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Abstract—Ensuring safety and meeting temporal specifications
are critical challenges for long-term robotic tasks. Signal temporal
logic (STL) has been widely used to systematically and rigorously
specify these requirements. However, traditional methods of finding
the control policy under those STL requirements are computa-
tionally complex and not scalable to high-dimensional or systems
with complex nonlinear dynamics. Reinforcement learning (RL)
methods can learn the policy to satisfy the STL specifications
via hand-crafted or STL-inspired rewards, but might encounter
unexpected behaviors due to ambiguity and sparsity in the reward.
In this letter, we propose a method to directly learn a neural
network controller to satisfy the requirements specified in STL.
Our controller learns to roll out trajectories to maximize the STL
robustness score in training. In testing, similar to Model Predictive
Control (MPC), the learned controller predicts a trajectory within a
planning horizon to ensure the satisfaction of the STL requirement
in deployment. A backup policy is designed to ensure safety when
our controller fails. Our approach can adapt to various initial con-
ditions and environmental parameters. We conduct experiments on
six tasks, where our method with the backup policy outperforms the
classical methods (MPC, STL-solver), model-free and model-based
RL methods in STL satisfaction rate, especially on tasks with
complex STL specifications while being 10X-100X faster than the
classical methods.

Index Terms—Motion and path planning, machine learning for
robot control, AI-based methods.

I. INTRODUCTION

L EARNING to control a robot to satisfy long-term and
complex safety requirements and temporal specifications

is critical in autonomous systems and artificial intelligence.
For example, the vehicles should make a complete stop before
entering the intersection with a stop sign, wait a few seconds,
and then drive through it if no other cars are there. And a robot
navigating through obstacles to reach the destination should
always reach and stay at a charging station for a while to get
charged when it is low on battery.

However, designing the controller to satisfy those specifi-
cations is challenging. Traditional rule-based methods often
require expert knowledge and several rounds of trial and error to
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find the best design to handle the problem. Other learning-based
approaches either learn from demonstrations or rewards to find
the control policy to satisfy the behavior specification. Those
methods need plenty of expert data or great effort in reward
design (an improper reward will result in a learned policy to
generate unexpected behaviors)

To let the controller satisfy the exact behaviors, another di-
rection of solving this problem is to describe the requirements
in Signal Temporal Logic (STL) and find out the feasible plan
by solving an online optimization problem. Mixed-integer linear
programming (MILP) [1] is proposed to handle simple dynamics
and easy-to-evaluate atomic propositions, which has exponential
complexity and is hard to solve. For more complicated sys-
tems, gradient-based [2] and sampling-based methods (such as
Cross-Entropy Method (CEM) and covariance matrix adaptation
evolution strategy (CMA-ES) [3]) are proposed to synthesize
controllers to maximize the STL robustness score (which mea-
sures how well the STL is satisfied). However, they still need
to solve the problem online for each initial state condition
and each scenario, which limits their usage for more general
cases.

Motivated by the line of work in robustness score [4] and
controller synthesis [2], we propose Signal Temporal Logic
Neural Predictive Control, which learns a Neural Network (NN)
controller to generate STL-satisfied trajectories. The “STL solv-
ing” process is conducted in training, and in the test phase,
we use the trained controller (potentially with a backup pol-
icy) to roll out trajectories. Thus, we do not need the heavy
online optimization/searching required for those gradient-based
or sampling-based methods.

The whole pipeline is as follows: We construct an NN con-
troller and sample from the initial state (which might include
environment information) distribution. In training, we roll out
trajectories using the NN controller. We evaluate the approx-
imated robustness score on those trajectories to maximize the
robustness score. In testing, we follow the MPC procedure: our
learned controller predicts a trajectory that is safe/rule-satisfied
in the short-term horizon, and we pick the first (or first several)
actions in the deployment. Finally, when the learned controller
is detected violating the STL constraints, a sampling-based
backup policy is triggered to guarantee the robot’s safety. We
conduct experiments on six tasks shown in Fig. 1: driving near
intersections, reach-and-avoid problem, safe ship control, safe
ship tracking control, robot navigation and manipulation. On
tasks with simple dynamics or simple STL, our approach is on
par with the RL methods in terms of STL accuracy and we
surpass traditional methods such as MPC and STL solvers. We
achieve the highest STL accuracy on hard tasks such as ship safe
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Fig. 1. Benchmarks: learning traffic rules, reach-and-avoid game, ship safe/tracking control, navigation, and manipulation.

tracking control and robot navigation tasks, 20% ∼ 40% higher
than the second best approach. Our training time is similar to
RL, and our inference speed is 1/10-1/100X faster than classical
methods.

Our contributions are: (1) we are the first to use NN controllers
to predict trajectories to satisfy STL in a self-supervised manner
(without demonstrations) (2) we propose a backup policy to
ensure the safety of the robot when the learned policy fails to
generate STL-satisfied trajectories (3) we conduct challenging
experiments with complicated dynamics and STL constraints
and outperform other baselines.

II. RELATED WORK

Temporal logic (LTL [5], MTL [6], and STL [7]) can ex-
press rich and complex robot behaviors and hence is useful for
controller verification and synthesis. Plenty of motion planning
algorithms have been aiming to fulfill STL specifications. We
refer the readers to this survey [8].

Abstraction-based methods [9], [10], [11] emerged the ear-
liest, where an automaton or a graph is constructed and the
search-based planning is conducted on this discrete form of
abstraction. These methods often require domain knowledge and
are challenging to construct automatically.

The optimization-based approach came out for specific dy-
namics (e.g., linear), where the STL specifications are modeled
as linear constraints and the control policy is found via Convex
Quadratic Programming [12] or Mixed Integer Programming
(MIP) [13]. Though they do not need discretization or domain
expertise, the computation cost is still too high and they cannot
solve complicated systems. As a remedy, [1] plans feasible
line segments and then uses tracking controllers to adapt to
complex dynamics, and [14] uses separation principles to boost
the MILP-solving process.

To better handle complex dynamics, sampling-based ap-
proaches are proposed which are computationally efficient and
suitable for real-time applications. Representative works include
STyLuS* [15] that uses biased sampling and its concurrent
works [16], [17], [18] which use RRT or RRT*. Another line
of work to cope with nonlinear dynamics is gradient-based
methods. A differentiable measure for MTL satisfaction is de-
veloped in [19]. Inspired by it, STL-cg [20] handles backpropa-
gation for (parametrized) STL formulas under machine learning

frameworks. The work [21] learns STL for complex satellite
mission planning. The work [2] provides a counter-example
guided framework to learn robust control policies. However,
gradient descent is well-known to be slow and might stuck into
the local minimum. Both types of methods in this section may
not guarantee the optimality or completeness of the solution.

Recently, machine learning has been widely used for
STL/LTL controller synthesis, where neural networks (NN)
or other forms of parametrized policy are trained to satisfy
STL. These works can be further categorized into model-free
reinforcement learning (RL) [22], [23], [24], model-based RL
(MBRL) [3], [25], [26], and imitation learning [27], [28], [29].
Our method is similar to MBRL, where we train an NN con-
troller via stochastic gradient descent (SGD) to predict policy
sequences to maximize the robustness score.

III. PRELIMINARIES AND PROBLEM DEFINITION

A. Controlled Hybrid System

Consider a continuous-time hybrid system:{
ẋ = f(x, u), x ∈ C
x+ = h(x−), x ∈ D (1)

where x ∈ Rn denotes the system state and u ∈ Rm denotes
the control input. The system state here can contain both the
agent and environment information. The set C is the flow set
where states follow a continuous flow map and D is the jump set
where states encounter instantaneous changes. A jump captures
the scenarios where the agent updates its local observations
or resets timers. Here we consider the states and controls at
discrete time steps with time horizon T . Given an initial state x0
and a control sequence (u0, u1, . . ., uT−1), following the system
dynamics we can generate a trajectory (x0, x1, . . ., xT ). In our
context, we call this trajectory a trace (or signal) and denote it as
s. In this letter, we aim to learn a policy that can generate traces
satisfying temporal logic properties. The temporal requirements
rbtare formally introduced below.

B. Signal Temporal Logic (STL)

An STL formula comprises predicates, logical connectives,
and temporal operators [30]. The predicates are of the form
μ(x) ≥ 0where μ : Rn → R is a function with the state x as the
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input and returns a scalar value. STL formulas are constructed
in the Backus-Naur form:

φ ::= � | μ ≥ 0 | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2 (2)

where � means “true”, ¬ means “negation”, ∧ means “and”,
U means “until” and [a, b] is the time interval from a to b.
Other operators can be written from the elementary opera-
tors above, such as “or”: φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), “infer”:
φ1 ⇒ φ2 = ¬φ1 ∨ φ2, “eventually”: ♦[a,b]φ = �U[a,b]φ and
“always”: �[a,b]φ = ¬♦[a,b]¬φ. We denote s, t |= φ if a signal
s at time t satisfies an STL formula φ. The detailed Boolean
semantics in [7] is iteratively defined as:

s, t |= � (naturally satisfied)

s, t |= μ ≥ 0 ⇔ μ(s(t)) > 0

s, t |= ¬φ ⇔ s, t �|= φ

s, t |= φ1 ∧ φ2 ⇔ s, t |= φ1 and s, t |= φ2

s, t |= φ1 ∨ φ2 ⇔ s, t |= φ1 or s, t |= φ2

s, t |= φ1 ⇒ φ2 ⇔ if s, t |= φ1 then s, t |= φ2

s, t |= φ1U[a,b]φ2 ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. s, t′ |= φ2

and ∀t′′ ∈ [t, t′] s, t′′ |= φ1

s, t |= ♦[a,b]φ ⇔ ∃t′ ∈ [t+ a, t+ b] s, t′ |= φ

s, t |= �[a,b]φ ⇔ ∀t′ ∈ [t+ a, t+ b] s, t′ |= φ (3)

To measure how well the trace satisfies the STL formula, [4]
proposes a quantitative semantics called robustness score ρ: the
STL formula is satisfied if ρ > 0 and is violated if ρ < 0, and a
larger ρ reflects a larger margin of satisfaction. The robustness
score is calculated with the following rules:

ρ(s, t,�) = 1, ρ(s, t, μ ≥ 0) = μ(s(t))

ρ(s, t,¬φ) = − ρ(s, t, φ)

ρ(s, t, φ1 ∧ φ2) = min{ρ(s, t, φ1), ρ(s, t, φ2)}
ρ(s, t, φ1 ∨ φ2) = max{ρ(s, t, φ1), ρ(s, t, φ2)}
ρ(s, t, φ1 ⇒ φ2) = max{−ρ(s, t, φ1), ρ(s, t, φ2)}

ρ(s, t, φ1U[a,b]φ2) = sup
t′∈[t+a,t+b]

×min

{
ρ(s, t′, φ2), inf

t′′∈[t,t′]
ρ(s, t′′, φ1)

}
ρ(s, t,♦[a,b]φ) = sup

t′∈[t+a,t+b]

ρ(s, t′, φ)

ρ(s, t,�[a,b]φ) = inf
t′∈[t+a,t+b]

ρ(s, t′, φ) (4)

C. Problem Formulation

With the definition of the dynamical system and STL specifi-
cations, the problem under consideration is as follows.

Problem 1: Given a system model in (1), an STL formula φ
in (2) and an initial state set X0 ⊂ Rn, find a control policy π
such that starting from any state x ∈ X0, the trajectory sπ(x)

TABLE I
DIFFERENT SETUPS IN TRAINING UNDER CAR BENCHMARK

of the resulting closed-loop system satisfies the formula φ, i.e.,
∀x ∈ X0, sπ(x) |= φ.

IV. METHODOLOGY

A. STL Satisfaction as an Optimization Problem

To satisfy φ, we measure the satisfaction rate of φ using the
robustness score and thus form the boolean STL satisfaction task
as an optimization problem. Denote the policy parametrized with
θ as πθ. For x ∈ X0, the policy predicts a sequence of controls:
πθ(x) = u0:T−1. Following system dynamics, we can generate
the trajectory sπθ

(x) with horizon T + 1. Then we compute
the robustness score ρ(sπθ

(x), φ) for the STL formula φ on the
trajectory sπθ

(x) at time 0 (we omit t for brevity). Our goal is:
(omit dynamic constraints)

Find πθ, s.t. ρ(sπθ(x), φ) > 0, ∀x ∈ X0 (5)

Assuming x follows uniform distribution on X0, we aim to find
the optimal policy which maximizes the expected truncation
robustness score:

π∗
θ = argmax

πθ

E
x∼X0

[
min

{
ρ(sπθ(x), φ), γ

}]
(6)

where γ > 0 is the truncation factor. The min operator in the
expectation encourages the policy to improve “hard” trajecto-
ries (with robustness scores < γ) rather than further increasing
“easy” trajectories that already achieve high robustness scores
(≥ γ). This helps achieve high robustness score for all possible
cases. In addition, if the optimal value is γ, φ is guaranteed to
be satisfied on all sampled initial states. In the experiments, we
set γ = 0.5. An ablation study on γ is in Table I.
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B. Neural Network Controller Learning for STL Satisfication

We aim to solve (6) using neural networks. Unlike [2], which
solves the STL satisfaction online, we learn the control policy in
training, and thus, our approach can run in real-time in testing.
We use a fully-connected network (MLP) πθ to represent the
control policy. At each training step, we first sample initial
states from X0 and use πθ to predict a sequence of actions. Then
we roll-out trajectories based on these actions and calculate the
robustness score to form a loss function shown in (6). Finally, we
update the parameters of the neural network controller guided
by the loss function via stochastic gradient descent. However,
there remain two challenges for us to apply the gradient method.
First, the hybrid systems in (1) are non-differentiable at the
mode-switching instant. Secondly, ρ is not differentiable due
to the max (min) and sup (inf) operators in (4).

To tackle the non-smoothness in the hybrid systems dy-
namics, we assume a membership function IC : X → R exists
to imply whether a state xt is in the flow set (IC(xt) > 0)
or the jump set (IC(xt) < 0). Thus the forward dynamics
can be written as xt+1 = 1{IC(xt) > 0}f(xt, ut)Δt+ (1−
1{IC(xt) > 0})h(xt). Next, we approximate the 1(IC(xt) >

0) using Ĩw(xt) = (1 + Tanh(w · IC(xt)))/2 with a scaling
factor w > 0 to control the approximation (limw→∞ Ĩw(xt) =
1(IC(xt) > 0)). The dynamics now is:

xt+1 = Ĩw(xt)f(xt, ut)Δt+ (1− Ĩw(xt))h(xt) (7)

and we can learn STL satisfaction from this hybrid system.
To backpropagate the gradient through STL, we use the

approximated robustness score ρ̃ [19], which replaces the max
(min) and sup (inf) operators with smooth max (min):

m̃axk(x1, x2, . . .) :=
1

k
log

(
ekx1 + ekx2 + · · · )

˜mink(x1, x2, . . .) := − m̃axk(−x1,−x2, . . .) (8)

where k is a scaling factor for this approximation. If k → ∞,
the operator m̃ax = max and similarly˜min = min. We use k =
500 in our training. An ablation study on k is in Table I.

Now the framework is differentiable for both the STL robust-
ness score calculation and the system dynamics, we encode the
objective in (6) using the loss function:

LSTL =
1

|D0|
∑
x∈D0

max(0, γ − ρ̃(sπθ(x), φ)) (9)

where a finite number of states x are uniformly sampled from
X0 to form the training set D0. Aside from constraint satisfac-
tion, the agent might also need to maximize some performance
indices (e.g., “reach the destination as fast as possible.”) We
hence form the following loss function:

LTotal = LPerf + λLSTL (10)

where λ > 0 weighs the performance objective LPerf and the
STL violations LSTL. We admit the λLSTL term cannot guar-
antee the learned policy always satisfy the STL requirement,
but empirically we found out this can bring high STL satisfac-
tion rate without much effort in hyperparameter tuning. The

LPerf is often the Euclidean distance between state xt (in
the trajectories starting from x ∼ D0) and goal state x∗, i.e.,
LPerf = 1

|D0|(T+1)

∑
x∼D0

|xt − x∗|.

C. MPC-Based Deployment With a Backup Policy

In testing, we follow an online MPC manner. At each time step
t, the controller πθ receives the state xt and predicts a sequence
of commands u0:T−1, then we choose the first command u0
for the agent to execute. Ideally, this policy will satisfy the
STL constraints. However, this might not hold in testing due
to: (1) imperfect training and (2) out-of-distribution scenario.
Thus, we propose a backup policy. We monitor whether the
predicted trajectory satisfies the STL specification. If a viola-
tion occurs, we sample M trajectories in length T0 + 1 with
T0 < T . For the i-th trajectory ξ̃i = {xi0, xi1, . . .xiT0

}, we eval-
uate our controller at the final state xiT0

and rollout a trajectory

ξ̂i = {xiT0+1, x
i
T0+2. . ., x

i
T } (we only keep the first T − T0

timesteps). Since Neural Networks allow batch operations, all
the sampled trajectories {ξ̃i}Mi=1 can be efficiently processed in
one forward step to get {ξ̂i}Mi=1. Finally, we select the trajectory
ξi = (ξ̃i, ξ̂i) = {xi0, . . ., xiT0

, xiT0+1, . . .x
i
T }with the highest ro-

bustness score and pick its first action to execute.
If this trajectory still cannot satisfy the STL specification, we

choose a trajectory that only satisfies the safety condition:

argmax
i

ρ(ξi, t, φ), s.t. ξi, t| = φsafe (11)

where φsafe contains all the safety constraints in φ. We start
with T0 = 1, obtain ξi using the above method, and gradually
increase T0 until a solution for (11) is found. If there is still no
feasible solution after T0 = T , we choose ξi with the longest
sub-trajectory starting from xi0 that satisfies φsafe and pick the
first action to execute. This ensures at least φsafe are satisfied
and the agent can recover to satisfy φ in the earliest time. we
discretize the action space to L bins, and hence the sampling
size isM = LT0 . We prove the backup policy has a probabilistic
guarantee to find a feasible solution.

Theorem 1: Assume that a policy u∗ exists with a δ-
radius neighborhood satisfying constraints φ, i.e., u |= φ, ∀u ∈
{u|maxt,i |ut,i − u∗t,i|1 ≤ δ}, and each step’s policy u∗t is uni-
formly distributed in

∏
k[u

min
i , umaxi ]. The probability our algo-

rithm finds a solution is: min{1, ( ((2L−4)δ)mT
∏m

i=1(u
max
i −umin

i )T
}.

Proof 1: We sample from a grid in the policy space at each
time step. The probability that a solution can be found is equal
to that the δ-region contains a grid point at each time step, which
is greater than or equal to the probability that the union of the δ-
hypercube centered at all grids covers the policy u∗. The volume
of the policy space at each time step is

∏m
i=1(u

max
i − umini ). Each

hypercube has a side length 2δ. Thus the volume of the union
of the hypercubes is greater than (as we omit the cubes that are
at the boundary of the policy space) (L− 2)m(2δ)m. Thus the
probability of the union covering u∗t is min{1, ((2L−4)δ)m∏m

i=1(u
max
i −umin

i )
},

and for T steps, the probability is powered by T to derive
expected result shown in Theorem 1.
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D. Remarks on the STL Constraints

To handle different configurations, we augment the system
states with additional parameters such as obstacle radius, loca-
tions and time constraints. These parameters stay constant unless
encountering a reset. The policy learned from this augmentation
can solve a family of STL formulas and can adapt to unseen
configurations without further fine-tuning.

A wide range of requirements commonly used in robot
tasks can be represented by STL, owing to the flexible form
of atomic propositions (AP). Denote the 2D location of a
robot as x[0:2] ∈ R2. We use μ(x) = r − ||x[0:2] − xobs||2 to
check collision with a round obstacle at xobs ∈ R2 with ra-
dius r ∈ R, where || · ||2 represents the Euclidean norm. For a
polygon region S = {y : Ay ≤ b} with A ∈ Rk×2 and b ∈ Rk,
μ(x) = b−Ax[0:2] can check whether the robot is in S. We
use μ(x) = −(x[0] − xmin)(x[0] − xmax) to check whether the
agent’s x-coordinate is in the interval [xmin, xmax]. Furthermore,
we can evaluate whether a system mode has been activated by
checking an indicator I1 ∈ {0, 1} via AP: μ(I1) = I1 − 0.5.

However, it is hard to cope with constraints with a time inter-
val. Consider φ = �[5,10]Stay(A) which means “Always stay at
A in the time interval [5,10]”. One step later, the agent will still
try to satisfy �[5,10]Stay(A), which actually should be updated
to �[4,9]Stay(A). Thus we need our policy to be aware of the
STL time interval updates. We augment the system state with the
timer variables and transform the original STL formula to extra
STL constraints on those timer variables. To be more specific,
the timer variables follow the dynamic: τt+1 = τt +Δt and the
extra STL constraint is �[0,T ]((5 ≤ τ ≤ 10) → Stay(A)).

V. EXPERIMENTS

We conduct experiments with diverse dynamics and task
specifications. Our method’s training time is only 0.5X the time
needed for training RL. In testing, our method is on par with the
best baseline on simple benchmarks and achieves the highest
STL accuracy on more complicated cases. As for runtime,
our approach (without backup policy) is 10X-100X faster than
classic planning methods such as MPC and MILP.

A. Experiment Setups

Baselines: We compare with RL, model-based RL (MBRL),
and classical approaches. For RL, we train Soft Actor
Critic [31] [32] under five random seeds with varied rewards.
RLR: uses a hand-crafted reward. RLS: uses STL robustness
score as the reward. RLA: uses STL accuracy as the reward.
The MBRL baselines are MBPO: [33] with STL accuracy as
the reward, PETS: [34] with a hand-crafted reward, and CEM:
Cross Entropy Method [35] with STL robustness reward. The
rests are MPC: Model predictive control via Casadi [36] for
nonlinear systems and Gurobi [37] for linear dynamics, STLM:
An official implementation for STL-MiLP [1] with a PD control
for nonlinear dynamics if needed, and STLG: A gradient-based
method similar to [2].

Implementation details: For our method, we set γ = 0.5,
k = 500, T ∈ [10, 25] and Δt ∈ [0.1s, 0.2s]. Our controller is

a three-layer MLP with 256 hidden units in each layer. We
uniformly sample 50000 points and train for 50 k steps (250 k
for navigation). We update the controller via the Adam opti-
mizer [38] with a learning rate 3× 10−4 for most tasks. Training
in PyTorch [39] takes 2-12 hours on a V100 GPU.

Metrics: In testing we evaluate the average STL accuracy (the
ratio of the short segments starting at each step satisfies the STL)
and the computation time. For RL baselines (RLR, RLS, RLA),
we also compare the STL accuracy in training.

B. Benchmarks

1) Driving With Traffic Rules: We consider driving near in-
tersections where routes and lateral control are provided. The
state (x, v, Ilight, τ,Δx, vlead, Iyield)

T is for ego car offset,
velocity, light indicator (0 for stop sign and 1 for traffic light),
timer (stopped time or traffic light phase), leading vehicle dis-
tance, its speed, and yield signal (1 for yield and 0 for not). The
(partial) dynamics are: ẋ = v, v̇ = u, ˙(Δx) = vlead − v, τ̇ =
(1− Ilight)1(at stop sign) + Ilight where 1(at stop sign) =
1(x(x+ 1) ≤ 0) as x = 0 means being at the intersection, and
u is the control. x, Ilight, τ will reset at a new intersection,
Δx, vlead will reset when the leading car changes, and Iyield
will change when the external yield command is emitted. The
rules are: (1) never collide with the leading car, (2) stop by the
stop sign for 1 s and then enter the intersection if no yield (3)
stop by the intersection if it is red light. Thus, Φ = (¬Ilight ⇒
φ1) ∧ (Ilight ⇒ φ2) ∧ φ3 where (Ttotal = Tr + Tg):

φ1 = ♦[0,T ](τ > 1) ∧ (
Iyield ⇒ �[0,T ](x < 0)

)
φ2 = �[0,T ](τ%(Ttotal) > Tr ∨ x(x− xinter) > 0)

φ3 = �[0,T ](Δx > 0) (12)

where Tr and Tg are red and green light phase time, % is modulo
operator and xinter is the intersection width. We train πθ under
each sampled scenario (traffic light, stop sign, yield, leading
vehicle) at one intersection. In testing, we conduct multi-agent
planning with 20 cars and 20 junctions.

2) Reach-N-Avoid Game: An agent navigates to reach goals
and avoid obstacles in a 2D maze shown in Fig. 1(b). It can see up
to two levels. The agent state is (x, v,Δy, x0, l0, g0, x1, l1, g1)T

where x and v denote the agent’s horizontal position and veloc-
ity,Δy is the vertical distance to the nearest level above. Here x0
is the obstacle’s leftmost horizontal position, l0 is the obstacle
width, and g0 is the goal location relative to the obstacle (-1
if no goal). x1, l1, g1 are for the second level above. The agent
dynamics are: ẋ = v, v̇ = a, ˙(Δy) = cwherea is the control and
c is a constant. Here Δy,Δx0, l0, g0,Δx1, l1, g1 will reset once
the agent passes a level. The STL is Φ = φ1 ∧ φ2 ∧ φ3 ∧ φ4:

φ1 = g0 > 0 ⇒ ♦[0,T ]

(
(x− l0)

2 +Δy2 < r2
)

φ2 = �[0,T ](Δy(Δy − h) < 0 ⇒ Δx0(Δx0 − l0) > 0)

φ3 = g1 > 0 ⇒ ♦[0,T ]

(
(x− l1)

2 + (Δy − d)2 < r2
)

φ4 = �[0,T ](Δy1(Δy1 − h) < 0 ⇒ Δx1(Δx1 − l1) > 0)
(13)
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where r is the goal radius, h is the obstacle’s height, Δxi =
x− xi, Δy1 = Δy − d and d is the gap between two levels. In
testing, we control for 500 time steps for evaluation.

3) Ship Collision Avoidance: We control a ship (modeled
in [40](Section 4.2)) to avoid obstacles with varied radii. The
12-dim system state has x, y, ψ, u, v, r to describe the pose
and x1, y1, r1 (x2, y2, r2) to denote the (second) closest ob-
stacle with radius r1 (r2) and relative position x1, y1 (x2, y2).
The controls are thrust T and rudder angle δ. The dynamics
are: ẋ = u cosψ − v sinψ, ẏ = u sinψ + v cosψ, ψ̇ = r, u̇ =
T, v̇ = 0.01δ, ṙ = 0.5δ. The rules are: (1) always be in the river
(2) always avoid obstacles. The STL is Φ = φ1 ∧ φ2 ∧ φ3:

φ1 = G[0,T ](|y| < D/2)

φ2 = G[0,T ]((x− x1)
2 + (y − y1)

2 ≤ r21

φ3 = G[0,T ]((x− x2)
2 + (y − y2)

2 ≤ r22 (14)

where D is the width of the river. In testing, we roll out 20
trajectories for 200 steps to evaluate the performance.

4) Ship Safe Centerline Tracking: Besides collision avoid-
ance, the ship must also not deviate more than c time units from
the centerline. The 10-dim state now hasx, y, ψ, u, v, r to denote
the ship state, x1, y1, r1 for the closest front obstacle, and τ for
the remaining time the ship can deviate, with τ̇ = −1(|y| > γ)
where γ is the deviation threshold. x1, y1, r1 and τ will get
reset once the ship passes the current obstacle. The STL is:
Φ = φ1 ∧ φ2 ∧ φ3 where,

φ1 = G[0,T ](|y| < D/2)

φ2 = G[0,T ]((x− x1)
2 + (y − y1)

2 ≤ r21

φ3 = (τ > 0)U[0,T ]

(
G[0,T ](|y| < γ)

)
(15)

We rollout 20 trajectories for 200 steps for evaluation.
5) Robot Navigation: A battery-powered robot navigates

to reach the destinations and charging stations. The state
(x, y, xd, yd, xc, yc, τb, τs)

T denotes the robot, the target, the
charging station, the battery, and the remaining time at the charg-
ing station. The controls are speed v and heading θ. The dynam-
ics are: ẋ = v cos θ, ẏ = v sin θ, τb = −1, τs = −1{station}
where its battery will reset: τ+b = T once it reaches the charger
station and the remaining stay time will get reset τ+c = c once
the robot leaves the charging station. The rules are: (1) al-
ways avoid obstacles (2) go to the target if high battery (3)
if low battery, go to the charging station and stay for c time
units and (4) keep the battery level non-negative. The STL is
Φ = φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5:

φ1 = G[0,T ](¬In(Obstacles)) φ4 = G[0,T ](τb > 0)

φ2 = τb > 1 ⇒ F[0,T ](Near(xd, yd))

φ3 = τb < 1 ⇒ F[0,T ](Near(xc, yc))

φ5 = Near(xc, yc) =⇒ G[0,c](Near(xc, yc) ∨ τs < 0) (16)

where In(Obstacles) checks if the robot is in any obstacle,
and Near(x’,y’) = (x− x′)2 + (y − y′)2 ≤ r2. In testing, we
constructed a sequence of destinations and five charging stations.

After the robot reaches one destination, the next one will show
up. The robot can choose any station for charging.

6) Manipulation: A 7DoF Franka Emika robot aims to reach
the goal without collisions or breaking the joints (We use Py-
Bullet for visualization). The state (q0. . .q6, x, y, z)

T denotes
the joint angles and the goal location. The dynamics are q̇i =
ui, i = 0, . . ., 6 where ui controls the i-th joint. The obstacle is
at (0.3, 0.3, 0.5). The STL is Φ = φ1 ∧ φ2 ∧ . . .φ9:

φ1=F[0,T ]

(
(xe − x)2 + (ye − y)2 + (ze − z)2 < r2g

)
φ2=G[0,T ]

(
(xe−0.3)2+(ye − 0.3)2+(ze − 0.5)2 > r2o

)
φi+3=G[0,T ]

(
qi > qmin

i ∧ qi < qmax
i

)
, i = 0, . . ., 6 (17)

where xe, ye, ze is the end effector, qmin
i , qmax

i are the joint
limits and rg, ro are the goal / obstacle radii. In evaluation, the
arm is asked to reach a sequence of goals in 250 steps.

C. Training and Testing Comparisons

During training, we compare the STL accuracy of our method
and the model-free RL baselines (RLR, RLS and RLA). As
shown in Fig. 2, our method in most cases reaches the highest
STL accuracy. For tasks with simple dynamics (Traffic, Reach-
n-avoid) or simple STL specifications (Ship-safe), the best RL
baselines can have similar STL accuracy to ours. However,
no one RL baseline can consistently outperform the others.
For tasks with moderate system complexity and complicated
STL specification (Ship-track, navigation and manipulation),
our approach will have 10% ∼ 40% gain in the STL accuracy.
We speculate the gain here is because our approach leverages
the system dynamics and the gradient information from the STL
formula. This shows the advantage of our approach in policy
learning compared to RL methods.

In testing, we compare with all baselines and show the result
with our backup policy (OursF). As shown in Fig. 3, aside from
CEM, Ours can outperform the best baselines by 20% for the
ship-track task, 45% for the navigation task and 8% for the
manipulation task, and only 3% lower than the best approaches
on three tasks with simple dynamics or STL formulas. Compared
to CEM, Ours has a slightly lower accuracy on ship safe control,
tracking control, and navigation but a much higher accuracy for
the rest three tasks. With the backup policy, OursF achieves
the same accuracy as the best RL baselines on Reach-n-avoid
and Ship-safe tasks and 1.7% lower on the Traffic task and
consistently outperforms CEM. The high STL accuracy of CEM
might be due to the short tasks horizon and low action dimension.
The inferior performance for MPC, STLM and STLG might
be because the solvers encounter numerical issues and cannot
converge or the optimizer stucks at local minimum. MBPO and
PETS are worse, which might be because they need careful
hyper-parameters tuning and learning the dynamics (for the
augmented state space) is hard, especially for high-dimension
tasks (e.g., navigation and manipulation). As for the computation
time, as shown in Fig. 4, Ours is on par with RL and 10X-100X
faster than classic MPC or STL solvers. While OursF is slower
due to the backup policy, it is still 3X faster than CEM and other
classical methods.
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Fig. 2. STL accuracy during training.

Fig. 3. STL accuracy at test phase.

Fig. 4. Computation time at test phase.

Fig. 5. Backup policy in testing.

D. Testing Backup Policy for Out-of-Distribution Scenarios

When the testing case is out of distribution (OOD), our
proposed backup policy can at least maintain the agent’s safety
and improve the STL accuracy after recovering from the unseen
distribution. In the ship-track benchmark, we shift the first
obstacle vertically from the centerline and enlarge the second
obstacle, which makes the test case OOD (as in training, the
obstacles are smaller and on the centerline). From Fig. 5(c) and
(d), we can see that without backup policy, Ours only achieves
6% safety rate and 54% STL accuracy (from Fig. 5(a) we can
see that most of the agents will collide with the first obstacle due
to OOD). With the backup policy, OursF achieves 100% safety

and increases STL accuracy to 85%. Other baselines are plotted
in Fig. 5(c) and (d) for reference.

E. Ablation Studies

Here on the traffic benchmark we show how different pa-
rameters and architectures affect the training and the validation
accuracy. As shown in Table I, for hyperparameters such as γ, k
and network size, a wide range of valid values can achieve similar
performances (0.5 < γ < 1.0, 10 < k < 10000, NN from 64x3
to 256x3). As γ, k, the NN size and the training samples in-
crease, the train/validation STL accuracy almost monotonously
increases initially and saturates eventually. Another interesting
finding is that, with only 800 training samples, we can already
achieve 83.6% STL test accuracy, which is slightly higher
than STLM (83%, the best classical baseline on the Traffic
benchmark). This shows that our approach has a high learning
efficiency.

F. Limitations

First, our gradient-based method might be stuck at a local
minimum. In testing, our learned policy cannot always satisfy
the STL due to the approximation for the robustness score and
the generalization error. Although we propose a backup policy
to tackle it, a more robust and time-efficient approach is needed.
Besides, we explicitly encode map information into states, which
is inefficient for complex and moving obstacles. Representation
learning might handle this issue.
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VI. CONCLUSION

We propose a neural network controller learning framework
to fulfill STL specifications in robot tasks. Unlike RL methods,
our approach learns the policy directly via gradient descent to
maximize the approximated robustness score. Experimental re-
sults show that our approach achieves the highest STL accuracy
compared to other approaches. A backup policy is proposed
for STL monitoring process and guarantees the basic safety.
In future, we aim to solve more general STL formulas and
perception-based controls.
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