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Model-Free Neural Fault Detection
and Isolation for Safe Control
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Abstract—A sudden actuator fault in a safety-critical
system can cause safety violations and lead to severe
consequences. Existing fault-tolerant control (FTC)
approaches normally focus on maintaining system
performance and do not consider system safety. Control
Barrier Functions (CBFs) have emerged as useful tools
from control theory for providing safety guarantees for
control systems. However, existing applications of CBFs
either do not consider actuator faults or only consider the
special case where it is known which actuator is faulty or
the case when redundant actuators are present to maintain
controllability even under faults and failures. In this letter,
we address the problem of safe recovery under a more
realistic scenario where it is completely unknown which
actuator is faulty and when the fault occurs. We develop a
novel model-free learning framework for an output-based
neural fault-detector that detects when a fault occurs and
in which actuator. Based on the learned functions, we
propose a switching framework for automatically detecting
and recovering from faults. We evaluate our method on a
case study involving a Crazyflie quadrotor with a motor
failure.

Index Terms—Fault detection, machine learning, neural

networks.

AFETY-CRITICAL systems are those where violation of
S safety constraints could result in loss of lives, significant
property damage, or damage to the environment. In real-life
applications, many cyber-physical control systems are safety-
critical, including autonomous cars and aircraft. In this context,
safe control requires finding a control policy that keeps the
system within a predefined safe region at all times.

. INTRODUCTION
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Designing and verifying safe control policies for complex
autonomous systems is challenging because of the need to
balance safety guarantees with other control objectives [1].
Control Barrier Functions (CBFs, [1], [2]) have been exten-
sively used for certifying that a closed-loop system satis-
fies desired safety requirements. In recent years, CBF-based
approaches have achieved promising results in many safety-
critical control systems, ranging from self-driving cars [1] to
aircraft [2], [3], [4].

Unfortunately, prior works on safe control using CBFs have
paid little attention to the effects of actuator faults. While [2]
proposes fault-tolerant control using CBFs, it is limited to
systems with redundant actuators. Failures and faults without
actuator redundancies have been studied in the field of fault-
tolerant control (FTC), which has been applied extensively to
applications such as aircraft [5], [6], and spacecraft attitude
controls [7].

There is a plethora of work on fault-detection and identifi-
cation (FDI); we refer the interested readers to the survey arti-
cles [8], [9], [10] that discuss various approaches of FDI used
in the literature. In particular, the residual-based method has
been used very commonly in prior work, where the expected
output (under the commanded input and a known system
model) and the actual output of the system are compared for
fault detection. Such residual information requires the knowl-
edge of the system model, and thus, is model-dependent. In
this letter, we design a model-free FDI mechanism that only
uses the actual output of the system and the commanded input
to the system, and does not use the residual information. There
is some work on using LSTM-based FDI, e.g., [11], [12],
but it is limited to a very narrow class of faults. As noted
in [13], prior work on neural network-based model-free FDI
relies on the reconstruction of the model (e.g., [14]), or gen-
erating the residual information using Kalman filtering (see,
e.g., [15]) or extended state-observers (see [16]). Koopman
operator-based FDI techniques such as [14], [17] reconstruct
a linear representation of the model for calculating the resid-
ual information. In such approaches, the approximations used
for computing a finite-dimensional Koopman operator adver-
sarially affect the performance of FDI. Another common
data-driven approach of FDI is based on Principle Component
Analysis (PCA), in particular, using Auto-associative neu-
ral network (AANN) [18], [19]). However, AANN-based
methods are generally applicable for sensor-faults and its
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fixed five-layer architecture limits its applications to higher
dimensional systems. The method in [13] also estimates a
reduced-order model of the system as an intermediate step.
The main disadvantage of model-based FDI methods is that
their performance can degrade significantly due to model
uncertainties or imperfections in the used model for design-
ing the FDI mechanism and the actual system model. To
overcome this limitation, in this letter, we present a truly
model-free approach, where we do not require to either learn
the system model or create a reduced-order representation of
the model. Instead, we use the system output and the com-
manded input as the features of a neural network, which
directly predicts whether there is an actuator fault. We illus-
trate through numerical experiments that the model-free FDI
mechanism performs at par (and even better in some cases
than) the model-based mechanisms. We also illustrate the
robustness of the proposed method against modeling uncertain-
ties and demonstrate through numerical examples that while
the performance of the model-based FDI mechanism drops sig-
nificantly under model uncertainties, the performance of the
designed model-free approach remains the same.

Notation: We denote by R and R the sets of real and non-
negative real numbers, respectively. |x| denotes the Euclidean
norm of a vector x € R”. The Lie derivative of a contin-
vously differentiable function 2 : R” — R along a vector
field f : R* — R™ at a point x € R" is denoted as
Leh(x) = %(x)f(x). A continuous function « : Ry — R4
is class-/C if ¢ (0) = 0 and « is strictly increasing.

[I. PROBLEM FORMULATION

We begin by considering a continuous-time nonlinear
dynamical system of the form

X =fx) + g)u,
y=p),

(1a)
(1b)

for state x € &, control input u € U, with locally Lipschitz
dynamics f : X — R", g : X — R""™ and state and control
sets X C R" and & C R™, respectively. Here, p : R* — R”
denotes the output map of the system.

In this letter, we study the safety of S under actuator faults.
Specifically, we consider an actuator fault occurring at some
unknown time # > 0:

7 (t, x) if

- I =<IF;
u(t,x) = {diag(®) w(t,x) if

t>tp,’

2

where ® = {0, 1} € R™ is the vector denoting whether an
actuator is faulty or not, and diag : R” — R maps a vector
in R™ to a diagonal matrix in R™ ™. If the i—th actuator is
faulty, then ®; = 0 and the rest of each of the elements of ®
is 1. Another way to represent this model is:

u(t,x) = (t, x) + Au, 3)

where Au; = —m;(t,x) and O, otherwise. Here, the set of
faulty signals can be collectively represented as AU = {Aug,
Auy, ..., Auy}, where Au; represents the case when the i—th
actuator is faulty. We can now state the problem studied in this
letter. Consider system S with fault-model (2) for a given AU

and disjoint sets of safe and unsafe states Xgafe, Xunsafe < X,
ie., Xafe N Xunsafe = ¥. We assume that the fault sig-
nal is uniformly observable through the system output so
that it is possible to detect the fault using system output.
Given this context, we consider the following control synthesis
problem:

Problem 1 (Fault-Tolerant  Safe  Control  Synthesis
Problem): Compute the largest possible subset Xy C Xsqfe
and a control policy 7 such that the following safety property
holds for all trajectories x : Ry — R”" of the closed-loop
dynamics under the policy = for all Au : Ry — AU
x(0) e Xy = x(0) ¢ Xunsafe V1 > 0.

Note that in some of the prior work (see, e.g., [20]), the
safe and the unsafe regions are chosen as complementary sets,
i.e., Xyfe = R"\ Xunsafe. While it is possible to consider such
a setup, we prefer a more general setup where there is a non-
empty region X'\ (Xyqfe U Xynsafe). The reason for considering
such a formulation is justified later in the letter, where we
explain how it makes it easier to learn a CBF due to the pres-
ence of this middle region. We begin by reviewing the standard
definition of CBFs in the fault-free case, then introduce our
notion of fault-tolerant CBFs in the next section.

Definition 1 (Control Barrier Function (CBF) [1]): A func-
tion & : X > Ris a CBF for system S if there exists a class-KC
function « such that:

h(x) <0 Vx € Xynsafe, h(x) >0 Vx € Xyufe, (4)

sup{th(x) +Lgh(x)u +a(h(x))} >0 Vx e Xvafe- 5)
ueld

Given a CBF, we can define a set of admissible controls
K@) ={u el | Lrh(x) + Lgh(x)u + a(h(x)) = 0} so that any
sufficiently smooth control input from this set is guaranteed
to keep the system safe, per the following lemma.

Lemma 1 [1, Corollary 2]: If h is a CBF, then any locally
Lipschitz continuous control policy = : X — U such that
m(x) € K(x) Vx € X renders the closed-loop system S safe.

When U is a polytope, we can define a CBF-based controller
using a Quadratic Program (QP) as in [21], where & is used
to filter a nominal controller mpominal : P — R™:

Tore () = argmin = = Toomina (013 + %oﬂ (6)
ueld,aeR

s.t. Leh(x) + Lgh(X)u > —o h(x). (6b)
Here, the class-C function is chosen as a linear function
a(h(x)) = ah(x), with « as a decision variable instead of
being fixed to help with the feasibility of the QP [21]. In
this architecture, the CBF filters the nominal controller to
ensure safety even as the nominal controller pursues other
objectives (e.g., reaching a goal location or tracking a ref-
erence trajectory). This approach is agnostic to the choice of
Thominal and guarantees to preserve safety under any choice
of nominal controller [1]. The nominal controller can be
designed to drive the system trajectories to a goal location
Xg € R". In this letter, we use an LQR-based nominal con-
troller, i.e., Tnominal(x) = KLQRr(x — X¢), where the LQR gain
matrix Ky gr is computed by linearizing the system (1) at the
goal location x,.
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Fig. 1. Safe recovery using learned CBFs and a fault-detection

mechanism.

Our approach to solving Problem 1 involves these steps:

1. Learn a fault-detector and a mechanism to switch the con-
trol policy from a pre-fault policy 7y, to a post-fault 7y
in response.

2. Learn a pre-fault CBF hy,, such that the corresponding
safety region Spre 1 {X | hpre(x) > 0} C Xyype and a fault-
tolerant CBF £y, such that Sy = {x | hpost = 0}  Spre
for the fault model (2) for a given AU.

First, we will combine these pre- and post-fault policies
by deriving and proving the soundness of a CBF-based fault
detection and switching mechanism. Then, we will provide
the extension of the CBF theory to the fault-tolerant case and
present our learning-based approach to finding pre- and post-
fault CBFs hy,, and hyp,y, respectively. Finally, we will utilize
these learned CBFs in a QP framework for synthesizing cor-
responding control policies. The resulting closed-loop system
is depicted in Figure 1.

IIl. NEURAL FAULT-DETECTION AND ISOLATION

Model-free FDI: The faults must be detected correctly and
promptly for the safe recovery of the system. We use a
learning-based approach to design a fault-detection mecha-
nism. Let ® € {0, 1} denote the fault vector, where ®; = 0
indicates that i—th actuator is faulty, while ®; = 1 denotes
it is not faulty. Let Oyy : Y x U — R™ be the predicted
fault vector, parameterized as a neural network. Here, Y =
) | y(-) = p(x(+)), x() € X} is a function space consisting
of trajectories of the output vector, and U = {u(-) | u(-) € U}
is a function space consisting of input signals. To generate the
residual data, the knowledge of the system model is essential,
which makes the residual-based approach model dependent.
This is the biggest limitation of this approach, as modeling
errors can lead to severe performance issues in fault detection
due to model uncertainties. To overcome this, we propose
a model-free NN-based FDI mechanism that only uses the
system input and output (y, u) as the feature data, i.e., it does
not require the model-based residual information. For a given
time length 7 > 0, at any given time instant ¢t > T, the
NN function ®py takes a finite trace of the system trajec-
tory y(t —1)|7_, and the commanded input signal u(t —7)!_
as input, and outputs the vector of predicted faults.

Model-based FDI: For model-based FDI mechanisms, the
residual data is also required as an additional feature to the
NN. The error vector y is defined as the stepwise error between
the actual output of the system with potentially faulty actuators

=50,

u(t —7,Tizo y(t —7,Dio J(t —7,T)ig

Fig. 2. General neural-network architecture for failure prediction. The
training data includes all possible trajectories with different lengths of
faulty input (the violet color represents the portion of the trajectory with
faulty input).

and the output of the system assuming no faults, i.e., y(r) =
y(¢) — y(¢) where y is the output of (1) with faulty input and
y is the output of x =f(x) +gxu,y = p(x), with y(kr) =
ykt), k =0,1,2,..., where T > 0 is sampling period for
data collection. In most of the prior literature, only y (or X,
depending on whether the approach is output-based or state-
based) information is used for designing FDI. In the numerical
experiments, we compare the performance of an FDI with just
y trajectory as the feature, and (y, y, u) trajectories as features.

Training data: For training, the trajectory data is collected
under all one-actuator faults where one of the actuators is
completely faulty, i.e., results in zero input. At each time
instant ¢+ > T, it is possible that only a portion of the tra-
jectory y(-) is generated under a faulty actuator. That is, the
possible input to the system is u(t — t, Tf)Z:O = [u(t—T),
u@—T+1), ..., upt—=T+Tp),urt—T+Tr+1),...,u()]
(with the corresponding output trajectory y(¢ — t, Tf)Z:0 and
the error trajectory y(t — t, Tf)TTZO), where Ty € [0, T] dic-
tates the time instant when the fault occurs. Thus, the NN
for fault prediction must be trained on all possible combina-
tions of occurrences of fault. Hence, our training data includes
U%eo(y(t — 1, Tf)rTZO,)”z(t — 1, Tf)Z:o’ u(t — t, Tf)zzo) (see
Figure 2). In every training iteration, we generate Ny, =
N1 x (m x Ty + 2) trajectories, so that we have Ni > 0 tra-
jectories for faults in each of the m actuators with all possible
lengths of trajectories under one faulty actuator in [0, T¥], and
2 x Ny > 0 trajectories without any fault. The loss function
for training is defined as

ij
Lo =) (1€ (70 550 1) = Ojll = €] . (D

j=1
where ©; € {0, 1} is the fault vector used for generating the
data for the j—th trajectory and 0 < € « 1. In each training
epoch, we generate N = 250 x m x 100425000 trajectories of
length 7y and maintain a buffer of 1.5 M trajectories. The tra-
jectory data for training is generated by randomly sampling the
initial conditions {)C(O)}ll\]l from the safe set Xy and rolling
out the closed-loop system under an LQR input for both the
fault and non-fault scenarios. We train the NN until the loss
reduces to 1073, We use a Linear-Quadratic Regulator (LQR)
input to generate the training data (since solving a CBF-based
QP is very slow for collecting a sufficient amount of train-
ing data). In our experiments, we illustrate that the trained
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NN is highly robust to the kind of input used for trajectory
generation and can predict fault with the same accuracy for the
trajectories generated by CBF-based QPs. During training, we
optimize the loss function using stochastic gradient descent,
and we train the pre- and post-fault networks separately. The
number of trajectories in the buffer is capped at Np,s so that
once the maximum number of trajectories are collected, the
earlier trajectories are dropped from the buffer. The training is
performed either till the number of iterations reaches Ny > 0,
or the loss drops below 1073 after at least N,, < Ny training
epochs. During each training epoch, we use a batch size of
5000 trajectories and perform 100 iterations of training on all
the buffer data.

IV. LEARNING-BASED FAULT-RECOVERY

Next, we present a learning framework for designing a
fault-recovery control law using CBFs. Before presenting the
learning framework, we first extend the definition of CBFs
to provide safety guarantees in the presence of actuator
faults, and we present a theorem proving the soundness of
fault-tolerant CBF-based control.

Definition 2 (Fault-Tolerant CBF): Consider a control-
affine system S and disjoint sets Xy, Xunsafe S &,
Xoafe N Xynsafe = 9. Assume that the fault vector Au
takes values from AU = {Auy,...,Au,}. A function
hpost = X + R is a fault-tolerant CBF if there exists a class-X
function « such that:

hpost(x) <0, Vx e Xunsafev ®)
hpost(x) >0, Vxe Xvafea )]
sup inf 1 Lrhpos (x) 4+ Lehpos (x) (1 + Au)}

ueld Aue AU

> —a(hpos(x)) Vxe X, (10)

We define the admissible controls for a fault-tolerant CBF
by Kpast(x) = f{u € U | thpost + Lghpost(u + AMj) +
a(hpost(x)) = 0, Vj = 1,...,m} for the failed systems. In
other words, the control input is admissible for the fault-
tolerant CBF if it is admissible at each point of the set AU.

Theorem 1: If hpog is a fault-tolerant CBF, then any locally
Lipschitz control policy with mp(x) € Kpos(x) Vx € X
renders the closed-loop system S safe for any Au € AU.

The proof follows from using the Definition 2 with
Lemma 1, similar to the proof of [22, Th. 2], and is omitted
in the interest of space.

The corresponding fault-tolerant CBF-based QP controller
for a system with a loss of control authority is:

1 1
Tpost(¥) = argmin = |4 — Tnominal ()13 + Eaz (11a)
ueld,aeR

S.t. thpost(.x) + Lghpgs[(x)u + Lghpg_y[(x)AM[

> —a hpoy(x), Vie{l,...,m}.  (l1b)

We provide a result on the feasibility, regularity, and correct-
ness of the solutions of the QPs (6) and (11) (see [21]).

Lemma 2: The QPs (6) and (11) are feasible for each x €
int(Xs4f). Furthermore, if the strict complementary slackness
holds for (6) (respectively, (11)), then . (respectively, 7,os:)
is continuous on int(Xygz).

One method to encode m constraints in (11b) via a single
constraint is to use the following optimization formulation:

1 1
Tpost(X) = argmin —|lu — nnominal(x)”% + 5052 (12a)
ueld,aeR

S.t. Lehpog (x) + Lghpos ()u + ml_in Lghposi (x) Au;

> = Nposi (x). (12b)

It is easy to solve min;Lghys(X)Au; by enumerating m
options (this can be done before solving the QP since this term
does not depend on any decision variables), and the result-
ing optimization in (12) is still a QP with just one inequality
constraint. Note that the post-fault CBF constraint assumes
the worst-case fault, and hence, learning one single post-fault
CBF with the worst-case fault is sufficient to guarantee safe
recovery from all possible faults in any one of the actuators.

In this letter, we use a linear class—K function a(h(x)) =
o h(x) with |o| < ay for some ays > 0, and modify (10) as

sup
loe| <amr

inf | Leh) + Lh) e+ Aw) +a b 2 0,

AueA

13)

The satisfaction of this modified CBF condition implies the
existence of a parameter o € [ — oy, ay] and u € U for each
faulty signal Au € AU such that safety can still be guaranteed.
Similarly, (5) can also be modified. Thus, we only need to
learn the pre-and the post-CBFs.

The CBFs hpre, hpost : X — R are parameterized as neu-
ral networks that are trained offline. Here, we also learn .,
and s as witnesses that the feasible sets of the correspond-
ing CBF QP controllers (6) and (12) will be non-empty. Once
the CBFs are learned, we use the CBF and the nominal con-
troller myeminal Online in a QP to find the safe control policy
7. To learn these functions, we use an iterative learning pro-
cedure. At each step, we generate N training points X7 = {x;}
randomly sampled from X. We then define an empirical loss
for training the pre-fault CBF hy,, to satisfy the conditions in

Definition 1:
- >

safe xEXlﬂmee

a
S liD D
unsafe xeXy m-)(‘unsafe
as
Py
Nirain x;[
+ Lghpre(x)”pre + ahpre(x)) + 6:|+

»Cpre =

[e — hpre 0]+

[e + hpre ]+

sup (thpre (%)

o] <am

(14)

where ai, az, a3 > 0 are tuning parameters, € > 0 is a small
parameter that allows us to encourage strict inequality satis-
faction, [ - ]+ stands for the ReLU function, and Nyup and
Nunsafe are the number of points in the training set that fall
into Xy and Xypsqfe, respectively. For post-fault CBF, we
train m CBFs, one corresponding to a fault in each of the
actuators. For k — th post-fault CBF with k € {1,2,...,m},
we modify the empirical loss by replacing Lghye(X)7,r. With
Lghpost(X)7Tpost — Lg Ppost (X) TTpre & to account for zero actuation
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from k—th actuator. We use a similar iterative training mech-
anism as described in Section III to train the CBFs, where
instead of trajectories, we sample data points x € R".

Switching law: Based on the CBFs and FDI mechanism, we
are ready to propose a switching-based control algorithm for
input assignment. The control law is given as

Tpre(x) if t<T;

npre(x): lf t 2 Tv min ®NN(1’ )’) > @[01;
* .

”;]fm(x), otherwise;

(t,x) = (15)

where 0 < ©®y; <« 1 is the prediction tolerance, and
Oran(t,y) = Oran((t — ) ut — ©)I_) denotes
the k—th component of the predicted ® vector. The pre-
dicted faulty actuator is given by k* = argmin®y yy(t,y) if
min Oyy(t,y) < Oy, and the control algorithm switches
to post-fault CBF /hps 1+ for synthesizing n/,‘;t for safe

recovery.

V. NUMERICAL EVALUATIONS

The primary objective of our numerical experiments is to
evaluate the effectiveness of our method in terms of fault
detection. We consider an experimental case study involving
the Crazyflie quadrotor with a fault in one of its motors. The
6-DOF quadrotor dynamics are given in [23] with x € R!? con-
sisting of positions, velocities, angular positions, and angular
velocities, and u € R* consisting of the thrust at each of four
motors. The output is chosen as y = [px, py, pz, ¢5, 6, 1&] which
can be readily obtained using onboard GPS and IMU. In the
case study, we consider the scenario when one of the motors
is entirely faulty, i.e., produces zero input.

The state limit set is defined as X = {x | |pxl, Ipyl, |pl
<25, ful, [v], wl 10, |9, 101, [¥| < 5. Ipl, lgl, Ir] < 2}, the
safe region is this case is defined as Xy = {x € X' | 2 <
p; < 24,|w| < 8}, where z is the altitude of the quadrotor.
Similarly, the safe region for the post-fault case is defined
as Xye = fx € X | 1.9 < z < 24.1,|w| < 8.1} so that
Xsafe C -X_:mfe. The unsafe region is defined as Xjpsqfe = {x €
X |p,<02o0rp,>2450rw < —9 or w > 9}, so that
Xsafe U Xunsafe # X. This allows a non-empty region in X',
defined as Xyig = X'\ (Xsafe U Xunsare) Where there is no sign-
requirement for the CBF. This helps improve the learning as
it is generally hard to enforce that a NN has a specific zero
level set, and this non-empty region Xj,;; allows the barrier
function to smoothly decay from positive values in Xy to
negative values in &y psqfe-

In the training, we use fully-connected NNs with tanh acti-
vation functions to parameterize the CBFs hy, and hpos. At
each learning iteration for hy, (respectively, ho5), We gener-
ate 30,000 data points {x;}, out of which 10,000 data points
are sampled from the boundary of Xj.f (respectively, )Emfe)9
10,000 from the safe set Xyp and 10,000 from the unsafe set
Xunsafe» and add these points to the buffer of the previously
collected samples. The number of sampling points in the buffer
is capped at 10° so that once the maximum number of samples
are collected, the earlier samples are dropped from the buffer.
The training is performed either till the number of iterations
reaches 500, or the loss drops below 1073, For the post-fault

Failure: Model-free

- No Failure: Model-free
Failure: Model-based

- No Failure: Model-based

Accuracy (LQR)

Failure: Model-free

- No Failure: Model-free
Failure: Model-based

- No Failure: Model-based

Accuracy (CBF)

20 40 60 80
Length of trajectory with failed actuator

Fig. 3. Failure prediction accuracy for CBF-QP input (solid lines) and
LQR input (dashed lines). The performance of model-free (Ours) FDI
with data (y, u) is shown in blue, while the one with all the data (y, u, y)
in red.

CBF training, we assume that motor #1 is faulty for the CBF
condition. During each training step, we use a batch size of
5000 samples and perform the training 10 times on all the
data currently present in the buffer. Adam algorithm is used
for optimization with learning rate 1 x 1074,

A fault is predicted if min; min, ®; yv(P,(¥)) < O,
where ®;,; = 0.1. The experiments are run to check the
prediction accuracy of the NN-based FDI mechanism for var-
ious lengths of data with failed actuators between O and
Ty = 100. We report the minimum of the prediction accu-
racy for fault detection when there is a fault as well as when
there is no fault, across all 4 motors. Thus, a high overall
prediction accuracy implies that FDI can correctly identify
which actuator has a fault and when. We sample 1000 initial
conditions randomly from the safe set Xy to generate tra-
jectories for test data, where 200 trajectories are generated for
each of the faults and 200 trajectories are generated with-
out any fault. Each trajectory is generated for 200 epochs
with fault occurring at + = 100. We feed the moving tra-
jectory data (y(k — 100, k), u(k — 100, k), y(k — 100, k) to the
trained NN-based FDI starting from k = 100. For a given k €
[100, 200], the portion of trajectory data with faulty actuator
is k — 100.

We use a long-short-term-memory (LSTM)-based NN archi-
tecture for FDI where the LSTM layer is followed by 2
linear layers (as we observed superior performance of LSTM
over multi-layer perceptron (MLP)). We first compare the
prediction accuracy of the model-free NN-FDI (Oyy (v, #)) and
model-based FDI. Figure 3 shows the prediction accuracy of
the model-based FDIs, where it can be seen that the model-
free FDI mechanism can perform at par with the model-based
FDI mechanism. Based on this observation, we can infer that
a model-free FDI mechanism can be used with very high con-
fidence. We use Nx 128 as the size of the input layer with N
being the size of the features, hidden layer(s) of size 128 x 128
followed by a hidden layer of size 128 x64 and an output layer
of size 64xm. Note that N = (2p + m) x Ty for the FDI with

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2023 at 22:45:54 UTC from IEEE Xplore. Restrictions apply.



3174

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

—e— Failure: Model-free (nominal)

-4~ No Failure: Model-free (nominal)
—@— Failure: Model-based (nominal)

-#- No Failure: Model-based (nominal)
—&— Failure: Model-free (perturbed)

-4~ No Failure: Model-free (perturbed)
—@— Failure: Model-based (perturbed)
-4~ No Failure: Model-based (perturbed)

081/

Accuracy
o
o

14
IS

0.2

20 40 60 80

Fig. 4. Comparison of model-based and model-free FDI mechanisms
with perturbation in system parameters.
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Fig. 5. Closed-loop plots under fault of actuator #2. The fault occurs at
t =1.00 sec.

all the data, p x Ty for the FDI with just the residual data, and
N = (p+m) x Ty for the model-free FDI mechanism. Next,
we also study the effect of change in model parameters (such
as the inertia matrix, etc.) on the prediction accuracy of the
FDI mechanisms. For this experiment, we changed the system
parameters by more than 40%. As can be seen from Figure 4,
the prediction accuracy of the model-free FDI mechanism
changes only slightly due to changes in the model parameters,
while that of the model-based FDI mechanism drops signif-
icantly. Thus, in the scenarios when a correct system model
is not known or the system dynamics undergo changes during
operation, a model-based FDI mechanism might not remain
reliable.

Finally, the closed-loop performance with all the compo-
nents integrated is illustrated in Figure 5. Here, the fault occurs
in motor #2 at t = 1.0 sec, and the designed architecture can
keep the system from crashing on the ground. The plot shows
that the quadrotor maintains a safe altitude by switching to the
post-fault CBF /£, This illustrates that the proposed frame-
work is capable of accurately identifying a fault and safely
recovering the system from it.

VI. CONCLUSION

In this letter, we propose a learning method for effec-
tively learning a model-free FDI and a switching mechanism
for automatically detecting and recovering from a fault. The
numerical experiments demonstrated that the applicability of
a model-based FDI mechanism is very limited, while that of
the proposed model-free is quite broad and general.

As part of future work, we will explore methods that can
incorporate more general fault models where the faulty actu-
ator can take any arbitrary signal, and more than one actuator
can undergo failure simultaneously.
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