [z, 75 ur) z
ZkJrl = (2) P |: x:1:| — [ ];(1) = f(zk,uk).
“l+1 k
(I7)
In the new coordinates, (16) takes the form
Ceps(zr) = C max {—h (z,gl)) + ah (z,(f)) ,O} . (18)

The new terminal and running costs corresponding to the aug-
mented system (17) are then defined as ¢(zx) = qﬁ(zg)) +

Cep(zk ) and Gx(z) = q( ) + Cep(2g ), respectively. Using
the augmented system, the cost of the mth simulated trajectory
S™ in (12) is modified as,

S«m

K
=S+ Cenr(27), (19)

k=0

where for simplicity, we assume that z(()Q) = x_1 = xg. If the

barrier function constraint (14) is satisfied, it follows that
—h(xr) + ah(zr_1) < 0, the cost term (18) becomes zero, and
hence the system will remain safe. Otherwise, the augmented
cost g, penalizes the simulated trajectories that violate condition
(14), so that they are weighted less during the synthesis of the
MPPI control sequence.

In short, in this step, the MPPI algorithm is applied to system
(17) with cost

min J(v) =

o[

K-1
2K —|—Z< q(zk) kaE vk)

=0

] (20

Shield-MPPI control architecture. A combination of global optimization using path integral and local repair using gradient-based optimization.

Algorithm 1. Safety Shield.

Given: Model f, repair steps ns, MPPI horizon K,
repair horizon N < K, step size J;
Input: Current state g, control sequence v*;
Output: Safe control v§f
1R Vg
2 for ng steps do

3

+

safe safe
Ty Vg

Vo.N < Vo:N
ah(zy),0)}
4 end

+0V e AX o min(h(f(ax, v)) -

to yield a sequence of “near-optimal” nominal controls v =

(v, 07, v ).

B. Control Shielding Using Gradient-Based Optimization

The MPPI optimization process is not guaranteed to find a
solution resulting in zero CBF violations with limited trajectory
samples. To guard against this case, we add a “local repair” step
(the green block in Fig. 2) where we seek to locally optimize the
output control sequence v and minimize any violations of the
CBF condition, by solving the optimization problem,

N

= argmax Z min{h(zg41) — ah(xy), 0},
k=0

safe

vte — @1

i
Yo:N

subject to (1), where x is the current state and /V is the planning
horizon for the local repair (typically smaller than the MPPI con-
trol horizon K). If the CBF condition h(x1) — ah(xy) > 0is
satisfied for k = 0, 1,..., IV, then the objective of this problem
will be 0, and it will be negative when the CBF condition is
not satisfied. We solve this nonlinear problem locally using the
BFGS algorithm [18], a first-order, gradient-based optimizer.
Due to the real-time constraints on the controller, we do not
run this optimization until convergence but instead run it for a
fixed number of steps, thus sacrificing any guarantees of local
optimality but providing an effective heuristic to improve safety.
This approach is illustrated in Algorithm 1.

V. SHIELD-MPPI ALGORITHM

The proposed Shield-MPPI is described in Algorithm 2.
Line 2 computes the estimate of the current system state z.
Lines 3 to 13 describe the trajectory sampling and cost evaluation
process, where Line 4 sets the initial conditions, Line 5 samples
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Algorithm 2. Shield-MPPI Algorithm.

Given: Shield-MPPI costs ¢(-), ¢(-), parameters -, ;
Input: Initial control sequence v
1 while rask not complete do

2 xo < GetStateEstimate();
3 for m <~ 0 to M — 1 in parallel do
4 Tz, 2 [, xl]T, 8™ 0;
5 Sample €™ < {e{’,..., €% 1}
6 for k< 0to K —1do
7 upt = v + e
: 2y ).
9 zi < ()T, (@)T]T
10 S™
S™ 4 q(z7) + ol + Ca(2));
11 end
12 S 8™ 4 d(2) + Cos(232);
13 end
4 | vt « OptimalControl({S™}M 23, {uwm}MZ1);
15 vle « SafetyShield(xq, v1);
16 ExecuteCommand(v§™®);
17 vevt
18 _end

the mth control noise sequence €, Line 7 sums the mean control
vy, and sampled control noise and Line 8 uses the resulting input
up' to propagate the system state. Lines 10 and 12 evaluate the

modified trajectory cost S with the DCBF constraint violation
penalty (18) following (12) and (19). Line 14 calculates the
optimal control v using the update law (10). To enhance safety,
Line 15 solves the nonlinear optimization problem (21) from
Algorithm 1 and obtains the safe control sequence v**¢. Finally,
Line 16 executes the control actions and Line 17 sets v as
the mean control sequence for “warm starting” the next control
iteration.

VI. SIMULATION AND EXPERIMENTS

We present simulation and experimental results from running
the proposed Shield-MPPI controller on an autonomous rac-
ing platform. Specifically, we discuss the choice of the DCBF
function h(x) along with its corresponding safe set S, and the
underlying dynamical system used in these experiments.

A. AutoRally Racing Platform

We use the AutoRally racing platform [19] for simulation
as well as experiments. The AutoRally is a 1/5 scale electric
autonomous robot, which is approximately 1 m in length, 0.4 m
in width, and weighs about 22 kg [19]. We model the dynamics
of the AutoRally vehicle using a discrete-time system as in
(1), based on the single-track bicycle model described in [20],
where the system state is © = [vg, vy, V), Wr, WR, €y, €y, 5|7,
and the state variables represent the longitudinal velocity, lateral
velocity, yaw rate, front wheel speed, rear-wheel speed, yaw
angle error, lateral deviation, and distance progress made along
track centerline, respectively. The control input is u = [§, T7,
where ¢ and 7" are the steering angle and the throttle commands.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

B. Safety Set and Feasibility

Assuming that the racing track has constant width 2w, it
is desirable that the vehicle’s lateral deviation e, from the track
centerline is bounded by |e,| < wr, such that the vehicle avoids
collision with the track boundaries. To this end, we define the
function,

h(z) = wi — ei,

(22)

such that A(x) > 0 if and only if the vehicle is inside the track
boundaries, thus defining the safe set. Finding a verified DCBF
for general nonlinear dynamics remains an open challenge [13],
i.e., there is no guarantee that a control v € U always exists,
such that the safety condition (14) is satisfied for system (1).
Recent works [21] are dedicated to increasing the size of the set
of states that satisfy (14) and improve the chances of feasibility
for an approximate DCBF. We chose (22) as an approximate
DCBEF, and verified that a safe control action exists everywhere
on a dense grid of states (138,006 states on a uniform grid
with spacing 0.05) using the dReal solver [22] with a simplified
(bicycle) AutoRally model, since dReal verification becomes
intractable for the full AutoRally dynamics owing to the complex
nonlinear tire and throttle models. In our experiments we also
observed that the safety condition (14) is satisfied 99.4% of the
time, on average, across all runs on the full AutoRally model.

C. Controller Cost Design

In the trajectory cost (12), the state-dependent running cost
g(z}*) can be arbitrary. In simulations and experiments, MPPI
variants with our proposed DCBF shields (either single-layer or
double-layer) used the state-dependent cost

q(zy’) = (z" — 2g)TQ(z)’ — zg), (23)
while the vanilla MPPI used,
q(zy') = (z! — 29)TQ(2}" — xg) + 1(27"),  (24)

where Q = diag(qu, . v, 4 Gwr > Gwns dey > de,» ds) are cost
weights, z, = diag(vy,0,...,0) sets the target velocity, and,

Cobs, otherwise, 25
is the collision cost. Note that the Shield-MPPI includes a
DCBF constraint violation cost (18), but no cost penalty (25)
for collision. The following sections will show that Shield-MPPI
surpasses MPPI in terms of safety even without incorporating
directly a collision cost.

1) = {0, if 27 is within the track,

D. Cost Sensitivity Comparison

A common problem among optimization algorithms is that the
cost functions need to be carefully tuned for specific tasks. This
is also the case for most MPC controllers, including MPPI. In
this section, we investigate the proposed Shield-MPPI’s ability to
guard against false control decisions made by MPPI by running
both controllers with a control horizon of 20 steps (0.1 s step
size), using M = 10* sample trajectories multi-threaded using
GPUs. With this setup, MPPI and Shield-MPPI achieve 150 Hz
and 57 Hz on GPU respectively, while their CPU versions can
only achieve approximately 2 Hz. Normally, the cost weights
in (24) need to be carefully designed empirically, such that the

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2023 at 22:36:14 UTC from IEEE Xplore. Restrictions apply.



YIN et al.: SHIELD MPPI: A COMPUTATIONALLY EFFICIENT ROBUST MPC METHOD USING CONTROL BARRIER FUNCTIONS

2 10 1.0
© ~—
£ 05 0.5 = S
[72]
© == —
S 00 0.0
2]
c
o 2 2
@ - S
o -
O o 0
>60 6.0
‘©
0 55 55 e
)
> 50 5 == - 5.0
10 20 30 40 50 10 20
ey
6m/s
Fig. 3.

7111

10
0.5

0.0

6.0

5.0

30 40 50 10 20 30 40 50
qey qﬂy
7m/s 8m/s

Cost sensitivity comparison between Shield-MPPI and MPPI. Each column is obtained by running the controllers using a different target velocity v,. The

blue curves show the performance of the standard MPPI controller, while the orange curves indicate the proposed Shield-MPPI controller. The curves represent
the average performance of 100 laps with the shaded tubes showing 95% confidence intervals, totaling 6000 laps in simulation.

—— Shield-MPPI
—— MPPI

Fig. 4. Shield-MPPI and MPPI trajectory visualization.

original MPPI controller achieves satisfying performance. For
the vehicle system (1), the cost for the lateral deviation g, in
(24) impacts driving maneuvers most in our simulations. With
lower g, values the vehicle may approach the track edges more
closely, providing room for diverse driving techniques. A higher
qe, keeps the system near the track’s centerline, reducing the
risk of colliding with track boundaries but restricting the range
of possible driving styles.

To this end, we tested the original MPPI together with the
proposed Shield-MPPI in simulation, and compared their per-
formance using a wide range of g, values. We define a crash
to be the situation where the vehicle deviates far from the
track centerline and comes to a complete stop after hitting the
track boundaries, and a collision as the case where the vehicle
slightly scrapes the track boundaries but does not halt. The first
row in Fig. 3 shows the crash rates within one lap, and the
second row shows the number of collisions per lap. The third
row illustrates the average velocity achieved. For a cost inter-
val q., € [0,50], the original MPPI’s crash rate and collision
count rise as the target velocity increases, while the proposed
Shield-MPPI almost always maintains zero crash rate and col-
lisions. Another observation is that the proposed Shield-MPPI
achieves safety with higher velocities than the original MPPI,
implying that the proposed approach generates more efficient
maneuvers. We visualize trajectories produced by both con-
trollers with g., = 30 and target velocity vy = 7 m/s in Fig. 4.
While MPPI frequently experiences collisions and crashes as
evidenced by the abruptly stopped curves, Shield-MPPI trajec-
tories appear safer and more efficient. Increasing Cyps in (25)

controller
— PPl
MPPI with CBF cost only

Shield-MPPI
—— MPPI with local repair only

collision rate

collision rate

12 1

8 10
control horizon

Fig. 5. Comparison of MPPI and Shield-MPPI using CPU implementation.

makes MPPI perform safer, but even using very large values
for Cyps results in crashes due to the limitations explained in
Section I.

E. Simulations With Limited Computational Resources

As discussed in Section I, the quality of trajectory samples
is crucial for all MPPI-type algorithms. Typically, MPPI and its
variants sample as many simulated trajectories as possible to
find optimal solutions by multi-threading using GPU. However,
most robots are not equipped with GPUs due to their large
size and high cost, and power requirements. For this reason,
the application of MPPI controllers is restricted to relatively
expensive, large-scale robotic systems, while robots designed for
affordability and having limited power and size lack the onboard
computational resources required to sample a sufficient amount
of trajectories in real-time.

To study the proposed algorithm’s performance under limited
computational resources, we run simulations using as few sam-
ple trajectories as possible with short control horizons on a CPU,
such that all controllers achieve more than 180 Hz. We include
data from the baseline MPPI, our method (Shield-MPPI), and
two ablations: our method with only the DCBF cost (and no local
repair) and MPPI with local repair only (but no DCBF cost term).
As shownin Fig. 5, we find that the baseline MPPI has the highest
collision rate, followed by MPPI with DCBF cost and no repair.
Our full double-layer Shield-MPPI and MPPI with repair only
achieve the highest safety rates. While the local repair method is
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Fig. 6. Collision rate reduction and absolute collision rate of Shield-MPPI
controller. Each grid shows the average collision rate reduction or the absolute
collision rate over 100 laps, totaling 11,000 laps for each heatmap.

highly effective, gradient computation is costly, limiting us to a
repair horizon of N = 4 for real-time processing. Including the
DCBF cost modification is crucial, as it allows MPPI to generate
improved controls that “warm-start” the local repair algorithm
by looking further into the future, which is particularly useful in
avoiding local optima.

To further investigate the performance improvement achieved
by the Shield-MPPI algorithm compared to the standard MPPI
implementation, we created a heat map shown in Fig. 6(a) to
demonstrate the crash rate reduction using the same data as in
Fig. 5. The negative numbers in Fig. 6(a) indicate the crash
rate reduction (Shield-MPPI collision rate minus MPPI collision
rate), with a darker color indicating more safety improvement.
It can be observed that the proposed algorithm provides more
protection against potential crashes when the control horizon
K and the number of trajectory samples M are small, with
darker cells appearing in the top-left corner and lighter ones at
the bottom-right corner. Fig. 6(b) shows the absolute collision
rates resulting from the Shield-MPPI controller, indicating that
the proposed approach achieves zero collisions with merely
50 samples and about 1.5 s control horizon.

FE. Comparison With Other Robust MPC Methods

To validate the robustness of the proposed Shield-MPPI con-
troller, we compared it with other state-of-the-art controllers that
take uncertainties into account during planning. In simulations,
we model external disturbances by adding Gaussian noise wy, to
the nominal system (1). It follows that the disturbed system is
given by,

Thy1 = f(xk,uk) + Wg. (26)

We ran simulations using the Risk-aware MPPI (RA-MPPI)
in [2] and the Covariance Steering Stochastic MPC (CS-SMPC)
in [8] to compare with our proposed approach. In addition,
we also used a hypothetical Perfect Tracking MPPI (PT-MPPI)
that ensures that the actual next state of the agent is the same
as the predicted next state from the MPPI, regardless of any
disturbances. The PT-MPPI assumes perfect trajectory tracking
with zero tracking error. It is, therefore, an ideal controller that
provides an estimate of the performance upper bound of the
tracking-based robust MPPI variants demonstrated in Fig. 1(e),
including the Tube-MPPI [6], and L1-Adaptive MPPI [7], etc. To
thoroughly test the robustness of the controllers, we use a poor
cost design that tends to cause more collisions; all controllers
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TABLE I
PERFORMANCE COMPARISON WITH OTHER STOCHASTIC MPC APPROACHES
Crash | Collisions | Avg. Speed Update

Controller Rate per lap (m/s) Rate (Hz)
Shield-MPPI 0.02 0.13 5.04 56
CS-SMPC 0.08 0.14 4.72 40
RA-MPPI 0.15 0.38 5.13 113
PT-MPPI 0.31 0.74 4,94 150
MPPI 0.46 1.02 4.90 152

\ 't s o, L
(b) Shield-MPPI avoids collision by
recovering AutoRally to safe zone

(c) AutoRally encountering bumps

Fig. 7. AutoRally experiment.

TABLE I
AUTORALLY EXPERIMENT RESULTS

Speed (m/s) Update
Controller Samples | Max. | Avg. | Rate (Hz)
MPPI(a) 10% 6.31 4.30 150
Shield-MPPI(a) 10% 721 | 478 57
MPPI(b) 20 450 | 2.60 232
Shield-MPPI(b) 20 6.99 | 4.61 221

share the same objective function and control horizon. All MPPI
variants sample 10* trajectories of 2 s horizon at each time step
to ensure a fair comparison. Table I summarizes the simulation
results, which show that the Shield-MPPI achieves the lowest
crash rate and number of collisions at relatively high velocities.

Another important observation from Table I is that while
the tracking-based MPPI variants can alleviate the impact of
unmodelled disturbances, they are not robust when using poorly
designed costs due to their lack of risk consideration.

G. AutoRally Experiment

We also investigated the robustness of the proposed Shield-
MPPI controller by running it on the real AutoRally plat-
form [19] in the presence of unmodelled external disturbances.
In our experiments, we tested all controllers on an outdoor
track shown in Fig. 7. Please refer to the online video' for
the experimental demonstration. The results are summarized in
Table II, where the controller MPPI(a) and the Shield-MPPI(a)
use GPU to sample 10 trajectories, while the MPPI(b) as well as
the Shield-MPPI(b) sample only 20 trajectories of 2 s horizon

![Online]. Available: https://youtu.be/aKMwEO9wfJ4
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on a CPU. The AutoRally vehicle is equipped with an Intel
Skylake Quad-core i7 CPU, and an Nvidia GTX 1080ti GPU.
The algorithms are implemented using Jax [23] in python.

From Table II, we see that the proposed Shield-MPPI con-
troller can achieve a 10.78% maximum speed and 7.21% average
speed improvements with merely 0.2% the number of trajectory
samples compared to the standard MPPI controller, with no
collisions observed during the experiments.

VII. CONCLUSIONS AND FUTURE WORK

In this letter, we have proposed the novel Shield-MPPI con-
troller that uses a control barrier function as a shield to prevent
unfavorable control performance and improve safety. In both
our simulations and experiments, the proposed algorithm sig-
nificantly reduced the number of safety constraint violations
compared to other state-of-the-art robust MPPI variants and
stochastic MPC methods. In addition, the Shield-MPPI offers
comparable, and even better performance, than the baseline
MPPI using a CPU instead of expensive GPUs, which has
always been a major limitation of applications for MPPI-based
algorithms.

The Shield-MPPI controller can be improved using learned
certificates as described in [13] and be applied to more compli-
cated control scenarios, such as multi-agent planning [24]. The
proposed safety shield in the Shield-MPPI can also be integrated
with existing MPC methods, such as MPPI variants [2], [3] or
robust MPCs [25], to further improve their performance and
ensure safety.
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