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Model-Free Neural Fault Detection
and Isolation for Safe Control
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Abstract—A sudden actuator fault in a safety-critical
system can cause safety violations and lead to severe
consequences. Existing fault-tolerant control (FTC)
approaches normally focus on maintaining system
performance and do not consider system safety. Control
Barrier Functions (CBFs) have emerged as useful tools
from control theory for providing safety guarantees for
control systems. However, existing applications of CBFs
either do not consider actuator faults or only consider the
special case where it is known which actuator is faulty or
the case when redundant actuators are present to maintain
controllability even under faults and failures. In this letter,
we address the problem of safe recovery under a more
realistic scenario where it is completely unknown which
actuator is faulty and when the fault occurs. We develop a
novel model-free learning framework for an output-based
neural fault-detector that detects when a fault occurs and
in which actuator. Based on the learned functions, we
propose a switching framework for automatically detecting
and recovering from faults. We evaluate our method on a
case study involving a Crazyflie quadrotor with a motor
failure.

Index Terms—Fault detection, machine learning, neural
networks.

I. INTRODUCTION

S
AFETY-CRITICAL systems are those where violation of

safety constraints could result in loss of lives, significant

property damage, or damage to the environment. In real-life

applications, many cyber-physical control systems are safety-

critical, including autonomous cars and aircraft. In this context,

safe control requires finding a control policy that keeps the

system within a predefined safe region at all times.
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Designing and verifying safe control policies for complex

autonomous systems is challenging because of the need to

balance safety guarantees with other control objectives [1].

Control Barrier Functions (CBFs, [1], [2]) have been exten-

sively used for certifying that a closed-loop system satis-

fies desired safety requirements. In recent years, CBF-based

approaches have achieved promising results in many safety-

critical control systems, ranging from self-driving cars [1] to

aircraft [2], [3], [4].

Unfortunately, prior works on safe control using CBFs have

paid little attention to the effects of actuator faults. While [2]

proposes fault-tolerant control using CBFs, it is limited to

systems with redundant actuators. Failures and faults without

actuator redundancies have been studied in the field of fault-

tolerant control (FTC), which has been applied extensively to

applications such as aircraft [5], [6], and spacecraft attitude

controls [7].

There is a plethora of work on fault-detection and identifi-

cation (FDI); we refer the interested readers to the survey arti-

cles [8], [9], [10] that discuss various approaches of FDI used

in the literature. In particular, the residual-based method has

been used very commonly in prior work, where the expected

output (under the commanded input and a known system

model) and the actual output of the system are compared for

fault detection. Such residual information requires the knowl-

edge of the system model, and thus, is model-dependent. In

this letter, we design a model-free FDI mechanism that only

uses the actual output of the system and the commanded input

to the system, and does not use the residual information. There

is some work on using LSTM-based FDI, e.g., [11], [12],

but it is limited to a very narrow class of faults. As noted

in [13], prior work on neural network-based model-free FDI

relies on the reconstruction of the model (e.g., [14]), or gen-

erating the residual information using Kalman filtering (see,

e.g., [15]) or extended state-observers (see [16]). Koopman

operator-based FDI techniques such as [14], [17] reconstruct

a linear representation of the model for calculating the resid-

ual information. In such approaches, the approximations used

for computing a finite-dimensional Koopman operator adver-

sarially affect the performance of FDI. Another common

data-driven approach of FDI is based on Principle Component

Analysis (PCA), in particular, using Auto-associative neu-

ral network (AANN) [18], [19]). However, AANN-based

methods are generally applicable for sensor-faults and its
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fixed five-layer architecture limits its applications to higher

dimensional systems. The method in [13] also estimates a

reduced-order model of the system as an intermediate step.

The main disadvantage of model-based FDI methods is that

their performance can degrade significantly due to model

uncertainties or imperfections in the used model for design-

ing the FDI mechanism and the actual system model. To

overcome this limitation, in this letter, we present a truly

model-free approach, where we do not require to either learn

the system model or create a reduced-order representation of

the model. Instead, we use the system output and the com-

manded input as the features of a neural network, which

directly predicts whether there is an actuator fault. We illus-

trate through numerical experiments that the model-free FDI

mechanism performs at par (and even better in some cases

than) the model-based mechanisms. We also illustrate the

robustness of the proposed method against modeling uncertain-

ties and demonstrate through numerical examples that while

the performance of the model-based FDI mechanism drops sig-

nificantly under model uncertainties, the performance of the

designed model-free approach remains the same.

Notation: We denote by R and R+ the sets of real and non-

negative real numbers, respectively. |x| denotes the Euclidean

norm of a vector x ∈ R
n. The Lie derivative of a contin-

uously differentiable function h : R
n → R along a vector

field f : R
n → R

m at a point x ∈ R
n is denoted as

Lf h(x) := ∂h
∂x

(x)f (x). A continuous function α : R+ �→ R+

is class-K if α(0) = 0 and α is strictly increasing.

II. PROBLEM FORMULATION

We begin by considering a continuous-time nonlinear

dynamical system of the form

ẋ = f (x) + g(x)u, (1a)

y = ρ(x), (1b)

for state x ∈ X , control input u ∈ U , with locally Lipschitz

dynamics f : X → R
n, g : X → R

n×m, and state and control

sets X ⊂ R
n and U ⊂ R

m, respectively. Here, ρ : Rn → R
p

denotes the output map of the system.

In this letter, we study the safety of S under actuator faults.

Specifically, we consider an actuator fault occurring at some

unknown time tf ≥ 0:

u(t, x) =

{

π(t, x) if t ≤ tF;

diag(�) π(t, x) if t > tF,
, (2)

where � = {0, 1}m ∈ R
m is the vector denoting whether an

actuator is faulty or not, and diag : Rm → R
m×m maps a vector

in R
m to a diagonal matrix in R

m×m. If the i−th actuator is

faulty, then �i = 0 and the rest of each of the elements of �

is 1. Another way to represent this model is:

u(t, x) = π(t, x) + �u, (3)

where �ui = −πi(t, x) and 0, otherwise. Here, the set of

faulty signals can be collectively represented as �U = {�u1,

�u2, . . . ,�um}, where �ui represents the case when the i−th

actuator is faulty. We can now state the problem studied in this

letter. Consider system S with fault-model (2) for a given �U

and disjoint sets of safe and unsafe states Xsafe,Xunsafe ⊆ X ,

i.e., Xsafe ∩ Xunsafe = ∅. We assume that the fault sig-

nal is uniformly observable through the system output so

that it is possible to detect the fault using system output.

Given this context, we consider the following control synthesis

problem:

Problem 1 (Fault-Tolerant Safe Control Synthesis

Problem): Compute the largest possible subset X0 ⊂ Xsafe

and a control policy π such that the following safety property

holds for all trajectories x : R+ → R
n of the closed-loop

dynamics under the policy π for all �u : R+ → �U

x(0) ∈ X0 =⇒ x(t) /∈ Xunsafe ∀t ≥ 0.

Note that in some of the prior work (see, e.g., [20]), the

safe and the unsafe regions are chosen as complementary sets,

i.e., Xsafe = R
n \Xunsafe. While it is possible to consider such

a setup, we prefer a more general setup where there is a non-

empty region X \ (Xsafe ∪Xunsafe). The reason for considering

such a formulation is justified later in the letter, where we

explain how it makes it easier to learn a CBF due to the pres-

ence of this middle region. We begin by reviewing the standard

definition of CBFs in the fault-free case, then introduce our

notion of fault-tolerant CBFs in the next section.

Definition 1 (Control Barrier Function (CBF) [1]): A func-

tion h : X �→ R is a CBF for system S if there exists a class-K

function α such that:

h(x) < 0 ∀x ∈ Xunsafe, h(x) ≥ 0 ∀x ∈ Xsafe, (4)

sup
u∈U

{Lf h(x) + Lgh(x)u + α(h(x))} ≥ 0 ∀x ∈ Xsafe. (5)

Given a CBF, we can define a set of admissible controls

K(x) = {u ∈ U | Lf h(x) + Lgh(x)u + α(h(x)) ≥ 0} so that any

sufficiently smooth control input from this set is guaranteed

to keep the system safe, per the following lemma.

Lemma 1 [1, Corollary 2]: If h is a CBF, then any locally

Lipschitz continuous control policy π : X → U such that

π(x) ∈ K(x) ∀x ∈ X renders the closed-loop system S safe.

When U is a polytope, we can define a CBF-based controller

using a Quadratic Program (QP) as in [21], where h is used

to filter a nominal controller πnominal : D → R
m:

πpre(x) = arg min
u∈U ,α∈R

1

2
‖u − πnominal(x)‖

2
2 +

1

2
α2 (6a)

s.t. Lf h(x) + Lgh(x)u ≥ −α h(x). (6b)

Here, the class-K function is chosen as a linear function

α(h(x)) = αh(x), with α as a decision variable instead of

being fixed to help with the feasibility of the QP [21]. In

this architecture, the CBF filters the nominal controller to

ensure safety even as the nominal controller pursues other

objectives (e.g., reaching a goal location or tracking a ref-

erence trajectory). This approach is agnostic to the choice of

πnominal and guarantees to preserve safety under any choice

of nominal controller [1]. The nominal controller can be

designed to drive the system trajectories to a goal location

xg ∈ R
n. In this letter, we use an LQR-based nominal con-

troller, i.e., πnominal(x) := KLQR(x − xg), where the LQR gain

matrix KLQR is computed by linearizing the system (1) at the

goal location xg.
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Fig. 1. Safe recovery using learned CBFs and a fault-detection
mechanism.

Our approach to solving Problem 1 involves these steps:

1. Learn a fault-detector and a mechanism to switch the con-

trol policy from a pre-fault policy πpre to a post-fault πpost

in response.

2. Learn a pre-fault CBF hpre such that the corresponding

safety region Spre : {x | hpre(x) ≥ 0} ⊂ Xsafe and a fault-

tolerant CBF hpost such that Spost = {x | hpost ≥ 0} ⊆ Spre

for the fault model (2) for a given �U .

First, we will combine these pre- and post-fault policies

by deriving and proving the soundness of a CBF-based fault

detection and switching mechanism. Then, we will provide

the extension of the CBF theory to the fault-tolerant case and

present our learning-based approach to finding pre- and post-

fault CBFs hpre and hpost, respectively. Finally, we will utilize

these learned CBFs in a QP framework for synthesizing cor-

responding control policies. The resulting closed-loop system

is depicted in Figure 1.

III. NEURAL FAULT-DETECTION AND ISOLATION

Model-free FDI: The faults must be detected correctly and

promptly for the safe recovery of the system. We use a

learning-based approach to design a fault-detection mecha-

nism. Let � ∈ {0, 1}m denote the fault vector, where �i = 0

indicates that i−th actuator is faulty, while �i = 1 denotes

it is not faulty. Let �NN : Y × U → R
m be the predicted

fault vector, parameterized as a neural network. Here, Y =

{y(·) | y(·) = ρ(x(·)), x(·) ∈ X } is a function space consisting

of trajectories of the output vector, and U = {u(·) | u(·) ∈ U}

is a function space consisting of input signals. To generate the

residual data, the knowledge of the system model is essential,

which makes the residual-based approach model dependent.

This is the biggest limitation of this approach, as modeling

errors can lead to severe performance issues in fault detection

due to model uncertainties. To overcome this, we propose

a model-free NN-based FDI mechanism that only uses the

system input and output (y, u) as the feature data, i.e., it does

not require the model-based residual information. For a given

time length T > 0, at any given time instant t ≥ T , the

NN function �NN takes a finite trace of the system trajec-

tory y(t − τ)|Tτ=0 and the commanded input signal u(t − τ)T
τ=0

as input, and outputs the vector of predicted faults.

Model-based FDI: For model-based FDI mechanisms, the

residual data is also required as an additional feature to the

NN. The error vector ỹ is defined as the stepwise error between

the actual output of the system with potentially faulty actuators

Fig. 2. General neural-network architecture for failure prediction. The
training data includes all possible trajectories with different lengths of
faulty input (the violet color represents the portion of the trajectory with
faulty input).

and the output of the system assuming no faults, i.e., ỹ(t) =

y(t) − ȳ(t) where y is the output of (1) with faulty input and

ȳ is the output of ˙̄x = f (x̄) + g(x̄)u, ȳ = ρ(x̄), with ȳ(kτ) =

y(kτ), k = 0, 1, 2, . . . , where τ > 0 is sampling period for

data collection. In most of the prior literature, only ỹ (or x̃,

depending on whether the approach is output-based or state-

based) information is used for designing FDI. In the numerical

experiments, we compare the performance of an FDI with just

ỹ trajectory as the feature, and (y, ỹ, u) trajectories as features.

Training data: For training, the trajectory data is collected

under all one-actuator faults where one of the actuators is

completely faulty, i.e., results in zero input. At each time

instant t ≥ T , it is possible that only a portion of the tra-

jectory y(·) is generated under a faulty actuator. That is, the

possible input to the system is u(t − τ, Tf )
T
τ=0

:= [u(t − T),

u(t − T + 1), . . . , uf (t − T + Tf ), uf (t − T + Tf + 1), . . . , u(t)]

(with the corresponding output trajectory y(t − τ, Tf )
T
τ=0 and

the error trajectory ỹ(t − τ, Tf )
T
τ=0), where Tf ∈ [0, T] dic-

tates the time instant when the fault occurs. Thus, the NN

for fault prediction must be trained on all possible combina-

tions of occurrences of fault. Hence, our training data includes
⋃T

Tf ∈0(y(t − τ, Tf )
T
τ=0, ỹ(t − τ, Tf )

T
τ=0, u(t − τ, Tf )

T
τ=0) (see

Figure 2). In every training iteration, we generate Ntraj =

N1 × (m × Tf + 2) trajectories, so that we have N1 > 0 tra-

jectories for faults in each of the m actuators with all possible

lengths of trajectories under one faulty actuator in [0, Tf ], and

2 × N1 > 0 trajectories without any fault. The loss function

for training is defined as

L� =

Ntaj
∑

j=1

[

||�j,rNN

(

yj(·), ỹj(·), uj(·)
)

− �j‖ − ε

]

+
, (7)

where �j ∈ {0, 1}m is the fault vector used for generating the

data for the j−th trajectory and 0 < ε � 1. In each training

epoch, we generate N = 250×m×100+25000 trajectories of

length Tf and maintain a buffer of 1.5 M trajectories. The tra-

jectory data for training is generated by randomly sampling the

initial conditions {x(0)}
N1

1 from the safe set Xsafe and rolling

out the closed-loop system under an LQR input for both the

fault and non-fault scenarios. We train the NN until the loss

reduces to 10−3. We use a Linear-Quadratic Regulator (LQR)

input to generate the training data (since solving a CBF-based

QP is very slow for collecting a sufficient amount of train-

ing data). In our experiments, we illustrate that the trained
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NN is highly robust to the kind of input used for trajectory

generation and can predict fault with the same accuracy for the

trajectories generated by CBF-based QPs. During training, we

optimize the loss function using stochastic gradient descent,

and we train the pre- and post-fault networks separately. The

number of trajectories in the buffer is capped at Nbuf so that

once the maximum number of trajectories are collected, the

earlier trajectories are dropped from the buffer. The training is

performed either till the number of iterations reaches NM > 0,

or the loss drops below 10−3 after at least Nm < NM training

epochs. During each training epoch, we use a batch size of

5000 trajectories and perform 100 iterations of training on all

the buffer data.

IV. LEARNING-BASED FAULT-RECOVERY

Next, we present a learning framework for designing a

fault-recovery control law using CBFs. Before presenting the

learning framework, we first extend the definition of CBFs

to provide safety guarantees in the presence of actuator

faults, and we present a theorem proving the soundness of

fault-tolerant CBF-based control.

Definition 2 (Fault-Tolerant CBF): Consider a control-

affine system S and disjoint sets Xsafe,Xunsafe ⊆ X ,

Xsafe ∩ Xunsafe = ∅. Assume that the fault vector �u

takes values from �U = {�u1, . . . , �um}. A function

hpost : X �→ R is a fault-tolerant CBF if there exists a class-K

function α such that:

hpost(x) < 0, ∀x ∈ Xunsafe, (8)

hpost(x) ≥ 0, ∀x ∈ Xsafe, (9)

sup
u∈U

inf
�u∈�U

{

Lf hpost(x) + Lghpost(x)(u + �u)

}

≥ −α(hpost(x)) ∀x ∈ X . (10)

We define the admissible controls for a fault-tolerant CBF

by Kpost(x) = {u ∈ U | Lf hpost + Lghpost(u + �uj) +

α(hpost(x)) ≥ 0, ∀j = 1, . . . , m} for the failed systems. In

other words, the control input is admissible for the fault-

tolerant CBF if it is admissible at each point of the set �U .

Theorem 1: If hpost is a fault-tolerant CBF, then any locally

Lipschitz control policy with πpost(x) ∈ Kpost(x) ∀x ∈ X

renders the closed-loop system S safe for any �u ∈ �U .

The proof follows from using the Definition 2 with

Lemma 1, similar to the proof of [22, Th. 2], and is omitted

in the interest of space.

The corresponding fault-tolerant CBF-based QP controller

for a system with a loss of control authority is:

πpost(x) = arg min
u∈U ,α∈R

1

2
‖u − πnominal(x)‖

2
2 +

1

2
α2 (11a)

s.t. Lf hpost(x) + Lghpost(x)u + Lghpost(x)�ui

≥ −α hpost(x), ∀i ∈ {1, . . . , m}. (11b)

We provide a result on the feasibility, regularity, and correct-

ness of the solutions of the QPs (6) and (11) (see [21]).

Lemma 2: The QPs (6) and (11) are feasible for each x ∈

int(Xsafe). Furthermore, if the strict complementary slackness

holds for (6) (respectively, (11)), then πpre (respectively, πpost)

is continuous on int(Xsafe).

One method to encode m constraints in (11b) via a single

constraint is to use the following optimization formulation:

πpost(x) = arg min
u∈U ,α∈R

1

2
‖u − πnominal(x)‖

2
2 +

1

2
α2 (12a)

s.t. Lf hpost(x) + Lghpost(x)u + min
i

Lghpost(x)�ui

≥ −α hpost(x). (12b)

It is easy to solve mini Lghpost(x)�ui by enumerating m

options (this can be done before solving the QP since this term

does not depend on any decision variables), and the result-

ing optimization in (12) is still a QP with just one inequality

constraint. Note that the post-fault CBF constraint assumes

the worst-case fault, and hence, learning one single post-fault

CBF with the worst-case fault is sufficient to guarantee safe

recovery from all possible faults in any one of the actuators.

In this letter, we use a linear class−K function α(h(x)) =

α h(x) with |α| ≤ αM for some αM > 0, and modify (10) as

sup
|α|≤αM

inf
�u∈�U

{

Lf h(x) + Lgh(x)(u + �u) + α h(x)
}

≥ 0,

(13)

The satisfaction of this modified CBF condition implies the

existence of a parameter α ∈ [ −αM, αM] and u ∈ U for each

faulty signal �u ∈ �U such that safety can still be guaranteed.

Similarly, (5) can also be modified. Thus, we only need to

learn the pre-and the post-CBFs.

The CBFs hpre, hpost : X → R are parameterized as neu-

ral networks that are trained offline. Here, we also learn πpre

and πpost as witnesses that the feasible sets of the correspond-

ing CBF QP controllers (6) and (12) will be non-empty. Once

the CBFs are learned, we use the CBF and the nominal con-

troller πnominal online in a QP to find the safe control policy

π . To learn these functions, we use an iterative learning pro-

cedure. At each step, we generate N training points XI = {xi}

randomly sampled from X . We then define an empirical loss

for training the pre-fault CBF hpre to satisfy the conditions in

Definition 1:

Lpre =
a1

Nsafe

∑

x∈XI∩Xsafe

[ε − hpre(x)]+

+
a2

Nunsafe

∑

x∈XI∩Xunsafe

[ε + hpre(x)]+

+
a3

Ntrain

∑

x∈XI

[

− sup
|α|≤αM

(

Lf hpre(x)

+ Lghpre(x)πpre + αhpre(x)
)

+ ε

]

+
(14)

where a1, a2, a3 > 0 are tuning parameters, ε > 0 is a small

parameter that allows us to encourage strict inequality satis-

faction, [ · ]+ stands for the ReLU function, and Nsafe and

Nunsafe are the number of points in the training set that fall

into Xsafe and Xunsafe, respectively. For post-fault CBF, we

train m CBFs, one corresponding to a fault in each of the

actuators. For k − th post-fault CBF with k ∈ {1, 2, . . . , m},

we modify the empirical loss by replacing Lghpre(x)πpre with

Lghpost(x)πpost −Lgk
hpost(x)πpre,k to account for zero actuation
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from k−th actuator. We use a similar iterative training mech-

anism as described in Section III to train the CBFs, where

instead of trajectories, we sample data points x ∈ R
n.

Switching law: Based on the CBFs and FDI mechanism, we

are ready to propose a switching-based control algorithm for

input assignment. The control law is given as

π(t, x) =

⎧

⎨

⎩

πpre(x) if t ≤ T;

πpre(x), if t ≥ T, min �NN(t, y) > �tol;

πk∗

post(x), otherwise;

(15)

where 0 < �tol � 1 is the prediction tolerance, and

�k,NN(t, y) = �k,NN(y(t − τ)T
τ=0, u(t − τ)T

τ=0) denotes

the k−th component of the predicted � vector. The pre-

dicted faulty actuator is given by k∗ = arg min�k,NN(t, y) if

min �NN(t, y) < �tol, and the control algorithm switches

to post-fault CBF hpost,k∗ for synthesizing πk∗

post for safe

recovery.

V. NUMERICAL EVALUATIONS

The primary objective of our numerical experiments is to

evaluate the effectiveness of our method in terms of fault

detection. We consider an experimental case study involving

the Crazyflie quadrotor with a fault in one of its motors. The

6-DOF quadrotor dynamics are given in [23] with x ∈ R
12 con-

sisting of positions, velocities, angular positions, and angular

velocities, and u ∈ R
4 consisting of the thrust at each of four

motors. The output is chosen as y = [px, py, pz, φ̇, θ̇ , ψ̇] which

can be readily obtained using onboard GPS and IMU. In the

case study, we consider the scenario when one of the motors

is entirely faulty, i.e., produces zero input.

The state limit set is defined as X = {x | |px|, |py|, |pz|

≤ 25, |u|, |v|, |w| ≤ 10, |φ|, |θ |, |ψ | ≤ π
3
, |p|, |q|, |r| ≤ 2}, the

safe region is this case is defined as Xsafe = {x ∈ X | 2 ≤

pz ≤ 24, |w| ≤ 8}, where z is the altitude of the quadrotor.

Similarly, the safe region for the post-fault case is defined

as X̄safe = {x ∈ X | 1.9 ≤ z ≤ 24.1, |w| ≤ 8.1} so that

Xsafe ⊂ X̄safe. The unsafe region is defined as Xunsafe = {x ∈

X | pz ≤ 0.2 or pz ≥ 24.5 or w ≤ −9 or w ≥ 9}, so that

Xsafe ∪ Xunsafe �= X . This allows a non-empty region in X ,

defined as Xmid = X \ (Xsafe ∪Xunsafe) where there is no sign-

requirement for the CBF. This helps improve the learning as

it is generally hard to enforce that a NN has a specific zero

level set, and this non-empty region Xmid allows the barrier

function to smoothly decay from positive values in Xsafe to

negative values in Xunsafe.

In the training, we use fully-connected NNs with tanh acti-

vation functions to parameterize the CBFs hpre and hpost. At

each learning iteration for hpre (respectively, hpost), we gener-

ate 30,000 data points {xi}, out of which 10,000 data points

are sampled from the boundary of Xsafe (respectively, X̄safe),

10,000 from the safe set Xsafe and 10,000 from the unsafe set

Xunsafe, and add these points to the buffer of the previously

collected samples. The number of sampling points in the buffer

is capped at 106 so that once the maximum number of samples

are collected, the earlier samples are dropped from the buffer.

The training is performed either till the number of iterations

reaches 500, or the loss drops below 10−3. For the post-fault

Fig. 3. Failure prediction accuracy for CBF-QP input (solid lines) and
LQR input (dashed lines). The performance of model-free (Ours) FDI
with data (y , u) is shown in blue, while the one with all the data (y , u, ỹ )
in red.

CBF training, we assume that motor #1 is faulty for the CBF

condition. During each training step, we use a batch size of

5000 samples and perform the training 10 times on all the

data currently present in the buffer. Adam algorithm is used

for optimization with learning rate 1 × 10−4.

A fault is predicted if mini minn �i,NN(
n(y)) < �tol,

where �tol = 0.1. The experiments are run to check the

prediction accuracy of the NN-based FDI mechanism for var-

ious lengths of data with failed actuators between 0 and

Tf = 100. We report the minimum of the prediction accu-

racy for fault detection when there is a fault as well as when

there is no fault, across all 4 motors. Thus, a high overall

prediction accuracy implies that FDI can correctly identify

which actuator has a fault and when. We sample 1000 initial

conditions randomly from the safe set Xsafe to generate tra-

jectories for test data, where 200 trajectories are generated for

each of the faults and 200 trajectories are generated with-

out any fault. Each trajectory is generated for 200 epochs

with fault occurring at t = 100. We feed the moving tra-

jectory data (y(k − 100, k), u(k − 100, k), ỹ(k − 100, k) to the

trained NN-based FDI starting from k = 100. For a given k ∈

[100, 200], the portion of trajectory data with faulty actuator

is k − 100.

We use a long-short-term-memory (LSTM)-based NN archi-

tecture for FDI where the LSTM layer is followed by 2

linear layers (as we observed superior performance of LSTM

over multi-layer perceptron (MLP)). We first compare the

prediction accuracy of the model-free NN-FDI (θNN(y, u)) and

model-based FDI. Figure 3 shows the prediction accuracy of

the model-based FDIs, where it can be seen that the model-

free FDI mechanism can perform at par with the model-based

FDI mechanism. Based on this observation, we can infer that

a model-free FDI mechanism can be used with very high con-

fidence. We use N×128 as the size of the input layer with N

being the size of the features, hidden layer(s) of size 128×128

followed by a hidden layer of size 128×64 and an output layer

of size 64×m. Note that N = (2p + m) × Tf for the FDI with
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Fig. 4. Comparison of model-based and model-free FDI mechanisms
with perturbation in system parameters.

Fig. 5. Closed-loop plots under fault of actuator #2. The fault occurs at
t = 1.00 sec.

all the data, p×Tf for the FDI with just the residual data, and

N = (p + m) × Tf for the model-free FDI mechanism. Next,

we also study the effect of change in model parameters (such

as the inertia matrix, etc.) on the prediction accuracy of the

FDI mechanisms. For this experiment, we changed the system

parameters by more than 40%. As can be seen from Figure 4,

the prediction accuracy of the model-free FDI mechanism

changes only slightly due to changes in the model parameters,

while that of the model-based FDI mechanism drops signif-

icantly. Thus, in the scenarios when a correct system model

is not known or the system dynamics undergo changes during

operation, a model-based FDI mechanism might not remain

reliable.

Finally, the closed-loop performance with all the compo-

nents integrated is illustrated in Figure 5. Here, the fault occurs

in motor #2 at t = 1.0 sec, and the designed architecture can

keep the system from crashing on the ground. The plot shows

that the quadrotor maintains a safe altitude by switching to the

post-fault CBF hpost. This illustrates that the proposed frame-

work is capable of accurately identifying a fault and safely

recovering the system from it.

VI. CONCLUSION

In this letter, we propose a learning method for effec-

tively learning a model-free FDI and a switching mechanism

for automatically detecting and recovering from a fault. The

numerical experiments demonstrated that the applicability of

a model-based FDI mechanism is very limited, while that of

the proposed model-free is quite broad and general.

As part of future work, we will explore methods that can

incorporate more general fault models where the faulty actu-

ator can take any arbitrary signal, and more than one actuator

can undergo failure simultaneously.
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